文档视界 最新最全的文档下载
当前位置:文档视界 › 对弧长的曲线积分:第一类曲线积分计算法

对弧长的曲线积分:第一类曲线积分计算法

对弧长的曲线积分:第一类曲线积分计算法
对弧长的曲线积分:第一类曲线积分计算法

物理意义:不均匀曲线质量=密度函数*弧长因子

1 直角方程:化dx,y=f(x),以x为限

2 参数方程:化dt,根据给的附加L方程将y与x化参,以t角度为限,偏心圆周的t(0,2pi),(3D)(注意与极坐标的区别)

根据给的附加L(每段弧长x,y的关系)将y与x化参(或不化)复杂时先求弧长因子

3 极坐标方程:化dθ,x=r cosθ,y=r sinθ,

曲线积分与曲面积分(解题方法归纳)

第十一章解题方法归纳 一、曲线积分与曲面积分的计算方法 1.曲线积分与曲面积分的计算方法归纳如下: (1) 利用性质计算曲线积分和曲面积分. (2) 直接化为定积分或二重积分计算曲线或曲面积分 (3) 利用积分与路径无关计算对坐标的曲线积分. (4) 利用格林公式计算平面闭曲线上的曲线积分. (5) 利用斯托克斯公式计算空间闭曲线上的曲线积分. (6) 利用高斯公式计算闭曲面上的曲面积分. 2. 在具体计算时,常用到如下一些结论: (1)若积分曲线L 关于y 轴对称,则 1 (,)2(,)L L f x f x y ds f x y ds f x ??=? ??? ?对为奇函数对为偶函数 1 0 (,)2(,)L L P x P x y dx P x y dy P x ??=?????对为奇函数 对为偶函数 1 0 (,)2(,)L L Q x Q x y dy Q x y dy Q x ??=?????对为偶函数 对为奇函数 其中1L 是L 在右半平面部分. 若积分曲线L 关于x 轴对称,则 1 (,)2(,)L L f y f x y ds f x y ds f y ??=? ??? ?对为奇函数对为偶函数 1 0 (,)2(,)L L P y P x y dx P x y dy P y ??=?????对为偶函数 对为奇函数 1 0 (,)2(,)L L Q y Q x y dy Q x y dy Q y ??=?????对为奇函数 对为偶函数 其中1L 是L 在上半平面部分.

(2)若空间积分曲线L 关于平面=y x 对称,则 ()()=??L L f x ds f y ds . (3)若积分曲面∑关于xOy 面对称,则 1 0 (,,)2(,,)f z f x y z dS R x y z dS f z ∑ ∑?? =????? ??对为奇函数对为偶函数 1 0 (,,)2(,,)R z R x y z dxdy R x y z dxdy R z ∑∑?? =???????对为偶函数对为奇函数 其中1∑是∑在xOy 面上方部分. 若积分曲面∑关于yOz 面对称,则 1 0 (,,)2(,,)f x f x y z dS R x y z dS f x ∑ ∑?? =????? ??对为奇函数 对为偶函数 1 0 (,,)2(,,)P x P x y z dydz P x y z dydz P x ∑∑?? =???????对为偶函数对为奇函数 其中1∑是∑在yOz 面前方部分. 若积分曲面∑关于zOx 面对称,则 1 0 (,,)2(,,)f y f x y z dS R x y z dS f y ∑ ∑?? =????? ??对为奇函数 对为偶函数 1 0 (,,)2(,,)Q y Q x y z dzdx Q x y z dzdx Q y ∑∑?? =???????对为偶函数对为奇函数 其中1∑是∑在zOx 面右方部分. (4)若曲线弧() :()()αβ=?≤≤?=? x x t L t y y t ,则 [ (,)(),()()β α αβ=

第一类曲线积分的计算

第一类曲线积分的计算

第一类曲线积分的计算 1、定义 定义1 :设L 为平面上可求长度的曲线段,)y ,x (f 为定义在L 上的函数.对曲线L 作分割T ,它把L 分成n 个可求长度的小曲线段)n ,,2,1i (L i ,i L 的弧长记为i s ,分割T 的细度为i n i 1s max T ,在i L 上任取一点 (i ,).n ,,2,1i )(i 若存在极限J s ),(f lim i i n 1 i i 0T 且J 的值与分割T 及点),(i i 的取法无关,则称此极限为)y ,x (f 在L 上的第一型曲线积分,记作 .ds )y ,x (f L (1) 定义2: 若L 为空间可求长曲线段,)y ,x (f 为定义在L 上的函数,则可类似地定义)z ,y ,x (f 在空间曲线L 上的第一型曲线积分为 J s ),,(f lim i i i n 1 i i 0T ,(此处i s 为i L 的弧长,i n i 1s max T , J 为一常 数),并且记作 L .ds )z ,y ,x (f (2) 2、物理意义 (1)设某物体的密度函数f (P )是定义在 上的连续函数.当 是直线段时,应用定积分就能计算得该物体的质量。现在研究当 是平面上某一可求长度的曲线段时物体的质量的计算问题.首先对 作分割,把 分成n 个可求长度的小曲线段i (i=1,2,…,n),并在每一个i 上任取一点P i 由于f (P )为 上的连续函数,故当i 的弧长都很小时,每一小段i 的质量可近似地等于f (P i ) i ,其中 i 为小曲线段i 的长度.于是在整个 上的质量就近似地等于和 式

空间曲线积分的计算方法

空间曲线积分的计算方法 (1)曲线积分的计算例1 计算,其中为平面被三个坐标平面所截三角形的边界,若从轴正向看去,定向为逆时针方向.方法一根据第二型曲线积分的定义化为定积分计算根据定义求曲线积分的关键是使被积函数满足曲线方程,即可将曲线方程代入被积函数.解法一:设,则,,,则.由曲线积分的定义,有.同理可得: .所以.方法二将空间曲线积分转化为平面曲线积分后用格林公式计算 格林公式给出了平面上有限条逐段光滑封闭曲线上的积分与它们所包含的区域上的二重积分之间的关系.解法二:设,,则,是围成的区域.代入原积分由格林公式得原式.化为平面曲线积分后也可以由定义计算积分值,但比格林公式要复杂得多.用格林公式首先要验证问题是否满足定理条件,其次可用对称性简化计算.方法三根据对称性求曲线积分. 轮换对称性即当被积函数和积分域同步进行同一轮换时,积分的值不变.当被积函数和积分域都具有轮换对称性,这种情形称为双轮换对称性;当被积函数具有轮换对称性而积分域没有或积分域具有轮换对称性而被积函数没有时称为单轮换对称性.双轮换对称性把原题变成了原题,所以对我们解题没有任何帮

助.我们主要在讨论单轮换对称的情形.解法三:由题目特征可知该积分及曲线都具有轮换对称性,因此由对称性知原式.同样由对称性知原式.方法四根据公式求曲线积分 公式建立了空间曲线积分和曲面积分之间的联系,从而将曲线积分和曲面积分有机联系起来. 解法四: 设,方向为上侧,曲面上一点的外法线向量的方向余弦为由公式化为第一型曲面积分得原式.为解法一中所设的点组成的三角形.另解: 根据上面解法中所设,并设为在面上的投影.用公式化为第二型曲面积分得原式 .用公式将曲线积分化为曲面积分时,若曲面为平面化为第一型曲面积分较简单.

第二类曲线积分的计算

第二类曲线积分的计算 Jenny was compiled in January 2021

第二类曲线积分的计算 定义 设),(y x P ,),(y x Q 为定义在光滑或分段光滑平面有向曲线AB L 上的函数,对AB L 任一分割T ,它把AB L 分成n 个小弧段i i M M 1-),,2,1(n i =;其中 A =n M B M =,0.记各个小弧段i i M M 1-弧长为i s ?,分割T 的细度为 }{max 1i n i S T ?=≤≤,又设T 的分点的坐标为),(i i i y x M ,并记 11,---=?-=?i i i i i i y y y x x x ,),,2,1(n i = . 在每个小弧段i i M M 1-上任取一点()i i ηξ,,若极限 ∑=→?n i i i i T x P 1 ),(lim ηξ∑=→?+n i i i i T y Q 1 ),(lim ηξ 存在且与分割T 与点()i i ηξ,的取法无关,则称此极限为函数),(y x P ,),(y x Q 在有向线段AB L 上的第二类曲线积分,记为 ?+L dy y x Q dx y x P ),(),(或 ?+AB dy y x Q dx y x P ),(),( 也可记作 ??+L L dy y x Q dx y x P ),(),( 或 ??+AB AB dy y x Q dx y x P ),(),( 注:(1) 若记()y x F , =()),(),,(y x Q y x P ,()dy dx s d ,= 则上述记号可写成向量 形式:??L s d F . (2) 倘若L 为光滑或分段光滑的空间有向连续曲线, ),,(z y x P ,),,(z y x Q ,),,(z y x R 为定义在L 上的函数,则可按上述办法定义沿 空间有向曲线L 的第二类曲线积分,并记为 dz z y x R dy z y x Q dx z y x P L ),,(),,(),,(++? 按照这一定义 , 有力场()),( , ),(),(y x Q y x P y x F =沿平面曲线L 从点A 到点B 所作的功为?+=AB Qdy Pdx W .第二类曲线积分的鲜明特征是曲线的

第二类曲线积分的计算

第二类曲线积分的计算 作者:钟家伟 指导老师:张伟伟 摘要:本文结合第二类曲线积分的背景用定义的方法进行第二类曲线积分的计算,重点是利用对称 性,参数方程,格林公式斯托克斯公式以及两类曲线积分之间的联系对第二类曲线积分进行计算。 关键词:第二类曲线积分 二重积分 参数积分 对称性原理 斯托克斯公式 第二类曲面积分 1 引言 本文介绍第二类曲线积分的定义以及与两类曲线积分之间的联系,重点介绍若干种主要的计算方法。 1.1 第二类曲线积分的概念 介绍了第二类曲线积分的物理学背景,平面和空间第二类曲线积分的定义以及对坐标的第二类曲线积分的定义。 1.2第二类曲线积分的计算方法 介绍了关于第二类曲线积分的参数计算法,利用格林公式和斯托克斯公式计算的方法以及利用对称性简化或计算的方法。 2.1第二类曲线积分的物理学背景 力场()),( , ),(),(y x Q y x P y x F =沿平面曲线L 从点A 到点B 所作的功 一质点受变力()y x F , 的作用沿平面曲线L 运动,当质点从L 之一端点A 移动到另一端B 时, 求力()y x F , 所做功W . 大家知道,如果质点受常力F 的作用从A 沿直线运动到B ,那末这个常力F 所做功为 W =AB F ? . 现在的问题是质点所受的力随处改变,而所走路线又是弯弯曲曲.怎么办呢? 为此,我们对有向曲线L 作分割},,.....,,{110n n A A A A T -=,即在AB 内插入1-n 个分点 ,,.....,,121-n M M M 与A =n M B M =,0一起把曲线分 成n 个有向小曲线段 i i M M 1-),,2,1(n i = ,记 小曲线段i i M M 1-的弧长为i S ?.则分割 },,.....,,{110n n A A A A T -=的细度为}{max 1i n i S T ?=≤≤. 设力()y x F , 在x 轴和y 轴方向上的投影分别为),(y x P

曲线积分的计算法

曲线积分 第一类 ( 对弧长 ) 第二类 ( 对坐标 ) ? ??转化 定积分 (1) 选择积分变量 用参数方程 用直角坐标方程 用极坐标方程 (2) 确定积分上下限 第一类: 下小上大 第二类: 下始上终 对弧长曲线积分的计算 定理 ) ()()()](),([),(,],[)(),()(),(), (, ),(22βαψ?ψ?βαψ?βαψ?β α <'+'=≤≤? ? ?==?? dt t t t t f ds y x f t t t t y t x L L y x f L 且 上具有一阶连续导数在其中的参数方程为上有定义且连续在曲线弧设注意: ;.1βα一定要小于上限定积分的下限. ,,),(.2而是相互有关的不彼此独立中y x y x f 特殊情形 . ) (:)1(b x a x y L ≤≤=ψ. )(1)](,[),(2dx x x x f ds y x f b a L ?? '+=ψψ. )(:)2(d y c y x L ≤≤=?. )(1]),([),(2dy y y y f ds y x f d c L ?? '+=??

).(, sin ,cos :,象限第椭圆求I ? ? ?===?t b y t a x L xyds I L 解 dt t b t a t b t a I 2220 )cos ()sin (sin cos +-?=?π dt t b t a t t ab 222220 cos sin cos sin +=?π ?-= a b du u b a ab 22 2) cos sin (2222t b t a u +=令. ) (3) (22b a b ab a ab +++=例2 . )2,1()2,1(,4:, 2 一段到从其中求-==?x y L yds I L x y 42=解 dy y y I 222)2 (1+=?-. 0=例3 ) 20(., sin ,cos :, πθθθθ≤≤===Γ=?Γ 的一段其中求k z a y a x xyzds I 解 θ θθθd k a k a 222sin cos +?? =π 20 I . 2 1 222k a ka +-=π例4 ?? ?=++=++Γ=?Γ . 0, , 22 2 2 2z y x a z y x ds x I 为圆周其中求解 由对称性, 知 . 22 2 ???Γ ΓΓ==ds z ds y ds x ?Γ ++=ds z y x I )(312 22故例1

(整理)对弧长的曲线积分.

对弧长的曲线积分 一、概念的引进 假设xoy 面内有一段曲线弧L 具有质量,在L 上任一点(,)x y 处的线密度 为ρ(, )x y ,且ρ(,)x y 在L 上连续,A 与B 分别是弧L 的端点,现计算弧L 的 质量m 。 在L 上任意地插入n +1个分点 A M M M M M M B i i n n ==--0111,,,,,,, 将L 分划成n 个小弧段。对于第 i 个小弧段弧M i M i -1,由于线密度函数 ρ(,)x y 在L 上连续,当该小弧段的长度充分小时,它的质量近似地等于 ρξηξη(,)(,), i i i i i M i M i s i M i M i s ???--弧表示弧的长度11 于是,整个曲线弧L 的质量近似值为 m s i i i i n ≈?=∑ρξη(,)?1 用λ表示这n 个小弧段长度的最大者, 即 λ=≤≤max {} 1i n i s ? 为了得到质量m 的精确值,只需对上述和式取极限,令λ→0,

即 m s i i i i n =?→=∑lim (,)λρξη01 ? (1) 撇开上例的物理意义,我们引入对弧长的曲线积分的概念。 【定义】设L 为xoy 面内的一条光滑曲线弧,函数f x y (,)在L 上有界,在L 内 任意地插入n +1点, A M M M M M M B i i n n ==--0111,,,,,,, 它把L 分成n 个小弧段,设第i 个小段弧M i M i -1的长度为?s i ,(,)ξηi i 为 弧M i M i -1上任取的一点,记 λ=≤≤max {} 1i n i s ? 作和式 f s i i i i n (,)ξη?=∑?1 如果极限 lim (,)λξη→=?∑01 f s i i i i n ? 存在, 这个极限值就叫做函数 f x y (,)在曲线弧L 上对弧长的曲线积分,记作 f x y ds L (,)?。 亦即 f x y ds f s L i i i i n (,)lim (,)?∑=?→=λξη0 1 ? 其中: f x y (,)叫做被积函数, L 叫做积分弧段。 注记: 1、f x y ds L (,)?中的被积函数 f x y (,)的定义域为L 上的一切点。 2、上述定义可类似地推广到空间曲线的情形, 设Γ是空间的一条光滑曲线,函数 f x y z (,,)在Γ上有界,则

第二类曲线积分的计算

第二类曲线积分的计算 Revised as of 23 November 2020

第二类曲线积分的计算 定义 设),(y x P ,),(y x Q 为定义在光滑或分段光滑平面有向曲线AB L 上的函数,对 AB L 任一分割T ,它把AB L 分成n 个小弧段i i M M 1-),,2,1(n i =;其中 A =n M B M =,0.记各个小弧段i i M M 1-弧长为i s ?,分割T 的细度为}{max 1i n i S T ?=≤≤, 又设T 的分点的坐标为),(i i i y x M ,并记 11, ---=?-=?i i i i i i y y y x x x ,),,2,1(n i = . 在每个小弧段i i M M 1-上任取一点()i i ηξ,,若极限 ∑=→?n i i i i T x P 1 ),(lim ηξ∑=→?+n i i i i T y Q 1 ),(lim ηξ 存在且与分割T 与点()i i ηξ,的取法无关,则称此极限为函数),(y x P ,),(y x Q 在有向线段AB L 上的第二类曲线积分,记为 ?+L dy y x Q dx y x P ),(),(或 ?+AB dy y x Q dx y x P ),(),( 也可记作 ??+L L dy y x Q dx y x P ),(),( 或 ??+AB AB dy y x Q dx y x P ),(),( 注:(1) 若记()y x F , =()),(),,(y x Q y x P ,()dy dx s d ,= 则上述记号可写成向量形 式:??L s d F . (2) 倘若L 为光滑或分段光滑的空间有向连续曲线, ),,(z y x P ,),,(z y x Q ,),,(z y x R 为定义在L 上的函数,则可按上述办法定义沿空间有 向曲线L 的第二类曲线积分,并记为 dz z y x R dy z y x Q dx z y x P L ),,(),,(),,(++? 按照这一定义 , 有力场()),( , ),(),(y x Q y x P y x F =沿平面曲线L 从点A 到点B 所作的功为?+=AB Qdy Pdx W .第二类曲线积分的鲜明特征是曲线的方向性 . 对

第一类曲线积分

§1 第一类曲线积分的计算 设函数(),,f x y z 在光滑曲线l 上有定义且连续,l 的方程为 ()()() ()0x x t y y t t t T z z t =?? =≤≤?? =? 则 ()()()() ,,,,T l t f x y z ds f x t y t z t =??? ?。 特别地,如果曲线l 为一条光滑的平面曲线,它的方程为()y x ?=,()a x b ≤≤,那么有 ((,) , ()b l a f x y ds f x x ?=??。 例:设l 是半圆周t a y t a x sin , cos ==, π≤≤t 0。求22 ()l x y ds +? 。 例:设l 是曲线x y 42=上从点) 0 , 0 (O 到点) 2 , 1 (A 的一段,计算第一类曲线积分l yds ?。 例:计算积分2l x ds ? ,其中l 是球面2222a z y x =++被平面0=++z y x 截得的圆周。 例:求()l I x y ds =+?,此处l 为连接三点()0,0O ,()1,0A ,()1,1B 的直线段。 §2 第一类曲面积分的计算 一 曲面的面积 (1)设有一曲面块S ,它的方程为 (),z f x y =。 (),f x y 具有对x 和y 的连续偏导数,即此曲面是光滑的,且其在XY 平面上的投影xy σ为可求面积的。则该 曲面块的面积为 xy S σ=。 (2)若曲面的方程为 ()()() ,,,x x u v y y u v z z u v =?? =?? =?

令 222u u u E x y z =++,u v u v u v F x x y y z z =++,222 v v v G x y z =++, 则该曲面块的面积为 S ∑ =。 例:求球面2222x y z a ++=含在柱面()220x y ax a +=>内部的面积。 例:求球面2222x y z a ++=含在柱面()220x y ax a +=>内部的面积。 二 化第一类曲面积分为二重积分 (1)设函数(),,x y z φ为定义在曲面S 上的连续函数。曲面S 的方程为(),z f x y =。(),f x y 具有对x 和y 的连续偏导数,即此曲面是光滑的,且其在XY 平面上的投影xy σ为可求面积的。则 ()( ),,,,,xy S x y z dS x y f x y σφφ=??????。 (2)设函数(),,x y z φ为定义在曲面S 上的连续函数。若曲面的方程为 () ()() ,,,x x u v y y u v z z u v =?? =?? =? 令 222u u u E x y z =++,u v u v u v F x x y y z z =++,222 v v v G x y z =++, 则 ()()()( ),,,,,,,S x y z dS x u v y u v z u v φφ∑ =??????。 例:计算 ()S x y z dS ++??,S 是球面2222 x y z a ++=,0z ≥。 例:计算 S zdS ??,其中S 为螺旋面的一部分:

第十章 曲线积分与曲面积分

第十章曲线积分与曲面积分 10.1 对弧长的曲线积分 一、求曲线 cos,sin, t t t x e t y e t z e ===从0 t=到任意点间的那段弧的质量,设 它各点的密度与该点到原点的距离的平方成反比,且在点(1,0,1)处的密度为1。 1 ) t e - )二、计算下列曲线积分: 1. L ? ,其中L为旋轮线: (sin) (1cos) x a t t y a t =- ? ? =- ?(0tπ ≤≤2)。 ( 3 2 4a π) 2. () L x y ds + ? ,其中L是顶点为(0,0),(1,0),(0,1) O A B的三角形边界。 (1 3. L ? ,其中L是由极坐标曲线 ,0, r a π θθ === 4所围成的区域的边界曲线。 ( 2(1) a a e ae π -+ 4) 4. () L x y z ds ++ ? ,其中L由直线AB:(1,1,0),(1,0,0) A B及螺线 cos,sin,(02) x t y t z t tπ ===≤≤组成。 ( 3 2 2 + )三、计算 L ? ,其中L 是由,0 y x y y ===所围成的第一象限部分的边界。 ( 2sin cos R R R π + 4) 四、计算 L,其中L是圆: 2222 x y z a x y ?++= ? = ?。(2a π2)

五、 计算 L xds ??,其中L 由直线0,x y x ==及曲线2 2y x -=所围成的第一象 限 部分 的 整 个 边 界 。 (+ ) 10.2 对坐标的曲线积分 一、设一质点处于弹性力场中,弹力方向指向原点,弹力大小与质点到原点的距离 成正比,比例系数为k 。若质点从点(0,)a 沿椭圆22 221x y a b +=在第一象限部 分 移 动 到 点 (0,) b ,求弹力所做的功。 (221 ()2k a b -) 二、计算曲线积分 22 (2)(2)L x xy dx y xy dy ++-?,其中L 是抛物线2(11) y x x =-≤≤沿 x 增加的 方 向 。 (14 15- ) 三、 计算 2 y L xe dy +?,其中L 是曲线y = 从点(0,0)O 到点(1,1)的一 段 弧 。 (2322) 四、 计算 2222 ()()L x y dx x y dy ++-?,其中L 是曲线 11y x =--从点(0,0)到 点 (2,0) 的一 段 。 (43) 五、 计算 ?ABC xdy ydx -? ,其中(1,0),(0,1),(1,0)A B C -,?AB 为圆 22 1x y +=的上半部分,? BC 为L 是一段抛物线2 1y x =-。 ( 43π - - 2 )

空间曲线积分的计算方法

空间曲线积分的计算方法. (1)曲线积分的计算 例1 计算222222()()()C I y z dx z x dy x y dz =-+-+-?,其中C 为平面 1=++z y x 被三个坐标平面所截三角形的边界,若从x 轴正向看去,定向为逆时针方向. 方法一 根据第二型曲线积分的定义化为定积分计算 根据定义求曲线积分的关键是使被积函数满足曲线方程,即可将曲线方程代入被积函数. 解法一:设(1,0,0),(0,1,0),(0,0,1)A B D ,则0,1:==+z y x ,:1,0BD y z x +==,:1,0DA x z y +==,则:C AB BD DA ++.由曲线积分的定义,有 dz y x dy x z dx z y AB )()()(222222-+-+-? 32])1[(0122-=+-= ?dx x x . 同理可得: 222222()()()BD y z dx z x dy x y dz -+-+-? 2222222()()()3 DA y z dx z x dy x y dz =-+-+-=-?. 所以 2AB BD DA I =++=-???. 方法二 将空间曲线积分转化为平面曲线积分后用格林公式计算 格林公式给出了平面上有限条逐段光滑封闭曲线上的积分与它们所包含的区域上的二重积分之间的关系. 解法二:设)0,0,0(O ,OA BO AB L ++:1,则dy dx dz y x z --=--=,1,D 是1L 围成的区域.代入原积分由格林公式得 原式))((])1[(])1([2222221dy dx y x dy x y x dx y x y L ---+---+---=? ??-=-=D dxdy 24. 化为平面曲线积分后也可以由定义计算积分值,但比格林公式要复杂得多.用格林公式首先要验证问题是否满足定理条件,其次可用对称性简化计算. 方法三 根据对称性求曲线积分. 轮换对称性即当被积函数和积分域同步进行同一轮换时,积分的值不变.当被积函数和积分域都具有轮换对称性,这种情形称为双轮换对称性;当被积函数具有轮换对称性而积分域没有或积分域具有轮换对称性而被积函数没有时称为单轮换对称性.双轮换对称性把原题变成了原题,所以对我们解题没有任何帮助.我们主要在讨论单轮换对称的情形. 解法三:由题目特征可知该积分及曲线C 都具有轮换对称性,因此由对称性知 原式dz y x dy x z dx z y )()()(3222222-+-+-=?

第一类曲线积分的计算

第一类曲线积分的计算 1、定义 定义1 :设L 为平面上可求长度的曲线段,)y ,x (f 为定义在L 上的函数.对曲线L 作分割T ,它把L 分成n 个可求长度的小曲线段)n ,,2,1i (L i ,i L 的弧长记为i s ,分割T 的细度为i n i 1s max T ,在i L 上任取一点(i , ).n ,,2,1i )(i 若存在极限J s ),(f lim i i n 1 i i 0T 且J 的值与分割T 及点),(i i 的取法无关,则称此极限为)y ,x (f 在L 上的第一型曲线积分,记作 .ds )y ,x (f L (1) 定义2: 若L 为空间可求长曲线段,)y ,x (f 为定义在L 上的函数,则可类似地 定义)z ,y ,x (f 在空间曲线L 上的第一型曲线积分为J s ),,(f lim i i i n 1 i i 0T , (此处i s 为i L 的弧长,i n i 1s max T , J 为一常数),并且记作 L .ds )z ,y ,x (f (2) 2、物理意义 (1)设某物体的密度函数f (P )是定义在 上的连续函数.当 是直线段时,应用定积分就能计算得该物体的质量。现在研究当 是平面上某一可求长度的曲线段时物体的质量的计算问题.首先对 作分割,把 分成n 个可求长度的小曲线段i (i=1,2,…,n),并在每一个i 上任取一点P i 由于f (P )为 上的连续函数,故当i 的弧长都很小时,每一小段i 的质量可近似地等于f (P i ) i ,其中 i 为小曲线段i 的长度.于是在整个 上的质量就近似地等于和式 i n 1 i i )P (f

第二类曲线积分的计算教案资料

第二类曲线积分的计 算

第二类曲线积分的计算 作者:钟家伟 指导老师:张伟伟 摘要:本文结合第二类曲线积分的背景用定义的方法进行第二类曲线积分的计算,重点是利用对称 性,参数方程,格林公式斯托克斯公式以及两类曲线积分之间的联系对第二类曲线积分进行计算。 关键词:第二类曲线积分 二重积分 参数积分 对称性原理 斯托克斯公式 第二类曲面积分 1 引言 本文介绍第二类曲线积分的定义以及与两类曲线积分之间的联系,重点介绍若干种主要的计算方法。 1.1 第二类曲线积分的概念 介绍了第二类曲线积分的物理学背景,平面和空间第二类曲线积分的定义以及对坐标的第二类曲线积分的定义。 1.2第二类曲线积分的计算方法 介绍了关于第二类曲线积分的参数计算法,利用格林公式和斯托克斯公式计算的方法以及利用对称性简化或计算的方法。 2.1第二类曲线积分的物理学背景 力场()),( , ),(),(y x Q y x P y x F =沿平面曲线L 从点A 到点B 所作的功 一质点受变力()y x F , 的作用沿平面曲线L 运动,当质点从L 之一端点A 移动到另一端B 时,求力()y x F , 所做功W . 大家知道,如果质点受常力F 的作用从A 沿直线运动到B ,那末这个常力F 所做功为 W =AB F ? . 现在的问题是质点所受的力随处改变,而所走路线又是 弯弯曲曲.怎么办呢?

为此,我们对有向曲线L 作分割},,.....,,{110n n A A A A T -=,即在AB 内插入1-n 个分点,,.....,,121-n M M M 与A =n M B M =,0一起把曲线分 成n 个有向小曲线段 i i M M 1-),,2,1(n i = ,记 小曲线段i i M M 1-的弧长为i S ?.则分割 },,.....,,{110n n A A A A T -=的细度为}{max 1i n i S T ?=≤≤. 设力()y x F , 在x 轴和y 轴方向上的投影分别为),(y x P 与),(y x Q ,那么()y x F , =()),(),,(y x Q y x P j y x Q i y x P ),(),(+=由于 ),,(),,(111i i i i i i y x M y x M ---则有向小曲线段i i M M 1-),,2,1(n i =在x 轴和y 轴方 向上的投影分别为11---=?-=?i i i i i i y y y x x x 与.记i i M M L 1- =),(i i y x ??从而力()y x F , 在小曲线段i i M M 1-上所作的功i W ?≈),(i F ηξ i i M M L 1- = ()i i P ηξ,i x ?+()i i Q ηξ,i y ? 其中(j i ηξ,)为小曲线段i i M M 1-上任一点,于是力()y x F , 沿L 所作的功可近似等 于 i W =∑=n i i W 1 i n i i i i n i i i y s Q x S P ?+?≈∑∑==1 1 ),(),(ηη当0→T 时,右端积分和式的 极限就是所求的功.这种类型的和式极限就是下面所要讨论的第二型曲线积分. 2.2 第二型曲线积分的定义 设),(y x P ,),(y x Q 为定义在光滑或分段光滑平面有向曲线AB L 上的函数,对 AB L 任一分割T ,它把AB L 分成n 个小弧段i i M M 1-),,2,1(n i =;其中 A =n M B M =,0.记各个小弧段i i M M 1-弧长为i s ?,分割T 的细度为}{max 1i n i S T ?=≤≤,又设T 的分点的坐标为),(i i i y x M ,并记 11,---=?-=?i i i i i i y y y x x x ,),,2,1(n i = . 在每个小弧段i i M M 1-上任取一点()i i ηξ,,若极限

曲线积分与曲面积分备课教案

第十章曲线积分与曲面积分 一、教学目标及基本要求: 1、理解二类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系。 2、会计算两类曲线积分 3、掌握(Green)公式,会使用平面曲线积分与路径无关的条件。 4、了解两类曲面积分的概念及高斯(Grass)公式和斯托克斯(Stokes)公式并会计算两类曲面积分。 5、了解通量,散度,旋度的概念及其计算方法。 6、会用曲线积分及曲面积分求一些几何量与物理量(如曲面面积、弧长、质量、重心、转动惯量、功、流量等)。 二、教学内容及学时分配: 第一节对弧长的曲线积分2学时 第二节对坐标的曲线积分2学时 第三节格林公式及其应用4学时 第四节对面积的曲面积分2学时 第五节对坐标的曲面积分2学时 第六节高斯公式通量与散度2学时 第七节斯托克斯公式环流量与旋度2学时 三、教学内容的重点及难点: 1、二类曲线积分的概念及其计算方法 2、二类曲面积分的概念及其计算方法 3、格林公式、高斯公式及斯托克斯公式 4、曲线积分及曲面积分的物理应用和几何应用也是本章重点。 5、两类曲线积分的关系和区别 6、两类曲面积分的关系和区别 7、曲线积分和曲面积分的物理应用及几何应用 五、思考题与习题 第一节习题10—1 131页:3(单数)、4、5 第二节习题10-2 141页:3(单数)、4、5、7(单数) 第三节习题10-3 153页:1、2、3、4(单数)、5(单数)6(单数)、7 第四节习题10-4 158页:4、5、6(单数)、7、8 第五节习题10-5 167页:3(单数)、4 第六节习题10-6 174页:1(单数)、2(单数)、3(单数) 第七节习题10-7 183页:1(单数)、2、3、4 第一节对弧长的曲线积分 一、内容要点 由例子引入对弧长的曲线积分的定义给出性质,然后介绍将对弧长的曲线积分化为定积分的计算方法。 1、引例:求曲线形构件的质量

第二类曲线积分的计算修订版

第二类曲线积分的计算 Document number:PBGCG-0857-BTDO-0089-PTT1998

第二类曲线积分的计算 定义 设),(y x P ,),(y x Q 为定义在光滑或分段光滑平面有向曲线AB L 上的函数,对 AB L 任一分割T ,它把AB L 分成n 个小弧段i i M M 1-),,2,1(n i =;其中 A =n M B M =,0.记各个小弧段i i M M 1-弧长为i s ?,分割T 的细度为}{max 1i n i S T ?=≤≤, 又设T 的分点的坐标为),(i i i y x M ,并记 11, ---=?-=?i i i i i i y y y x x x ,),,2,1(n i = . 在每个小弧段i i M M 1-上任取一点()i i ηξ,,若极限 ∑=→?n i i i i T x P 1 ),(lim ηξ∑=→?+n i i i i T y Q 1 ),(lim ηξ 存在且与分割T 与点()i i ηξ,的取法无关,则称此极限为函数),(y x P ,),(y x Q 在有向线段AB L 上的第二类曲线积分,记为 ?+L dy y x Q dx y x P ),(),(或 ?+AB dy y x Q dx y x P ),(),( 也可记作 ??+L L dy y x Q dx y x P ),(),( 或 ??+AB AB dy y x Q dx y x P ),(),( 注:(1) 若记()y x F , =()),(),,(y x Q y x P ,()dy dx s d ,= 则上述记号可写成向量形 式:??L s d F . (2) 倘若L 为光滑或分段光滑的空间有向连续曲线, ),,(z y x P ,),,(z y x Q ,),,(z y x R 为定义在L 上的函数,则可按上述办法定义沿空间有 向曲线L 的第二类曲线积分,并记为 dz z y x R dy z y x Q dx z y x P L ),,(),,(),,(++? 按照这一定义 , 有力场()),( , ),(),(y x Q y x P y x F =沿平面曲线L 从点A 到点B 所作的功为?+=AB Qdy Pdx W .第二类曲线积分的鲜明特征是曲线的方向性 . 对

第二类曲线积分典型例题解析

第二类曲线积分典型例 题解析 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

高等数学(2)第12章第二类曲线积分典型例题解析 例1 若对任意的x ,y 有y P x Q ??≡??,设C 是有向闭曲线,则?+C y Q x P d d = . 解:由格林公式将 其中D 为C l 围成的平面区域,及条件y P x Q ??≡??知,应该填写:0 例2._______d d =+-?y x x y l ,其中l 是延圆周1)1()1(22=-+-y x 正向一周. 解:因为圆周1)1()1(22=-+-y x 所围圆面积D 为:π?21,由格林公式得:???+=+-D l y x y x x y d d )11(d d =π2,应该填写:π2 例3 若),(y x P 及),(y x Q 在单连通域D 内有连续的一阶偏导数,则在D 内,曲线积分?+l y Q x P d d 与路径无关的充分必要条件是( ). A .在域D 内恒有y Q x P ??=?? B .在域D 内恒有y P x Q ??=?? C .在D 内任一条闭曲线l '上,曲线积分0d d ≠+?'l y Q x P D .在D 内任一条闭曲线l '上,曲线积分0d d =+?' l y Q x P 解:若),(),,(y x Q y x P 在单连通区域D 内有一阶连续偏导数,则 ?+l y y x Q x y x P d ),(d ),(与路径无关D y x y P x Q ∈??=???),(,。 所以选择:B 例4 设C 是平面上有向曲线,下列曲线积分中,( )是与路径无关的. A .?+C y x x yx d d 332 B .?-C y x x y d d C .?-C y x x xy d d 22 D .?+C y y x yx d d 332

21.1第一类曲线积分的计算

§21.1 第一类曲线积分的计算 1.定义 定积分研究的是定义在直线段上函数的积分.本节将研究定义在平面曲线或空间曲线段上函数的积分. 定义 1 设L 为平面上可求长度的曲线段,),(y x f 为定义在L 上的函数.对曲线L 作分割T ,它把L 分成n 个可求长度的小曲线段),,2,1(n i L i =,i L 的弧长记为i s ?,分割T 的细度为i n i s T ?=≤≤1max ,在i L 上任取一点(i ξ,).,,2,1)(n i i =η若存在极限 J s f i i n i i T =?∑=→),(lim 1 ηξ 且J 的值与分割T 及点),(i i ηξ的取法无关,则称此极限为),(y x f 在L 上的第一型曲线积分,记作 .),(ds y x f L ? (1) 定义 2 若L 为空间可求长曲线段,(,,)f x y z 为定义在L 上的函数,则可类似地定义 ),,(z y x f 在空间曲线L 上的第一型曲线积分为J s f i i i n i i T =?∑=→),,(lim 1 ζηξ,(此处i s ?为 i L 的弧长,i n i s T ?=≤≤1max , J 为一常数),并且记作 ? L ds z y x f .),,( (2) 2.物理意义 1) 设某物体的密度函数f (P )是定义在Ω上的连续函数.当Ω是直线段时,应用定积分就能计算得该物体的质量, 现在研究当Ω是平面上某一可求长度的曲线段时物体的质量的计算问题.首先对Ω作分割,把Ω分成n 个可求长度的小曲线段i Ω(i=1,2,…,n),并在每一个i Ω上任取一点P i 由于f (P )为Ω上的连续函数,故当i Ω的弧长都很小时,每一小段i Ω的质量可近似地等于f (P i )?i Ω,其中?i Ω为小曲线段i Ω的长度.于是在整个Ω上的质量就近似地等于和式 i n i i P f ?Ω∑=)(1 当对Ω的分割越来越细密(即0max 1→?Ω=≤≤i n i d )时,上述和式的极限就应是该物体的 质量.

最新对弧长的曲线积分

对弧长的曲线积分

对弧长的曲线积分 一、概念的引进 假设 xoy 面内有一段曲线弧L具有质量,在L上任一点 (,) x y 处的线密度为 ρ(,) x y,且ρ(,) x y 在L上连续,A与B分别是弧L的端点,现计算弧L的质量m。 在L上任意地插入n+1个分点 A M M M M M M B i i n n == -- 0111 ,,,,,,, 将L分划成n个小弧段。对于第i个小弧段弧M i M i -1,由于线密度函数 ρ(,) x y 在L上连续,当该小弧段的长度充分小时,它的质量近似地等于ρξηξη (,)(,), i i i i i M i M i s i M i M i s?? ?-- 弧表示弧的长度 11 于是,整个曲线弧L的质量近似值为 m s i i i i n ≈? = ∑ρξη (,)? 1 用 λ表示这n个小弧段长度的最大者, 即 λ= ≤≤ max{} 1i n i s? 为了得到质量m的精确值,只需对上述和式取极限,令λ→0,

即 m s i i i i n =?→=∑lim (,)λρξη01 ? (1) 撇开上例的物理意义,我们引入对弧长的曲线积分的概念。 【定义】设L 为xoy 面内的一条光滑曲线弧,函数f x y (,)在L 上有界,在L 内任意地插入n +1点, A M M M M M M B i i n n ==--0111,,,,,,, 它把L 分成n 个小弧段,设第i 个小段弧M i M i -1的长度为?s i ,(,)ξηi i 为 弧M i M i -1上任取的一点,记 λ=≤≤max {} 1i n i s ? 作和式 f s i i i i n (,)ξη?=∑?1 如果极限 lim (,)λξη→=?∑01 f s i i i i n ? 存在, 这个极限值就叫做函数 f x y (,)在曲线弧L 上对弧长的曲线积分,记作 f x y ds L (,)?。 亦即 f x y ds f s L i i i i n (,)lim (,)?∑=?→=λξη0 1 ? 其中: f x y (,)叫做被积函数, L 叫做积分弧段。 注记: 1、f x y ds L (,)?中的被积函数 f x y (,)的定义域为L 上的一切点。

相关文档
相关文档 最新文档