文档视界 最新最全的文档下载
当前位置:文档视界 › 泊松过程日常应用

泊松过程日常应用

泊松过程日常应用
泊松过程日常应用

随机过程poisson过程 中科大

Poisson 过程 1.考虑电子管中的电子发射问题.设单位时间内到达阳极的电子数目N 服从参数为λ的Poisson 分布,而每个电子携带的能量各自不相关且与N 独立,并均服从于区间[1,2]上的均匀分布.记单位时间内阳极接收的能量为S .求S 的期望和方差. 2.设{X (t ),t ≥0}为一个独立增量过程,且X (0)=0,分别记V (t ),R (t,s )为{X (t ),t ≥0}的方差函数和协方差函数,证明:R (t,s )=V (min {t,s }). 3.设N (t )是一强度为λ的Poisson 过程,s,t >0,试求: (a)P(N (s )=k |N (s +t )=n )=?k =1,...,n ; (b)E[N (s )N (s +t )]=? (c)Cov(N (s ),N (s +t ))=? (d)E[N (s +t )|N (s )]的期望和分布; (e)E[W k |N (t )=n ]=?E[W k ]=?(W k 为第k 个事件发生的时刻) 4.某路口蓝车,白车和黄车的到达分别为强度λ1,λ2和λ3的Poisson 过程,且相互独立.试求:(a)第一辆蓝车到达的平均时间和第一辆车到达的平均时间; (b)蓝车首先到达的概率; (c)蓝车先于黄车但落后于白车的概率; (d)在相继到达的两辆蓝车之间,恰有k 辆车到达的概率以及数学期望; (e)在t 0处观察到一辆黄车,在接下来恰有k 辆蓝车连续到达的概率以及数学期望. 5.设要做的试验的次数服从参数为λ的Poisson 分布,试验有n 个可能的结果,每次试验出现第j 个结果的概率为p j ,∑n j =1p j =1.若各次试验相互独立,并以X j 记第j 个结果发生的次数,试求E[X j ]、Var[X j ],j =1,...,n .又问X j 服从什么分布?且X 1,...,X n 是否相互独立?为什么? 6.某人甲负责订阅杂志.设前来订阅杂志的人数服从强度为6的Poisson 过程,每人分别以概率1/2,1/3,1/6订阅1季,2季,3季杂志,且各人的选择相互独立.现以N i (t )表示(0,t ]时段内订阅i 季杂志的人数,i =1,2,3. 1

概率论与数理统计课程报告:泊松分布及其在实际中的应用

泊松分布及其在实际中的应用 摘要:本文从泊松分布的定义和基本性质出发,举例讨论了泊松分布在实际中的重要应用。 关键字:泊松分布;应用;运筹学;分子生物学;核衰变 泊松分布是法国数学家泊松于1837年引入的,是概率论中的几大重要分布之一。作为一种常见的离散型随机变量的分布,其在实际中有着非常广泛的应用。 1泊松分布的定义及基本知识 1.1定义: (1)若随机变量X 的分布列为 ), ?=>= =-,2,1,0(0,! )(k k e k X P k λλλ 则称X 服从参数为λ的泊松分布,并用记号X~P(λ)表示。 (2)泊松流: 随机质点流:随机现象中源源不断出现的随机质点构成的序列。 若质点流具有平稳性、无后效性、普通性, 则称该质点流为泊松事件流(泊松流)。 例如某电话交换台收到的电话呼叫数; 到某机场降落的飞机数; 一个售货员接待的顾客数等这些事件都可以看作泊松流。 1.2有关泊松分布的一些性质 (1)满足分布列的两个性质:P(X=k)≥0(k=0,1,2,…), 且有 1! ! )(0 =?====-∞ =-∞=∞ =-∑∑∑ λλλ λ λλe e k e k e k X P k k k o k k . (2)若随机变量X 服从参数为λ的泊松分布,则X 的期望和方差分别为:E (X)=λ; D(X)=λ. (3)以n ,p 为参数的二项分布,当n →∞,p →0时,使得np=λ保持为正常数,则 λλ--→ -e k p p C k k n k k n ! ) 1(对于k=0,1,2,…一致成立。 由如上定理的条件λ=np 知,当n 很大时,p 很小时,有下面的近似公式 λλ--→ -=e k p p C k P k k n k k n n ! ) 1()( 2泊松分布的应用 对于试验成功概率很小而试验次数很多的随机过程, 都可以很自然的应用于泊松分布的理论。在泊松分布中的概率表达式只含一个参数λ,减少了对参数的确定与修改工作量, 模型构建比较简单, 具有很重要的实际意义。 以下具体举例说明泊松分布在实际中的重要应用。 (1)泊松分布在经济生活中的应用: 泊松分布是经济生活中的一种非常重要的分布形式,尤其是经常被运用在运筹学研究中的一个分布模型。如物料订单的规划,道路交通信号灯的设计,生产计划的安排,海港发

泊松过程及其在排队论中的应用

泊松过程及其在排队论中的应用 摘要:叙述了泊松过程的基本定义和概念,并列举了泊松过程的其他等价定义和证明并分析了泊松过程在排队论中的应用,讨论了完成服务和正在接受服务的顾客的联合分布。 关键词:泊松过程;齐次泊松过程;排队论 1. 前言 泊松分布是概率论中最重要的分布之一,在历史上泊松分布是由法国数学家泊松引人的。近数十年来,泊松分布日益显现了其重要性而将泊松随机变量的概念加以推广就得到了泊松过程的概念。泊松过程是被研究得最早和最简单的一类点过程,他在点过程的理论和应用中占有重要的地位。泊松过程在现实生活的许多应用中是一个相当适合的模型,它在物理学、天文学、生物学、医学、通讯技术、交通运输和管理科学等领域都有成功运用的例子。 2. 泊松过程的概念 定义3.2 :设计数过程{ X(t),t ≥ 0}满足下列条件: (1) X(0) = 0; (2) X(t)是独立增量过程; (3) 在任一长度为t 的区间中,事件A 发生的次数服从参数0t >λ的泊松分布,即对任意是s, t ≥ 0,有 ! )(})()({n t e n s X s t X P n t λλ-==-+, ,1,0=n 则称计数过程{ X(t),t ≥ 0}为具有参数0>λ的泊松过程。 注意,从条件(3)知泊松过程是平稳增量过程且t t X E λ=)]([,由于, t t X E )]([= λ表示单位时间内事件A 发生的平均个数,故称λ为此过程的速率或强度。 从定义3.2中,我们看到,为了判断一个计数过程是泊松过程,必须证明它满足条件(1)、(2)及(3)。条件(1)只是说明事件A 的计数是从t = 0时开始的。条件(2)通常可从我们对过程了解的情况去验证。然而条件(3)的检验是非常困难的。为此,我们给出泊松过程的另一个定义。 定义3.3 :设计数过程{ X(t),t ≥ 0}满足下列条件: (1) X(0) = 0; (2) X(t)是独立平稳增量过程; (3) X(t)满足下列两式: o(h). 2} X(t)-h)P{X(t o(h),h 1} X(t)-h)P{X(t =≥++==+λ

泊松过程与泊松分布的基本知识

泊松过程与泊松分布的基本知识泊松过程是随机过程的一个经典模型,是一种累积随机事件的发生次数的独立增量过程。也就是说,每次事件的发生是相互独立的。那么泊松分布和泊松过程又什么关系呢?可以说泊松分布是描述稀有事件的统计规律,即可以描述一段时间内发生某个次数的概率。而泊松过程呢,就适合刻画“稀有事件流”的概率特性。 比较:泊松分布 泊松过程的主要公式: 其实没多少不一样对不对?不一样的是泊松过程是一个可以查看在时间t内发生次数的概率,这个t是可变的。泊松分布则是给定了时间。 泊松过程的关键在于,它的到达间隔序列Tn,即每两次发生的时间是服从的独立同指数分布的。如果每次发生的间隔时间不服从指数分布,那么这个随机过程就会更一般化,我们成为是更新过程,这也是随机过程的推广。 泊松过程分为齐次泊松过程和非齐次泊松过程,齐次的意思很简单,就是说过程并不依赖于初始时刻,强度函数是一个常数,从上面的公式也看得出来。而非齐次则是变成了,这意味着什么呢?这以为着随着与时间的改变,强度是会改变的,改变服从强度函数,说了这

么久,强度究竟是个什么概念?强度的意思就是泊松过程的该事件发生的频率,或者说快慢,泊松分布中我们知道期望就是,实际含义就是,在一段时间内,发生的次数平均水平是次。 复合泊松过程:泊松过程我们已经知道,用描述一段时间累积发生的次数,但是如果每次发生带来的后果都是不一样的,我们怎么描述这个过程呢?比如,火车站到达的乘客是服从泊松过程的,但是每个乘客携带有不同重量的行李,我们如何刻画在[0,t]时间内行李总重量呢,这个过程就是复合泊松过程。复合泊松过程的均值函数和方差函数一般可以用全期望和全方差公式进行计算,因为简单泊松过程的期望很容易求。 更新过程: 上文已经说到,更新过程作为泊松过程的推广,更具有一般性,那么在讨论更新过程时,我们更多地讨来更新函数,更新函数是更新过程的均值函数m(t)=E[N(t)],怎么理解呢,就是说需要用t时刻的累积计数的期望特性来表达更新过程。有一条定理: 这个定理是可以证明的,Fn(t)是分布函数,就是说:在t时刻,更新函数值就是在这个时刻,n取遍所有值的分布之和。 那么是否可以这样理解,更新过程和泊松过程的区别就是更新间隔序列不同,那么如果已知了更新间隔序列的概率密度函数,就可以求解该过程的更新函数了,详细的推导就不写了。扔结论出来:对间隔序列概率密度函数做拉氏变换得到Lf(s),然后求 Lm(s)=Lf(s)/s(1-Lf(s)),再对Lm(s)进行逆变换,就得到了m(t),这就是更新函数。

泊松分布及其应用研究

泊松分布及其应用研究 Prepared on 22 November 2020

湖南科技大学 信息与电气工程学院 《课程论文》 题目:泊松分布及其应用研究 专业:通信工程 班级: 13级3班 姓名:黄夏妮 学号: 目录 一、摘要 (1) 二、泊松分布的概念 (2) 三、计数过程为广义的泊松过程 (4) 四、泊松分布及泊松分布增量 (5) 五、泊松分布的特征 (5) 六、泊松分布的应用 (6) 七、基于MATLAB的泊松过程仿真 (8) 八、参考文献 (12)

摘要 作为一种常见的离散型随机变量的分布,泊松分布日益显示其重要性,成为概率论中最重要的几个分布之一。服从泊松分布的随机变量是常见的,它常与时间单位的计数过程相联系。 在现实生活中应用更为广泛,如数学建模、管理科学、运筹学及自然科学、概率论等等。并且在某些函数关系起着一种重要作用。例如线性的、指数的、三角函数的等等。同样, 在为观察现象构造确定性模型时, 某些概率分布也经常出现。泊松分布作为大量试验中稀有事件出现的频数的概率分布的数学模型, 它具有很多性质。为此本文讲述了泊松分布的一些性质, 并讨论了这些性质在实际生活中的重要作用。

二、泊松分布的概念: 定义1 设随机变量X 的可能取值为,,2,1,0 且 {}0,,2,1,0,! >===-λλ k e k x k X P k 为常数。 则称X 服从参数为λ的泊松分布,记作X ~ D(λ) 。 定义2 设ε是任意一个随机变量,称 )t (- e t)(it +∞<<∞=Φε是ε的特征函数。 主要结论: 定理1 如果X 是一个具有以λ为参数的泊松分布,则E( X) = λ且D ( X) =λ。 证明 设X 是一随机变量,若 ] X) E( - X [ E{2}存在,则称它为X 的方差,记作D( X) ,即 ] X) E( - X [ E{ X) D(2}=。设X 服从泊松分布D ( X) ,即有: 则()()λλλλλλλλ λ=?=-==- ∞ =--∞ =-∑∑ e e k e k e k X E k k k k 11 0!1! 从而()() () λλλλλλλ λ +=-+-==-∞ =-∞ =--∞ =∑ ∑ ∑2122 2 2 !1!2! e k e k e k k X E k k k k k k 故λλλλ - X) E( - ) X E( X) D(2222=+== 定理2 设随机变量) , ,2 1 n ( x n =服从二项分布,其分布律为 {}n k p p C k x P k n n k n k n n ,,2,1,0,)1( =-==-。 又设0>=λn np 是常数,则{}λλ-∞ →==e k k x P k n n ! lim 。 证明 由λ=n np 得: 显然,当k = 0 时,故λ-n e k} x P{→=。当k ≥1 且k → ∞时,有

泊松过程

泊松过程 一种累计随机事件发生次数的最基本的独立增量过程。例如随着时间增长累计某电话交换台收到的呼唤次数,就构成一个泊松过程。 泊松过程是由法国著名数学家泊松(Poisson, Simeon-Denis)(1781—1840)证明的。 1943年C.帕尔姆在电话业务问题的研究中运用了这一过程,后来Α.Я.辛钦于50年代在服务系统的研究中又进一步发展了它。 Poisson过程(Poisson process,大陆译泊松过程、普阿松过程等,台译卜瓦松过程、 布瓦松过程、布阿松过程、波以松过程、卜氏过程等),是以法国数学家泊松(1781 - 1840) 的名字命名的。泊松过程是随机过程的一种,是以事件的发生时间来定义的。我们说一个 随机过程N(t) 是一个时间齐次的一维泊松过程,如果它满足以下条件: 在两个互斥(不重叠)的区间内所发生的事件的数目是互相独立的随机变量。 在区间内发生的事件的数目的概率分布为: 其中λ是一个正数,是固定的参数,通常称为抵达率(arrival rate)或强度(intensity)。 所以,如果给定在时间区间之中事件发生的数目,则随机变数呈现泊松分布,其参数为。 更一般地来说,一个泊松过程是在每个有界的时间区间或在某个空间(例如:一个欧几里得平面或三维的欧几里得空间)中的每一个有界的区域,赋予一个随机的事件数,使得?在一个时间区间或空间区域内的事件数,和另一个互斥(不重叠)的时间区间或空间区域内的事件数,这两个随机变数是独立的。 ?在每一个时间区间或空间区域内的事件数是一个随机变数,遵循泊松分布。(技术上而言,更精确地来说,每一个具有有限测度的集合,都被赋予一个泊松分布的随机变数。)

泊松过程

作者:BUG生成器 来源:知乎 ·从一个生活的例子中引出泊松过程 愉快的暑假结束了,同学们陆陆续续来到学校。在开学当天的上午,学校教导主任开始站在学校门口计数到达学校的同学的个数,每分钟计数一次(单位时间),可能是开学第一天比较清闲,顺便观察一下同学们的精神面貌。 通常在一个短暂的时间段内,单位时间到达学校的人数的数学期望应该是一致的。这是很容易理解的,毕竟这是一个学生人数众多的学校,在教导主任站在门口的这几个小时内到达学校的人数,相比较学校的总人数是微不足道的,也就是说,这一分钟到达学校人数的期望和下一分钟到达学校的人数的期望是相同的。 同时,对于某一分钟(单位时间),某一个学生在这一分钟到达学校的概率也是相同的,两个同学互不相关,在满足学校到校时间要求的前提下,他们到达学校的时间是自由的。并且假设每个学生在一分钟内到达学校的概率为P。 这个时候就可以定义随机变量了,假设有n个随机变量,它表示

也就是每个学生都有一个独立的状态,可以是1或者是0,这些所有随机变量加起来就是自观察记录以来到达学校的总人数。 可以看出对于一个确定的时刻t,所有随机变量的和——假设是X,它的概率模型就是比较常见的二项分布。 为什么会是二项分布呢,可能用这种所有学生相互独立的描述方法不易直观理解,那么我们可以这样想,在这样一个确定的时刻,依次询问这个学校所有的学生(不管他有没有到校)有没有到校,那么获得“这个学生已经到校”这个信息的概率是p,“这个学生还

没有到校”的概率是1-p。拿出来一个学生询问就好比做了一次实验,这个实验的结果(这个结果是从开始到时刻t的整个过程决定的,注意理解)为1就计数+1,为0就不计数。 那么现在就可以根据二项分布的概率模型写出随机变量X的分布函数

泊松分布的应用

泊松分布的应用

泊松分布的应用 摘要 泊松分布是指一个系统在运行中超负载造成的失效次数的分布形式。它是高等数学里的一个概念,属于概率论的范畴,是法国数学家泊松在推广伯努利形式下的大数定律时,研究得出的一种概率分布,因而命名为泊松分布。 作为一种常见的离散型随机变量的分布,泊松分布日益显示其重要性,成为概率论中最重要的几个分布之一。服从泊松分布的随机变量是常见的,它常与时间单位的计数过程相联系。 在现实生活中应用更为广泛,如数学建模、管理科学、运筹学及自然科学、概率论等等。并且在某些函数关系起着一种重要作用。例如线性的、指数的、三角函数的等等。本文对泊松分布产生的过程、定义和性质做了简单的介绍,研究了泊松分布的一些性质, 并讨论了这些性质在实际生活中的重要作用。 关键词:泊松过程;泊松分布;定义;定理;应用;

一、 计数过程为广义的泊松过程 1.计数过程 设)} 0, [ T t , t)( {N X T ∞=∈=为一随机过程, 如果 t )( N 是取非负整数值的随机变量,且满足s < t 时, t)( s) ( N ≤,则称)} 0, [ T t , t)( {N X T ∞=∈=为计数过程。 将增量 t t 0 , t), t ( N ) t ( N - t)( N 000<≤?=,它表示时间间隔 t), t [ 0内出现的质点数。“在 t), t [ 0内出现k 个质点”,即k} t), t ( {N 0=是一随机事件,其概率记为 2 0,1, k , k} t), t ( P{N t), t ( P 00K ===总之,对某种随机事件的来到数都可以得到一个计数过程,而同一时刻只能至多发生一个来到的就是简单计数过程。 2.泊松过程 计数过程0} t , t)( {N ∈称为强度为λ的泊松过程,如果满足条件: (1)在不相重叠的区间上的增量具有独立性; (2)0 (0) N =; (3)对于充分小的, t)( O t 1} t) t t,( P{N t) t t,( P 1?+?==?+=?+λ其中常数 0>λ,称为过程)(t N 的强度。 (4)对于充分小的Δt (){}()t j t t t N P t t t P j j j ?==?+=?+∑∑∞ =∞=ο2 2 ,),( 亦即对于充分小的t ?,在()t t t ?+,或2个以上质点的概率与出现一个质点的概率相对可以忽略不计。了解泊松过程,就很容易去了解泊松分布的相关性质,其实泊松分布就是在泊松过程当中每单位的时间间隔内出现质点数目的计数。 二、 泊松分布的概念: 泊松分布常用于描述单位时间、单位平面或单位空间中罕见“质点”总数的随机分布规律。 定义1 设随机变量X 的可能取值为,,2,1,0 且 {}0,,2,1,0,! >===-λλ k e k x k X P k 为常数。

泊松过程

泊松过程 泊松过程是随机过程的一个经典模型,是一种累积随机事件的发生次数的独立增量过程。也就是说,每次事件的发生是相互独立的。那么泊松分布和泊松过程又什么关系呢?可以说泊松分布是描述稀有事件的统计规律,即可以描述一段时间内发生某个次数的概率。而泊松过程呢,就适合刻画“稀有事件流”的概率特性。 比较:泊松分布 泊松过程的主要公式: 其实没多少不一样对不对?不一样的是泊松过程是一个可以查看在时间t内发生次数的概率,这个t是可变的。泊松分布则是给定了时间。 泊松过程的关键在于,它的到达间隔序列Tn,即每两次发生的时间是服从的独立同指数分布的。如果每次发生的间隔时间不服从指数分布,那么这个随机过程就会更一般化,我们成为是更新过程,这也是随机过程的推广。

泊松过程分为齐次泊松过程和非齐次泊松过程,齐次的意思很简单,就是说过程并不依赖于初始时刻,强度函数是一个常数,从上面的公式也看得出来。而非齐次则是变成了,这意味着什么呢?这以为着随着与时间的改变,强度是会改变的,改变服从强度函数,说了这么久,强度究竟是个什么概念?强度的意思就是泊松过程的该事件发生的 频率,或者说快慢,泊松分布中我们知道期望就是,实际含义就是,在一段时间内,发生的次数平均水平是次。 复合泊松过程:泊松过程我们已经知道,用描述一段时间累积发生的次数,但是如果每次发生带来的后果都是不一样的,我们怎么描述这个过程呢?比如,火车站到达的乘客是服从泊松过程的,但是每个乘客携带有不同重量的行李,我们如何刻画在[0,t]时间内行李总重量呢,这个过程就是复合泊松过程。复合泊松过程的均值函数和方差函数一般可以用全期望和全方差公式进行计算,因为简单泊松过程的期望很容易求。 更新过程: 上文已经说到,更新过程作为泊松过程的推广,更具有一般性,那么在讨论更新过程时,我们更多地讨来更新函数,更新函数是更新过程的均值函数m(t)=E[N(t)],怎么理解呢,就是说需要用t时刻的累积计数的期望特性来表达更新过程。有一条定理:

泊松过程

第二讲 泊松过程 1.随机过程和有限维分布族 现实世界中的随机过程例子: 液体中,花粉的不规则运动:布朗运动;股市的股票价格; 到某个时刻的电话呼叫次数; 到某个时刻服务器到达的数据流数量,等。 特征:都涉及无限多个随机变量,且依赖于时间。 定义(随机过程) 设有指标集T ,对T t ∈都有随机变量)(t X 与之对应,则称随机变量族 }),({T t t X ∈为随机过程。 注 一个随机过程是就是一个二元函数E T t X →?Ωω:),(。固定ω,即考虑某个事件相 应的随机变量的值,得到函数R T t X →:),(ω称为样本函数或轨道或一个实现。映射的值域空间E 称为状态空间。 例 随机游动(离散时间,离散状态) 质点在直线上每隔单位时间位置就发生变化,分别以概率p 或概率p -1向正或负向移动一个单位。如果以n S 记时刻n 质点所处的位置,那么就得到随机过程{,0}n S n ≥。这里指标集},1,0{ =T ,状态空间},1,0,1,{ -=E 。 如果记n X 为时刻n ,质点的移动,那么{,1}n X n ≥也是随机过程。 两个过程的区别:{}n S 不独立;{}n X 独立; 两个过程的关系:01 n n k k S S X ==+ ∑ 习题 计算n ES 和n DS (设00S =)。 提示 利用∑== n k k n X S 1 ,其中k X 是时刻k 的移动方式。 习题 设从原点出发,则()/2()/2()/2 ,2()0, 21n k n k n k n n C q p n k i P S k n k i +-+?+===?+=-?。 例 服务器到达的数据流(连续时间,离散状态) 在],0[t 内,到达服务器的数据包个数记为)(t N ,那么}0),({≥t t N 也是个随机过程, 其指标集}{+ ∈=R t T ,状态空间},1,0{ =E 。

概率统计论 浅谈泊松分布

浅谈泊松分布 班级:XXX 姓名:XXX 学号:XXX

浅谈泊松分布当一个随机事件,以固定的平均瞬时速率λ

二项概率的泊松逼近 如果∞→n ,0→p 使得λ=np 保持为正常数,则 λλ--→-e k p p C k k n k k n !)1( 对k = 0,1,2,…一致地成立。

2.1泊松分布使用范围 泊松分布主要用于描述在单位时间(空间)中稀有事件的发生数. 即需满足以下四个条件: 1. 给定区域内的特定事件产生的次数,可以是根据时间,长度,面积来定义; 2. 各段相等区域内的特定事件产生的概率是一样的; 3. 各区域内,事件发生的概率是相互独立的;

4. 当给定区域变得非常小时,两次以上事件发生的概率趋向于0。 2.2泊松分布的性质 1. 泊松分布的均数与方差相等,即m =2σ 2.泊松分布的可加性 如果1x ,2x ,3x …k x 相互独立,且它们分别服从以1λ,2λ,3λ…k λ为参数的泊松分布,则k X X X X T ++++= 321也服从泊松分布,其参数为k λλλλ++++ 321。 3.泊松分布的应用 )0(P 是未产生二体的菌的存在概率,实际上其值的5%与采用2/05.0m J 照射时的大肠杆菌uvrA -株,recA -株(除去既不能修复又不能重组修复的二重突变)的生存率是一致的。由于该菌株每个基因

组有一个二体就是致死量,因此)1(P ,)2(P ……就意味着全部死亡的概率。 3.2泊松分布在医学统计上的应用 在遗传学上,计算遗传图距的基本方法是建立在重组率基础上的,根据重组率的大小作出有关基因间的距离,绘制线性基因图;可是当研究的两个基因间的距离相对较远,在它们之间可能发生双交换、三交换、四交换甚至更高数目的交换,而形成的配子总有一半是非重组型的。若简单的把重组率看作交换率,显然交换率降低了,图距也随之缩小。这里可以用泊松分布原理来描述减数分裂过程中染色体上某区段交换的分布。在图距计算中,x 表示交换数,m 表示对总样本来说每进行一次减数分裂两基因 间的平均交换数,而基因间不发生交换的概率为m m e e m P --==! 0)0(0 ,基因间至少发生一次交换的概率为m e P P --=-=1)0(1。由此可计算两基因间的交换率和重组率。进而可更科学的作出遗传图。 3.3 泊松分布在交通运输上的应用 道路是行驶各种车辆的通道。为了给编制交通建设规划提供可靠的依据和保证道路上的车能安全而有效地通行, 道路工作者必须对道路上的车流进行实地调查和统计分析以便掌握车流的变化规律。数理统计方法是对交通流分布进行研究的有效而实际可行的方法。通常把在单位时间内通过道路上某一地点的车辆叫做交通流。对于时间间隔极短,并非是高密度的交通流的分布状态, 它常常是服从“概率论” 中的“ 泊松分布” 规律的。 如用简单例子表示,取通过某一地点车辆的时间作为时间数轴, 在数轴上划出给定时间间隔和该时间间隔内通过的车辆数目,譬如, 以20秒的时间间隔的数轴为例, 在20~0秒内,一辆车也没有通过, 在40~20秒间隔内,有二辆车通过, 在60~40秒间隔内, 有一辆车通过, 等等。这样在实地进行大量观测就可以的到某一时间间隔内的随机来车数目和该时间间隔内出现该车辆数的次数, 从而按泊松分布公式求算在给定时间间隔内在某一地点通过γ辆车的概率)(γP 。 参考文献 1. 戴维 M. 莱文等.《以EXCEL 为决策工具的商务统计》.机械工业出版社,2009 2.庄军、林奇英《泊松分布在生物学中的应用》.激光生物学报.2007年第16卷第5期. 3.薛珊荣 《“泊松分布”在交通工程中的应用》.湖南大学学报.1995年第8卷第2期.

泊松过程

一个基本的独立增量过程,用于累积随机事件的发生时间。例如,随着时间的推移累积电话交换机接收的呼叫数量就构成了泊松过程。 法国著名数学家泊松(1781-1840)证明了泊松过程。1943年,C。Pahlm将这一过程应用到电话服务的研究中,后来又应用于α。я。1950年代,辛勤在服务系统研究中进一步发展了它。法国数学家Poisson于1781年6月21日出生于法国卢瓦尔河,于1840年4月25日去世,死于法国苏富比镇。 1798年,他进入巴黎综合科学与工程学院深造。毕业后,他以出色的研究论文被任命为讲师。由p.-s赞赏。拉普拉斯和j.l.拉格朗日。1800年毕业后,他留校任教,1802年成为副教授,并接替了J.-B.-J.傅里叶于1806年担任教授。1808年,他是法国经度局的天文学家,1809年,他是巴黎科学研究所的力学教授。1812年,他当选为巴黎科学院院士。 泊松的科学生涯始于对微分方程的研究及其在摆运动和声学理论中的应用。他的工作特征是运用数学方法研究各种机械和物理问题,并获得数学发现。他为积分理论,行星运动理论,热物理学,弹性理论,电磁理论,势能理论和概率论做出了重要贡献。 对于泊松过程,通常认为每个样本函数都是一个左跳(或右跳)连续

阶跃函数,其跳跃为1。可以证明具有此属性的样本函数的随机连续独立增量过程必须是泊松过程,因此,泊松过程是描述随机事件累积发生时间的基本数学模型之一。凭直觉,只要随机事件在不相交的时间间隔内独立发生并且在足够小的间隔内仅发生一次,则它们的累积时间就是一个泊松过程。这些条件在许多应用中都可以满足。例如,某个系统在时间段[0,t]中的故障数和在真空管加热t秒钟后阴极发射的电子总数可以被认为是泊松过程。 描述随机事件的累积发生时间的过程通常称为计数过程(请参阅点过程)。还可以通过依次跳转的时间{Tn,n≥1}定义简单的局部计数过程{X(t),t≥0},即T0 = 0,Tn = inf {t:X(t)≥n},n≥1,并且当TN

泊松流、指数分布、爱尔朗分布

三种常用的理论分布: (1) 泊松流与泊松分布 {N (t ),t>0}是计数过程,有 ,2,1,0,! )()(==-n e n t t P t n n λλ 且E[N (t )]=λt ,Var[N(t)]=λt. (2) 指数分布 当输入过程是一个泊松过程{N(t),t>0}时,设T 是两位顾客相继到达的时间间隔,有 F T (t )=P {T ≤t }=1-P {T >t } =1-P 0(t )=1-t e λ-, t>0, F T (t )=0, t ≤0。 从 而 ?? ?≤>='=-.0, 00, )()(t t e t F t f t T T λλ(λ> 0), 且 E (T )=1/λ,

λ—单位时间到达的平均顾客数; 1/λ— 相继到达的平均间隔时间。 定理.输入过程{N(t), t>0}是参数为λ的泊松过程的充分必要条件是相继到达的时间间隔:T 1,T 2,…T n ,…相互独立,同服从参数为指数分布。 为一位顾客服务的时间V 一般也服从指数分布,有 ?? ?<>-=-.0,0,0, 1)(t t e t F t V μ, ???<>-=-.0, 0,0, )(t t e t f t V μμ 其中 μ— 平均服务率; E (V )= 1/μ—一位顾客的平均服务时 间。 ρ=λ/μ—服务强度,刻画服务效率和服务机构利用程度的重要指标。 (3)爱尔朗(Erlang )分布 设V 1,V 2,…,V k 相互独立,V i ~E(0 ,k μ),则,T=V 1+V 2+…+V k 的概率密度为

?? ???<>-=-. 0,0, 0,)! 1()()(1t t k kt k t f k k μμ 称T 服从k 阶爱尔朗分布。 例:串列的k 个服务台,每个服务台的服务时间相互独立,服从相同的指数分布,则k 个服务台的总服务时间服从k 阶爱尔朗分布。 有:1)E (T )=μμ1 1)(1=?=∑=k k V E k i i ; 2)k=1时,T ~E (0,μ); 3)k ≥30时,T 近似服从正态分布; 4).01 )(2lim lim ==∞→∞→μk T Var t k (化为确定型分布)。 (注:文档可能无法思考全面,请浏览后下载,供参考。可复制、编制,期待你的好评与关注)

Poisson过程教学目的了解计数过程的概念掌握泊松

第三章Poisson过程 教学目的:(1)了解计数过程的概念; (2)掌握泊松过程两种定义的等价性; (3)掌握泊松过程的到达时刻的分布、等待时间的分布和来到时刻的条件分布; (4)了解泊松过程的三种推广。 教学重点:(1)泊松过程两种定义的等价性; (2)泊松过程的到达时刻的分布、等待时间的分布和来到时刻的条件分布; (3)泊松过程的三种推广。 教学难点:(1)泊松过程两种定义的等价性的证明; (2)泊松过程来到时刻的条件分布; (3)泊松过程的推广。 3.1 Poisson过程 教学目的:掌握Poisson过程的定义及等价定义;会进行Poisson过程相关的概率的计算。 教学重点:Poisson过程的定义与其等价定义等价性的证明;Poisson过程相关的概率的计算。 教学难点:Poisson过程的定义与其等价定义等价性的证明。 Poisson过程是一类重要的计数过程,先给出计数过程的定义 定义3.1:{(),0} 表示从到时刻 N t t N t t≥ 随机过程称为计数过程,如果()0特定事件发生的次数,它具备以下两个特点: 某一A N t取值为整数; (1)() 内事件发生的次数。 (2)()()()-()(,] 时,且表示时间A s t N s N t N t N s s t <≤ 计数过程有着广泛的应用,如:某商店一段时间内购物的顾客数;某段时 间内电话转换台呼叫的次数;加油站一段时间内等候加油的人数等。 如果在不相交的时间区间中发生的事件个数是独立的,则称该计数过程

有独立增量。即当123,t t t <<2132()-()()-()X t X t X t X t 有与是独立的。 若在任一时间区间中的事件个数的分布只依赖于,时间区间的长度则计数 过程有平稳增量。即对一切12120(,]t t s t s t s <>++及,在中事件个数 21()()N t s N t s +-+12(,]t t 与区间中事件的个数21()()N t N t -有相同的分布。 Poission 过程是计数过程,而且是一类最重要、应用广泛的计数过程,它最早于1837年由法国数学家Poission 引入。 .独立增量和平稳增量是某些级数过程的主要性质Poisson 过程是具有独立 增量.和平稳增量的计数过程 定义3.2:{(),0}(0)N t t λλ≥>计数过程称为参数为Poisson 过程,如果 (1)(0)0N =; (2)过程具有独立增量; (3),0,s t ≥对任意的 (()-())P N t s N s n +=! n t t e n λλ-=() 例3.1:3/h 设顾客到达商店依次人的平均速度到达,Poisson 且服从分布, 9:00,已知商店上午开门试求 (1)9:0010:005从到这一小时内最多有名顾客的概率? (2)9:3011:30到时仅到一位顾客,而到时总计已达到5位顾客的概率? (解:见板书。) 注:(1)Poisson 过程具有平稳增量。 (2)随机变量()N t 服从参数为t λ的Poisson 分布,故[()]E N t t λ=(显然,可以认为λ是单位时间内事件发生的平均次数,称λ是Poisson 过程的强度或速率或发生率。)

泊松流、指数分布、爱尔朗分布

三种常用的理论分布: (1) 泊松流与泊松分布 {N (t ),t>0}是计数过程,有 ,2,1,0,!) ()(==-n e n t t P t n n λλ 且E[N (t )]=λt ,V ar[N(t)]=λt. (2) 指数分布 当输入过程是一个泊松过程{N(t),t>0}时,设T 是两位顾客相继到达的时间间隔,有 F T (t )=P {T ≤t }=1-P {T >t } =1-P 0(t )=1-t e λ-, t>0, F T (t )=0, t ≤0。 从而 ???≤>='=-.0, 00,)()(t t e t F t f t T T λλ(λ>0), 且 E (T )=1/λ, λ—单位时间到达的平均顾客数;

1/λ— 相继到达的平均间隔时间。 定理.输入过程{N(t), t>0}是参数为λ的泊松过程的充分必要条件是相继到达的时间间隔:T 1,T 2,…T n ,…相互独立,同服从参数为指数分布。 为一位顾客服务的时间V 一般也服从指数分布,有 ? ??<>-=-.0,0,0,1)(t t e t F t V μ, ???<>-=-.0,0,0,)(t t e t f t V μμ 其中 μ— 平均服务率; E (V )= 1/μ—一位顾客的平均服务时间。 ρ=λ/μ—服务强度,刻画服务效率和服务机构利用程度的重要指标。 (3)爱尔朗(Erlang )分布 设V 1,V 2,…,V k 相互独立,V i ~E(0 ,k μ),则,T=V 1+V 2+…+V k 的概率密度为

?????<>-=-. 0,0,0,)!1()()(1 t t k kt k t f k k μμ 称T 服从k 阶爱尔朗分布。 例:串列的k 个服务台,每个服务台的服务时间相互独立,服从相同的指数分布,则k 个服务台的总服务时间服从k 阶爱尔朗分布。 有:1)E (T )=μμ11)(1=?=∑=k k V E k i i ; 2)k=1时,T ~E (0,μ); 3)k ≥30时,T 近似服从正态分布; 4).01)(2lim lim ==∞→∞→μ k T Var t k (化为确定型分布)。

应用随机过程实验2-泊松过程

应用随机过程实验2 —泊松过程 一.准备知识 1.泊松过程 2.非齐次泊松过程 3. 复合泊松过程 二.作业 1. 设()1X t 和()2X t 分别是参数为1λ和2λ的相互独立的泊松过程, (1)模拟()1X t 和()2X t ,并画图; (2)生成随机过程()()()12Y t =X +X t t ,并画图; (3)计算(){}Y t ,t 0≥ 的平均到达率与+1λ2λ的相对误差。 2. 设到达某商店的顾客组成强度为λ的泊松过程,每个顾客购买商品的概率为p ,且与其他顾客是否购买商品无关,假设每位购买商品的顾客的花费i X 独立同分布,且服从正态分布2X (,)i N μσ:,1,2,3,i =L ,令()Y t 是t 时刻购买商品的顾客数,()Z t 是t 时刻商品的营业额,0t ≥ , (1)试模拟随机过程(){},0Y t t ≥,并画图,计算随机过程(){},0Y t t ≥ 的均值函数与pt λ的相对误差; (2)试模拟随机过程(){},0Z t t ≥,并画图,计算随机过程(){}t ,t 0Z ≥ 的均值函数与pt λμ的相对误差。

3. 某路公共汽车从早晨5时到晚上9时有车发出,乘客流量如下:5时按平均乘客为200人/小时计算;5时至8时乘客平均到达率线性增加,8时到达率为1400人/小时;8时至18时保持平均到达率不变;18时到21时到达率线性下降,到21时为200人/小时,假定乘客数在不重叠的区间内是相互独立的,令()X t 是t 时刻到达公共汽车的总人数, (1)计算早晨5时到晚上9时的乘客到达率,并画图; (2)模拟从早晨5时到晚上9时的乘客到达过程(){}X t ,t 0≥。

随机过程期末复习题

随机过程期末复习题库(2015) 一、填空题 1.对于具有常数均值的二阶矩过程,为宽平稳过程当且仅当二元函 数只与有关, 而与和无关。 2.对于具有常数均值的二阶矩过程,为宽平稳过程当且仅当二元函 数只与有关, 而与和无关。 3.设随机变量服从泊松分布,且,则 2 . 4.已知随机变量的二阶矩存在,且的矩母函数为,则. 5.已知随机变量的二阶矩存在,且的特征函数为,则 . 6.设是平稳序列,其协方差函数为,请给出的均值具有遍 历性的一个充分条件:. 7.设是平稳过程,其协方差函数为,请给出的均值具有遍历性 的一个充分条件:. 8.已知平稳过程的均值,协方差函数为,则该过程的自相关函数 . 9.设为两个随机事件,,则 0.6 . 10.设为二随机变量,,则 2 . 11.已知随机变量的矩母函数为,则服从的分布是参数为的 泊松分布. 12.是二维正态分布,即,. 13.设随机变量的数学期望均存在,则. 14.为随机事件,随机变量的数学期望存在,则 . 15.在强度为的泊松过程中,相继事件发生的间隔时间是相互独立的随机变量,且服从均 值为的同一指数分布. 16.设是强度为的泊松过程,表示第个事件发生的时刻,则的分布函 数为. 17.设是强度为的泊松过程,表示第个事件发生的时刻,则. 18.设是强度为的泊松过程,表示第个事件发生的时刻,则

. 解由定理3.2.3,在已知的条件下,事件发生的个时刻的条件联合分布函数与个在区间上相互独立同均匀分布的随机变量的顺序统计量的联合分布函数相同.故对,有 从而, 19.是强度为的泊松过程,表示第个事件与第个事件发 生的时间间隔.则. 解题思路:注意到与独立,且同服从参数为的指数分布即得. 20.设,是速率为的泊松过程. 则对于, . 21.设,是速率为的泊松过程. 对于, . 解对于,有 增量与独立 22.是强度为的泊松过程,表示第个事件与第个事件发 生的时间间隔.则对,. 解题思路:注意到与独立,且同服从参数为的指数分布即得. 23.设是强度为的泊松过程,表示第个事件与第个事件发 生的时间间隔,则. 24.设是强度为的泊松过程,表示第个事件发生的时刻,则 . 25.设是强度为的泊松过程,表示第个事件发生的时刻,则服从参 数为和的分布. 26.非齐次泊松过程,其强度函数为,则 . 解对于,有

随机过程第三章 泊松过程

第三章 泊松过程 3.1 泊松过程 定义3.1 计数过程:随机过程{}(),0N t t ≥称为一个计数过程,若()N t 表示从0到时 刻t 为止某一事件A 发生的总数,它是一个状态取非负整数、时间连续的随机过程。计数过程满足以下条件: (1)()0N t ≥,且取值非负整数; (2)若s t <,则()()N s N t <; (3)对于s t <,()()N t N s -表示时间区间(,]s t 内事件A 发生的次数。 如果在不相交的时间区间中发生的事件个数是独立的,则称计数过程有独立增量过程。如时刻t 已发生的事件A 的次数即()N t ,必须独立于时刻t 和t s +之间所发生的事件数即 (()())N t s N t +-。 如果在任一时间区间内发生的事件A 的次数的分布只依赖于时间区间的长度,则称计数过程为平稳增量过程。即对一切12t t <及0s >,在区间12(,]t s t s ++中事件A 的发生次数即21(()())N t s N t s +-+与区间12(,]t t 中事件A 的发生次数即21(()())N t N t -具有相同的分布,则过程有平稳增量。 泊松过程是计数过程的最重要类型之一,其定义如下。 定义3.2 泊松过程:计数过程{}(),0N t t ≥称为参数为λ(0λ>)的泊松过程,如果满 足: (1)()0N t =; (2)过程有独立增量; (3)在任一长度为t 的区间中事件的个数服从均值为t λ的泊松分布。即对一切s ,0t ≥, {}()(),0,1,2,! n t t P N t s N s n e n n λλ-+-=== 从条件(3)可知泊松过程有平稳增量且[()]E N t t λ=,于是可认为λ是单位时间内发生事件A 的平均次数,一般称λ是泊松过程的强度或速率。 为确定一个任意的计数过程是泊松过程,必须证明它满足上述三个条件。其中,条件

相关文档