文档视界 最新最全的文档下载
当前位置:文档视界 › 求曲线、曲面积分的方法与技巧概要

求曲线、曲面积分的方法与技巧概要

求曲线、曲面积分的方法与技巧概要
求曲线、曲面积分的方法与技巧概要

求曲线、曲面积分的方法与技巧

一.曲线积分的计算方法与技巧

计算曲线积分一般采用的方法有:利用变量参数化将曲线积分转化为求定积分、利用格林公式将曲线积分转化为二重积分、利用斯托克斯公式将空间曲线积分转化为曲面积分、利用积分与路径无关的条件通过改变积分路径进行计算、利用全微分公式通过求原函数进行计算等方法。

例一.计算曲线积分其中是圆上从原点到的一段弧。

本题以下采用多种方法进行计算。

解1:的方程为由由

分析:解1是利用变量参数化将所求曲线积分转化为求定积分进行计算的,选用的参变量为因所求的积分为第二类曲线积分,曲线是有方向的,在这种解法中应注意参变量积分限的选定,应选用对应曲线起点的参数的起始值作为定积分的下限。

解2:在弧上取点,

的方程为由由

的方程为由由

分析:解2是选用参变量为利用变量参数化直接计算所求曲线积分的,在方法类型上与解1相同。不同的是以为参数时,路径不能用一个方程表示,因此原曲线积分需分成两部分进行计算,在每一部分的计算中都需选用在该部分中参数的起始值作为定积分的下限。

解3:的参数方程为由

解4:的极坐标方程为因此参数方程为

由由

分析:解3和解4仍然是通过采用变量参数化直接计算的。可见一条曲线的参数方程不是唯一的,采用不同的参数,转化所得的定积分是不同的,但都需用对应曲线起点的参数的起始值作为定积分的下限。

解5:添加辅助线段,利用格林公式求解。因

于是

故得

分析:在利用格林公式将所求曲线积分转化为二重积分计算时,当所求曲线积分的路径非封闭曲线时,需添加辅助曲线,采用“补路封闭法”进行计算再减去补路上的积分,但必须在

补路后的封闭曲线所围的区域内有一阶连续偏导数。是的正向边界曲线。解5

中添加了辅助线段使曲线为正向封闭曲线。

解6:由于于是此积分与路径无关,故

分析:由于在闭区域上应具有一阶连续偏导数,且在内

因此所求积分只与积分路径的起点和终点有关,因此可改变在上的积

分为在上积分,注意点对应的起点。一般选用与坐标轴平行的折线段作为新的积分路径,可使原积分得到简化。

解7:由全微分公式

分析:此解根据被积表达式的特征,用凑全微分法直接求出。

例二.计算曲线积分其中是曲线

从轴正向往轴负向看的方向是顺时针的。

解1:设表示平面上以曲线为边界的曲面,其中的正侧与的正向一致,即是下侧曲面,在面上的投影区域:

由斯托克斯公式

解2:利用两类曲面积分间的联系,所求曲线积分了可用斯托克斯公式的另一形式求得出

而平面:的法向量向下,故取于是上式

分析:以上解1和解2都是利用斯托克斯公式将空间曲线积分转化

为曲面积分计算的。在利用斯托克斯公式

计算时首先应验证函数在曲面连同边界上具有一阶连续的偏导数,且的正向与的侧符合右手规则。在计算空间曲线积分时,此法也是常用的。

解3:将积分曲线用参数方程表示,将此曲线积分化为定积分。设

则从

例三.计算其中为曲线

解1:由于当积分变量轮换位置时,曲线方程不变,而且第一类曲线积分与弧的方向无关,故有

由曲线是球面上的大圆周曲线,其长为故

由于关于原点对称,由被积函数为奇函数,得于是

解2:利用在上,,

原式

再由对称性可得(同解1),于是

上式

分析:以上解1解2利用对称性,简化了计算。在第一类曲线积分的计算中,当积分变量在曲线方程中具有轮换对称性(即变量轮换位置,曲线方程不变)时,采用此法进行计算常常是有效的。

例四.求其中为椭圆曲线上在上半平面内从的弧。

解:添加辅助线为的顺时针方向的上半圆周以及有向线段,其中是足够小的正数,使曲线包含在椭圆曲线

内。由于

由格林公式,有

设有

再由于是

分析:利用格林公式求解第二类曲线积分往往是有效的,但必须要考虑被积函数和所考虑的区域是不是满足格林公式的条件。由于本题中在点附近

无定义,于是采用在椭圆内部附近挖去一个小圆,使被积函数在相应的区域上满足格林公式条件。这种采用挖去一个小圆的方法是常用的,当然在内部挖去一个小椭圆也是可行的。同时在用格林公式时,也必须注意边界曲线取正向。

例五.求八分之一的球面的边界曲线的重心,设曲线的密度

解:设边界曲线在三个坐标面内的弧段分别为则的质量为

设边界曲线的重心为,则

由对称性可知

分析:这是一个第一类曲线积分的应用题。在计算上要注意将曲线分成三个部分:

另一方面由曲线关于坐标系的对称性,利用可

简化计算。

二.曲面积分的计算方法与技巧

计算曲面积分一般采用的方法有:利用“一投,二代,三换”的法则,将第一类曲面积分转化为求二重积分、利用“一投,二代,三定号”的法则将第二类曲面积分转化为求二重积分,利用高斯公式将闭曲面上的积分转化为该曲面所围区域上的三重积分等。

例六.计算曲面积分其中为锥面在柱体

内的部分。

解:在平面上的投影区域为,曲面的方程为

因此

对区域作极坐标变换则该变换将区域变成坐标系中的区域

因此

分析:以上解是按“一投,二代,三换”的法则,将所给的第一类曲面积分化为二重积分计算的。“一投”是指将积分曲面投向使投影面积不为零的坐标面。“二代”是指将的方程先化为投影面上两个变量的显函数,再将这显函数代入被积表达式。“三换”是指将换成投影面上用直角坐标系中面积元素

表示的曲面面积元素,即或

或上解中的投影区域在

平面上,因此用代换由于投影区域是圆域,故变换成极坐标计算。

例七.设半径为的球面的球心在定球面

上,问为何值时,球面在定球面内部的那部分的面积最大?

解:不妨设的球心为,那么的方程为它与定球面的交线为即

设含在定球面内部的上那部分球面在面上的投影区域为,那么

且这部分球面的方程为

则的面积为

以下只需求函数在上的最大值。

由令得唯一驻点且由问题的实际意义知在处取得最大值。即时,的面积最大,为

分析:本题是第一类曲面积分的应用题,在计算中关键是利用了球面的对称性,和确定了含在定球面内部的上那部分球面在面上的投影区域。在此基础上,按上题分析中的“一投,二代,三换”的法则即可解得结果。

例八.计算曲面积分其中为有向曲面

其法向量与轴正向的夹角为锐角。

解1:设分别表示在平面,平面上的投影区域,则,

其中

令,

所以

分析:计算第二类曲面积分,若是组合型,常按“一投,二代,三定号”法则将各单一型化为二重积分这里的“一投”是指将积分曲面投向单一型中已指定的坐标面。“二代”是指将的方程先化为投影面上两个变量的显函数,再将这显函数代入被积表达式。“三定号”是指依曲面的定侧向量,决定二重积分前的

“+”,“-”符号,当的定侧向量指向坐标面的上(右,前)方时,二重积分前面取“+”,反之取“-”。

解2:利用化组合型为单一型.

因的法向量与轴正向的夹角为锐角,取故有

于是

原式

因为所以

上式

分析:计算第二类曲面积分,若是组合型,也可利用公式

,先化组合型为统一的单一型,再按“一投,二代,三定号”法则将单一型化为为二重积分求得。

解3:以表示法向量指向轴负向的有向平面,为在

平面上的投影区域,则

设表示由和所围成的空间区域,则由高斯公式得

因此

分析:利用高斯公式,可将曲面积分化为三重积分求得。但必需满足在闭区域上有一阶连续的偏导数,是边界曲面的外侧。本题中的曲面不是封闭曲面,故添加了,使

为封闭曲面,并使的侧符合高斯公式对边界曲面的要求。

例九:计算曲面积分其中是由曲线绕轴旋转一周而成的曲面,其法向量与轴正向的夹角恒大于

解:设表示上与轴正向同侧的曲面,由和所围立体记为由高斯公式得

因此

由于在面上的投影区域为注意到在面,面上的投影不构成区域,且在上从而

分析:是旋转曲面且指向外侧,在上补上曲面

指向与轴正向相同,那么由高斯公式就可将原式化成三重积分和上的曲面积分进行计算。

例十.设空间区域由曲面与平面围成,其中为正常数。记表面的外侧为的体积为证明

证明:设则

由高斯公式知

由于则因此

分析:由于求证的是给定的曲面积分等于某个区域的体积值,而高斯公式给出了曲面积分与该曲面包含的区域上的某个三重积分间的关系,考虑到体积值可用相应的三重积分表示,故选用高斯公式进行证明。

曲线积分和曲面积分

定积分、二重积分、三重积分、曲线和曲面积分统称为黎曼积分,是高等数学研究的热点。定义了定积分、二重积分、三重积分、曲线积分和曲面积分的划分、逼近、求和、极值等概念。最后,将它们简化为特定结构和公式的限制。定义可以用统一的形式给出: 从上述积分的概念形式和计算方法来看,定积分的积分区域是线性的,二重积分的区域是平坦的,三重积分的区域是主体。上述三种积分的概念、性质和计算方法是相似的,在逼近过程中,得到的点是积分曲线或积分曲面上满足曲线或曲面方程的点。因此,曲线和曲面积分转化为定积分或二重积分的方法可以用来计算曲线和曲面积分。 曲面积分的形式如下: \begin{equation*}\int{S}\stackrel→{F}·d\overArrowRow{a}\end{equation*} 这意味着在向量场中,我们需要对向量场中的曲面s进行积分,D/stacklel→{a}表示曲面上任何一点垂直于Δs方向的方向向量(Δs代表微分曲面上的任何点),即它只代表一个方向。二者之间的数学关系是点乘,点乘的结果是矢量在垂直于Δs方向(即右箭头

{a})上任何一点的分量向量。最后,利用{f}·D{a}对整个曲面进行积分,即不断增加曲面上每个点的点乘结果。求某向量场中曲面s上垂直于Δs方向的所有子向量之和。 换句话说,曲面积分表示向量场{f}与曲面s相交的程度,因此,它也被生动地称为通量。 在这里,我们可以说明为什么麦克斯韦方程组的积分形式的二重积分也被称为电通量和磁通量。 根据点乘的几何定义,由于{f}与{a}D/stacklel→{a}之间存在点积 \超右箭头{a}·\overarrowRow{b}=|\overarrow{a}| | \\ overArrowRow{b}| cos\theta\qquad(0≤\theta≤\pi) 如果stacklel→{f}与s平行,则所有向量的方向垂直于{overarrowRow}的{a},则cos <theta=cos(<pi/2)=0,其中点积为0,表面积为0。

格林公式及其在曲线积分求解中的应用

南昌工程学院 《数分选讲》课程设计题目格林公式及其在曲线积分求解中的应用 课程名称数分选讲 系院理学院 专业信息与计算科学 班级2012级1班 学生姓名魏志辉 学号2012101316 指导教师禹海雄 设计起止时间:2015年6月11日至2015年6月15日

什么是曲线积分?? 1.设L为xOy平面上的一条光滑的简单曲线弧,f(x,y)在L上有界,在L上任意插 入一点列M1,M2,M3…,Mn 把L 分成n个小弧段ΔLi的长度为ds,又Mi(x,y)是L上的任一点,作乘积f(x,y)i*ds,并求和即Σf(x,y)i*ds,记λ=max(ds) ,若Σf(x,y)i*ds的极限在当λ→0的时候存在,且极限值与L的分法及Mi在L的取法无关,则称极限值为f(x,y)在L上对弧长的曲线积分,记为:∫f(x,y)*ds ; 其中f(x,y)叫做被积函数,L叫做积分曲线,对弧长的曲线积分也叫第一类曲线积分。 2.曲线积分的类别: 曲线积分分为:对弧长的曲线积分(第一类曲线积分) 对坐标轴的曲线积分(第二类曲线积分) 两种曲线积分的区别主要在于积分元素的差别;对弧长的曲线积分的积分元素是弧长元素ds;例如:对L的曲线积分∫f(x,y)*ds 。对坐标轴的曲线积分的积分元素是坐标元素dx或dy,例如:对L’的曲线积分∫P(x,y)dx+Q(x,y)dy。但是对弧长的曲线积分由于有物理意义,通常说来都是正的,而对坐标轴的曲线积分可以根据路径的不同而取得不同的符号33。 3.两种曲线积分的联系: 对弧长的曲线积分和对坐标轴的曲线积分是可以互相转化的,利用弧微分公式ds=√[1+(dy/dx)^2]*dx; 或者ds=√[1+(dx/dy)^2]*dy;这样对弧长的曲线积分都可以转换成对 坐标轴的曲线积分了。

曲线积分与曲面积分(解题方法归纳)

第十一章解题方法归纳 一、曲线积分与曲面积分的计算方法 1.曲线积分与曲面积分的计算方法归纳如下: (1) 利用性质计算曲线积分和曲面积分. (2) 直接化为定积分或二重积分计算曲线或曲面积分 (3) 利用积分与路径无关计算对坐标的曲线积分. (4) 利用格林公式计算平面闭曲线上的曲线积分. (5) 利用斯托克斯公式计算空间闭曲线上的曲线积分. (6) 利用高斯公式计算闭曲面上的曲面积分. 2. 在具体计算时,常用到如下一些结论: (1)若积分曲线L 关于y 轴对称,则 1 (,)2(,)L L f x f x y ds f x y ds f x ??=? ??? ?对为奇函数对为偶函数 1 0 (,)2(,)L L P x P x y dx P x y dy P x ??=?????对为奇函数 对为偶函数 1 0 (,)2(,)L L Q x Q x y dy Q x y dy Q x ??=?????对为偶函数 对为奇函数 其中1L 是L 在右半平面部分. 若积分曲线L 关于x 轴对称,则 1 (,)2(,)L L f y f x y ds f x y ds f y ??=? ??? ?对为奇函数对为偶函数 1 0 (,)2(,)L L P y P x y dx P x y dy P y ??=?????对为偶函数 对为奇函数 1 0 (,)2(,)L L Q y Q x y dy Q x y dy Q y ??=?????对为奇函数 对为偶函数 其中1L 是L 在上半平面部分.

(2)若空间积分曲线L 关于平面=y x 对称,则 ()()=??L L f x ds f y ds . (3)若积分曲面∑关于xOy 面对称,则 1 0 (,,)2(,,)f z f x y z dS R x y z dS f z ∑ ∑?? =????? ??对为奇函数对为偶函数 1 0 (,,)2(,,)R z R x y z dxdy R x y z dxdy R z ∑∑?? =???????对为偶函数对为奇函数 其中1∑是∑在xOy 面上方部分. 若积分曲面∑关于yOz 面对称,则 1 0 (,,)2(,,)f x f x y z dS R x y z dS f x ∑ ∑?? =????? ??对为奇函数 对为偶函数 1 0 (,,)2(,,)P x P x y z dydz P x y z dydz P x ∑∑?? =???????对为偶函数对为奇函数 其中1∑是∑在yOz 面前方部分. 若积分曲面∑关于zOx 面对称,则 1 0 (,,)2(,,)f y f x y z dS R x y z dS f y ∑ ∑?? =????? ??对为奇函数 对为偶函数 1 0 (,,)2(,,)Q y Q x y z dzdx Q x y z dzdx Q y ∑∑?? =???????对为偶函数对为奇函数 其中1∑是∑在zOx 面右方部分. (4)若曲线弧() :()()αβ=?≤≤?=? x x t L t y y t ,则 [ (,)(),()()β α αβ=

第一型曲线积分与曲面积分的一些问题

第一型曲线积分与曲面积分的一些问题 第1型曲线积分与曲面积分的1些问 题摘要本文归纳研究了第1型曲线积分与曲面积分的物理背景,定义,性质及计算方法,并在此基础上给出了它们在特殊坐标变换下的计算公式及证明。并且利用这个公式,推导出了当第1型曲线积分或曲面积分的被积函数为奇函数或偶函数,积分曲线或曲面是对称的时的几个重要的推论及证明。关键字:第1型曲线积分与曲面积分;坐标变换;奇偶性;对称性。 Some questions about curve integral and surface integral of the first kind A bstract In this article we induce and study the physical background ,definition, quality ,and calculating method of the curve and surface integral of the first kind ,and at the base of these , calculate formula and providence was proposed in the special coordinate transformation. Using this formula ,we get several important inference and prove that when the curve and surface integral of the first kin d’s integrand is odd function or even function and the integral curve or surface is symmetry.Key word: Curve integral and surface integral of the first kind; coordinate transformation; odevity; symmetry

曲线积分和曲面积分

定积分,二重积分,三重积分,曲线和曲面积分统称为黎曼积分,这是高等数学研究的重点。定积分,二重积分,三重积分,曲线和曲面积分的定义均被划分,近似,求和和极值。最后,它们被减小到特定结构和公式的极限值。该定义可以统一形式给出:

从以上积分的概念形式和计算方法来看,定积分的积分区域是线性的,二重积分的区域是平面的,三重积分的区域是主体的。以上三个积分的概念,性质和计算方法相似;在逼近过程中,获取的点是积分曲线或积分曲面上满足曲线或曲面方程的点。因此,可以使用将曲线和曲面积分转换为定积分或双积分的方法来计算曲线和曲面积分。 表面积分的形式如下: \ begin {equation *} \ int_ {S} \ stackrel→{F}·d \ overarrowarrow {a} \ end {equation *}这意味着在向量场中,我们需要在向量场中对表面s进行积分,并且D / stacklel→{a}表示垂直于表面上任意点上Δs方向的方向向量(Δs表示微分曲面上的任意一点),也就是说,它仅代表一个方向。两者之间的数学关系是点相乘,点相乘的结果是向量在垂直于Δs的方向(即,由右箭头{a}指向的方向)上的任意点处的向量的分量向量。)。最后,通过使用{f}·D {a}进行整个表面的积分,即连续增加表面上每个点的点相乘结果。求出一定矢量场中表面s上垂直于Δs方向的所有子矢量的总和。

换句话说,表面积分表示矢量场{f}与表面s相交的程度。因此,它也生动地称为通量。 在这里,我们可以关联为什么麦克斯韦方程组的积分形式的双积分也称为电通量和磁通量。 然后,由于在{f}和{a} D / stacklel→{a}之间存在一个点积,根据点乘法的几何定义\ overrightarrow {a}·\ overarrowarrow {b} = | \ overarrowarrow {a} || \\ overarrowarrow {b} | cos \ theta \ qquad(0≤\theta≤\ pi) 如果stacklel→{f}平行于s,则所有向量的方向均垂直于{overarrowarrow}的{a},则cos ﹤theta = cos(﹤pi / 2)= 0,其中点积为0 ,表面积分为0。

曲线积分与曲面积分

第十章 曲线积分与曲面积分 一、 基本内容要求 1. 理解线、面积分的概念,了解线、面积分的几何意义及物理意义,能用线、 面积分表达一些几何量和物理量; 2. 掌握线、面积分的计算法; 3. 知道两类曲线积分及两类曲面积分的联系; 4. 掌握格林公式,并能将沿闭曲线正向的积分化为该曲线所围闭区域上的二重 积分; 5. 掌握曲线积分与路径无关的充要条件,并能求全微分为已知的某个原函数, 注意此时所讨论问题单连通域的条件不可缺少; 6. 掌握高斯公式,并能将闭曲面Σ外侧上的一个曲面积分化为由其所围空间闭 区间Ω上的三重积分。 二、 选择 1.设OM 是从O (0,0)到点M (1,1)的直线段,则与曲线积分I=ds e om y x ? +2 2不相等的积分是:( ) A)dx e x 21 2? B) dy e y 21 02? C) dt e t ? 2 D) dr e r 21 ? 2.设L 是从点O(0,0)沿折线y=1-|x-1| 至点A(2,0) 的折线段,则曲线积分I= ? +-L xdy ydx 等于( ) A)0 B)-1 C)2 D)-2 3.设L 为下半圆周)0(222≤=+y R y x ,将曲线积分I= ds y x L ? +)2(化为定

积分的正确结果是:( ) A) dt t t R )sin 2(cos 0 2+? -π B) dt t t R )sin 2(cos 0 2 +?π C) dt t t R )cos 2sin (0 2+-?- π D) dt t t R )cos 2sin (232 2+-?π π 4.设L 是以A(-1,0) ,B(-3,2) ,C(3,0) 为顶点的三角形域的周界沿ABCA 方向, 则 ? -+-L dy y x dx y x )2()3(等于:( ) A) -8 B) 0 C) 8 D) 20 5.设AEB 是由点A(-1,0) 沿上半圆 21x y -=经点E(0,1)到点B(1,0), 则曲线积分I= dx y AEB ? 3等于:( ) A) 0 B)dx y BE ? 32 C) dx y EB ? 32 D) dx y EA ? 32 三、 填空 1.γβαcos ,cos ,cos 是光滑闭曲面Σ的外法向量的方向余弦,又Σ所围的空间闭区域为Ω;设函数P(x,y,z),Q(x,y,z)和R(x,y,z)在Ω上具有二阶连续偏导数,则由高斯公式,有 ds y P x Q x R z P z Q y R ]cos )(cos )(cos )[( γβα??-??+??-??+??-???? ∑ = 。 2.设L 是xoy 平面上沿顺时针方向绕行的简单闭曲线,且

第十一章曲线积分与曲面积分经典例题

第十一章 曲线积分与曲面积分 内容要点 一、引例 设有一曲线形构件所占的位置是xOy 面内的一段曲线L (图10-1-1),它的质量分布不均匀,其线密度为),(y x ρ,试求该构件的质量. 二、第一类曲线积分的定义与性质 性质1 设α,β为常数,则 ???+=+L L L ds y x g ds y x f ds y x g y x f ),(),()],(),([βαβα; 性质2设L 由1L 和2L 两段光滑曲线组成(记为=L 21L L +),则 .),(),(),(2 1 2 1 ???+=+L L L L ds y x f ds y x f ds y x f 注: 若曲线L 可分成有限段,而且每一段都是光滑的,我们就称L 是分段光滑的,在以后的讨论中总假定L 是光滑的或分段光滑的. 性质3 设在L 有),(),(y x g y x f ≤,则 ds y x g ds y x f L L ??≤),(),( 性质4(中值定理)设函数),(y x f 在光滑曲线L 上连续,则在L 上必存在一点),(ηξ,使 s f ds y x f L ?=?),(),(ηξ 其中s 是曲线L 的长度. 三、第一类曲线积分的计算:)(), (),(βα≤≤?? ?==t t y y t x x dt t y t x t y t x f ds y x f L )()(])(),([),(22'+'=??β α 如果曲线L 的方程为 b x a x y y ≤≤=),(,则 dx x y x y x f ds y x f b a L )(1])(,[),(2'+=?? 如果曲线L 的方程为 d y c y x x ≤≤=),(,则 dy y x y y x f ds y x f d c L )(1]),([),(2'+=?? 如果曲线L 的方程为 βθαθ≤≤=),(r r ,则 θθθθθβ α d r r r r f ds y x f L )()()sin ,cos (),(22'+=??

曲线积分与曲面积分备课教案

第十章曲线积分与曲面积分 一、教学目标及基本要求: 1、理解二类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系。 2、会计算两类曲线积分 3、掌握(Green)公式,会使用平面曲线积分与路径无关的条件。 4、了解两类曲面积分的概念及高斯(Grass)公式和斯托克斯(Stokes)公式并会计算两类曲面积分。 5、了解通量,散度,旋度的概念及其计算方法。 6、会用曲线积分及曲面积分求一些几何量与物理量(如曲面面积、弧长、质量、重心、转动惯量、功、流量等)。 二、教学内容及学时分配: 第一节对弧长的曲线积分2学时 第二节对坐标的曲线积分2学时 第三节格林公式及其应用4学时 第四节对面积的曲面积分2学时 第五节对坐标的曲面积分2学时 第六节高斯公式通量与散度2学时 第七节斯托克斯公式环流量与旋度2学时 三、教学内容的重点及难点: 1、二类曲线积分的概念及其计算方法 2、二类曲面积分的概念及其计算方法 3、格林公式、高斯公式及斯托克斯公式 4、曲线积分及曲面积分的物理应用和几何应用也是本章重点。 5、两类曲线积分的关系和区别 6、两类曲面积分的关系和区别 7、曲线积分和曲面积分的物理应用及几何应用 五、思考题与习题 第一节习题10—1 131页:3(单数)、4、5 第二节习题10-2 141页:3(单数)、4、5、7(单数) 第三节习题10-3 153页:1、2、3、4(单数)、5(单数)6(单数)、7 第四节习题10-4 158页:4、5、6(单数)、7、8 第五节习题10-5 167页:3(单数)、4 第六节习题10-6 174页:1(单数)、2(单数)、3(单数) 第七节习题10-7 183页:1(单数)、2、3、4 第一节对弧长的曲线积分 一、内容要点 由例子引入对弧长的曲线积分的定义给出性质,然后介绍将对弧长的曲线积分化为定积分的计算方法。 1、引例:求曲线形构件的质量

最新曲线积分与曲面积分习题及答案

第十章 曲线积分与曲面积分 (A) 1.计算()?+L dx y x ,其中L 为连接()0,1及()1,0两点的连直线段。 2.计算? +L ds y x 22,其中L 为圆周ax y x =+22。 3.计算()?+L ds y x 22,其中L 为曲线()t t t a x sin cos +=,()t t t a y cos sin -=, ()π20≤≤t 。 4.计算?+L y x ds e 2 2,其中L 为圆周222a y x =+,直线x y =及x 轴在第一 角限内所围成的扇形的整个边界。 5.计算???? ? ??+L ds y x 34 34,其中L 为内摆线t a x 3cos =,t a y 3sin =??? ??≤≤20πt 在第一象限内的一段弧。 6.计算 ? +L ds y x z 2 22 ,其中L 为螺线t a x cos =,t a y sin =,at z =()π20≤≤t 。 7.计算?L xydx ,其中L 为抛物线x y =2上从点()1,1-A 到点()1,1B 的一段弧。 8.计算?-+L ydz x dy zy dx x 2233,其中L 是从点()1,2,3A 到点()0,0,0B 的直线 段AB 。 9.计算()?-+++L dz y x ydy xdx 1,其中L 是从点()1,1,1到点()4,3,2的一段直 线。 10.计算()()?---L dy y a dx y a 2,其中L 为摆线()t t a x sin -=,() t a y cos 1-=的一拱(对应于由t 从0变到π2的一段弧): 11.计算()()?-++L dy x y dx y x ,其中L 是: 1)抛物线x y =2上从点()1,1到点()2,4的一段弧; 2)曲线122++=t t x ,12+=t y 从点()1,1到()2,4的一段弧。

曲线积分曲面积分总结

第十三章 曲线积分与曲面积分 定积分和重积分是讨论定义在直线段、平面图形或者空间区域上函数的积分问题.但在实际问题中,这些还不够用,例如当我们研究受力质点作曲线运动时所作的功以及通过某曲面流体的流量等问题时,还要用到积分区域是平面上或空间中的一条曲线,或者空间中的一张曲面的积分,这就是这一章要讲的曲线积分和曲面积分. 第一节 对弧长的曲线积分 一、 对弧长的曲线积分的概念与性质 在设计曲线构件时,常常要计算他们的质量,如果构件的线密度为常量,那么这构件的质量就等于它的线密度与长度的乘积. 由于构件上各点处的粗细程度设计得不完全一样, 因此, 可以认为这构件的线密度(单位长度的质量)是变量, 这样构件的质量就不能直接按下面它的线密度与长度的乘积来计算. 下面考虑如何计算这构件的质量. 设想构件为一条曲线状的物体在平面上的曲线方程为()x f y =,[]b a x ,∈,其上每一点的密度为()y x ,ρ. 如图13-1我们可以将物体分为n 段,分点为 n M M M ,...,,21, 每一小弧段的长度分别是12,,...,n s s s ???.取其中的一小段弧i i M M 1-来分 析.在线密度连续变化的情况下, 只要这一小段足够小,就可以用这一小段上的任意一点 (),i i ξη的密度(),i i ρξη来近似整个小段的密度.这样就可以得到这一小段的质量近似于 (),i i i s ρξη?.将所有这样的小段质量加起来,就得到了此物体的质量的近似值.即 ()∑=?≈n i i i i s y x M 1,ρ. 用λ表示n 个小弧段的最大长度. 为了计算M 的精确值, 取上式右端之和当0λ→时的极限,从而得到 1 lim (,).n i i i i M s λρξη→∞ ==?∑ 即这个极限就是该物体的质量.这种和的极限在研究其它问题时也会遇到. 上述结果是经过分割、求和、取极限等步骤而得到的一种和数得极限,这意味着我们已经得到了又一种类型的积分. 抛开问题的具体含义,一般的来研究这一类型的极限,便引入如下定义: 定义13.1 设L 是xoy 面内的一条光滑曲线,函数()y x f ,在L 上有界,用L 上任意插入 图13-1

曲线与曲面积分习题参考答案

十 曲线积分与曲面积分习题 (一) 对弧长的曲线积分 1. 计算ds y x L ?+)(22,其中L 为圆周t a y t a x sin ,cos == )20(π≤≤t . 解 320 32 2 2 2 20 2 2 2 2 2 2 2cos sin )sin cos ()(a dt a dt t a t a t a t a ds y x L ππ π==++=+???. 2. 计算ds x L ?,其中L 为由直线x y =及抛物线2x y =所围成的区域的整个边界. 解 )12655(12 1 4121 021 0-+= ++=???dx x x dx x ds x L . 3.计算?L yds ,其中L 是抛物线x y 42=上从)0,0(O 到)2,1(A 的一段弧. 解 ?L yds =dy y y dy y y ??+=+2 22 2421)2(1 )122(3 4)4(4412202-=++= ?y d y . 4.计算?+L ds y x )(,其中L 为从点)0,0(O 到)1,1(A 的直线段. 解 ?+L ds y x )(=23 2 11)(1 0= ++?x x . 5.计算?L xyzds ,其中L 是曲线232 1 ,232,t z t y t x == =)10(≤≤t 的一段. 解 ?L xyzds =??+=++1 31 02223)1(232 )2(121232dt t t t dt t t t t t =143 216. 6.计算L ?,其中L 为圆周222x y a +=,直线y x =及x 轴在第 一象限所围成的扇形的整个边界.

曲线积分与曲面积分(答案word

第十章 曲线积分与曲面积分 (一) 1.解:两点间直线段的方程为:x y -=1,()10≤≤x 故()dx dx dx y ds 21112 2=-+='+= 所以()()2211 =-+=+??dx x x dx y x L 。 2.解:L 的参数方程为??? ????=+=θθsin 212 1cos 21a y a a x ,()πθ20≤≤ 则()?θθcos 12||2 1 sin 2121cos 212 22+=??? ??+??? ??+=+a a a a y x 2cos ||12cos 212||212θθa a =??? ? ? -+= ||21cos 2sin 22 2 2 2 a a a d y x ds =?? ? ??+??? ??-='+'=θθθ 所以? ? =+πθθ 20 22 22 cos 21d a ds y x L ?? ? ??-= ??πππθθθθ0222cos 2cos 21d d a 220222sin 22sin 221a a =??? ? ??-=π ππθ θ 3.解:()()atdt dt t at t at dt y x ds =+= '+'=2222sin cos 故() ()()[] ? ?-++=+π20 2 2 222cos sin sin cos atdt t t t t t t a ds y x L ()()? +=? ??? ??+=+=ππ ππ20 2 3220 42 33321242a t t a dt t t a 4.解:如图? ? ? ?++++++=3 2 22 2 21 2 22 2L y x L y x L y x L y x ds e ds e ds e ds e

曲线积分与曲面积分总结

对弧长的曲线积分??+=L L y d x d y x f ds y x f 22),(),( ???==) ()(:t y y t x x L βα≤≤t dt t y t x t y t x f ?'+'βα)()())(),((22 (,,)((),(),(L L f x y z ds f x t y t z t =??():()()x x t L y y t z z t =??=??=? βα≤≤t ((),(),(f x t y t z t βα ? 22222.2x y L L L e ds e ds e ds e π+===? ?? 22=2(0)L x y y +≥为上半圆周 ?+L dy y x q dx y x p ),(),( ???==) ()(:t y y t x x L α=t β=t dt t y t y t x q dt t x t y t x p )())(),(()())(),(('+'?βα (,,)(,,)(,,)L P x y z dx Q x y z dy R x y z dz ++?

():()()x x t L y y t z z t =??=??=? α=t β =t ((),(),())()((),(),())()((),(),())()P x t y t z t x t dt Q x t y t z t y t dt R x t y t z t z t dt βα'''++? 11 (,)(,)(,)(,)L L L p x y dx q x y dy p x y dx q x y dy ++-+?? 1( )(,)(,)L D q p dxdy p x y dx q x y dy x y ??=±--+????? ??=??-??D dxdy y p x q )( ?+L dy y x q dx y x p ),(),( y p x q ??=?? ???+=+2 1212211),(),(),(),(21) ,(),(y y x x y x y x dy y x q dx y x p dy y x q dx y x p (,)(,)(,)P x y dx Q x y dy dU x y +=Q P x y ??? =?? 1、 ?? ??++= =∑xy D y x dxdy f f y x f y x ds z y x y x f z 221)),(,,(),,(),(μμ 2、 (,)(,,)(,(,),xz D y f x z x y z ds x f x z z μμ∑==???? 3、 (,)(,,)((,),,yz D x f y z x y z ds f y z y z μμ∑==???? ds ∑ =∑??面积。

第八章 曲线积分与曲面积分

第八章曲线积分与曲面积分 本章是把定积分概念推广到定义在曲线是的函数和定义曲面上的函数上去,就得到曲线积分和曲面积分。 §1对弧长的曲线积分 问题:设有一曲线形构件占xOy 面上的一段曲线L ,设构件的质量分布函数为),(y x ρ,设),(y x ρ定义在L 上且在L 上连续,求构件的质量。 ∑=→=n i i i i S M 10 ),(lim ?ηξρλ 定义:设L 为xOy 平面上的一条光滑的简单曲线弧,),(y x f 在L 上有界,在L 上任意插入一点列1M ,2M ,…,1-n M 把L 分成n 个小弧段 i i i M M L 1-=?的长度为i S ?,又),(i i ηξ是i L ?上的任一点,作乘积 i i i S f ?ηξ),(,),,2,1(n i =,并求和∑=n i i i i S f 1 ),(?ηξ,记}max {i S ?λ=,若 ∑=→n i i i i S f 1 ),(lim ?ηξλ存在,且极限值与L 的分法及),(i i ηξ在i L ?的取法无关, 则称极限值为),(y x f 在L 上对弧长的曲线积分,记为:?L s y x f d ),(,即 ?L s y x f d ),(∑=→=n i i i i S f 1 ),(lim ?ηξλ 。 其中),(y x f 叫做被积函数,L 叫做积分曲线。 对弧长曲线积分的存在性: 设),(y x f 在光滑曲线L 上连续,则?L s y x f d ),(一定存在。 对弧长曲线积分的性质:

1、???±=±L L L s y x g s y x f s y x g y x f d ),(d ),(d )],(),([ 2、??=L L s y x f k s k y x kf d ),(d ),( 3、设21L L L +=,则???+=2 1 d ),(d ),(d ),(L L L s y x f s y x f s y x f 这里规定:若L 是封闭曲线,则曲线积分记为?L s y x f d ),( 有上述对弧长的曲线积分,则上面的问题就可以用对弧长的曲线积分表示为 ?=L s y x f M d ),( 对弧长的曲线积分的计算法: 在一定体积下化为定积分计算,首先要注意: 1、),(y x f 定义在曲线L 上, 2、s d 是弧长微分。 定理:设),(y x f 在光滑曲线L 上连续,L 由参数方程) ()() (βαψ?≤≤? ? ?==t t y t x 给出,其中)(t ?、)(t ψ在],[βα上具有连续导数且0)()(22≠'+'t t ψ?,则 ? L s y x f d ),(存在,且:??'+'=β α ψ?ψ?t t t t t f s y x f L d )()()](),([d ),(22。 若L 方程为:)(x y ψ=,b x a ≤≤,则??'+=b a L x x x x f s y x f d )(1)] (,[d ),(2ψψ。 若L 方程为:)(y x ?=,d y c ≤≤,则??'+=d c L y y y y f s y x f d )(1]),([d ),(2?? 例1、计算?L s y d ,其中L :)20()cos 1() sin (π≤≤? ? ?-=-=t t a y t t a x

曲线积分与曲面积分复习

第8章 曲线积分与曲面积分 向量值函数在有向曲线上的积分 第二型曲线积分 概念与形式 恒力沿直线方向做功 → →→ → ?=?=l F l F w θcos |||| 变力沿曲线运动?取微元 Qdy Pdx ds F dw +=?=→ ||,则?+ += L Qdy Pdx W 。 平面曲线?+ +L Qdy Pdx ,空间曲线?+ ++L Rdz Qdy Pdx ,性质??- +=L L 一、计算方法 1.设参数,化定积分 ?L dx y x P ),(+dy y x Q ),(=dt t y t y t x Q t x t y t x P t t })()](),([)()](),([{10 ? '+' 2.平面闭曲线上积分-用格林公式 ???+=???? ? ???-??L D Qdy Pdx dxdy y P x Q ,其中L 是D 的取正向的边界曲线,D 为单连通区域,P ,Q 与L D ?上有连续一阶偏导数。 ~ 3.对于积分与路径无关的可自选路径 4.积分与路径无关 ),(),,(y x Q y x P 及偏导数于L D ?上连续。下列四个命题等价 (1)? +C Qdy Pdx =0,对D 内任意闭曲线C . (2) ?+L Qdy Pdx 积分与路径无关 (3)存在),(y x u 使du =dy y x Q dx y x P ),(),(+B A L L u du Qdy Pdx |==+??? (4)x Q y P ??=?? 在D 内恒成立. 常以(4)为条件,(2)作为结论,自选路径积分 二、例题 1.基础题目,设参数,化定积分 , (1) 计算? -=L ydx xdy I ,: L 如图ABCDEA 解 (1)设参数法 ?∑? ==L i L i 5 1 于1L 上 设t x cos =,t y sin = ?? -= +=-0 2 222 )sin (cos 1 ππ dt t t ydx xdy L 于2L 上 设t x cos =,t y sin 2= ?? =?+?=-20 )sin sin 2cos 2(cos 2 π πdt t t t t ydx xdy L 于3L 上 以x 为参数,xdx dy 2-=

曲线积分与曲面积分总结

第十一章:曲线积分与曲面积分 一、对弧长的曲线积分 ?? +=L L y d x d y x f ds y x f 22),(),( 若 ?? ?==) () (:t y y t x x L βα≤≤t 则 原式= dt t y t x t y t x f ?'+'β α )()())(),((22 对弧长的曲线积分 (,,) ((),()L L f x y z ds f x t y t z t =? ?若 () :()()x x t L y y t z z t =?? =??=? βα≤≤t 则 原式= ((),(),(f x t y t z t β α ? 常见的参数方程为: 特别的: 22 222.2x y L L L e ds e ds e ds e π+===??? 22 =2(0)L x y y +≥为上半圆周

二、对坐标的曲线积分 ? +L dy y x q dx y x p ),(),( 计算方法一: 若 ?? ?==) () (:t y y t x x L 起点处α=t ,终点处β=t 则 原式= dt t y t y t x q dt t x t y t x p )())(),(()())(),(('+'?β α 对坐标的曲线积分 (,,)(,,)(,,)L P x y z d x Q x y z d y R x y z d z ++? () :()()x x t L y y t z z t =?? =??=? 起点处α=t ,终点处β=t 则 原式= ((),(),())()((),(),())()((),(),())()P x t y t z t x t dt Q x t y t z t y t dt R x t y t z t z t dt β α'''++? 计算方法二:在计算曲线积分时,通过适当的添加线段或曲线,是之变成一个封闭曲线上的曲线积分与所添加线段或曲线上的曲线积分之差,从而对前者利用格林公式,后者利用参数方程。 1 1 (,)(,)(,)(,)L L L p x y dx q x y dy p x y dx q x y dy ++-+? ? 1 ( )(,)(,)L D q p dxdy p x y dx q x y dy x y ??=±--+????? 如图: 三、格林公式 ??=??-??D dxdy y p x q )( ? +L dy y x q dx y x p ),(),( 其中L 为D 的正向边界 特别地:当 y p x q ??=??时,积分与路径无关, 且 ??? +=+2 1 21 2211),(),(),(),(21) ,() ,(y y x x y x y x dy y x q dx y x p dy y x q dx y x p (,)(,)(,P x y d x Q x y d y d U x y +=是某个函数的全微分Q P x y ??? =?? 注:在计算曲线积分时,通过适当的添加线段或曲线,是之变成一个封闭曲线上的曲线积

曲线积分和曲面积分

曲线积分: 在数学中,曲线积分是积分的一种。积分函数的取值沿的不是区间,而是特定的曲线,称为积分路径。曲线积分有很多种类,当积分路径为闭合曲线时,称为环路积分或围道积分。曲线积分可分为:第一类曲线积分和第二类曲线积分。 分类: 曲线积分分为: (1)对弧长的曲线积分(第一类曲线积分) (2)对坐标轴的曲线积分(第二类曲线积分) 两种曲线积分的区别主要在于积分元素的差别;对弧长的曲线积分的积分元素是弧长元素ds;例如:对L的曲线积分∫f(x,y)*ds 。对坐标轴的曲线积分的积分元素是坐标元素dx或dy,例如:对L’的曲线积分∫P(x,y)dx+Q(x,y)dy。但是对弧长的曲线积分由于有物理意义,通常说来都是正的,而对坐标轴的曲线积分可以根据路径的不同而取得不同的符号。 曲面积分: 定义在曲面上的函数或向量值函数关于该曲面的积分。曲面积分一般分成第一型曲面积分和第二型曲面积分。 第一型曲面积分物理意义来源于对给定密度函数的空间曲面,计算该曲面的质量。第二型曲面积分物理意义来源对于给定的空间曲面和流体的流速,计算单位时间流经曲面的总流量。 第一型曲面积分:

定义在曲面上的函数关于该曲面的积分。第一型曲线积分物理意义来源于对给定密度函数的空间曲面,计算该曲面的质量。 第二型曲面积分: 第二型曲面积分是关于在坐标面投影的曲面积分,其物理背景是流量的计算问题。第二型曲线积分与积分路径有关,第二型曲面积分同样依赖于曲面的取向,第二型曲面积分与曲面的侧有关,如果改变曲面的侧(即法向量从指向某一侧改变为指另一侧),显然曲面积分要改变符号,注意在上述记号中未指明哪侧,必须另外指出,第二型曲面积分有类似于第二型曲线积分的一些性质。

曲线积分与曲面积分习题答案

第十一章 曲线积分与曲面积分 第三节 Green 公式及其应用 1.利用Green 公式,计算下列曲线积分: (1) ? -L ydx x dy xy 2 2,其中L 为正向圆周922=+y x ; 解:由Green 公式,得 23 222230 81()22 L D xy dy x ydx x y dxdy d r dr ππ θ-=+== ? ????, 其中D 为2 2 9x y +≤。 (2) ?-++L y y dy y xe dx y e )2()(,其中L 为以)2,1(),0,0(A O 及)0,1(B 为顶点的三角形负向边界; 解:由Green 公式,得 ()(2)(1)1y y y y L D D e y dx xe y dy e e dxdy dxdy ++-=---==?????。 *(3) ? +-L dy xy ydx x 2 2,其中L 为x y x 622=+的上半圆周从点)0,6(A 到点)0,0(O 及x y x 322=+的上半圆周从点)0,0(O 到点)0,3(B 连成的弧AOB ; 解:连直线段AB ,使L 与BA 围成的区域为D ,由Green 公式,得 6cos 2222 22 320 3cos 44 4620()0 1515353cos 334442264 L D BA x ydx xy dy y x dxdy x ydx xy dy d r dr d π θ θ π θπθθπ-+=+- -+=-= =???=???????? ? *(4) ? +-L y x xdy ydx 2 2,其中L 为正向圆周4)1(2 2=++y x . 解:因为222 22 () x y P Q y x x y -??==??+,(,)(0,0)x y ≠。作足够小的圆周l :222 x y r +=,取逆时针方向,记L 与l 围成的闭区域为D ,由Green 公式,得 22 0L l ydx xdy x y +-=+? ,故 22222 2 2 2 2 22 sin cos 2L l l ydx xdy ydx xdy ydx xdy x y x y r r r d r π θθ θπ ---+=-=++--==-? ?? ?

第二型曲线积分与曲面积分的计算方法汇编

第二型曲线积分与曲面积分的计算方法 摘 要: 本文主要利用化为参数的定积分法,格林公式,积分与路径无关的方法解答第二型曲线积分的题目;以及利用曲面积分的联系,分面投影法,合一投影法,高斯公式解答第二型曲面积分的题目. 关键词: 曲面积分;曲线积分 1 引 言 第二型曲线积分与曲面积分是数学分析中的重要知识章节,是整本教材的 重点和难点.掌握其基本的计算方法具有很大的难度,给不少学习者带来了困难.本文通过针对近年来考研试题中常见的第二型曲线积分与曲面积分的计算题目进行了认真分析,并结合具体实例以及教材总结出其特点,得出具体的计算方法.对广大学生学习第二型曲线积分与第二型曲面积分具有重要的指导意义. 2 第二型曲线积分 例1 求()()()sin cos x x I e y b x y dx e y ax dy =-++-?,其中a ,b 为正的常数,L 为从点A (2a ,0)沿曲线 o (0,0) 的弧. 方法一:利用格林公式法 L D Q P Pdx Qdy dxdy x y ?? ??+=- ????????,P(x ,y),Q (x ,y )以及它们的一阶偏导数在D 上连续,L 是域D 的边界曲线,L 是按正向取定的. 解:添加从点o (0,0)沿y=0到点A (2a,0)的有向直线段1L , ()()()()()()1 1 sin cos sin cos x x L L x x L I e y b x y dx e y ax dy e y b x y dx e y ax dy =-++---++-?? 记为12I I I =- , 则由格林公式得:()1cos cos x x D D Q P I dxdy e y a e y b dxdy x y ??????=-=---- ??????????? ()()22 D b a dxdy a b a π =-= -?? 其中D 为1L L 所围成的半圆域,直接计算2I ,因为在1L 时,0y =,所以dy =0

相关文档
相关文档 最新文档