文档视界 最新最全的文档下载
当前位置:文档视界 › 二次函数实际应用问题及解析

二次函数实际应用问题及解析

二次函数实际应用问题及解析
二次函数实际应用问题及解析

中考压轴题中函数之二次函数的实际应用问题,主要是解答题,也有少量的选择和填空题,常见问题有以几何为背景问题,以球类为背景问题,以桥、隧道为背景问题和以利润为背景问题四类。

一. 以几何为背景问题

原创模拟预测题1. 市政府为改善居民的居住环境,修建了环境幽雅的环城公园,为了给公园内的草评定期喷水,安装了一些自动旋转喷水器,如图所示,设喷水管AB 高出地面1.5m ,在B 处有一个自动旋转的喷水头,一瞬间喷出的水流呈抛物线状.喷头B 与水流最高点C 的连线与地平面成45的角,水流的最高点C 离地平面距离比喷水头B 离地平面距离高出2m ,水流的落地点为D .在建立如图所示的直角坐标系中:

(1)求抛物线的函数解析式;

(2)求水流的落地点D 到A 点的距离是多少m ?

【答案】(1)213222y x x =-++;(2)(2+m . 【解析】

试题分析:(1)把抛物线的问题放到直角坐标系中解决,是探究实际问题常用的方法,本题关键是解等腰直角三角形,求出抛物线顶点C (2,3.5)及B (0,1.5),设顶点式求解析式;

(2)求AD ,实际上是求当y=0时点D 横坐标.

在如图所建立的直角坐标系中,

由题意知,B 点的坐标为(01.5),,

45CBE BEC ∠=∴,△为等腰直角三角形,

2BE ∴=,

点坐标为(23.5),

(1)设抛物线的函数解析式为2

(0)y ax bx c a =++≠,

则抛物线过点(01.5),顶点为(23.5),

, 当0x =时, 1.5y c == 由22b a

-=,得4b a =-, 由24 3.54ac b a

-=,得2

616 3.54a a a -= 解之,得0a =(舍去),1422a b a =-∴=-=,. 所以抛物线的解析式为213222

y x x =-++.

考点:本题考查点的坐标的求法及二次函数的实际应用

点评:此题为数学建模题,借助二次函数解决实际问题.结合实际问题并从

中抽象出函数模型,试着用函数的知识解决实际问题,学会数形结合解答二次函数的相关题型.

原创模拟预测题2.在青岛市开展的创城活动中,某居民小区要在一块一边靠墙(墙长15m )的空地上修建一个矩形花园ABCD ,花园的一边靠墙,另三边用总长为40m 的栅栏围成(如图所示).若设花园的BC x 边长为(m ),花园的面积为y (m ).

(1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围;

(2)满足条件的花园面积能达到200 m 吗?若能,求出此时x 的值;若不能,说明理由;

(3)根据(1)中求得的函数关系式,描述其图象的变化趋势;并结合题意判断当x 取何值时,花园的面积最大?最大面积为多少?

【答案】(1)x x y 202

12+-

=)150(≤

2120(015)2

y x x x =-+<∴≤ (2)当200y =时, 即21202002

x x -+= ∴2404000x x -+=

解得:2015x =>

015x <∵≤

∴此花园的面积不能达到200m

考点:本题考查实际问题中二次函数解析式的求法及二次函数的实际应用

点评:此题为数学建模题,借助二次函数解决实际问题.结合实际问题并从中抽象出函数模型,试着用函数的知识解决实际问题,学会数形结合解答二次函数的相关题型.

二. 以球类为背景问题

原创模拟预测题3. 如图,排球运动员站在点O 处练习发球,将球从O 点正上方2m 的A 处发出,把球看成点,其运行的高度y (m )与运行的水平距离x(m)满足关系式()2

y a x 6h =-+。已知球网与O 点的水平距离为9m ,高度为2.43m ,球场的边界距O 点的水平距离为18m 。

(1)当h=2.6时,求y 与x 的关系式(不要求写出自变量x 的取值范围);

(2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由;

(3)若球一定能越过球网,又不出边界,求二次函数中二次项系数a 的最大值。

【答案】(1)把x=0,y=2及h=2.6代入到()2y a x 6h =-+,即()22a 06 2.6=-+, ∴1a 60

=-。 ∴当h=2.6时, y 与x 的关系式为()21y x 6 2.660=-

-+。

(3)把x=0,y=2代入到()2y a x 6h =-+,得h 236a =-。

x=9时,()2y a 96236a 227a =-+-=->2.43 ①,

x=18时,()2y a 186236a 2108a =-+-=+≤0 ②,

由① ②解得1a 54

≤-。 ∴若球一定能越过球网,又不出边界,二次函数中二次项系数a 的最大值为154

-。 【考点】二次函数的性质和应用,无理数的大小比较。

三. 以桥、隧道为背景问题

原创模拟预测题4.如图,一大桥有一段抛物线型的拱梁,抛物线的表达式为y=ax 2

+bx+c ,小王骑自行车从O 匀速沿直线到拱梁一端A ,再匀速通过拱梁部分的桥面AC ,小王从O 到A 用了2秒,当小王骑自行车行驶10秒时和20秒时拱梁的高度相同,则小强骑自行车通过拱梁部分的桥面AC 共需 秒.

【答案】26。

【考点】二次函数的应用

四. 以利润为背景问题

原创模拟预测题5. 某山区的一种特产由于运输原因,长期只能在当地销售,当地政府对该特产的销售投资收益为:每投入x 万元,可获得利润P=()21x 604150

--+(万元)。当地政府拟规划加快开发该特产的销售,其规划方案为:在规划前后对该项目每年最多可投人100万元的销售投资,在实施规划5年的前两年中,每年都从100万元中拨出60万元用于修建一条公路,两年修成,通车前该特产只能在当地销售;公路通车后的3年中,该特产既在本地销售,也在外地销售。在外地销售的投资收益为:每投入x 万元,可获利润

学习必备 欢迎下载 Q=()()249288100x 100x 160505

--+-+(万元)。 (1)若不进行开发,求5年所获利润的最大值是多少?

(2)若按规划实施,求5年所获利润(扣除修路后)的最大值是多少?

(3)根据(1)、(2),该方案是否具有实施价值?

【答案】(1)∵每投入x 万元,可获得利润P=()21x 604150

--+(万元), ∴当x =60时,所获利润最大,最大值为41万元。

∴若不进行开发,5年所获利润的最大值是:41×5=205(万元)。

(2)前两年:0≤x ≤40,此时因为P 随x 的增大而增大,

所以x =40时,P 值最大, 即这两年的获利最大为:2×[()2140604150

--+ ]=66(万元)。 后三年:设每年获利y ,设当地投资额为x ,则外地投资额为100-x , ∴y =P+Q=[()21x 604150-

-+]+[249288x x 160505-++] =﹣x 2+60x +129=﹣(x ﹣30)2+1029。

∴当x =30时,y 最大且为1029。

∴这三年的获利最大为1029×3=3087(万元)。

∴5年所获利润(扣除修路后)的最大值是:66+3087﹣50×2=3153(万

元)。

(3)规划后5年总利润为3153万元,不实施规划方案仅为205万元,故具有

很大的实施价值。

【考点】二次函数的应用(利润问题)。

二次函数在实际生活中的应用

二次函数在实际生活中的应用 【经典母题】 某超市销售一种饮料,每瓶进价为9元,经市场调查表明,当售价在10元到14元之间(含10元,14元)浮动时,每瓶售价每增加0.5元,日均销量减少40瓶;当售价为每瓶12元时,日均销量为400瓶.问销售价格定为每瓶多少元时,所得日均毛利润(每瓶毛利润=每瓶售价-每瓶进价)最大?最大日均毛利润为多少元? 解:设售价为每瓶x元时,日均毛利润为y元,由题意,得日均销售量为400-40[(x-12)÷0.5]=1 360-80x, y=(x-9)(1 360-80x) =-80x2+2 080x-12 240(10≤x≤14). -b 2a=- 2 080 2×(-80) =13, ∵10≤13≤14,∴当x=13时,y取最大值, y最大=-80×132+2 080×13-12 240=1 280(元). 答:售价定为每瓶13元时,所得日均毛利润最大,最大日均毛利润为1 280元. 【思想方法】本题是一道复杂的市场营销问题,在建立函数关系式时,应注意自变量的取值范围,在这个取值范围内,需了解函数的性质(最大最小值,变化情况,对称性,特殊点等)和图象,然后依据这些性质作出结论. 【中考变形】 1.[2017·锦州]某商店购进一批进价为20元/件的日用商品,第一个月,按进价提高50%的价格出售,售出400件,第二个月,商店准备在不低于原售价的基础上进行加价销售,根据销售经验,提高销售单价会导致销售量的减少.销售量y(件)与销售单价x(元)的关系如图Z8-1所示. (1)图中点P所表示的实际意义是__当售价定为35元 /件时,销售量为300件__;销售单价每提高1元时, 销售量相应减少__20__件; (2)请直接写出y与x之间的函数表达式:__y=20x图Z8-1

二次函数解决实际问题归纳.doc

二次函数解决实际问题归纳及练习 一、应用二次函数解决实际问题的基本思路和步骤: 1、基本思路:理解问题一分析问题中的变量和常量以及它们之间的关系一用函数关系式表示它们的关系f用数学方法求解f检验结果的合理性; 2、基本步骤:审题一建模(建立二次两数模型)一解模(求解)一回答(用生活语言回答,即问什么答什么)。 二、利用二次函数解决实际问题的类型 1、用二次函数解决几类典型问题 解决最值问题应用题思路区别于一般应用题有两点:①设未知数在“当某某为何值时,什么最大(最小、最省)”的设问中,“某某”要设为自变量,“什么”要设为函数;②问的求解依靠配方法或最值公式而不是解方程。 (1)利用二次函数解决利润最大问题 此类问题围绕总利润二单件利润X销售总量,设未知数时,总利润必然是因变量y,而自变量有两种情况:①自变量x是所涨价多少或降价多少;②自变量x是最终销售价格。 例:商场销售M型服装时,标价75元/件,按8折销售仍可获利50%,现搞促销活动,每件在8折的基础上再降价x元,已知每天销售数量y (件)与降价x (元)之间的函数关系式为y=20+4x(x > 0) ①求M型服装的进价 ②求促销期间每天销售M型服装所获得的利润W的最大值。 (2)利用二次函数解决面积最值 例:已知正方形ABCD边长为8, E、F、P分别是AB、CD、AD ±的点(不与正方形顶点重合),且PE丄PF, PE=PF 问当AE为多长时,五边形EBCFP面积最小,最小面积多少? 2、用二次函数解抛物线形问题

常见情形具体方法 抛物线形 建筑物问 题 几种常见的抛物线形建筑物有拱 形桥洞、涵洞、隧道洞口、拱形 门窗等 (1)建立适当的平面直角坐标系,将抛物线形状的 图形放到坐标系之中; (2)从己知和图象中获得求二次函数表达式所需条 件; (3)利用待定系数法求出抛物线的表达式; (4)运用已求出抛物线的表达式去解决相关问题。运动路线 (轨迹)问 题 运动员空屮跳跃轨迹、球类飞行 轨迹、喷头喷出水的轨迹等 牢记(1)解决这类问题的关键首先在于建立一次函数模型,将实际问题转化为数学问题,其次是充分运用已知的条件利用待定系数法求出抛物线的表达式; (2)把哪一点当作原点建立坐标系,将会直接关系到解题的难易程度或是否可解; (3)一般把抛物线形的顶点作为坐标系的原点建立坐标系,这样得出的二次函数的表 达式最为简单。 巧记实际问题要解决,正确建模是关键;根据题意的函数,提取配方定顶点;抛物线有对称轴,增减特性可看图;线轴交点是顶点,顶点纵标最值出。 练习 1:某涵洞是抛物线形,它的截面如图所示,测得水面宽1. 6m,涵洞顶点O到水面的距离为2. 4m,在 图中直角坐标系内,涵洞所在的抛物线的函数关系式是什么? 2:某工厂大门是一抛物线形的水泥建筑物,大门底部宽AB=4m,顶部C离地面的高度为4.4m,现有载满货物的汽车欲通过大门,货物顶部距地面2.7m,装货宽度为2.4m。这辆汽车能否顺利通过大门?若能,请你通过计算加以说明;若不能,请简要说明理由. 3、某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x 元(X为正整数),每个月的销售利润为y元. (1)求y与兀的函数关系式并直接写出自变量兀的取值范围; (2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元? (3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围吋,每个月的利润不低于2200元? 4、某公司试销某种“上海世博会”纪念品,每件按30元销售,可获利50%,设每件纪念品的成本为a 元。(1)试求a的值; (2)公司在试销过程中进行了市场调查,发现试销量y (件)与每件售价x (元)满足关系式y= - 10x+800.设每天销售利润为W(元),求每天销售利润W(元)与每件售价x (元)之间的函数关系式;当每件售价为多少时,每天获得的利润最大?最大利润是多少?

二次函数实际应用问题及解析

中考压轴题中函数之二次函数的实际应用问题,主要是解答题,也有少量的选择和填空题,常见问题有以几何为背景问题,以球类为背景问题,以桥、隧道为背景问题和以利润为背景问题四类。 一. 以几何为背景问题 原创模拟预测题1. 市政府为改善居民的居住环境,修建了环境幽雅的环城公园,为了给公园内的草评定期喷水,安装了一些自动旋转喷水器,如图所示,设喷水管AB 高出地面1.5m ,在B 处有一个自动旋转的喷水头,一瞬间喷出的水流呈抛物线状.喷头B 与水流最高点C 的连线与地平面成45的角,水流的最高点C 离地平面距离比喷水头B 离地平面距离高出2m ,水流的落地点为D .在建立如图所示的直角坐标系中: (1)求抛物线的函数解析式; (2)求水流的落地点D 到A 点的距离是多少m ? 【答案】(1)213222y x x =-++;(2)(2+m . 【解析】 试题分析:(1)把抛物线的问题放到直角坐标系中解决,是探究实际问题常用的方法,本题关键是解等腰直角三角形,求出抛物线顶点C (2,3.5)及B (0,1.5),设顶点式求解析式; (2)求AD ,实际上是求当y=0时点D 横坐标. 在如图所建立的直角坐标系中, 由题意知,B 点的坐标为(01.5),, 45CBE BEC ∠=∴,△为等腰直角三角形, 2BE ∴=, 点坐标为(23.5), (1)设抛物线的函数解析式为2 (0)y ax bx c a =++≠,

则抛物线过点(01.5),顶点为(23.5), , 当0x =时, 1.5y c == 由22b a -=,得4b a =-, 由24 3.54ac b a -=,得2 616 3.54a a a -= 解之,得0a =(舍去),1422a b a =-∴=-=,. 所以抛物线的解析式为213222 y x x =-++. 考点:本题考查点的坐标的求法及二次函数的实际应用 点评:此题为数学建模题,借助二次函数解决实际问题.结合实际问题并从 中抽象出函数模型,试着用函数的知识解决实际问题,学会数形结合解答二次函数的相关题型. 原创模拟预测题2.在青岛市开展的创城活动中,某居民小区要在一块一边靠墙(墙长15m )的空地上修建一个矩形花园ABCD ,花园的一边靠墙,另三边用总长为40m 的栅栏围成(如图所示).若设花园的BC x 边长为(m ),花园的面积为y (m ). (1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围; (2)满足条件的花园面积能达到200 m 吗?若能,求出此时x 的值;若不能,说明理由; (3)根据(1)中求得的函数关系式,描述其图象的变化趋势;并结合题意判断当x 取何值时,花园的面积最大?最大面积为多少? 【答案】(1)x x y 202 12+- =)150(≤

二次函数在实际生活中的应用及建模应用

二次函数的建模 知识归纳:求最值的问题的方法归纳起来有以下几点: 1.运用配方法求最值; 2.构造一元二次方程,在方程有解的条件下,利用判别式求最值; 3.建立函数模型求最值; 4.利用基本不等式或不等分析法求最值. 一、利用二次函数解决几何面积最大问题 1、如图1,用长为18米的篱笆(虚线部分)和两面墙围成矩形苗圃。 (1)设矩形的一边长为x (米),面积为y (平方米),求y 关于x 的函数关系式; (2)当x 为何值时,所围成的苗圃面积最大?最大面积是多少? 解:(1)设矩形的长为x (米),则宽为(18- x )(米), 根据题意,得: x x x x y 18)18(2+-=-=; 又∵180,0180<x<x >x >∴? ??- (自变量x 的取值范围是关键,在几何类题型中,经常采用的办法是: 利用含有自变量的加减代数式的边长来确定自变量的取值范围,例如上式 中,18-x ,就是含有自变量的加减代数式,考虑到18-x 是边长,所以边长应该>0,但边长最长不能超过18,于是有0<18-x <18,0<x <18) (2)∵x x x x y 18)18(2 +-=-=中,a= -1<0,∴y 有最大值, 即当9) 1(2182=-?-=-=a b x 时, 81)1(41804422max =-?-=-=a b ac y 故当x=9米时,苗圃的面积最大,最大面积为81平方米。 点评:在回答问题实际时,一定注意不要遗漏了单位。 2、如图2,用长为50米的篱笆围成一个养鸡场,养鸡场的一面靠墙。问如何围,才能使养鸡场的面积最大? 解:设养鸡场的长为x (米),面积为y (平方米),则宽为(250x -)(米), 根据题意,得:x x x x y 252 1)250(2+-=-=; 又∵500,02 500<x<>x x >∴?????- ∵x x x x y 252 1)250(2+-=-=中,a=21-<0,∴y 有最大值,

一元二次方程与二次函数的应用题精选题

一、一元二次方程的应用题 1.(2010年长沙)长沙市某楼盘准备以每平方米5000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望.为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米4050元的均价开盘销售. (1)求平均每次下调的百分率; (2)某人准备以开盘均价购买一套100平方米的房子.开发商还给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,送两年物业管理费.物业管理费是每平方米每月1.5元.请问哪种方案更优惠? 解:(1)设平均每次降价的百分率是x ,依题意得 ………………………1分 5000(1-x )2= 4050 ………………………………………3分 解得:x 1=10% x 2= 19 10 (不合题意,舍去) …………………………4分 答:平均每次降价的百分率为10%. …………………………………5分 (2)方案①的房款是:4050×100×0.98=(元) ……………………6分 方案②的房款是:4050×100-1.5×100×12×2=(元) ……7分 ∵< ∴选方案①更优惠. ……………………………………………8分 2.(2010年成都)随着人们经济收入的不断提高及汽车产业的快速发展,汽车已越来越多地进入普通家庭,成为居民消费新的增长点.据某市交通部门统计,2007年底全市汽车拥有量为180万辆,而截止到2009年底,全市的汽车拥有量已达216万辆. (1)求2007年底至2009年底该市汽车拥有量的年平均增长率; (2)为保护城市环境,缓解汽车拥堵状况,该市交通部门拟控制汽车总量,要求到2011年底全市汽车拥有量不超过231.96万辆;另据估计,从2010年初起,该市此后每年报废的汽车数量是上年底汽车拥有量的10%.假定每年新增汽车数量相同,请你计算出该市每年新增汽车数量最多不能超过多少万辆. 答案:26.. 解:(1)设该市汽车拥有量的年平均增长率为x 。根据题意,得 2 150(1)216x += 解得10.220%x ==,2 2.2x =-(不合题意,舍去)。 答:该市汽车拥有量的年平均增长率为20%。 (2)设全市每年新增汽车数量为y 万辆,则2010年底全市的汽车拥有量为21690%y ?+万辆,2011年底全市的汽车拥有量为(21690%)90%y y ?+?+万辆。根据题意得 (21690%)90%231.96y y ?+?+≤ 解得30y ≤ 答:该市每年新增汽车数量最多不能超过30万辆。

中考二次函数实际问题应用题

二次函数的实际应用 1. (2012重庆市10分)企业的污水处理有两种方式,一种是输送到污水厂进行集中处 理,另一种是通过企业的自身设备进行处理. 某企业去年每月的污水量均为 12000吨,由于 污水厂处于调试阶段, 污水处理能力有限, 该企业投资自建设备处理污水, 两种处理方式同 时进行.1至6月,该企业向污水厂输送的污水量 y 1 (吨)与月份x (1

二次函数在实际中的应用

二次函数在实际中的应用 法国著名数学家的卡尔说过:“我们所解决的每一个问题,将成为一种模式,用于解决其它问题”.本文用二次函数的模式,解答生产、生活、体育等实际中的问题,达到触类旁通的目的. 一、借助二次函数解答桥梁问题 例1、(2006吉林省)如图1,有一座抛物线形拱桥,在正常水位时水面AB 的宽为20m ,如果水位上升3m 时,水面CD 的宽是10m . ⑴ 建立如图所示的直角坐标系,求此抛物线的解析式; ⑵ 现有一辆载有救援物资的货车从甲地出发需经过此桥开往乙地,已知甲地距此桥280km (桥长忽略不计).货车正以每小时40km 的速度开往乙地,当行驶1小时时,忽然接到紧急通知:前方连降暴雨,造成水位以每小时0.25m 的速度持续上涨(货车接到通知时水位在CD 处,当水位达到桥拱最高点O 时,禁止车辆通行).试问:如果货车按原来速度行驶,能否安全通过此桥?若能,请说明理由.若不能,要使货车安全通过此桥,速度应超过每小时多少千米? 解:(1)设抛物线的解析式为2y ax =,桥拱最高点O 到水面CD 的距离为h 米,则D (5,h -),B (10,3h --). ∴25100 3.a h a h =-??=--?,解得1251a h ?=-???=? ,∴抛物线的解析式为2125y x =-. (2)水位由CD 处涨到点O 的时间为:1÷0.25 = 4(小时), 货车按原来速度行驶的路程为:40×1+40×4 = 200<280, ∴货车按原来速度行驶不能安全通过此桥,设货车速度提高到x 千米/小时, 当4401280x +?=时,解得60x = , ∴要使货车安全通过此桥,货车的速度应超过60千米小时. 二、应用二次函数剖析撞车问题 例2、(2006苏州市)司机在驾驶汽车时,发现紧急情况到踩下刹车需要一段时间,这段时间叫反应时间.之后还会继续行驶一段距离.我们把司机从发现紧急情况到汽车停止所行驶的这段距离叫“刹车距离”,如图2. 已知汽车的刹车距离s(单位:m)与车速v(单位:m /s)之同有如下关系:s=tv+kv 2其中t 为司机的反应时间(单位:s),k 为制动系数.某机构为测试司机饮酒后刹车距离的变化,对某种型号的汽车进行了“醉汉”驾车测试,已知该型号汽车的制动系数k=0.08,并测得志愿者在未饮酒时的反应时间t=O.7s 图1

二次函数在实际问题中的应用

孟老师12月23日初三学案 二次函数在实际问题中的应用 一抛物线形的物体 研究抛物线的问题,需要建立适当的平面直角坐标系,根据已知条件,求出相关点的坐标,确定解析式,这是解答其它问题的基础,. (2012?益阳)已知:如图,抛物线y=a(x﹣1)2+c与x轴交于点A(,0)和点B,将抛物线沿x轴向上翻折,顶点P落在点P'(1,3)处. (1)求原抛物线的解析式; (2)学校举行班徽设计比赛,九年级5班的小明在解答此题时顿生灵感:过点P'作x轴的平行线交抛物线于C、D两点,将翻折后得到的新图象在直线CD以上的部分去掉,设计成一个“W”型的班徽,“5”的拼音开头字母为W,“W”图案似大鹏展翅,寓意深远;而且小明 通过计算惊奇的发现这个“W”图案的高与宽(CD)的比非常接近黄金分割比(约等 于0.618).请你计算这个“W”图案的高与宽的比到底是多少?(参考数据:,,结果可保留根号) 2(2010?南充)如图,在水平地面点A处有一网球发射器向空中发射网球,网球飞行路线是一条抛物线,在地面上落点为B.有人在直线AB上点C(靠点B一侧)竖直向上摆放无盖的圆柱形桶,试图让网球落入桶内.已知AB=4米,AC=3米,网球飞行最大高度OM=5米,圆柱形桶的直径为0.5米,高为0.3米(网球的体积和圆柱形桶的厚度忽略不计).(1)如果竖直摆放5个圆柱形桶时,网球能不能落入桶内? (2)当竖直摆放圆柱形桶多少个时,网球可以落入桶内? 二应用二次函数解决实际问题中的最值 求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法. 二次函数的性质在实际生活中的应用

二次函数的应用练习题及答案

二次函数的应用练习题及答案 一:知识点 利润问题:总利润=总售价–总成本 总利润=每件商品的利润×销售数量 二:例题 1、将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个形,则这两个形面积之和的最小值是cm2. 2、某商品原价289元,经连续两次降价后售价为256元,设平均每次降价的百分率为x,则下面所列方程正确的是________________ 3、用48米长的竹篱笆围建一矩形养鸡场,养鸡场一面用砖砌成,另三面用竹篱笆围成,并且在与砖墙相对的一面开2米宽的门,问养鸡场的边长为多少米时,养鸡场占地面积最大?最大面积是多少? 4、某商场销售一批衬衫,平均每天可售出20件,每件盈利40元,为扩大销售增加盈利,尽快减少库存,商场决定采取降价措施,经调查发现,若每件衬衫每降价1元,商场平均每天可以多售出2件.若每件降价x 元,每天盈利y 元,求y 与x 的关系式.若商场平均每天要盈利1200元,每件衬衫应降价多少元?每件衬衫降价多少元时,商场每天盈利最多?盈利多少元?

5、某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用.设每个房间每天的定价增加x元.求: 房间每天的入住量y关于x的函数关系式. 该宾馆每天的房间收费z关于x的函数关系式. 该宾馆客房部每天的利润w关于x的函数关系式;当每个房间的定价为每天多少元时,w有最大值?最大值是多少? 6、某商店经营一批进价每件为2元的小商品,在市场营销的过程中发现:如果该商品按每件最低价3元销售,日销售量为18件,如果单价每提高1元,日销售量就减少2件.设销售单价为x,日销售量为y. 写出日销售量y与销售单价x之间的函数关系式;设日销售的毛利润为P,求出毛利润P与销售单价x之间的函数关系式; 在下图所示的坐标系中画出P关于x的函数图象的草图,并标出顶点的坐标;观察图象,说出当销售单价为多少元时,日销售的毛利润最高?是多少? 7、我州有一种可食用的野生菌,上市时,外商经理按市场价格20元/千克收购了这种野生菌1000千克存放入

二次函数及实际应用之利润最大(小)值问题

二次函数的实际应用——利润最大(小)值问题 知识要点: 二次函数的一般式c bx ax y ++=2 (0≠a )化成顶点式a b a c a b x a y 44)2(2 2-++=,如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值). 即当0>a 时,函数有最小值,并且当a b x 2-=,a b ac y 442-=最小值; 当0

2 [例1]:求下列二次函数的最值: (1)求函数322 -+=x x y 的最值. [例2]:某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大? [练习]:1.某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.如何提高售价,才能在半个月内获得最大利润? 2.某旅行社组团去外地旅游,30人起组团,每人单价800元.旅行社对超过30人的团给予优惠,即旅行团每增加一人,每人的单价就降低10元.你能帮助分析一下,当旅行团的人数是多少时,旅行社可以获得最大营业额?

浅谈二次函数在实际生活中的应用

龙源期刊网 https://www.docsj.com/doc/0517452623.html, 浅谈二次函数在实际生活中的应用 作者:刘昌义 来源:《学习与科普》2019年第11期 摘要:随着社会的快速发展,人们的生活水平不断提升,生活质量的要求也不断提高, 这样一来,对各种资源的需求量也不断增大。而资源的总数是有限的,如何将优先的资源通过合理的运用来满足更多人的实际需要,这就需要用到数学中所学到的二次函数知识。二次函数在实际生活中的应用,是利用所学知识解决实际生活问题的体现。二次函数的实际应用过程,也是数学思想在生活实际中得到合理运用的过程。 关键词:二次函数;实际生活;实际应用 二次函数不管是作为一种数学计算工具还是作为初中数学学习过程中的知识组成部分,都具有非常重要的作用。二次函数贯穿了初中数学的整体学习过程,从最简单的图像方程画图计算再到复杂的二次函数实际应用,无一不体现出了它的重要性。同时二次函数也作为中考的重要考察内容,其难度相对其他数学知识更高,连贯性也更强,如果初中阶段的二次函数没有学好,势必会影响到后续的函数学习。除此之外,通过教学研究,笔者发现很多学生在二次函数的学习中暴漏出来一个问题:当题目与现实生活综合到一起时,很多学生往往后无从下手,这体现出学生对其所学知识的实际应用能力较差。所以我们需要通过对二次函数在实际生活中应用方向的研究,来找到培养学生利用二次函数解决生活实际问题能力的方法。 一、二次函数在桥梁建筑方面的应用 在日常生活中所见到的桥类建筑大多为拱形,拱形的桥梁结构相对于直桥更加稳固,且可以给桥下的水面提供较大的通行空间,以供船只通过。从拱形桥的形状看上去跟抛物线类似,其在设计之中就应用了二次函数的相关性质。除此之外,在很多公共建筑的设计上也应用了二次函数的原理,如花坛、喷泉和国家体育馆鸟巢的设计。通过这类实际应用体现出二次函数已经融入了我们的生活之中。 二、二次函数在经济生活中的实际应用 二次函數作为一种数学工具被广泛的应用到统计之中,其在经济生活之中的作用往往集中在投资调查、销售定价、销售情况统计、市场调查、消费住宿等方面。在这些经济活动中,无论其表现形式如何,最终的目的都是为了做到利益最大化。在这些项目中二次函数都是作为统计工具,根据实际经济情况建立相应的函数关系式,使用函数关系式对市场进行调查、统计和预测,从而保证拿到最大利润。 (1)投资调查

二次函数实际应用问题

二次函数应用问题 二次函数在各方面的应用比较广泛,本节中通过几个例题及几个练习题,举例说明它在一些问题中的应用. 例1 某商场以每件42元的价钱购进一种服装,根据试销得知:这种服装每天的销售量(件),与每件的销售价(元/件)可看成是一次函数关系: 1.写出商场卖这种服装每天的销售利润与每件的销售价之间的函数关系式(每天的销售利润 是指所卖出服装的销售价与购进价的差); 2.通过对所得函数关系式进行配方,指出:商场要想每天获得最大的销售利润,每件的销售价定 为多少最为合适;最大销售利润为多少? 分析:商场的利润是由每件商品的利润乘每天的销售的数量所决定。 在这个问题中,每件服装的利润为(),而销售的件数是(+204),那么就能得到一个与 之间的函数关系,这个函数是二次函数. 要求销售的最大利润,就是要求这个二次函数的最大值. 解:(1)由题意,销售利润与每件的销售价之间的函数关系为 =(-42)(-3+204),即=-32+8568 (2)配方,得=-3(-55)2+507 ∴当每件的销售价为55元时,可取得最大利润,每天最大销售利润为507元. 例2 某跳水运动员进行10米跳台跳水训练时,身体(看成一点)在空中的运动路线是如图所示坐标系下经过原点O的一条抛物线(图中标出的数据为已知条件). 在跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面米,入水处距池边的距离为4米,运动员在距水面高度为5米以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误. (1)求这条抛物线的解析式; (2)在某次试跳中,测得运动员在 空中的运动路线是(1)中的抛物线, 且运动员在空中调整好入水姿势时,距 池边的水平距离为米,问此次跳水会不会失误? 并通过计算说明理由. 分析:(1)在给出的直角坐标系中,要确定抛物线的解析式,就要确定抛物线上三个点的坐标,如起跳点O(0,0), 入水点(2,-10),最高点的纵点标为. (2)求出抛物线的解析式后,要判断此次跳水会不会失误,就是要看当该运动员在距池边水平距离为米., 时,该运动员是不是距水面高度为5米. 解:(1)在给定的直角坐标系下,设最高点为A,入水点为 B,抛物线的解析式为. 由题意,知O(0,0),B(2,-10),且顶点A的纵坐标为.

知识点20 二次函数在实际生活中应用

知识点20 二次函数在实际生活中应用 一、选择题 9.(2019·山西)北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊杆,拉索与主梁相连.最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象——抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A,B 两点,拱高为78米(即最高点O 到AB 的距离为78米),跨径为90米,(即AB =90米),以最高点O 为坐标原点,以平行于AB 的直线为x 轴建立平面直角坐标系,则次抛物线型钢拱的函数表达式为( ) A.y = 26 675 x 2 B.y =26675 - x 2 C.y = 13 1350 x 2 D.y =13 1350 - x 2 第9题图 【答案】B 【解析】设二次函数表达式为y =ax 2,由题可知,点A 坐标为(-45,-78),代入表达式可得:-78=a(-45)2,解得a =26675- ,∴二次函数表达式为y =26675 -x 2 ,故选B. 三、解答题 22.(2019年浙江省绍兴市,第22题,12分 ).有一块形状如图的五边形余料ABCDE ,AB=AE=6,BC=5,∠A=∠B=90°,∠C=135°,∠E >90°.要在这块余料中截取一块矩形材料,其中一边在AE 上,并使所截矩形的面积尽可能大. (1)若所截矩形材料的一条边是BC 或AE ,求矩形材料的面积; (2)能否截出比(1)中面积更大的矩形材料?如果能,求出这些矩形材料面积的最大值,如果不能,请说明理由. 【解题过程】

24.(2019·嘉兴)某农作物的生长率p 与温度t (℃)有如下关系:如图1,当10≤t ≤25时可近似用函数p = t ﹣刻画;当25≤t ≤37时可近似用函数p =﹣ (t ﹣h )2 +0.4刻画. (1)求h 的值. (2)按照经验,该作物提前上市的天数m (天)与生长率p 满足函数关系: 生长率p 0.2 0.25 0.3 0.35 提前上市的天数m (天) 5 10 15 ①请运用已学的知识,求m 关于p 的函数表达式; ②请用含t 的代数式表示m . (3)天气寒冷,大棚加温可改变农作物生长速度.在(2)的条件下,原计划大棚恒温20℃时,每天的成本为200元,该作物30天后上市时,根据市场调查:每提前一天上市售出(一次售完),销售额可增加600元.因此给大棚继续加温,加温后每天成本w (元)与大棚温度t (℃)之间的关系如图2.问提前上市多少天时增加的利润最大?并求这个最大利润(农作物上市售出后大棚暂停使用). 【解题过程】(1)把(25,0.3)的坐标代入21 ()0.4160 p t h =- -+,得h =29或h =21. ∵h >25,∴h =29. (2)①由表格可知m 是p 的一次函数,∴m=100p-20.

《二次函数的应用》练习题

【课时训练】21.4二次函数的应用 1.已知函数y=2 1x 2-x-12,当函数y 随x 的增大而减小时,x 的取值范围是( ) A. x <1 B. x >1 C. x >-4 D. -4<x <6 2.某商店购进一批单价为20元的日用商品,如果以单价30元销售,那么半月内可售出400件,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件,如果提高售价,才能在半月内获得最大利润? 3.某地要建造一个圆形喷水池,在水池中央垂直于水面安装一个花 形柱子OA ,O 恰在水面中心,安置在柱子顶端A 处的喷头向外喷水, 水流在各个方向上沿形状相同的抛物线路径落下,且在过OA 的任一 平面上,抛物线形状如图(1)所示.图(2)建立直角坐标系,水流 喷出的高度y (米)与水平距离x (米)之间的关系是 4 522++-=x x y .请回答下列问题: (1) 柱子OA 的高度是多少米? (2) 喷出的水流距水平面的最大高度是多少米? (3) 若不计其他因素,水池的半径至少要多少米才能使喷出的水流不至于落在池外? 4.当运动中的汽车撞到物体时,汽车所受到的损坏程度可以用“撞击影响”来衡量.某型汽车的撞击 影响可以用公式I=2v 2来表示,其中v (千米/分)表示汽车的速度. ① 列表表示I 与v 的关系; ② 当汽车的速度扩大为原来的2倍时,撞击影响扩大为原来的多少倍? 5.如图,正方形EFGH 的顶点在边长为a 的正方形ABCD 的边上,若AE=x ,正方形EFGH 的面积为y. (1) 求出y 与x 之间的函数关系式; (2) 正方形EFGH 有没有最大面积?若有,试确定E 点位置;若没有,说明理由.

中考二次函数实际应用题

1某商家独家销售具有地方特色的某种商品,每件进价为40元.经过市场调查,一周的销售量y件与销售单价x(x≥50)元/件的关系如下表: 销售单价x(元/件)…55 60 70 75 … 一周的销售量y(件)…450 400 300 250 … (1)直接写出y与x的函数关系式: (2)设一周的销售利润为S元,请求出S与x的函数关系式,并确定当销售单价在什么范围内变化时,一周的销售利润随着销售单价的增大而增大 (3)雅安地震牵动亿万人民的心,商家决定将商品一周的销售利润全部寄往灾区,在商家购进该商品的贷款不超过10000元情况下,请你求出该商家最大捐款数额是多少元 2为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+80.设这种产品每天的销售利润为w元. (1)求w与x之间的函数关系式. (2)该产品销售价定为每千克多少元时,每天的销售利润最大最大利润是多少元 (3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150 元的销售利润,销售价应定为每千克多少元 3某商场购进一批单价为4元的日用品.若按每件5元的价格销售,每月能卖出3万件;若按每件6元的价格销售,每月能卖出2万件,假定每月销售件数y(件)与价格x(元/件)之间满足一次函数关系. (1)试求y与x之间的函数关系式; (2)当销售价格定为多少时,才能使每月的利润最大每月的最大利润是多少 4某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具. (1)不妨设该种品牌玩具的销售单价为x元(x>40),请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润w元,并把结果填写在表格中: 销售单价(元) 销售量y(件) 销售玩具获得利润w(元) (2)在(1)问条件下,若商场获得了10000元销售利润,求该玩具销售单价x应定为多少元. (3)在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少

中考数学习题精选:二次函数在实际生活中应用(含参考答案)

中考数学习题精选:一、选择题 1、(2018北京房山区第一学期检测)小明以二次函数 2 248 y x x =-+的图象为灵感为 “2017北京·房山国际葡萄酒大赛”设计了一款杯子,如图为杯子的设计稿, 若AB=4,DE=3,则杯子的高CE为 A.14 B.11 C.6 D. 3 答案:B 2、(2018北京怀柔区第一学期期末)网球单打比赛场地宽度为8米,长度在球网的两侧各为12米,球网高度为0.9米(如图AB的高度).中网比赛中,某运动员退出场地在距球网 14米的D点处接球,设计打出直线 ..穿越球,使球落在对方底线上C处,用刁钻的落点牵制对方.在这次进攻过程中,为保证战术成功,该运动员击球点高度至少为 A. 1.65米 B. 1.75米 C.1.85米 D. 1.95米 答案:D 3、(2018北京丰台区第一学期期末)在北京市治理违建的过程中,某小区拆除了自建房,改建绿地. 如图,自建房占地是边长为8m的正方形ABCD,改建的绿地是矩形AEFG,其中点E在AB上,点G在AD的延长线上,且DG = 2BE. 如果 设BE的长为x(单位:m),绿地AEFG的面积为y(单位: m2),那么y与x的函数的表达式为;当 BE AEFG的面积最大. E D G F H A C B 第 6题图 C

答案:2 2864(08)y x x x =-++<<(可不化为一般式),2 4、(2018北京密云区初三(上)期末)学校组织“美丽校园我设计”活动.某同学打算利用学校文化墙的墙角建一个矩形植物园.其中矩形植物园的两邻边之和为4m ,设矩形的一边长为x m ,矩形的面积为y m 2.则函数y 的表达式为______________,该矩形植物园的最大面积是_______________ m 2. 答案:(4)y x x =- ,4 5、(2018北京顺义区初三上学期期末)如图,利用成直角的墙角(墙足够长),用10m 长的栅栏围成一个矩形的小花园,花园的面积S (m 2)与它一边长a (m )的 函数关系式是 ,面积S 的最大值是 . 答案:2 20S a a =-+ 6、(2018年北京昌平区第一学期期末质量抽测)如图,是一座古拱桥的截面图,拱桥桥洞的上沿是抛物线形状,当水面的宽度为10m 时,桥洞与水面 的最大距离是5m . (1)经过讨论,同学们得出三种建立平面直角坐标系的方案(如下图), 你选择的方案是_____(填方案一,方案二,或方案三),则B 点坐标是______, 求出你所选方案中的抛物线的表达式; (2)因为上游水库泄洪,水面宽度变为6m ,求水面上涨的高度. 解:方案1:(1)点B 的坐标为(5,0) (1) 分 设抛物线的解析式为:(5)(5)y a x x =+-…………… 2分 由题意可以得到抛物线的顶点为(0,5),代入解析式可得:1 5 a =- y 方案 2 方案 3 方案 1

二次函数的实际应用----最值问题以及设计方案问题

二次函数的实际应用——最大(小)值问题 知识要点: 二次函数的一般式c bx ax y ++=2 (0≠a )化成顶点式a b a c a b x a y 44)2(2 2-++=,如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值). 即当0>a 时,函数有最小值,并且当a b x 2-=,a b ac y 442-=最小值; 当0 B. 0,0a h >> C. 0,0a k >> D. 0,0a k << 5.函数92 +-=x y 。当-2

二次函数实际应用题专题训练

二次函数实际应用题专题训练 1、某电子商投产一种新型电子产品,每件制造成本为18元,试销过程发现,每月销量y(万件)与销售单价x(元)之间关系可以近似地看作一次函数y=-2x+100.(利润=售价-制造成本) (1)写出每月的利润z(万元)与销售单价x(元)之间函数解析式; (2)当销售单价为多少元时,厂商每月能够获得350万元的利润?当销售单价为多少元时,厂商每月能够获得最大利润?最大利润是多少? (3)根据相关部门规定,这种电子产品的销售单价不得高于32元.如果厂商要获得每月不低于350万元的利润,那么制造这种产品每月的最低制造成本需要多少万元? 2、某科技开发公司研制出一种新型产品,每件产品的成本为2400 元,销售单价定为3000 元.在该产品的试销期间,为了促销,鼓励商家购买该新型产品,公司决定商家一次购买这种新型产品不超过10 件时,每件按3000 元销售;若一次购买该种产品超过10 件时,每多购买一件,所购买的全部产品的销售单价均降低10 元,但销售单价均不低于2600 元. (1)商家一次购买这种产品多少件时,销售单价恰好为2600 元? (2)设商家一次购买这种产品x 件,开发公司所获的利润为y 元,求y(元)与x(件)之间的函数关系式,并写出自变量x 的取值范围. (3)该公司的销售人员发现:当商家一次购买产品的件数超过某一数量时,会出现随着一次购买的数量的增多,公司所获的利润反而减少这一情况.为使商家一次购买的数量越多,公司所获的利润越大,公司应将最低销售单价调整为多少元?(其它销售条件不变)

3、把一边长为40cm的正方形硬纸板,进行适当的剪裁,折成一个长方形盒子(纸板的厚度忽略不计)。 (1)如图,若在正方形硬纸板的四角各剪一个同样大小的正方形,将剩余部分折成一个无盖的长方形盒子。 ①要使折成的长方形盒子的底面积为484cm2,那么剪掉的正方形的边长为多少? ②折成的长方形盒子的侧面积是否有最大值?如果有,求出这个最大值和此时剪掉的正方形的边长;如果没有,说明理由。 (2)若在正方形硬纸板的四周剪掉一些矩形(即剪掉的矩形至少有一条边在正方形硬纸板的边上),将剩余部分折成一个有盖的长方形盒子,若折成的一个长方形盒子的表面积为550cm2,求此时长方形盒子的长、宽、高(只需求出符合要求的一种情况)。 ●变式练习: 如图,在边长为24cm的正方形纸片ABCD上,剪去图中阴影部分的四个全等的等腰直角三角形,再沿图中的虚线折起,折成一个长方体形状的包装盒(A.B.C.D四个顶点正

相关文档
相关文档 最新文档