文档视界 最新最全的文档下载
当前位置:文档视界 › 高中不等式的证明方法

高中不等式的证明方法

高中不等式的证明方法
高中不等式的证明方法

不等式的证明方法

不等式的证明是高中数学的一个难点,证明方法多种多样,近几年高考出现较为形式较为活跃,证明中经常需与函数、数列的知识综合应用,灵活的掌握运用各种方法是学好这部分知识的一个前提,下面我们将证明中常见的几种方法作一列举。

注意ab b a 22

2

≥+的变式应用。常用2

222b a b a +≥

+ (其中+

∈R b a ,)来解决有关根式不等式的问题。 一、比较法

比较法是证明不等式最基本的方法,有做差比较和作商比较两种基本途径。 1、已知a,b,c 均为正数,求证:

a

c c b b a c b a ++

+++≥++1

11212121 证明:∵a,b 均为正数, ∴

0)

(4)(44)()(14141)(2

≥+=+-+++=+-+-b a ab b a ab ab b a a b a b b a b a b a 同理

0)(41

4141)(2

≥+=

+-+-c b bc c b c b c b ,0)

(414141)(2

≥+=+-+-c a ac a c a c a c 三式相加,可得

01

11212121≥+-+-+-++a

c c b b a c b a ∴a

c c b b a c b a ++

+++≥++111212121 二、综合法

综合法是依据题设条件与基本不等式的性质等,运用不等式的变换,从已知条件推出所要证明的结论。 2、a 、b 、),0(∞+∈c ,1=++c b a ,求证:

31222≥

++c b a

证:2

222)(1)(3c b a c b a ++=≥++?∴

2222)()(3c b a c b a ++-++0

)()()(222222222222≥-+-+-=---++=a c c b b a ca

bc ab c b a

3、设a 、b 、c 是互不相等的正数,求证:)(4

4

4

c b a abc c b a ++>++

2

2442b a b a >+

2

2442c b c b >+

2

2442a c a c >+∴

222222444a c c b b a c b a ++>++

∵ c ab c b b a c b b a 2

2222222222=?>+同理:a bc a c c b 222222>+ b ca b a a c 222222>+

)(222222c b a abc a c c b b a ++>++ 4、 知a,b,c R ∈,求证:

)(22

2

2

2

2

2

c b a a c

c b

b a

++≥++

++

+

证明:∵

)

(2

2

2

2

2

2

2

2)(22b a b a b a b a

ab ab +≥++≥+∴≥+

2

)

(2

2

2

b a b a

+≥

+,两边开平方得

)(2

2222

2

b a b a b a

+≥+≥

+ 同理可得

)(2

2

2

2

c b c b

+≥

+)(2

2

2

2

a c a c

+≥

+三式相加,得 )(22

2

2

2

2

2

c b a a c

c b

b a

++≥+++++

5、),0(∞+∈y x 、且1=+y x ,证:9

)1

1)(11(≥++y x 。

证:

)1)(1()11)(11(y y x x y x y x ++++=++)

(25)2)(2(y x

x y y x x y ++=++=9225=?+≥ 6、已知.9

111111,,≥??? ??+??? ??

+

=+∈+

b a b a R b a 求证: 策略:由于的背后隐含说明1,,4121

,,2

=+∈≤???

??????

??+≤=+∈++b a R b a ab b a ab b a R b a .41 ≤ab 着一个不等式 证

4

1

1,,≤

∴=+∈+ab b a R b a 。

.91111.

981211111111111 ≥??

? ??+??? ??+∴=+≥+=+++=+++=??

?

??+??? ??+b a ab ab ab b a ab b a b a 而

三、分析法

分析法的思路是“执果索因”:从求证的不等式出发,探索使结论成立的充分条件,直至已成立的不等式。

7、已知a 、b 、c 为正数,求证:

)3(3)2(

23

abc c b a ab b a -++≤-+

证:要证:

)3(3)2(

23

abc c b a ab b a -++≤-+只需证:

3

32abc c ab -≤- 即:3

32abc ab c ≥+∵ 3333abc ab ab c ab ab c =≥++成立∴ 原不等式成立

8、),0(∞+∈c b a 、、且1=++c b a ,求证3≤

++c b a 。

证:3≤

++c b a 3)(2

≤++?c b a 即:2222≤++ac bc ab

∵b a ab +≤2 c b bc +≤2 c a ac +≤2即2)()()(222=+++++≤++c a c b b a ac bc ab ∴原命题成立 四、换元法

换元法实质上就是变量代换法,即对所证不等式的题设和结论中的字母作适当的变换,以达到化难为易的目

的。 9、

1

1

)1)(1(22≤--+b a ab 。

证明:令αsin =a 2π

πα+

≠k Z ∈k βsin =b

πβ+

≠k Z ∈k

β

αβαβαβαcos cos sin sin cos cos sin sin ±=?+=

1

)cos(≤±=βα∴

1

)1)(1(22≤--+b a ab

10、

12

2=+y x ,求证:22≤+≤-y x 证:由12

2=+y x 设αcos =x ,αsin =y ∴ ]

2,2[)4

sin(2sin cos -∈+

=+=+π

αααy x

∴ 22≤+≤-

y x

11、已知a>b>c,求证:

.4

11c

a c

b b a -≥-+- 证明:∵a -b>0, b -c>0, a -c>0 ∴可设a -b=x, b -c=y (x, y>0) 则a -c= x + y, 原不等式

转化为证明

y x y x +≥+411即证4)11)((≥++y x y x ,即证42≥++x y y x ∵2≥+x

y y x ∴原不等式成立(当仅x=y 当“=”成立)

12、已知1≤x 2

+y 2

≤2,求证:

2

1≤x 2-xy +y 2

≤3. 证明:∵1≤x 2

+y 2

≤2,∴可设x = rcos θ,y = rsin θ,其中1≤r 2

≤2,0≤θ<π2.

∴x 2

-xy +y 2

= r 2

-r 2

sin θ2= r 2

(1-

21sin θ2),∵21≤1-21sin θ2≤2

3,∴21r 2≤r 2

(1-

21sin θ2)≤23r 2,而21r 2≥21,23r 2≤3∴ 2

1≤x 2-xy +y 2

≤3.

13、已知x 2-2xy +y 2

≤2,求证:| x +y |≤10.

证明:∵x 2-2xy +y 2= (x -y)2+y 2

,∴可设x -y = rcos θ,y = rsin θ,其中0≤r ≤2,0≤θ<π2.

∴| x +y | =| x -y +2y | = | rcos θ+2rsin θ| = r|5sin(θ+ractan 2

1

)|≤r 5≤10. 14、解不等式15+-

-x x >

2

1 解:因为2

2)1()5(++-x x =6,故可令 x -5 =6 sin θ,1+x =6 cos θ,θ∈[0,

2

π] 则原不等式化为 6 sin θ-6 cos θ >21所以6 sin θ >2

1

+6 cos θ 由θ∈[0,

2

π]知21+6 cos θ>0,将上式两边平方并整理,得48 cos 2

θ+46 cos θ-23<0

解得0≤cos θ<

246282-所以x =6cos 2

θ-1<12

4724-,且x ≥-1,故原不等式的解集是{x|-1≤x <

12

47

24-} .

15、-1≤21x --x ≤2.

证明:∵1-x 2≥0,∴-1≤x ≤1,故可设x = cos θ,其中0≤θ≤π. 则21x --x =θ2cos 1--cos θ= sin θ-cos θ=2sin(θ-4π),∵-4π≤θ-4

π≤43π,

∴-1≤2sin(θ-

4

π

)≤2,即-1≤21x --x ≤2. 五、增量代换法

在对称式(任意互换两个字母,代数式不变)和给定字母顺序(如a >b >c)的不等式,常用增量进行代换,代换的目的是减少变量的个数,使要证的结论更清晰,思路更直观,这样可以使问题化难为易,化繁为简. 16、已知a ,b ∈R ,且a +b = 1,求证:(a +2)2

+(b +2)2

2

25. 证明:∵a ,b ∈R ,且a +b = 1,∴设a =

21+t ,b=2

1

-t , (t ∈R) 则(a +2)2+(b +2)2= (21+t +2)2+(21-t +2)2= (t +25)2+(t -25)2= 2t 2

+225≥225.

∴(a +2)2+(b +2)2

≥2

25.

六、利用“1”的代换型

17、.

91

11 ,1 ,,,≥++=++∈+c b a c b a R c b a 求证:且已知策略:做“1”的代换。

证明: c c b a b c b a a c b a c b a +++

+++++=++1119

22233=+++≥??? ??++??? ??++??? ??++=c b b c c a a c b a a b .

七、反证法

反证法的思路是“假设→矛盾→肯定”,采用反证法时,应从与结论相反的假设出发,推出矛盾的过程中,每一步推理必须是正确的。

18、若p >0,q >0,p 3+q 3

= 2,求证:p +q ≤2.证明:反证法

假设p +q >2,则(p +q)3>8,即p 3+q 3+3pq (p +q)>8,∵p 3+q 3

= 2,∴pq (p +q)>2. 故pq (p +q)>2 = p 3+q 3= (p +q)( p 2-pq +q 2

),又p >0,q >0 ? p +q >0, ∴pq >p 2

-pq +q 2

,即(p -q)2

<0,矛盾.故假设p +q >2不成立,∴p +q ≤2.

19、已知a 、b 、∈c (0,1),求证:b a )1(-,c b )1(-,a c )1(-,不能均大于41

证明:假设b a ?-)1(,c b ?-)1(,a c ?-)1(均大于41

∵ )1(a -,b 均为正 ∴

21

41)1(2)1(=>?-≥+-b a b a

同理2141)1(2)1(=>?-≥+-c b c

b 21

2)1(>+-a c ∴

21

21212)1(2)1(2)1(++>+-++-++-a c c b b a

∴ 23

23>

不正确 ∴ 假设不成立 ∴ 原命题正确

20、已知a,b,c ∈(0,1),求证:(1-a )b, (1-b )c, (1-c )a 不能同时大于

4

1

。 证明:假设三式同时大于

4

1∵0<a <1 ∴1-a >0 ∴

2

141)1(2)1(=>

-≥+-b a b

a 21、a 、

b 、R

c ∈,0>++c b a ,0>++ca bc ab ,0>??c b a ,求证:a 、b 、c 均为正数。

证明:反证法:假设a 、b 、c 不均为正数 又 ∵ 0>??c b a a 、b 、c 两负一正 不妨设0c 又 ∵ 0>++c b a ∴ 0)(>+->b a c 同乘以)(b a + ∴

2)()(b a b a c +-<+即0)(22<++-<++b ab a ab bc ac ,与已知0>++ca bc ab 矛盾

∴ 假设不成立 ∴ a 、b 、c 均为正数

八、放缩法

放缩时常用的方法有:1去或加上一些项2分子或分母放大(或缩小)3用函数单调性放缩4用已知不等式放缩 22、已知a 、b 、c 、d 都是正数,求证:1<

c b a b +++

d c b c +++a d c d +++b

a d a ++<2.

证明:∵

d c b a b +++<c b a b ++<b a b +,d c b a c +++<d c b c ++<d

c c

+,

d c b a d +++<a d c d ++<d c d +,d c b a a +++<b a d a ++<b

a a

+,

将上述四个同向不等式两边分别相加,得:1<

c b a b +++

d c b c +++a d c d +++b

a d a ++<2.

23、

*

N n ∈,求证:

1

213

12

11)11(2-<+

++

+

<-+n n

n 。

证明:∵ )

1(21

2

21

--=-+<

+=k k k k k

k k

)

1(21

221k k k k k

k k

-+=++>

+=

)1(2)23(2)12(211211--++-+-+<+++

n n n

?12-=n

)

1(2)23(2)12(212

11n n n

-+++-+->+++

)11(2-+=n

判别式法

24、A 、B 、C 为ABC ?的内角,x 、y 、z 为任意实数,求证:A yz z y x cos 2222≥++C xy B xz cos 2cos 2++。

证明:构造函数,判别式法令

)cos 2cos 2cos 2()(2

22C xy B xz A yz z y x x f ++-++=

)cos 2()cos cos (22

22A yz z y C y B z x x -+++?-=为开口向上的抛物线 )cos 2(4)cos cos (4222A yz z y C y B z -+-+=? )cos 2cos cos 2sin sin (42222A yz C B yz C y B z ++--=

)]sin sin cos (cos 2cos cos 2sin sin [42

222C B C B yz C B yz C y B z -+-+-= ]sin sin 2sin sin [42222C B yz C y B z -+-= 0)cos sin (42≤--=C y B z

无论y 、z 为何值,0≤? ∴ R x ∈ 0)(≥x f ∴ 命题真 九、构造函数法

构造函数法证明不等式24 设0≤a 、b 、c ≤2,求证:4a +b 2+c 2+abc ≥2ab +2bc +2ca .

证明:视a 为自变量,构造一次函数)(a f = 4a +b 2

+c 2

+abc -2ab -2bc -2ca = (bc -2b -2c +4)a +(b

2

+c 2

-2bc),由0≤a ≤2,知)(a f 表示一条线段.又)0(f = b 2

+c 2

-2bc = (b -c)2

≥0,)2(f = b 2

+c 2

-4b -4c +8 = (b -2)2+(c -2)2

≥0,

可见上述线段在横轴及其上方,∴)(a f ≥0,即4a +b 2+c 2

+abc ≥2ab +2bc +2ca .

构造向量法证明不等式 根据已知条件与欲证不等式结构,将其转化为向量形式,利用向量数量积及不等式关系→

m ·→

n ≤|→

m |·|→

n |,就能避免复杂的凑配技巧,使解题过程简化.应用这一方法证明一些具有和积结构的代数不等式,思路清晰,易于掌握.

25、 设a 、b ∈R +,且a +b =1,求证:(a +2)2+(b +2)2

2

25

. 证明:构造向量→

m = (a +2,b +2),→

n = (1,1).设→

m 和→

n 的夹角为α,其中0≤α≤π. ∵|→

m | =2

2

)

2()2(+++b a ,|→

n | =

2,∴→m ·→

n =

|→

m |·|→

n |cos α=2

2

)2()2(+++b a ·

2·cos α;

另一方面,→m ·→

n = (a +2)·1+(b +2)·1 = a +b +4 = 5,而0≤|cos α|≤1,

所以22)2()2(+++b a ·

2≥5,从而(a +2)2+(b +2)2≥

2

25

. 构造解析几何模型证明不等式

如果不等式两边可以通过某种方式与图形建立联系,则可根据已知式的结构挖掘出它的几何背景,通过构造解析几何模型,化数为形,利用数学模型的直观性,将不等式表达的抽象数量关系转化为图形加以解决.

26、设a >0,b >0,a +b = 1,求证:12+a +12+b ≤22.

证明:所证不等式变形为:2

1

212+++b a ≤2.这可认为是点A(12+a 12+b )到直线 x +y = 0

的距离.

但因(12+a )2+(12+b )2

= 4,故点A 在圆x 2+y 2

= 4 (x >0,y >0)上.如图所示,AD ⊥BC ,半径AO

>AD ,即有:

2

1

212+++b a ≤2,所以12+a +12+b ≤22.

1.实数绝对值的定义:

|a|=

这是去掉绝对值符号的依据,是解含绝对值符号的

不等式的基础。

2.最简单的含绝对值符号的不等式的解。

若a>0时,则|x|a

x<-a或x>a。

注:这里利用实数绝对值的几何意义是很容易理解上式的,即|x|可看作是数轴上的动点P(x)到原点的距离。3.常用的同解变形

|f(x)|

|f(x)|>g(x) f(x)<-g(x)或f(x)>g(x);

|f(x)|<|g(x)| f2(x)

4.三角形不等式:||a|-|b||≤|a±b|≤|a|+|b|。

高中不等式的证明方法

不等式的证明方法 不等式的证明是高中数学的一个难点,证明方法多种多样,近几年高考出现较为形式较为活跃,证明中经常需与函数、数列的知识综合应用,灵活的掌握运用各种方法是学好这部分知识的一个前提,下面我们将证明中常见的几种方法作一列举。 注意ab b a 22 2 ≥+的变式应用。常用2 222b a b a +≥ + (其中+ ∈R b a ,)来解决有关根式不等式的问题。 一、比较法 比较法是证明不等式最基本的方法,有做差比较和作商比较两种基本途径。 1、已知a,b,c 均为正数,求证: a c c b b a c b a ++ +++≥++1 11212121 证明:∵a,b 均为正数, ∴ 0) (4)(44)()(14141)(2 ≥+=+-+++=+-+-b a ab b a ab ab b a a b a b b a b a b a 同理 0)(41 4141)(2 ≥+= +-+-c b bc c b c b c b ,0) (414141)(2 ≥+=+-+-c a ac a c a c a c 三式相加,可得 01 11212121≥+-+-+-++a c c b b a c b a ∴a c c b b a c b a ++ +++≥++111212121 二、综合法 综合法是依据题设条件与基本不等式的性质等,运用不等式的变换,从已知条件推出所要证明的结论。 2、a 、b 、),0(∞+∈c ,1=++c b a ,求证: 31222≥ ++c b a 证:2 222)(1)(3c b a c b a ++=≥++?∴ 2222)()(3c b a c b a ++-++0 )()()(222222222222≥-+-+-=---++=a c c b b a ca bc ab c b a 3、设a 、b 、c 是互不相等的正数,求证:)(4 4 4 c b a abc c b a ++>++ 证 : ∵ 2 2442b a b a >+ 2 2442c b c b >+ 2 2442a c a c >+∴ 222222444a c c b b a c b a ++>++ ∵ c ab c b b a c b b a 2 2222222222=?>+同理:a bc a c c b 222222>+ b ca b a a c 222222>+ ∴ )(222222c b a abc a c c b b a ++>++ 4、 知a,b,c R ∈,求证: )(22 2 2 2 2 2 c b a a c c b b a ++≥++ ++ + 证明:∵ ) (2 2 2 2 2 2 2 2)(22b a b a b a b a ab ab +≥++≥+∴≥+

微积分证明不等式方法

用微积分理论证明不等式的方法 江苏省扬中高级中学 卞国文 212200 高等数学中所涉及到的不等式,大致可分为两种:函数不等式(含变量)和数值不等式(不含变量).对于前者,一般可直接或稍加变形构造一函数,从而可通过研究所构造函数的性质,进而证明不等式;对于后者,我们也可根据数值不等式的特点,巧妙的构造辅助函数,从而将数值不等式问题转化为函数的问题,研究方法正好与前者相似. 微积分是高等数学中的重要内容,以它为工具能较好的研究函数的形态,有些常规方法难于证明的不等式,若能根据不等式的结构特征,巧妙的构造函数,将不等式问题转化为函数的问题,利用微积分理论研究函数的性质,应用函数的性质证明不等式. 一、用导数定义证明不等式法 1.证明方法根据-导数定义 导数定义:设函数)(x f y =在点0x 的某个邻域内有定义,若极限 x y x x x x x x f x f ??→?→=--lim lim 0 00)()(0 存在,则称函数)(x f 在0x 可导,称这极限为函数)(x f y =在点0x 的导数,记作)(0x f y '=. 2.证明方法: (1)找出0x ,使得)(0x f y '=恰为结论中不等式的一边;(2)利用导数的定义并结合已知条件去研究. 3.例 例1:设函数nx a x a x a x f n sin 2sin sin )(21+++= ,其中n a a a ,,21都为实数, n 为正整数,已知对于一切实数x ,有x x f sin )(≤,试证:1221≤+++n na a a . 分析:问题中的条件与结论不属于同一类型的函数,如果能找出它们之间的关系,无疑能帮助解决此题,可以看出:)0(221f na a a n '=+++ .于是问题可以转化为证明 1)0(≤'f . 证 明 : 因 nx na x a x a x f n cos 2cos 2cos )(21+++=' .则n na a a f +++=' 212)0(. 利 用 导 数 的 定 义 得 :

不等式典型例题之基本不等式的证明

5.3、不等式典型例题之基本不等式的证明——(6例题) 雪慕冰 一、知识导学 1.比较法:比较法是证明不等式的最基本、最重要的方法之一,它是两个实数大小顺序和运算性质的直接应用,比较法可分为差值比较法(简称为求差法)和商值比较法(简称为求商法). (1)差值比较法的理论依据是不等式的基本性质:“a-b≥0a≥b;a-b≤0a≤b”.其一般步骤为:①作差:考察不等式左右两边构成的差式,将其看作一个整体;②变形:把不等式两边的差进行变形,或变形为一个常数,或变形为若干个因式的积,或变形为一个或几个平方的和等等,其中变形是求差法的关键,配方和因式分解是经常使用的变形手段;③判断:根据已知条件与上述变形结果,判断不等式两边差的正负号,最后肯定所求证不等式成立的结论.应用范围:当被证的不等式两端是多项式、分式或对数式时一般使用差值比较法. (2)商值比较法的理论依据是:“若a,b∈R + ,a/b≥1a≥b;a/b≤1a≤b”.其一般步骤为:①作商:将左右两端作商;②变形:化简商式到最简形式;③判断商与1的大小关系,就是判定商大于1或小于1.应用范围:当被证的不等式两端含有幂、指数式时,一般使用商值比较法. 2.综合法:利用已知事实(已知条件、重要不等式或已证明的不等式)作为基础,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后推出所要证明的不等式,其特点和思路是“由因导果”,从“已知”看“需知”,逐步推出“结论”.即从已知A逐步推演不等式成立的必要条件从而得出结论B. 3.分析法:是指从需证的不等式出发,分析这个不等式成立的充分条件,进而转化为判定那个条件是否具备,其特点和思路是“执果索因”,即从“未知”看“需知”,逐步靠拢“已知”.用分析法证明书写的模式是:为了证明命题B成立,只需证明命题B1为真,从而有…,这只需证明B2为真,从而又有…,……这只需证明A为真,而已知A为真,故B必为真.这种证题模式告诉我们,分析法证题是步步寻求上一步成立的充分条件. 4.反证法:有些不等式的证明,从正面证不好说清楚,可以从正难则反的角度考虑,即要证明不等式A>B,先假设A≤B,由题设及其它性质,推出矛盾,从而肯定A>B.凡涉及到的证明不等式为否定命题、惟一性命题或含有“至多”、“至少”、“不存在”、“不可能”等词语时,可以考虑用反证法. 5.换元法:换元法是对一些结构比较复杂,变量较多,变量之间的关系不甚明了的不等式可引入一个或多个变量进行代换,以便简化原有的结构或实现某种转化与变通,给证明带来新????

浅谈中学几种常用证明不等式的方法

成绩: 江西科技师范大学 毕业论文 题目:浅谈中学几种常用证明不等式的方法 (外文):On the method commonly used in Middle School to prove inequality 院(系):数学与计算机科学学院 专业:数学与应用数学 学生姓名:吴丹 学号:20091741 指导教师:樊陈 2013年3月20日

目录 1引言 (1) 2放缩法证明不等式 (1) 2.1放缩法 (1) 2.2(改变分子分母)放缩法 (1) 2.3拆补放缩法 (2) 2.4编组放缩法 (3) 2.5寻找“中介量”放缩法 (4) 3反正法证明不等式 (4) 3.1反证法定义 (4) 3.2反证法步骤 (5) 4.换元法证明不等式 (6) 4.1利用对称性换元,化繁为简 (6) 4.2三角换元法 (7) 4.3和差换元法 (8) 4.4分式换元法 (8) 5.综合法证明不等式 (9) 5.1综合法证明不等式的依据 (9) 5.2用综合法证明不等式的应用 (9) 5.3综合法与比较法的内在联系 (10) 6.分析法 (11) 6.1分析法的定义 (11) 6.2分析法证明不等式的方法与步骤 (11) 6.3分析法证明不等式的应用 (11) 7.构造法证明不等式 (13) 7.1构造函数模型 (13) 7.2构造数列模型 (14) 8.数学归纳法证明不等式 (15) 8.1分析综合法 (16) 8.2放缩法 (16) 8.3递推法 (17) 9.判别式法证明不等式 (17) 10.导数法证明不等式 (18) 10.1利用函数的单调性证明不等式 (18) 9.2利用极值(或最值) (20) 11比较法证明不等式 (20) 11.1差值比较法 (20) 11.2商值比较法 (21) 11.3比较法的应用范围 (22) 12结束语: (22) 参考文献 (22)

高中数学不等式的几种常见证明方法(县二等奖)

高中数学不等式的几种常见证明方法 摘 要:不等式是中学数学的重要知识,考察学生对不等式理论熟练掌握的程度也是衡量学生数学水平的重要方面,同时,不等式也是高中数学的基础,因此,在每年的数学高考题中,有关不等式的相关题目都有所出现,本文介绍了几种不等式的证明方法,并举例进一步加强对各种不等式的理解. 关键字:不等式;数学归纳法;均值;柯西不等式 一、比较法 所谓比较法,就是通过两个实数a 与b 的差或商的符号(范围)确定a 与b 大小关系的方法,即通过“0a b ->,0a b -=,0a b -<;或1a b >,1a b =,1a b <”来确定a ,b 大小关系的方法,前者为作差法,后者为作商法. 例 1 设,x y R ∈,求证:224224x y x y ++≥+. 证明: 224224x y x y ++-- =2221441x x y y -++-+ =22(1)(21)x y -+- 因为 2(1)0x -≥, 2(21)0y -≥ ∴ 22(1)(21)0x y -+-≥ ∴2242240x y x y ++--≥ ∴224224x y x y ++≥+ 例 2 已知:a >b >c >0, 求证:222a b c a b c ??>b c a c b c a b c +++??. 证明:222a b c b c a c b c a b c a b c +++????=222a b c b a c c b c a b c ------?? >222a b c b a c c b c c c c ------??

=0c =1 222a b c b c a c b c a b c a b c +++??∴??>1 ∴222a b c a b c ??>b c a c b c a b c +++?? 二、分析法 分析法:从求证的不等式出发,分析这个不等式成立的充分条件,把证明这个不等式的问题转化为证明这些条件是否具备的问题,如果能够肯定这些条件都已具备,那么就可以判定所证的不等式成立. 例 3 求证3< 证明: 960+>> 5456<成立运用分析法时,需积累一些解题经验,总结一些常规思路,这样可以克服无目的的乱写,从而加强针对性,较快地探明解题的途径. 三、综合法 从已知或证明过的不等式出发,根据不等式的性质及公理推导出欲证的不等式,这种证明方法叫做综合法. 例 4 已知,a b R +∈,1a b +=,求证:221125()()2 a b a b +++≥ 证明:∵ 1a b += ∴ 1=22222()22()a b a b ab a b +=++≤+ ∴ 221 2 a b +≥

证明不等式的种方法

证明不等式的13种方法 咸阳师范学院基础教育课程研究中心安振平 不等式证明无论在高考、竞赛,还是其它类型的考试里,出现频率都是比较高,证明难度也是比较大的.因此,有必要总结证明不等式的基本方法,为读者提供学习时的参考资料.笔者选题的标准是题目优美、简明,其证明方法基本并兼顾巧妙. 1.排序方法 对问题的里的变量不妨排出大小顺序,有时便于获得不等式的证明. 例1已知,,0a b c ≥,且1a b c ++=,求证: ()22229 1. a b c abc +++≥2.增量方法 在变量之间增设一个增量,通过增量换元的方法,便于问题的变形和处理.例2设,,a b c R + ∈,试证:2222 a b c a b c a b b c c a ++++≥+++.3.齐次化法 利用题设条件,或者其它变形手段,把原不等式转换为齐次不等式. 例3设,,0,1x y z x y z ≥++=,求证: 2222222221.16 x y y z z x x y z +++≤4.切线方法 通过研究函数在特殊点处的切线,利用切线段代替曲线段,来建立局部不等式.例4已知正数,,x y z 满足3x y z ++=,求证: 323235 x y +≤++.. 5.调整方法 局部固定,逐步调整,探究多元最值,便能获得不等式的证明. 例5已知,,a b c 为非负实数,且1a b c ++=,求证:13.4 ab bc ca abc ++-≤ 6.抽屉原理

在桌上有3个苹果,要把这3个苹果放到2个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面放2个苹果.这一简单的现象,就是人们所说的“抽屉原理”.巧用抽屉原理,证明某些不等式,能起到比较神奇的效果. 例6(《数学通报》2010年9期1872题)证明:在任意13个实数中,一定能找到两个实数,x y ,使得0.3.10.3x y x ->+7.坐标方法 构造点坐标,应用解析几何的知识和方法证明不等式. 例7已知a b c R ∈、、,a 、b 不全为零,求证: ()()()22 22222 22.a b ac a b bc a b c a b +++++≥+++8.复数方法 构造复数,应用复数模的性质,可以快速证明一些无理不等式. 例8(数学问题1613,2006,5)设,,,0,a b c R λ+ ∈≥求证:9.向量方法 构造向量,把不等式的证明纳入到向量的知识系统当中去. 例9已知正数,,a b c 满足1a b c ++=,求证: 4 ≤. 10.放缩方法 不等式的证明,关键在于恒等变形过程中的有效放大、或者缩小技巧,放和缩应当恰到好处. 例10已知数列{}n a 中,首项132 a = ,且对任意*1,n n N >∈,均有 11n n a a +=++()211332.42 n n n a -+<

高等数学中不等式的证明方法

高等数学中不等式的证明方法 摘要:各种不等式就是各种形式的数量和变量之间的相互比较关系或制约关系,因此, 不等式很自然地成为分析数学与离散数学诸分支学科中极为重要的工具,而且早已成为 专门的研究对象。高等数学中存在大量的不等式证明,本文主要介绍不等式证明的几种 方法,运用四种通法,利用导数研究函数的单调性,极值或最值以及积分中值定理来解 决不等式证明的问题。我们可以通过这些方法解决有关的问题,培养我们的创新精神, 创新思维,使一些较难的题目简单化、方便化。 关键词:高等数学;不等式;极值;单调性;积分中值定理 Abstract: A variety of inequality is the various forms of high-volume and variable comparison between the relationship or constraints. Therefore, Inequality is natural to be a very important tool in Analysis of discrete mathematics and various bran(https://www.docsj.com/doc/012483419.html, 毕业论文参考网原创论文)ches of mathematics .It has been a special study.Today there are a large number of inequalities in higher mathematics .This paper introduces the following methods about Proof of Inequality ,such as the using of several general methods, researching monotone function by derivative, using extreme or the most value and Integral Mean Value Theorem . We can resolve the problems identified through these methods. It can bring up our innovative spirit and thinking and some difficult topics may be more easy and Convenient , Keyword: Higher Mathematics; Inequality; Extreme value Monotonicity; Integral Mean Value Theorem 文章来自:全刊杂志赏析网(https://www.docsj.com/doc/012483419.html,) 原文地址: https://www.docsj.com/doc/012483419.html,/article/16be7113-df3a-4524-a9c3-4ba707524e72.htm 【摘要】不等式证明是高等数学学习中的一个重要内容,通过解答考研数学中出现的 不等式试题,对一些常用的不等式证明方法进行总结。 【关键词】不等式;中值定理;泰勒公式;辅助函数;柯西 施瓦茨;凹凸性 在高等数学的学习过程当中,一个重点和难点就是不等式的证明,大多数学生在遇到不 等式证明问题不知到如何下手,实际上在许多不等式问题都存在一题多解,针对不等式的证 明,以考研试题为例,总结了几种证明不等式的方法,即中值定理法、辅助函数法、泰勒公

不等式证明的常用基本方法

证明不等式的基本方法 导学目标:1.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.2.会用比较法、综合法、分析法、反证法、放缩法证明比较简单的不等式. [自主梳理] 1.三个正数的算术—几何平均不等式:如果a ,b ,c>0,那么_________________________,当且仅当a =b =c 时等号成立. 2.基本不等式(基本不等式的推广):对于n 个正数a 1,a 2,…,a n ,它们的算术平均不小于它们的几何平均,即a 1+a 2+…+a n n ≥n a 1·a 2·…·a n ,当且仅当__________________时等号成立. 3.证明不等式的常用五种方法 (1)比较法:比较法是证明不等式最基本的方法,具体有作差比较和作商比较两种,其基本思想是______与0比较大小或______与1比较大小. (2)综合法:从已知条件出发,利用定义、______、______、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫综合法.也叫顺推证法或由因导果法. (3)分析法:从要证明的结论出发,逐步寻求使它成立的________条件,直至所需条件为已知条件或一个明显成立的事实(定义 、公理或已证明的定理、性质等),从而得出要证的命题成立为止,这种证明方法叫分析法.也叫逆推证法或执果索因法. (4)反证法 ①反证法的定义 先假设要证的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不正确,从而证明原命题成立,我们把它称为反证法. ②反证法的特点 先假设原命题不成立,再在正确的推理下得出矛盾,这个矛盾可以是与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实等矛盾. (5)放缩法 ①定义:证明不等式时,通过把不等式中的某些部分的值________或________,简化不等式,从而达到证明的目的,我们把这种方法称为放缩法. ②思路:分析观察证明式的特点,适当放大或缩小是证题关键. 题型一 用比差法与比商法证明不等式 1.设t =a +2b ,s =a +b 2+1,则s 与t 的大小关系是( A ) ≥t >t ≤t 0;②a 2+b 2≥2(a -b-1);③a 2+3ab>2b 2;④,其中所 有恒成立的不等式序号是 ② . ②【解析】①a=0时不成立;②∵a 2+b 2-2(a-b-1)=(a-1)2+(b+1)2≥0,成立;③a=b=0时不成立;④a=2,b=1时不成立,故恒成立的只有②.

高中基本不等式及其延伸不等式总结及其证明

1、22 2a b ab +≥。 证明:()2 22220 202a b a b ab a b ab -≥∴+-≥∴+≥ 基本变形: a b +≥ 2 a b +≤,用来去根号很好 2a ≤ 22222a b a b ++??≥ ??? )a b ≥ +,用来去根号很好。 2a b b a +≥ 2 2b a b a +≥ ()22 a b ab +≤ 推论1: 222a b c ab bc ac ++≥++ 证明: ()()()() 2222222220 22()a b a c b c a b c ab ac bc a b c ab bc ac -+-+-≥∴++≥++∴++≥++ 推论的变形: ()22223 a b c a b c ++++≥ 推论2:

a b c ++≥推论的变形: 3 a b c ++≥3 3a b c abc ++??≤ ??? ,当遇到三个因子相乘时用很好。比如 ()()()()3827 a b c a c b c a b +++++≤ 推论3: 123n a a a a +++≥ 柯西不等式: ()()()2 22222222123123112233n n n n a a a a b b b b a b a b a b a b ++++++++≥++++ 证明:构造函数 ()()()()()2222112233n n f x a x b a x b a x b a x b =-+-+-++- 即 ()()()()2222222221231122331232n n n n f x a a a a x a b a b a b a b x b b b b =++++-+++++++++ 易知0?≤ 所以()()()22212n a a + + 推论: ()()()2 222212121122a a b b a b a b ++≥+ 调和平均数和平方平均数: 0,22a b ze ab a b a b a b <≤+≤≤≤≤≤+

证明不等式的几种常用方法

证明不等式的几种常用方法 证明不等式除了教材中介绍的三种常用方法,即比较法、综合法和分析法外,在不等式证明中,不仅要用比较法、综合法和分析法,根据有些不等式的结构,恰当地运用反证法、换元法或放缩法还可以化难为易.下面几种方法在证明不等式时也经常使用. 一、反证法 如果从正面直接证明,有些问题确实相当困难,容易陷入多个元素的重围之中,而难以自拔,此时可考虑用间接法予以证明,反证法就是间接法的一种.这就是最“没办法”的时候往往又“最有办法”,所谓的“正难则反”就是这个道理. 反证法是利用互为逆否的命题具有等价性来进行证明的,在使用反证法时,必须在假设中罗列出各种与原命题相异的结论,缺少任何一种可能,则反证法都是不完全的. 用反证法证题的实质就是从否定结论入手,经过一系列的逻辑推理,导出矛盾,从而说明原结论正确.例如要证明不等式A>B,先假设A≤B,然后根据题设及不等式的性质,推出矛盾,从而否定假设,即A≤B不成立,而肯定A>B成立.对于要证明的结论中含有“至多”、“至少”、“均是”、“不都”、“任何”、“唯一”等特征字眼的不等式,若正面难以找到解题的突破口,可转换视角,用反证法往往立见奇效. 例1 设a、b、c、d均为正数,求证:下列三个不等式:①a+b<c+d; ②(a+b)(c+d)<ab+cd;③(a+b)cd<ab(c+d)中至少有一个不正确. 反证法:假设不等式①、②、③都成立,因为a、b、c、d都是正数,所以

不等式①与不等式②相乘,得:(a +b)2<ab +cd ,④ 由不等式③得(a +b)cd <ab(c +d)≤( 2 b a +)2 ·(c +d), ∵a +b >0,∴4cd <(a +b)(c +d), 综合不等式②,得4cd <ab +cd , ∴3cd <ab ,即cd <31 ab . 由不等式④,得(a +b)2<ab +cd < 34ab ,即a 2+b 2<-3 2 ab ,显然矛盾. ∴不等式①、②、③中至少有一个不正确. 例2 已知a +b +c >0,ab +bc +ca >0,abc >0,求证:a >0,b >0, c >0. 证明:反证法 由abc >0知a ≠0,假设a <0,则bc <0, 又∵a +b +c >0,∴b +c >-a >0,即a(b +c)<0, 从而ab +bc +ca = a(b +c)+bc <0,与已知矛盾. ∴假设不成立,从而a >0, 同理可证b >0,c >0. 例3 若p >0,q >0,p 3+q 3= 2,求证:p +q ≤2. 证明:反证法 假设p +q >2,则(p +q)3>8,即p 3+q 3+3pq (p +q)>8, ∵p 3+q 3= 2,∴pq (p +q)>2. 故pq (p +q)>2 = p 3+q 3= (p +q)( p 2-pq +q 2), 又p >0,q >0 ? p +q >0, ∴pq >p 2-pq +q 2,即(p -q)2 <0,矛盾.

高等数学不等式的证明试题及答案

微积分中不等式的证明方法讨论 不等式的证明题经常出现在考研题中,虽然题目各种各样,但方法无非以下几种: 1.利用函数的单调性证明不等式 若在),(b a 上总有0)(>'x f ,则)(x f 在),(b a 单调增加;若在),(b a 上总有0)(<'x f ,则)(x f 在),(b a 单调减少。 注:考研题的难点是,构造恰当的辅助函数,有时需要两次利用函数的单调性证明不等式,有时需要对),(b a 进行分割,分别在小区间上讨论。 例1:证明:当0a b π<<<时, sin 2cos sin 2cos b b b b a a a a ππ++>++. 【分析】 利用“参数变易法”构造辅助函数,再利用函数的单调性证明. 【详解】 令()sin 2cos sin 2cos ,0f x x x x x a a a a a x b πππ=++---<≤≤<, 则 ()sin cos 2sin cos sin f x x x x x x x x ππ'=+-+=-+,且()0f π'=. 又 ()cos sin cos sin 0f x x x x x x x ''=--=-<,(0,s i n 0x x x π<<>时), 故当0a x b π<≤≤<时,()f x '单调减少,即()()0f x f π''>=,则()f x 单调增加,于是()()0f b f a >=,即 sin 2cos sin 2cos b b b b a a a a ππ++>++. 【评注】 证明数值不等式一般需构造辅助函数,辅助函数一般通过移项,使不等式一端为“0”,另一端即为所作辅助函数()f x ,然后求导验证()f x 的增减性,并求出区间端点的函数值(或极限值)。 例2:设2e b a e <<<, 证明)(4ln ln 2 22a b e a b ->-. 【分析】即证a e a b e b 2 222 4ln 4ln ->- 证明: 设x e x x 224ln )(-=?,则 24ln 2)(e x x x -='?, 2ln 12)(x x x -=''?, 所以当x>e 时,,0)(<''x ? 故)(x ?'单调减少,从而当2 e x e <<时,

浅谈不等式的证明

浅谈不等式的证明 不等式问题是高中数学的重要内容之一,考察学生对不等式理论熟练掌握的程度也是衡量学生数学水平的重要方面,同时,不等式也是高中数学的基础,因此,在每年的数学高考题中,有关不等式的相关题目占有一定的比例,命题主要涉及解不等式、不等式的证明、不等式的应用这三方面,现将不等式的证明进行研究。 证明不等式有利于提高学生的分析与综合能力,证明不等式没有固定的程序,一个不等式的证法往往不止一种,证明过程往往是几种方法的综合运用,但无论是哪种方法,都离不开不等式的基本性质,另外在教材中提到了平均值不等式、排序不等式、三角不等式,如果能熟记并能运用的话,在证明不等式的过程中会有很大的帮助。下面将详细列举证明不等式的方法。 一、比较法 比较法是证明不等式的一种最基本也是最重要的方法,主要有作差比较和作商比较两种形式。 (1)作差比较法的步骤一般为:①作差式②差式变形③判断差式的正负④下结论;在这些步骤中,最难的就是差式变形,常用到的有配方法、通分法、因式分解法等等。 (2)作商比较法的步骤为:①作商式②商式变形③判断商式的值是大于1、小于1还是等于1④下结论。 (3)当不等式两边为多项式、分式或对数形式时,往往选择作差法;当不等式两边为指数时,常采用作商法。下面将列举例子进行

分析,以进一步加深对比较法的认识。 例1 若40πβα< <<,则ββααcos sin cos sin +<+ 证明 β βααβαβαβαβαβαβαπβαβαππβαβαβαβαβαβαβαβαβαβαβ βααcos sin cos sin 02 sin 2cos 2sin 22 sin 222cos ,02sin 420,02840)2 sin 2(cos 2sin 22 cos 2sin 22sin 2cos 2) cos (cos )sin (sin cos sin cos sin +<+<+-+-+>>+<-<+<<-<-<<<+-+-=-+--+=-+-=+-+即)(所以得于是有,所以因为 二、放缩法 放缩法是证明不等式所特有的方法,把要证的不等式中的一部分量进行放大或缩小,形成新的不等式,而这个新的不等式必须是比原不等式更容易证明的,同时,由新的不等式成立可以推出原不等式成立。另外,放缩目标必须明确,从实际出发,从原不等式过渡到新的不等式是证明的关键。下面就实际例子进行分析。 例2 若,求证:且3,0,,≥++>zx yz xy z y x

证明基本不等式的方法

2.2 证明不等式的基本方法——分析法与综合法 ●教学目标:1、理解综合法与分析法证明不等式的原理和思维特点. 2、理解综合法与分析法的实质,熟练掌握分析法证明不等式的方法与步骤. ●教学重点:综合法与分析法证明不等式的方法与步骤 ●教学难点:综合法与分析法证明不等式基本原理的理 ●教学过程: 一、复习引入: 1、复习比较法证明不等式的依据和步骤? 2、今天学习证明不等式的基本方法——分析法与综合法 二、讲授新课: 1、综合法:一般地,从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫做综合法综合法又叫顺推证法或由因导果法。 用综合法证明不等式的逻辑关系是:例1、已知a,b,c是不全相等的正数,求证: . 分析:观察题目,不等式左边含有“a2+b2”的形式,我们可以创设运用基本不等式:a2+b2≥2ab;还可以这样思考:不等式左边出现有三次因式:a2b,b2c,c2a,ab2,bc2,ca2的“和”,右边有三正数a,b,c的“积”,我们可以创设运用重要不等式:a3+b3+c3≥3abc.(教师引导学生,完成证明) 解:∵a>0,b2+c2≥2bc∴由不等式的性质定理4,得a(b2+c2)≥2abc.① 同理b(c2+a2)≥2abc,②c(a2+b2)≥2abc.③ 因为a,b,c为不全相等的正数,所以以上三式不能全取“=”号,从而①,②,③三式也不能全取“=”号. 由不等式的性质定理3的推论,①,②,③三式相加得:a(b2+c2)+b(c2+a2)+c(a2+b2)>6abc. 点评:(1)综合法的思维特点是:由因导果,即由已知条件出发,利用已知的数学定理、性质和公式,推出结论的一种证明方法。基本不等式以及一些已经得证的不等式往往与待证的不等式有着这样或那样的联系,作由此及彼的联想往往能启发我们证明的方向.尝试时贵在联想,浮想联翩,思潮如涌。 (2)在利用综合法进行不等式证明时,要善于直接运用或创设条件运用基本不等式,其中拆项、并项、分解、组合是变形的重要技巧. 变式训练:已知a,b,c是不全相等的正数,求证:例2、已知且,求证:分析:观察要证明的结论,左边是个因式的乘积,右边是2的次方,再结合,发现如果能将左边转化为的乘积,问题就能得到解决。 2、分析法:从要证的结论出发,逐步寻求使它成立的充分条件,直至所需条件为已知条件或一个明显成立的事实(定义、公理或已证明的定理、性质等),从而得出要证的命题成立,这种证明方法叫做分析法这是一种执果索因的思考和证明方法。 ①用分析法证明不等式的逻辑关系是:②分析法论证“若A则B”这个命题的模式是:为了证明命题B为真,这只需要证明命题B1为真,从而有……这只需要证明命题B2为真,从而又有……这只需要证明命题A为真,而已知A为真,故B必真。 例3.求证:分析:观察结构特点,可以利用分析法。 点评:①分析法的思维特点是:执果索因.对于思路不明显,感到无从下手的问题宜用分析法探究证明途径.另外,不等式的基本性质告诉我们可以对不等式做这样或那样的变形,分析时贵在变形,不通思变,变则通! ②证明某些含有根式的不等式时,用综合法比较困难,常用分析法. ③在证明不等式时,分析法占有重要的位置.有时我们常用分析法探索证明的途径,然后用综

用微积分理论证明不等式的方法

用微积分理论证明不等式的方法 高等数学中所涉及到的不等式,大致可分为两种:函数不等式(含变量)和数值不等式(不含变量).对于前者,一般可直接或稍加变形构造一函数,从而可通过研究所构造函数的性质,进而证明不等式;对于后者,我们也可根据数值不等式的特点,巧妙的构造辅助函数,从而将数值不等式问题转化为函数的问题,研究方法正好与前者相似. 微积分是高等数学中的重要内容,以它为工具能较好的研究函数的形态,有些常规方法难于证明的不等式,若能根据不等式的结构特征,巧妙的构造函数,将不等式问题转化为函数的问题,利用微积分理论研究函数的性质,应用函数的性质证明不等式. 一、用导数定义证明不等式法 1.证明方法根据-导数定义 导数定义:设函数)(x f y =在点。0x 的某个邻域内有定义,若极限 x y x x x x x x f x f ??→?→=--lim lim 0) ()(0 存在,则称函数)(x f 在0x 可导,称这极限为函数)(x f y =在点0 x 的导数,记作)(0x f y '=. 2.证明方法: (1)找出0x ,使得)(0x f y '=恰为结论中不等式的一边;(2)利用导数的定义并结合已知条件去研究. 3.例 例1:设函数nx a x a x a x f n sin 2sin sin )(21+++= ,其中n a a a ,,21都为实数, n 为正整数,已知对于一切实数x ,有x x f sin )(≤,试证:1221≤+++n na a a . 证 明 : 因 nx na x a x a x f n cos 2cos 2cos )(21+++=' .则 n na a a f +++=' 212)0(. 得:x x f x x f x f x f f x x x ) ()(lim 0)0()()0(lim lim 00 →→→==--= '.由于x x f sin )(≤. 所以1sin )0(lim =≤ '→x x f x .即1221≤+++n na a a . 4.适用范围 用导数定义证明不等式,此方法得适用范围不广,我们应仔细观察问题中的条件与结论之间的关系.有些不等式符合导数的定义,因此可利用导数的定义将其形式转化,以达到化繁为简的目的. 二.用可导函数的单调性证明不等式法

高中数学基本不等式证明

不等式证明基本方法 例1 :求证:221a b a b ab ++≥+- 分析:比较法证明不等式是不等式证明的最基本的方法,常用作差法和作商法,此题用作差法较为简便。 证明:221()a b a b ab ++-+- 2221[()(1)(1)]02 a b a b =-+-+-≥ 评注:1.比较法之一(作差法)步骤:作差——变形——判断与0的关系——结论 2.作差后的变形常用方法有因式分解、配方、通分、有理化等,应注意结合式子的形式,适当选 用。 例2:设c b a >>,求证:b a a c c b ab ca bc 2 22222++<++ 分析:从不等式两边形式看,作差后可进行因式分解。 证明:)(222222b a a c c b ab ca bc ++-++ =)()()(a b ab c a ca b c bc -+-+- =)()]()[()(a b ab c b b a ca b c bc -+-+-+- =))()((a c c b b a --- c b a >>Θ,则,0,0,0<->->-a c c b b a ∴0))()((<---a c c b b a 故原不等式成立 评注:三元因式分解因式,可以排列成一个元的降幂形式: =++-++)(222222b a a c c b ab ca bc )())(()(2a b ab b a b a c a b c -++-+-,这样容易发现规律。 例3 :已知,,a b R +∈求证:11()()2()n n n n a b a b a b ++++≤+ 证明:11()()2()n n n n a b a b a b ++++-+ 11n n n n a b ab a b ++=+-- ()()n n a b a b a b =-+- ()()n n a b b a =--

浅谈中学数学不等式的证明方法

本科生毕业论文 学院数学与计算机科学学院 专业数学与应用数学 届别 2015 届 题目浅谈中学数学不等式的证明方法 学生姓名徐亚娟 学号 201111401138 指导教师吴万勤 教务处制

云南民族大学毕业论文(设计)原创性声明 本人郑重声明:所呈交的毕业论文(设计),是本人在指导教师的指导下进行研究工作所取得的成果。除论文中已经注明引用的内容外,本论文没有抄袭、剽窃他人已经发表的研究成果。本声明的法律结果由本人承担。 毕业论文(设计)作者签名: 日期:年月日 …………………………………………………………………………… 关于毕业论文(设计)使用授权的说明 本人完全了解云南民族大学有关保留、使用毕业论文(设计)的规定,即:学校有权保留、送交论文的复印件,允许论文被查阅,学校可以公布论文(设计)的全部或部分内容,可以采用影印或其他复制手段保存论文(设计)。 (保密论文在解密后应遵守) 指导教师签名:论文(设计)作者签名: 日期:年月日

目录

摘要 (4) 引言 (6) 1、预备知识 (6) 1.1不等式的概念 (6) 1.2不等式的性质 (6) 1.3基本不等式 (7) 1.4几个重要不等式 (7) 1.4.1柯西不等式 (7) 1.4.2伯努利不等式 (7) 2、证明不等式的常用方法 (7) 2.1比较法 (8) 2.1.1求差法 (8) 2.1.2求商法 (8) 2.1.3过度比较法 (8) 2.2分析法 (9) 2.3综合法 (9) 2.4缩放法 (10) 2.4.1放缩法的常见技巧 (10) 2.5反推法 (10) 2.6数学归纳法 (11) 2.7反证法 (11) 2.7.1反证法的基本思路 (11) 2.7.2反证法的步骤 (11) 2.8判别式法 (12) 2.9等式法 (12) 2.10中值定理法 (12) 2.11排序法 (12) 2.12分解法 (13) 2.13函数极值法 (13) 3 .利用构造法证明不等式 (13) 3.1构造函数模型 (13) 3.1.1构造一次函数模型 (14) 3.1.2构造二次函数模型 (14) 3.1.3构造单调函数证明不等式 (14) 3.2构造复数模型 (14) 3.3构造方程法 (15) 4.换元法证明不等式 (15) 4.1.三角换元法 (15) 4.2均值换元 (16)

不等式的证明方法习题精选精讲

不等式性质的应用 不等式的性质是解不等式、证明不等式的基础和依据。教材中列举了不等式的性质,由这些性质是可以继续推导出其它有关性质。教材中所列举的性质是最基本、最重要的,对此,不仅要掌握性质的内容,还要掌握性质的证明方法,理解掌握性质成立的条件,把握性质之间的关联。只有理解好,才能牢固记忆及正确运用。 1.不等式性质成立的条件 运用不等式的基本性质解答不等式问题,要注意不等式成立的条件,否则将会出现一些错误。对表达不等式性质的各不等式,要注意“箭头”是单向的还是双向的,也就是说每条性质是否具有可逆性。 例1:若0< B .a b a 11>- C .||||b a > D .22b a > 解:∵0<->-b a 。 由b a -< -11,b a 11>,∴(A )成立。 由0<< b a ,||||b a >,∴(C )成立。 由0>->-b a ,2 2 )()(b a ->-,2 2b a >,∴(D )成立。 ∵0<->-a b a , )(11b a a --<-,b a a ->11,∴(B )不成立。 故应选B 。 例2:判断下列命题是否正确,并说明理由。 (1)若0<c ,在2 2c b c a >两边同乘以2 c ,不等式方向不变。∴b a >。 (3)错误。b a b a 1 1,成立条件是0>ab 。 (4)错误。b a >,bd ac d c >?>,当a ,b ,c ,d 均为正数时成立。 2.不等式性质在不等式等价问题中的应用 例3:下列不等式中不等价的是( ) (1)2232 >-+x x 与0432 >-+x x (2)13 8112++ >++ x x x 与82>x (3)35 7354-+>-+x x x 与74>x (4) 023 >-+x x 与0)2)(3(>-+x x A .(2) B .(3) C .(4) D .(2)(3) 解:(1)0432232 2 >-+?>-+x x x x 。 (2)482>?>x x ,44,11 3 8112>?>-≠?++>++ x x x x x x 。

相关文档 最新文档