文档视界 最新最全的文档下载
当前位置:文档视界 › 大学物理知识点归纳

大学物理知识点归纳

大学物理

第十一章:真空中的静电场

一、电场强度:数值上等于单位正电荷在该点受到的电场力的大小,也等于单位面积电通量的大小(即电场

线密度);方向与该点的受力方向(或者说电场线方向)一致。

二、电场强度的计算:

a)点电荷的电场强度:

b)电偶极子中垂线上任意一点的电场强度:(表示点到电偶极子连线的距离)

c)均匀带电直棒:

无限长(=0)

无限

ii.非均匀电场E穿过曲面S的电通量:

四、高斯定理

a)

b)表述:真空中任何静电场中,穿过任一闭合曲面的电通量,在数值上等于该闭合曲面内包围的电荷

的代数和除以;

c)理解:

1.高斯定理表达式左边的E是闭合面上处的电场强度,他是由闭合面内外全部电荷共同产

生的,即闭合曲面外的电荷对空间各点的E有贡献,要影响闭合面上的各面元的同量。

2.通过闭合曲面的总电量只决定于闭合面内包围的电荷,闭合曲面外部的电荷对闭合面的总

电通量无贡献。

d)应用:

1.均匀带电球面外一点的场强相当于全部电荷集中于球心的点电荷在该点的电场强度。

2.均匀带电球面内部的电场强度处处为零。

五、电势

a)静电场环路定理:在静电场中,电场强度沿任意闭合路径的线积分等于零。

b)电场中a点的电势:

1.无穷远为电势零点:

2.任意b点为电势零点:

电场中任意一点的电场强度等于该点点势梯度的负值。

第十二章

a)导体内部,电场强度处处为零;导体表明的电场强度方向垂直该处导体表面;电场线不进入导体内部,

b)

c)

d)

e)

a)

i.

b)导体空腔内有带电体(电量为q)的情况

i.空腔导体原来不带电,空腔外表面感应电荷为q,空腔内表面感应电荷为

-q。如果空腔导体原来带电量Q,则内外表面电荷量分别加上Q。

三、A、B为两个任意带电平面:,

四、静电场中的电介质:

a)电介质中的电场强度:

i.

ii.

电介质极化后,介质内部任意一处,合电场强度,但不等于0,这是电场中的电介质与电场中的

导体静电平衡后的重要区别。

五、电介质中的高斯定理:

a)其中

六、有电介质存在时静电场的分析计算:

i.由介质中的高斯定理先计算空间的分布,再由求得空间电场的分布。

ii.

a)注:孤立导体球的电容

b)

c)

(分别表示电容器的内外半径,

(分别表示电容器的内外半径

d)计算电容器的一般步骤:

i.

ii.

iii.求两极板之间的电势差;

iv.由电容器电容的定义式求得电容。

八、电容器并联相当于电阻的串联(总容值变大)

a)带电电容器的能量:

b)

第13章、稳恒电流的磁场

一、电流

a)定义:单位时间内通过导线某一截面的电量叫做电流强度或电流。

b)电流密度:电流密度的方向与该点电流流向相同,电流密度的大小是通过单位面积的电流。

可见,电流为某一截面积的电流密度通量。

二、电动势:

a)定义:单位正电荷从电源负极(低电势)经过电源内部移到电源正极(髙电势)时非静电场力做的功叫

做电源电动势。

b)指向:自负极经电源内部指向正极。

c)电动势等于单位正电荷绕闭合回路L一周时,非静电场力所做的功。{非静电场力的环流

不为零,因此,它是非保守力,这种非静电场力场称为非保守力场’}

三、右手螺旋法则:

a)对于直电流,用右手握住直导线,大拇指指向电流方向,四指弯曲方向就是磁场方向;

b)对于圆电流,大拇指指向磁场方向,四指弯曲方向表示电流方向。

四、磁感应强度

a)运动电荷在磁场中的受力:;

b)磁场的方向为试验电荷的“零受力方向”,即的方向;

c)

五、

a)

i.一段载流直导线的磁场

ii.无限长直导线的磁场

iii.半无限长直导线的磁场

iv.载流直导线的延长线上的磁场为零。

b)

i.圆电流轴线上的磁场:

ii.圆心处:

iii.的时候,

iv.磁矩:

c)

i.有限长:

ii.无限长:

iii.长直螺线管的端点:

六、磁感线的性质:

a)磁感线是没有起点也没有终点的闭合曲线;

b)磁感线总是与产生磁场的电流互相套链,磁感线的方向与电流方向服从右手螺旋法则;

c)任意两条磁感线不相交,即磁场中每一点的磁感应方向只有一个方向;

d)磁场强处磁感线密集,磁场弱处磁感线稀疏。

七、磁场的高斯定理:

i.通过任何封闭曲面的磁通量都一定为零。

八、安培环路定理:

a)定理:稳定磁场中,磁感应强度B沿任意闭合路径L的线积分,等于穿过以L为边界的任意曲面的电流

的代数和的倍。

b)说明:磁场是非保守场。

九、安培力

a)均匀磁场中,一条弯曲成任意形状的载流导线受到的磁力,等于弯曲导体起点到终点的载有同样电流的

直导线中受到的磁力,载流区闭合线圈在均匀磁场中受安培力的矢量和为零。

十、磁力矩:

第十四章、电磁感应电磁场

一、电磁感应定律

1、楞次定律:感应电流的流向总要使他自身所产生的磁通(感生磁通)阻碍闭合回路中原磁场的变化。

2、法拉第电磁感应定律:导体回路中的感应电动势的大小与穿过该回路的磁通量对时间的变化率成正比。即:(SI)(当回路中有N匝线圈时候,乘上N)

3、回路中的感应电量只和磁通量的变化量有关,而与磁通量的变化率(变化快慢)无关。

二、电动势

1、动生电动势:

2、

3、感生电动势(感生电场的环路定理)

4、感生电场与静电场的区别:

1、

磁链:,称为

自感系数:

长直螺线管:其中

同轴电缆单位长度:

自感电动势负号表示自感电动势在电路中起着防抗回路电路变化的作用。

2、

互感系数:其中所激发的磁场在线圈

圈的大小、形状、匝数、相对位置以及周围磁介质的分布决定。

c)互感电动势:当M为常量时候,当线圈1中的电流变化时,在线圈2中产生的互感电动势:

三、磁场的能量:一个自感为的线圈中通有电流时,它存储的能量为

磁场密度为:

麦克斯韦电磁理论:

1、表明,电场可以由自由电荷和变化和的磁场共同激发。在任意电场中,通过

任意封闭曲面的电位移通量等于封闭曲面内包围的自有电荷的代数和。

2、表明,磁场可以由传导电流和变化的电场共同激发。磁场是无源场。在任意磁场中通

过任意封闭曲面的磁通量恒为0。

3、它表明了变化磁场和电流之间的电场之间的联系,在任何电场中,电场强度沿任

意闭合回路的线积分等于通过这曲线所包围的面积的磁通量的时间变化率的负值。

4、它表明了磁场和电流及变化电场之间的联系,在任何磁场中,

5、

称为电导率,其倒数称为电阻率。

大学物理知识点总结汇总

大学物理知识点总结汇总 大学物理知识点总结汇总 大学物理知识点总结都有哪些内容呢?我们不妨一起来看看吧!以下是小编为大家搜集整理提供到的大学物理知识点总结,希望对您有所帮助。欢迎阅读参考学习! 一、物体的内能 1.分子的动能 物体内所有分子的动能的平均值叫做分子的平均动能. 温度升高,分子热运动的平均动能越大. 温度越低,分子热运动的平均动能越小. 温度是物体分子热运动的平均动能的标志. 2.分子势能 由分子间的相互作用和相对位置决定的能量叫分子势能. 分子力做正功,分子势能减少, 分子力做负功,分子势能增加。 在平衡位置时(r=r0),分子势能最小. 分子势能的大小跟物体的体积有关系. 3.物体的内能

(1)物体中所有分子做热运动的动能和分子势能的总和,叫做物体的内能. (2)分子平均动能与温度的关系 由于分子热运动的无规则性,所以各个分子热运动动能不同,但所有分子热运动动能的`平均值只与温度相关,温度是分子平均动能的标志,温度相同,则分子热运动的平均动能相同,对确定的物体来说,总的分子动能随温度单调增加。 (3)分子势能与体积的关系 分子势能与分子力相关:分子力做正功,分子势能减小;分子力做负功,分子势能增加。而分子力与分子间距有关,分子间距的变化则又影响着大量分子所组成的宏观物体的体积。这就在分子势能与物体体积间建立起某种联系。因此分子势能分子势能跟体积有关系, 由于分子热运动的平均动能跟温度有关系,分子势能跟体积有关系,所以物体的内能跟物的温度和体积都有关系:温度升高时,分子的平均动能增加,因而物体内能增加; 体积变化时,分子势能发生变化,因而物体的内能发生变化. 此外, 物体的内能还跟物体的质量和物态有关。 二.改变物体内能的两种方式 1.做功可以改变物体的内能.

大学物理基础知识点大全

大学物理基础知识点大全 只有高效的学习方法,才可以很快的掌握知识的重难点。接下来在这里给大家分享一些关于大学物理基础知识点,供大家学习和参考,希望对大家有所帮助。 大学物理基础知识点 【篇一】 一、电荷量和点电荷 1、电荷量:物体所带电荷的多少,叫做电荷量,简称电量。单位为库仑,简称库,用符号C表示。 2、点电荷:带电体的形状、大小及电荷量分布对相互作用力的影响可以忽略不计,在这种情况下,我们就可以把带电体简化为一个点,并称之为点电荷。 二、电荷量的检验 1、检测仪器:验电器 2、了解验电器的工作原理 三、库仑定律 1、内容:在真空中两个静止的点电荷间相互作用的库仑力跟它们电荷量的乘积成正比,跟它们距离的平方成反比,作用力的方向在它们的连线上。 2、大小:方向在两个电电荷的连线上,同性相斥,异性相吸。 3、公式中k为静电力常量, 4、成立条件 ①真空中(空气中也近似成立) ②点电荷 【篇二】 1.两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍。 2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0×109N?m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引} 3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)} 4.真空点(源)电荷形成的电场E=kQ/r2{r:源电荷到该位置的距离(m),Q:源电荷的电量} 5.匀强电场的场强E=UAB/d{UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)} 6.电场力:F=qE{F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)} 7.电势与电势差:UAB=φA-φB,UAB=W AB/q=-ΔEAB/q 8.电场力做功:W AB=qUAB=Eqd{W AB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)} 9.电势能:EA=qφA{EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)} 10.电势能的变化ΔEAB=EB-EA{带电体在电场中从A位置到B位置时电势能的差值} 11.电场力做功与电势能变化ΔEAB=-WAB=-qUAB(电势能的增量等于电场力做功的负值) 12.电容C=Q/U(定义式,计算式){C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)} 13.平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数)

大学物理必备知识点

大学物理必备知识点 作为大学物理学习的重要部分,必备的物理知识点是非常重要的。本文将介绍大学物理学习中必备的知识点,帮助大家更好的掌握物理学知识,提高成绩。 一、力学基础力学是最基础的物理学科,是后续学科的基础。其中包括了物体的运动、速度、加速度等概念。大学物理要求学生了解牛顿三定律,掌握受力分析方法,了解刚体运动学和动力学的基本概念等。这些基础的知识点将在本文中详细讲解。 1. 牛顿三定律牛顿三定律是力学的基础,也是物理学理解的基石。牛顿第一定律表明,一个物体静止或匀速运动时如果合力为零,那么物体将保持原有状态,此定律也称为惯性定律。牛顿第二定律表示力是导致物体加速度变化的原因,和物体的质量成反比。牛顿第三定律是说每个施力物体都会得到同等大小相反的反作用力,且反作用力作用在施力物体所的方向相反的物体上。 2. 受力分析方法对于一个物体受到的力,我们可以应用力的合成与分解原理,解析出物体所受合力的方向和大小。最终我们能够得出物体所受的合力决定了物体的运动状态,可以利用牛顿第二定律推导出加速度。 3. 刚体的运动学和动力学刚体是一个匀质、点质、反力矩为零的物体。这里需要清楚地了解刚体的概念以及刚体运动

学和刚体动力学,在进一步的理论学习和实践应用中,才能够更好的运用刚体的运动学和动力学理论。 二、电学基础电学是物理学的重要分支。在大学物理中,学生必须掌握电学的基本概念,如电场、电势、电容、电流、电阻等。此外,大学物理还要求学生掌握电磁学的基础知识,例如电磁波、电磁感应等。下面将介绍电学基础重要的知识点。 1. 电荷、电场和电势电荷是指物体的不平衡电子数,电 荷之间具有相互作用的力,即电场。对于一个电荷,它所产生的电场被称为该点的电势。其中电势的大小对应了电荷势能的值,可以通过电势差计算。 2. 电流、电阻和电容电流是指电荷随着时间的推移而产 生的流动,即电荷经过任意交替电场电势差时所具有的特定方向性和大小。而电阻是电路中抵抗电流流动的物体。电容则是指涉及电场的物体上带有电荷的总量。 三、热力学基础热力学是自然科学中非常重要的一门学科。它涵盖了热学的基本概念,如温度、热传递、热力学方程等。此外,大学物理学习还涉及到了热力学系统中质量、热量、功等基本量的基本关系,需要学生掌握。 1. 温度、热功、热动力学等基础概念温度是描述物体热 运动强度的物理量,热功是在热力学过程中由于温度差产生的物理量。此外,还要掌握热动力学概念,包括热容、焓、自由能、熵等。

大学物理知识点归纳

大学物理知识点归纳 1、1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体和轻物体下落一样快;并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的); 2、1654年,德国的马德堡市做了一个轰动一时的实验——马德堡半球实验; 3、1687年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律(即牛顿三大运动定律)。 4、17世纪,伽利略通过构思的理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;得出结论:力是改变物体运动的原因,了亚里士多德的观点:力是维持物体运动的原因。 同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。 5、英国物理学家胡克对物理学的贡献:胡克定律;经典题目:胡克认为只有在一定的条件下,弹簧的弹力才与弹簧的形变量成正比(对) 6、1638年,伽利略在《两种新科学的对话》一书中,运用观察-假设-数学推理的方法,详细研究了抛体运动。 17世纪,伽利略通过理想实验法指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。 7、人们根据日常的观察和经验,提出“地心说”,古希腊科学家托勒密是代表;而波兰天文学家哥白尼提出了“日心说”,大胆反驳地心说。 8、17世纪,德国天文学家开普勒提出开普勒三大定律; 9、牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了引力常量; 10、1846年,英国剑桥大学学生亚当斯和法国天文学家勒维烈(勒维耶)应用万有引力定律,计算并观测到海王星,1930年,美国天文学家汤苞用同样的计算方法发现冥王星。

大学物理必考知识点大全

大学物理必考知识点大全1. 力学 1.1. 牛顿三定律 1.2. 力的合成与分解 1.3. 动量定理 1.4. 质点运动学 1.5. 曲线运动 2. 热学 2.1. 熵与热力学第二定律 2.2. 热力学循环 2.3. 理想气体的等温、绝热过程 2.4. 热传导、热辐射、热对流 3. 电磁学 3.1. 库仑定律 3.2. 电场与电势 3.3. 电荷守恒量子化 3.4. 电磁感应与法拉第定律

3.5. 麦克斯韦方程组 4. 光学 4.1. 光的干涉与衍射 4.2. 库仑定律 4.3. 像差与光学仪器 4.4. 光的波粒二象性 5. 原子物理 5.1. 波尔模型与能级跃迁 5.2. 薛定谔方程与波函数 5.3. 玻尔兹曼分布 5.4. 拉曼效应与斯特恩-格拉赫实验 6. 相对论 6.1. 狭义相对论基本概念 6.2. 相对论动力学 6.3. 黑洞与引力波 7. 核物理 7.1. 放射性衰变

7.2. 核裂变与核聚变 7.3. 质能方程 7.4. 射线与粒子探测技术 8. 粒子物理学 8.1. 标准模型 8.2. 强、弱、电磁相互作用 8.3. 粒子加速器与探测器 9. 波动光学 9.1. 波动光学基本概念 9.2. 干涉与衍射 9.3. 偏振光与光的散射 10. 统计物理学 10.1. 玻尔兹曼分布与费米-狄拉克分布 10.2. 统计力学与热力学关系 10.3. 统计物理学中的等概率原理 总结: 大学物理的必考知识点包括力学、热学、电磁学、光学、原子物理、相对论、核物理、粒子物理学、波动光学和统计物理学等多个领域。

理解和掌握这些知识点,对于大学物理考试和物理学的学习都非常重要。通过系统学习和实践运用,我们可以更好地理解物理世界的规律和现象,并能够应用物理原理解决实际问题。希望本文的内容对您的学习和考试有所帮助!

大学物理知识点的总结归纳

大学物理知识点的总结归纳 一、理论基础 力学 1、运动学 参照系。质点运动的位移和路程,速度,加速度。相对速度。 矢量和标量。矢量的合成和分解。 匀速及匀速直线运动及其图象。运动的合成。抛体运动。圆周运动。 刚体的平动和绕定轴的转动。 2、牛顿运动定律 力学中常见的几种力 牛顿第一、二、三运动定律。惯性参照系的概念。 摩擦力。 弹性力。胡克定律。 万有引力定律。均匀球壳对壳内和壳外质点的引力公式(不要求导出)。开普勒定律。行星和人造卫星的运动。 3、物体的平衡 共点力作用下物体的平衡。力矩。刚体的平衡。重心。 物体平衡的种类。 4、动量 冲量。动量。动量定理。

动量守恒定律。 反冲运动及火箭。 5、机械能 功和功率。动能和动能定理。 重力势能。引力势能。质点及均匀球壳壳内和壳外的引力势能公式(不要求导出)。弹簧的弹性势能。 功能原理。机械能守恒定律。 碰撞。 6、流体静力学 静止流体中的压强。 浮力。 7、振动 简揩振动。振幅。频率和周期。位相。 振动的图象。 参考圆。振动的速度和加速度。 由动力学方程确定简谐振动的频率。 阻尼振动。受迫振动和共振(定性了解)。 8、波和声 横波和纵波。波长、频率和波速的关系。波的图象。 波的干涉和衍射(定性)。 声波。声音的响度、音调和音品。声音的共鸣。乐音和噪声。 热学

1、分子动理论 原子和分子的量级。 分子的热运动。布朗运动。温度的微观意义。 分子力。 分子的动能和分子间的势能。物体的内能。 2、热力学第一定律 热力学第一定律。 3、气体的性质 热力学温标。 理想气体状态方程。普适气体恒量。 理想气体状态方程的微观解释(定性)。 理想气体的内能。 理想气体的等容、等压、等温和绝热过程(不要求用微积分运算)。 4、液体的性质 流体分子运动的特点。 表面张力系数。 浸润现象和毛细现象(定性)。 5、固体的性质 晶体和非晶体。空间点阵。 固体分子运动的特点。 6、物态变化 熔解和凝固。熔点。熔解热。

大学物理知识点总结

大学物理知识点总结 大学物理课程是一门重要的学科,它不仅仅是一种理论知识,更是一门应用性极强的科学,它可以让学生学习到有关物理现象和原理的解释,并且可以分析出其中的物理原理。本文将从大学物理课程的概念、有关物理定律以及其相关原理出发,为大家总结归纳出大学物理的重点知识点。 大学物理包括力学、电磁学、热力学、波动论和光学等内容,这些内容涉及到大学物理课程的核心概念、物理定律和其相关的原理。 一、物理的概念 物理概念是一门大学物理课程的基本概念,包括:物化学、可见光学、力学、能量转换、统计物理学、等离子体物理学等。 二、物理定律 物理定律是物理学中客观存在的定律,它们是物理现象和物理定律的基础,指导物理学家观察客观现象,进行实验研究、分析、归纳、推论及论证。大学物理课程中的定律包括牛顿第一定律,牛顿第二定律,牛顿第三定律,伽利略坐标系,动量守恒定律等等。 三、物理原理 物理原理包括力学定律、气体定律、热学定律、光学定律等,它们是根据物理学的定律提出的,通过实验研究观察客观现象,解释现象,分析物体的性质,推导出一些规律性的定理,并对实验结果加以证明。例如,力学定律的原理包括牛顿力学、精确力学、非线性力学等;气体定律的原理包括洛伦兹定律、费米定律、维拉定律等;热学

定律的原理包括牛顿热力学定律、哈密顿热力学定律、洛伦兹热力学定律等;光学定律的原理包括埃尔法法则、佩里法则、反射定律等。 四、结论 大学物理是一门重要的学科,虽然它涉及到各种复杂的理论概念和定律,但也涵盖了一些简单易懂的概念和原理。将上述概念、定律和原理综合起来,可以帮助学生更好地理解物理的定律和原理,进一步加深对物理的理解,为掌握物理知识奠定牢固的基础。

大学物理知识点总结归纳

第一章质点运动学主要内容 一. 描述运动的物理量 1. 位矢、位移和路程 由坐标原点到质点所在位置的矢量r r 称为位矢 位矢r xi yj =+r v v ,大小 r r ==v 运动方程 ()r r t =r r 运动方程的分量形式() ()x x t y y t =???=?? 位移是描述质点的位置变化的物理量 △t 时间内由起点指向终点的矢量B A r r r xi yj =-=?+?r r r r r △ ,r =r △路程是△t 时间内质点运动轨迹长度s ?是标量。 明确r ?r 、r ?、s ?的含义(?≠?≠?r r r s ) 2. 速度(描述物体运动快慢和方向的物理量) 平均速度 x y r x y i j i j t t t u u u D D = =+=+D D r r r r r V V r 瞬时速度(速度) t 0r dr v lim t dt ?→?== ?r r r (速度方向是曲线切线方向) j v i v j dt dy i dt dx dt r d v y x ??????+=+==,2222y x v v dt dy dt dx dt r d v +=?? ? ??+??? ??==?? ds dr dt dt =r 速度的大小称速率。 3. 加速度(是描述速度变化快慢的物理量) 平均加速度v a t ?=?r r 瞬时加速度(加速度) 220lim t d d r a t dt dt υυ→?===?r r r r △ a r 方向指向曲线凹向二.抛体运动

运动方程矢量式为 2012 r v t gt =+r r r 分量式为 02 0cos ()1sin ()2 αα==-?? ???水平分运动为匀速直线运动竖直分运动为匀变速直线运动x v t y v t gt 三.圆周运动(包括一般曲线运动) 1.线量:线位移s 、线速度ds v dt = 切向加速度t dv a dt = (速率随时间变化率) 法向加速度2 n v a R =(速度方向随时间变化率)。 2.角量:角位移θ(单位rad )、角速度d dt θ ω= (单位1rad s -?) 角速度22d d dt dt θω α==(单位2rad s -?) 3.线量与角量关系:2 = t n s R v R a R a R θωαω===、 、、 4.匀变速率圆周运动: (1) 线量关系020220122v v at s v t at v v as =+???=+???-=? (2) 角量关系02022 0122t t t ωωαθωαωωαθ=+?? ? =+???-=? 第二章牛顿运动定律主要内容 一、牛顿第二定律 物体动量随时间的变化率dp dt r 等于作用于物体的合外力i F =F 骣÷?÷?÷?÷桫?r r 即: =dP dmv F dt dt =r r r , m =常量时 dV F =m F =ma dt 或r r r r 说明:(1)只适用质点;(2) F ?为合力 ;(3) a F r r 与是瞬时关系和矢量关系; (4) 解题时常用牛顿定律分量式 (平面直角坐标系中)x x y y F ma F ma F ma =?=? =?r r (一般物体作直线运动情况)

大学物理知识点总结

大学物理知识点总结 第一章声现象知识归纳 1 . 声音的发生:由物体的振动而产生。振动停止,发声也停止。 2.声音的传播:声音靠介质传播。真空不能传声。通常我们听到的声音是靠空气传来的。 3.声速:在空气中传播速度是:340米/秒。声音在固体传播比液体快,而在液体传播又比空气体快。 4.利用回声可测距离:S=1/2vt 5.乐音的三个特征:音调、响度、音色。(1)音调:是指声音的高低,它与发声体的频率有关系。(2)响度:是指声音的大小,跟发声体的振幅、声源与听者的距离有关系。 6.减弱噪声的途径:(1)在声源处减弱;(2)在传播过程中减弱;(3)在人耳处减弱。 7.可听声:频率在20Hz~20XX0Hz之间的声波:超声波:频率高于20XX0Hz的声波;次声波:频率低于20Hz的声波。 8.超声波特点:方向性好、穿透能力强、声能较集中。具体应用有:声呐、B超、超声波速度测定器、超声波清洗器、超声波焊接器等。 9.次声波的特点:可以传播很远,很容易绕过障碍物,

而且无孔不入。一定强度的次声波对人体会造成危害,甚至毁坏机械建筑等。它主要产生于自然界中的火山爆发、海啸地震等,另外人类制造的火箭发射、飞机飞行、火车汽车的奔驰、核爆炸等也能产生次声波。 第二章物态变化知识归纳 1. 温度:是指物体的冷热程度。测量的工具是温度计, 温度计是根据液体的热胀冷缩的原理制成的。 2. 摄氏温度(℃):单位是摄氏度。1摄氏度的规定:把冰水混合物温度规定为0度,把一标准大气压下沸水的温度规定为100度,在0度和100度之间分成100等分,每一等分为1℃。 3.常见的温度计有(1)实验室用温度计;(2)体温计; (3)寒暑表。 体温计:测量范围是35℃至42℃,每一小格是℃。 4. 温度计使用:(1)使用前应观察它的量程和最小刻度值;(2)使用时温度计玻璃泡要全部浸入被测液体中,不要碰到容器底或容器壁;(3)待温度计示数稳定后再读数;(4)读数时玻璃泡要继续留在被测液体中,视线与温度计中液柱的上表面相平。 5. 固体、液体、气体是物质存在的三种状态。 6. 熔化:物质从固态变成液态的过程叫熔化。要吸热。 7. 凝固:物质从液态变成固态的过程叫凝固。要放热.

大学物理知识点归纳

大学物理知识点归纳 大学物理知识点归纳 在我们上学期间,说到知识点,大家是不是都习惯性的重视?知识点也可以理解为考试时会涉及到的知识,也就是大纲的分支。以下是店铺帮大家整理的大学物理知识点归纳,希望能够帮助到大家。 大学物理知识点归纳篇1 1、1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体和轻物体下落一样快;并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的); 2、1654年,德国的马德堡市做了一个轰动一时的实验——马德堡半球实验; 3、1687年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律(即牛顿三大运动定律)。 4、17世纪,伽利略通过构思的理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;得出结论:力是改变物体运动的原因,了亚里士多德的观点:力是维持物体运动的原因。同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。 5、英国物理学家胡克对物理学的贡献:胡克定律;经典题目:胡克认为只有在一定的条件下,弹簧的弹力才与弹簧的形变量成正比(对) 6、1638年,伽利略在《两种新科学的对话》一书中,运用观察—假设—数学推理的方法,详细研究了抛体运动。17世纪,伽利略通过理想实验法指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。

大学物理重要知识点归纳

《大学物理上》重要知识点归纳 第一部分 (2012.6) 一、简谐运动的运动方程: 振幅A : 角频率ω:反映振动快慢,系统属性。 初相位ϕ: 取决于初始条件 二、简谐运动物体的合外力: (k 为比例系数) 简谐运动物体的位移: 简谐运动物体的速度: 简谐运动物体的加速度: 三、旋转矢量法(旋转矢量端点在x 轴上投影作简谐振动) 矢量转至一、二象限,速度为负 矢量转至三、四象限,速度为正 四、振动动能: 振动势能: 振动总能量守恒: 五、平面简谐波波函数的几种标准形式: ][)( cos o u x t A y ϕω+= ][2 cos o x t A ϕλ π ω+= 0ϕ:坐标原点处质点的初相位 x 前正负号反应波的传播方向 六、波的能量不守恒! 任意时刻媒质中某质元的 动能 = 势能 ! 2 2 0)( ω v x A +=) (cos ϕω+=t A x T πω2=m k =2 ω)(cos ϕω+=t A x ) (sin ϕωω+-=t A v )(cos 2ϕωω+-=t A a kx F -=) (sin 21 21 222ϕω+==t kA mv E k 221kx E p =)(cos 2 1 2 2 ϕω+=t A k p k E E E +=2 2 1 A k =

a,c,e,g 点: 能量最大! b,d,f 点: 能量最小! 七、波的相干条件:1. 频率相同; 2. 振动方向相同;3.相位差恒定。 八、驻波:是两列波干涉的结果 波腹点:振幅最大的点 波节点:振幅最小的点 相邻波腹(或波节)点的距离:2 λ 九、电场的高斯定理 真空中:∑⎰= ⋅) (0 1 内S S q S d E ε 介质中:∑⎰= ⋅) (0 内S S q S d D 0q :自由电荷 电位移:E D r εε0= 电极化强度:E P r 0)1(εε-= 十、点电荷的电场:球对称性!方向沿球面径向。 点电荷q 的电场:2 04)(r q r E πε= 点电荷dq 的电场: 2 04)(r dq r dE πε= 十一、无限大均匀带电平面(两侧为匀强电场)

(完整版)大学物理知识点(全)

B r ∆ A r B r y r ∆ 第一章 质点运动学主要内容 一. 描述运动的物理量 1. 位矢、位移和路程 由坐标原点到质点所在位置的矢量r 称为位矢 位矢r xi yj =+,大小 2r r x y ==+运动方程 ()r r t = 运动方程的分量形式() ()x x t y y t =⎧⎪⎨=⎪⎩ 位移是描述质点的位置变化的物理量 △t 时间内由起点指向终点的矢量B A r r r xi yj =-=∆+∆△,2r x =∆+△路程是△t 时间内质点运动轨迹长度s ∆是标量。 明确r ∆、r ∆、s ∆的含义(∆≠∆≠∆r r s ) 2. 速度(描述物体运动快慢和方向的物理量) 平均速度 x y r x y i j i j t t t 瞬时速度(速度) t 0r dr v lim t dt ∆→∆== ∆(速度方向是曲线切线方向) j v i v j dt dy i dt dx dt r d v y x +=+==,2222y x v v dt dy dt dx dt r d v +=⎪⎭ ⎫ ⎝⎛+⎪⎭⎫ ⎝⎛== ds dr dt dt = 速度的大小称速率。 3. 加速度(是描述速度变化快慢的物理量) 平均加速度v a t ∆=∆ 瞬时加速度(加速度) 220lim t d d r a t dt dt υυ→∆===∆△ a 方向指向曲线凹向j dt y d i dt x d j dt dv i dt dv dt v d a y x 2222+=+== 2 2222222 2 2⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=⎪ ⎪⎭ ⎫ ⎝ ⎛+⎪⎭⎫ ⎝⎛=+=dt y d dt x d dt dv dt dv a a a y x y x 二.抛体运动

大学物理知识点的总结

三一文库(https://www.docsj.com/doc/2119353897.html,)/总结〔大学物理知识点的总结〕 大学物理是大学理工科类的一门基础课程,通过课程的学习,,使学生熟悉自然界物质的结构,性质,相互作用及其运动的基本规律,下面是小编整理的大学物理知识点总结,欢迎来参考! ▲一、理论基础 ▲力学 ▲1、运动学 参照系。质点运动的位移和路程,速度,加速度。相对速度。 矢量和标量。矢量的合成和分解。 匀速及匀速直线运动及其图象。运动的合成。抛体运动。圆周运动。 刚体的平动和绕定轴的转动。 ▲2、牛顿运动定律 力学中常见的几种力 牛顿第一、二、三运动定律。惯性参照系的概念。

摩擦力。 弹性力。胡克定律。 万有引力定律。均匀球壳对壳内和壳外质点的引力公式(不要求导出)。开普勒定律。行星和人造卫星的运动。 ▲3、物体的平衡 共点力作用下物体的平衡。力矩。刚体的平衡。重心。 物体平衡的种类。 ▲4、动量 冲量。动量。动量定理。 动量守恒定律。 反冲运动及火箭。 ▲5、机械能 功和功率。动能和动能定理。 重力势能。引力势能。质点及均匀球壳壳内和壳外的引力势能公式(不要求导出)。弹簧的弹性势能。 功能原理。机械能守恒定律。 碰撞。 ▲6、流体静力学 静止流体中的压强。 浮力。 ▲7、振动 简揩振动。振幅。频率和周期。位相。

振动的图象。 参考圆。振动的速度和加速度。 由动力学方程确定简谐振动的频率。 阻尼振动。受迫振动和共振(定性了解)。 ▲8、波和声 横波和纵波。波长、频率和波速的关系。波的图象。 波的干涉和衍射(定性)。 声波。声音的响度、音调和音品。声音的共鸣。乐音和噪声。 ▲热学 ▲1、分子动理论 原子和分子的量级。 分子的热运动。布朗运动。温度的微观意义。 分子力。 分子的动能和分子间的势能。物体的内能。 ▲2、热力学第一定律 热力学第一定律。 ▲3、气体的性质 热力学温标。 理想气体状态方程。普适气体恒量。 理想气体状态方程的微观解释(定性)。 理想气体的内能。

大学物理知识点总结

A r r y r ∆ 第一章质点运动学主要内容 一. 描述运动的物理量 1. 位矢、位移和路程 由坐标原点到质点所在位置的矢量r 称为位矢 位矢r xi yj =+,大小 2r r x y ==+运动方程 ()r r t = 运动方程的分量形式() ()x x t y y t =⎧⎪⎨=⎪⎩ 位移是描述质点的位置变化的物理量 △t 时间内由起点指向终点的矢量B A r r r xi yj =-=∆+∆△,2r x =∆+△路程是△t 时间内质点运动轨迹长度s ∆是标量。 明确r ∆、r ∆、s ∆的含义(∆≠∆≠∆r r s ) 2. 速度(描述物体运动快慢和方向的物理量) 平均速度 x y r x y i j i j t t t u u u D D = =+=+D D r r r r r V V r 瞬时速度(速度) t 0r dr v lim t dt ∆→∆== ∆(速度方向是曲线切线方向) j v i v j dt dy i dt dx dt r d v y x +=+==,2222y x v v dt dy dt dx dt r d v +=⎪⎭ ⎫ ⎝⎛+⎪⎭⎫ ⎝⎛== ds dr dt dt = 速度的大小称速率。 3. 加速度(是描述速度变化快慢的物理量) 平均加速度v a t ∆=∆ 瞬时加速度(加速度) 220lim t d d r a t dt dt υυ→∆===∆△ a 方向指向曲线凹向j dt y d i dt x d j dt dv i dt dv dt v d a y x 2222+=+== 2 2222222 2 2⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=⎪ ⎪⎭ ⎫ ⎝ ⎛+⎪⎭⎫ ⎝⎛=+=dt y d dt x d dt dv dt dv a a a y x y x 二.抛体运动

大学物理知识点总结

大学物理知识点总结 大学物理知识点总结 大学物理知识点总结 第一章声现象知识归纳 1 . 声音的发生:由物体的振动而产生。振动停止,发声也停止。 2.声音的传播:声音靠介质传播。真空不能传声。通常我们听到的声音是靠空气传来的。 3.声速:在空气中传播速度是:340米/秒。声音在固体传播比液体快,而在液体传播又比空气体快。 4.利用回声可测距离:S=1/2vt 5.乐音的三个特征:音调、响度、音色。(1)音调:是指声音的高低,它与发声体的频率有关系。(2)响度:是指声音的大小,跟发声体的振幅、声源与听者的距离有关系。 6.减弱噪声的途径:(1)在声源处减弱;(2)在传播过程中减弱;(3)在人耳处减弱。 7.可听声:频率在20Hz~__Hz之间的声波:超声波:频率高于 __Hz的声波;次声波:频率低于20Hz的声波。 8.超声波特点:方向性好、穿透能力强、声能较集中。具体应用有:声呐、B超、超声波速度测定器、超声波清洗器、超声波焊接器等。 9.次声波的特点:可以传播很远,很容易绕过障碍物,而且无孔不入。一定强度的次声波对人体会造成危害,甚至毁坏机械建筑等。它主要

产生于自然界中的火山爆发、海啸地震等,另外人类制造的火箭发射、飞机飞行、火车汽车的奔驰、核爆炸等也能产生次声波。 第二章物态变化知识归纳 1. 温度:是指物体的冷热程度。测量的工具是温度计, 温度计是根据液体的热胀冷缩的原理制成的。 2. 摄氏温度(℃):单位是摄氏度。1摄氏度的规定:把冰水混合物温度规定为0度,把一标准大气压下沸水的温度规定为100度,在0度和100度之间分成100等分,每一等分为1℃。 3.常见的温度计有(1)实验室用温度计;(2)体温计; (3)寒暑表。 体温计:测量范围是35℃至42℃,每一小格是0.1℃。 4. 温度计使用:(1)使用前应观察它的量程和最小刻度值;(2)使用时温度计玻璃泡要全部浸入被测液体中,不要碰到容器底或容器壁;(3)待温度计示数稳定后再读数;(4)读数时玻璃泡要继续留在被测液体中,视线与温度计中液柱的上表面相平。 5. 固体、液体、气体是物质存在的三种状态。 6. 熔化:物质从固态变成液态的过程叫熔化。要吸热。 7. 凝固:物质从液态变成固态的过程叫凝固。要放热. 8. 熔点和凝固点:晶体熔化时保持不变的温度叫熔点;。晶体凝固时保持不变的温度叫凝固点。晶体的熔点和凝固点相同。 9. 晶体和非晶体的重要区别:晶体都有一定的熔化温度(即熔点),而非晶体没有熔点。

大学物理知识点总结

o x B r ∆ A r B r y A r ∆ s ∆ 第一章质点运动学主要内容 一. 描述运动的物理量 1. 位矢、位移和路程 由坐标原点到质点所在位置的矢量r 称为位矢 位矢r xi yj =+,大小 22r r x y ==+ 运动方程 ()r r t = 运动方程的分量形式() ()x x t y y t =⎧⎪⎨=⎪⎩ 位移是描述质点的位置变化的物理量 △t 时间内由起点指向终点的矢量B A r r r xi yj =-=∆+∆△,22r x y =∆+∆△ 路程是△t 时间内质点运动轨迹长度s ∆是标量。 明确r ∆、r ∆、s ∆的含义(∆≠∆≠∆r r s ) 2. 速度(描述物体运动快慢和方向的物理量) 平均速度 x y r x y i j i j t t t u u u D D ==+=+D D r r r r r V V r 瞬时速度(速度) t 0r dr v lim t dt ∆→∆== ∆(速度方向是曲线切线方向) j v i v j dt dy i dt dx dt r d v y x +=+==,2222y x v v dt dy dt dx dt r d v +=⎪⎭ ⎫ ⎝⎛+⎪⎭⎫ ⎝⎛== ds dr dt dt = 速度的大小称速率。 3. 加速度(是描述速度变化快慢的物理量) 平均加速度v a t ∆=∆ 瞬时加速度(加速度) 220lim t d d r a t dt dt υυ→∆===∆△ a 方向指向曲线凹向j dt y d i dt x d j dt dv i dt dv dt v d a y x 2222+=+== 2 2222222 2 2⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=⎪ ⎪⎭ ⎫ ⎝ ⎛+⎪⎭⎫ ⎝⎛=+=dt y d dt x d dt dv dt dv a a a y x y x 二.抛体运动 运动方程矢量式为 2 012 r v t gt =+

大学物理知识点总结

大学物理知识点总结 1.热力学的第一定律:能量守恒定律,即能量守恒,即系统的总能量在宏观上始终保持不变,但小观剖面可能有所变化。 2.热力学的第二定律:熵增定律,即熵只能增加,且系统的熵数越大,其不稳定性越强,熵可以视为一种混乱性的度量,它反映了系统无序性和水平。 3.热力学的第三定律:统计热力学原理,即根据统计学原理,当系统进入绝对零度时,系统出现分歧,且熵数趋近最小,此时,物质有一定的概率出现在这个特定状态。 二、力学 1.动量定理:物体的动量变化等于施加在物体上的外力的矢量和,即动量是有守恒的。 2.牛顿第一定律:物体在没有外力作用时保持相对静止,即它的速度不发生变化;若外力作用于物体,物体的速度就会发生变化。 3.牛顿第二定律:物体受外力作用时,加速度的大小和方向与外力的大小和方向成正比,即受力越大,加速度越大,受力方向相同,加速度方向也相同。 4.牛顿第三定律:物体之间产生力学作用,而这种作用受两个物体间的距离、物质的性质及其他条件的影响,它的大小为物体的质量成正比,而方向则相反。 三、电磁学 1.电荷守恒定律:电荷守恒定律,即电荷在任何情况下都是守恒

的。 2.电场定律:电场定律指的是静电场中,电荷之间相互作用的定律。它包括Coulomb定律,Gauss定律,Biot-Savart定律和Ampere 定律,广泛应用于电磁学问题的计算中。 3.电磁感应定律:该定律指出,磁场的强弱与电流的大小和方向有关,并且电流具有磁通性,即电流可以产生磁场影响物体的轨迹。此外,磁通的大小与电流的大小成正比,而磁的方向和电流的方向相反。 4.磁通量定律:该定律指出,磁通的变化率与电流的变化率成正比,即电流的变化率越大,磁通的变化率就越大。 四、光学 1.干涉:当两束平行或非平行光线通过相同的媒介时,一定距离上某点可以同时到达多个不同的光源,光波的干涉可以导致正弦峰值和谷值出现,即称干涉可以以此来观察小物体的特性,增加细节的可见度,研究物体的形状和结构。 2.折射:当光线从一种介质进入另一种介质时,它的走向会发生变化,可以用法线和折射角来描述折射现象,折射后的光线的方向和波长会发生改变,光线可以在介质之间传播。 3.共轭系数:共轭系数是研究物体表面光散射特性的重要因素,它反映了光线穿过物体表面后发生的变化,一般情况下,共轭系数的值越大,散射就越明显。 4.波动角:波动角反应了光线在介质中的衰减程度,当光线进入

相关文档