文档视界 最新最全的文档下载
当前位置:文档视界 › 风力发电机

风力发电机

风力发电机
风力发电机

风力发电机叶片及结构的改变

一、 背景

随着能源与环境的压力增加,清洁可再生的新能源近年受到普遍重视。在各类绿色能源中,风能是前景潜力巨大的可再生能源之一。正因为如此近年来,新兴市场的风电发展迅速。在国家政策支持和能源供应紧张的背景下,中国的风电特别是风电设备制造业也迅速崛起,已经成为全球风电最为活跃的场所。风能作为一种清洁的可再生能源,越来越受到世界各国的重视。

图一 图二

二、 出现的问题

虽然风力发电也号称是清洁能源,能起到很好的环保作用,但是随着越来越多的大型风电场的建立,一些由风力发电机引发的问题也凸显出来。比如,水平轴风轮的转速比较高,在高速下,叶片切割气流将产生很大的气动噪音。其中,风力发电机在风大的时候,需要停转,以免叶片高速旋转离心力过大把叶片甩断。但是,如果在大风时也能够运转,就能多发电。

三、问题的解决

1) 定义技术冲突

一方面,现在的风力发电机为了防止因为叶片旋转得太快,通过刹

车装置使叶片停止转动。但是,由于长期的摩擦,风力发电机的刹车系统会出现故障,叶片出现失控,就会继续快速旋转,严重会导致叶片抛出,造成风机灾难性事故。另一方面,就算在大风时螺旋桨停止运行,也可能因为风大的原因,螺旋桨发生折断;也因为停止运行的原因,发电机将停止工作,风电机的作用没有得到充分的发挥,间接浪费资源,不利于经济效益的提高。

希望改善的参数:强度

导致恶化的参数:运动物体的重量

2

查询技术冲突解决矩阵,根据14号强度和1号运动物体的重量技术参数,得到以下四条发明原理:

1号发明原理——分割

8号发明原理——重量补偿

40号发明原理——复合材料

15号发明原理——动态特性

3)应用发明原理

方案一

根据40号发明原理。大型风力发电机叶片一般用玻璃钢手工制作。

叶片旋转得太快导致离心力大,并且叶片强度不够,很容易使叶片被抛出。可采用高强度的复合材料。经考虑可以采用碳纤维材料,碳纤维材料是一种力学性能优异的新材料,它的比重不到钢的1/4,其中碳纤维树脂复合材料抗拉强度一般3500mpa以上,是钢的7—9倍,比玻璃钢的强度高得多,密度比玻璃钢低,比性能高,无蠕变,非氧化环境下耐超高温,耐疲劳性好,比热及导电性介于非金属和金属之间,热膨胀系数小且具有各向异性,耐腐蚀性好。风力发电机所处的环境比较恶劣,而这种材料正好可以满足这方面的需要。

方案二

1、根据1号发明原理和15号发明原理。传统的叶片和轮毂是固定

的连接,叶片相对于轮毂不能转动,导致在风速越大的情况加下,

叶片受到的力就越大。

如果不采取一定的减速措施,叶片会越转越快。如果在风速变大

到一定条件下,叶片相对于风速的面积能够自动减小,则叶片受

到的力就会减小,从而叶片就不会转得过快,并且叶片会继续旋

转。结构如图一

图三

图为卷簧,将卷簧外圈的铁钩与发电机的轮毂固连,内圈铁钩与叶片相连,且卷簧有较大的刚度,当卷簧与叶片连接时,需要

一定的预紧。当风速在一定范围时,叶片在卷簧的作用下不会旋

转,此时叶片随着风速的增加而加快旋转,此时可以尽可能多的

使用风能。当风速到达一定并超过速度时,作用在叶片的力将增

大,叶片将会发生一定角度的偏转,叶片正对风的面积将减少,

作用在叶片的力将会减少,叶片的转速将不会增加很多。随着风

的速度进一步增大,叶片正对风的面积将会进一步减少并最终直

到到达一定的稳定值,此时叶片的转速也会达到一定的稳定值。方案三

根据1号发明原理和15号发明原理。美国F-111A采用普通悬臂式后掠机翼,如图二。由于传统的固定式机翼不适合高速飞行,在突破音障时产生非常大的阻力,消耗的能量相应加大,而且容易使飞机在空中解体;另一方面三角翼不适合低速飞行。利用此原理,我们也可以将风力发电机的叶片结构做成这种类似的结构。如图三所示。

图四

图五1为叶片,3为空气阻尼器,2为转轴。当风速在一定范围时,叶片将不会往后倾,叶片随着风速的增加而转速增大。随着风速进一步增加超过空气阻尼器提供的设定值,叶片就会向后倾,从而减少与风的正作用面积,由于叶片向后倾,使得叶片根部受到的拉力减小,可以有效防止因离心力叶片被甩出去。当风速进一步增大时,叶片转速会进一步增加,离心力会增加,但是另一方面,叶片向后倾的程度也会增加,使得叶片受到的离心力会减少。最终使得叶片在一个平衡的位置。随着风速的增加,叶片转速将达到一个临界值,叶片的倾斜也会达到一个临界值,最终使得叶片根部受到的拉应力趋于一个临界值。

四、方案评价

方案一

采用碳纤维材料做叶片,可以很好的保证强度。对于比较小的风力发电机没有必要选用碳纤维材料,因为叶片产生的离心力较小,用一般的玻璃钢足以承受,并且经济。但对于比较大的风力发电机,当叶片高速旋转时,叶片根部将产生很大的拉力,此时一般的玻璃钢将不能承受这么大的拉力而发生断裂,此时可以用碳纤维材料代替。但是另一方面,碳纤维材料的价格比玻璃钢的价格高得多,特别是对于比较大的零件,此时碳纤维材料的价格更是高出玻璃钢几十倍乃至上百倍,所以从经济方面考虑很不划算。

方案二

采用卷簧作为叶片在一定范围转动的零件,其结构简单,可靠性比较高。但是,在安装卷簧时。一方面,卷簧的预紧力不好控制,当为了保证预紧力一样时,叶片转过的角度很有可能不能保证一致,使得风力发电机在运行时不稳定,会产生振动,影响整个系统的运行安全;但是为了保证叶片的转角一致,卷簧的预紧力也很有可能不一样,在实际运行过程中,叶片在同样大的风力作用下,叶片转过的角度会有所差异,这样也会造成每个叶片受到的作用力不一样,也会使整个系统产生振动。另一方面,叶片的根部与轮毂在这种情况下的连接强度会受到很大的影响,很有可能在高速情况下因离心力过大而脱离轮毂。造成严重的事故,此方案不是很好。

方案三

此方案与方案二原理有相似之处,同样是通过减少与风的作用面积达到

减速的目的,但是前者是通过叶片的旋转减少面积,后者是通过倾斜叶片的方法减少风的扫描面积。

此方案叶片的根部可以较好的与轮毂相连,可以保证叶片的连接强度。另外叶片向后倾,使得叶片比较靠近发电机主轴,从而可以减小作用在叶片根部的拉力。是一个比较好的方案。

五、补充说明

现在使用的风力发电机大多是水平轴风力发电机但是,这种发电机有很多问题。一、此种发电机的叶片的面积比较小,风的作用面积小,使风能的利用率比较小;二、一般的风力发电机不能转向,而在实际环境中风向是经常变化的,水平轴风轮的迎风面不可能始终对着风,这就引起了“对分损失”。

即使有一些发电机采用一些控制装置使螺旋桨垂直风速,但是增加了整个结构的复杂性。三、水平轴风轮的转速比较高,高速下叶片切割气流将产生很大的气动噪音。四、水平轴的发电机都置于几十米的高空,这个发电机的安装和维护检修带来了很多的不便。

垂直风轮结构简单,如图四所示,能360度受风,受风面积比较大,且垂直轴风轮的转速比水平轴的小,这样可以使在产生同样多电能的情况下,垂直风轮的转轴与叶片的连接部分受到的离心拉力会小一些,并且在这样的低转速基本不产生气功噪音。垂直轴的发电机可以放在风轮的下面或地面,这样安装维护。

然而,从现在的使用情况来看,水平轴发电机使用得更广,这主要是因为在早期,人们普遍认为垂直轴发电机的风能利用率低于水平轴风力发电机。但随着科技的发展和人类认识水平的不断提高,人们逐渐认识到垂直轴风轮的尖速比不能大于1,仅仅适合于阻力型风轮,而升力型风轮的尖速比甚至可以达到6,其风能利用率也不低于水平轴。近年来,越来越多的机构和个人开始研究垂直轴风力发电机,并取得了长足的发展。

图六——阻力发电机图七——升力发电机

华锐1.5MW风力发电机安装手册

华锐风电科技有限公司 目录 第一章FL1500风力发电机安装导叙 (3) 第二章机舱部分 (4) ?2.1 机舱以及机舱罩的卸车 (4) 2.1.1机舱的卸车......................................................................................................................- 4- 2.1.2机舱罩的卸车..................................................................................................................- 5- ?2 6- 2 6- 2 7- 2 7- 2 7- 2 8- 2 8- 2 9- 2 2 2 2 2.2.12通风罩的安装..............................................................................................................- 11- 2.2.13联轴器和刹车盘罩子的拆卸......................................................................................- 12- 2.2.14机舱罩打密封胶..........................................................................................................- 12- 2.2.15机舱内卫生打扫以及主轴法兰的清理......................................................................- 12- ?2.3机舱的吊装 (13)

风力发电机工作原理图解析

风力发电,是能源业又一突破,其中风力发电机功不可没。通过风力发电机工作原理图,我们可以清晰了解各种奥妙。其实,风力发电机工作原理图并不是那么难懂。下面,我们一起来对风力发电机工作原理图进行详细的剖析和解读吧! 风力发电机为一由转动盘、固定盘、风轮叶片、固定轮、立竿、集电环盘、舵杆、尾舵和逆变器组成的系统。转动盘和固定盘构成该系统的发电机,逆变器包括50赫正弦波振荡器、整形电路、低压输出电路和倒相推挽电路。 风力发电机工作原理就是通过叶轮将风能转变为机械转距(风轮转动惯量),通过主轴传动链,经过齿轮箱增速到异步发电机的转速后,通过励磁变流器励磁而将发电机的定子电能并入电网。如果超过发电机同步转速,转子也处于发电状态,通过变流器向电网馈电。 最简单的风力发电机可由叶轮和发电机两部分构成,立在一定高度的塔干上,这是小型离网风机。最初的风力发电机发出的电能随风变化时有时无,电压和频率不稳定,没有实际应用价值。为了解决这些问题,现代风机增加了齿轮箱、偏航系统、液压系统、刹车系统和控制系统等。 齿轮箱可以将很低的风轮转速(1500千瓦的风机通常为12-22转/分)变为很高的发电机转速(发电机同步转速通常为1500转/分)。同时也使得发电机易于控制,实现稳定的频率和电压输出。偏航系统可以使风轮扫掠面积总是垂直于主风向。要知道,1500千瓦的风机机舱总重50多吨,叶轮30吨,使这样一个系统随时对准主风向也有相当的技术难度。 风机是有许多转动部件的,机舱在水平面旋转,随时偏航对准风向;风轮沿水平轴旋转,以便产生动力扭距。对变桨矩风机,组成风轮的叶片要围绕根部的中心轴旋转,以便适应不同的风况而变桨距。在停机时,叶片要顺桨,以便形成阻尼刹车。 早期采用液压系统用于调节叶片桨矩(同时作为阻尼、停机、刹车等状态下使用),现在电变距系统逐步取代液压变距。 就1500千瓦风机而言,一般在4米/秒左右的风速自动启动,在13米/秒左右发出额定功率。然后,随着风速的增加,一直控制在额定功率附近发电,直到风速达到25米/秒时自动停机。 现代风机的设计极限风速为60-70米/秒,也就是说在这么大的风速下风机也不会立即破坏。理论上的12级飓风,其风速范围也仅为32。7-36。9米/秒。 风机的控制系统要根据风速、风向对系统加以控制,在稳定的电压和频率下运行,自动地并网和脱网;同时*齿轮箱、发电机的运行温度,液压系统的油压,对出现的任何异常进行报警,必要时自动停机,属于无人值守独立发电系统单元。

风力发电机的分类

1,风力发电机按叶片分类。 按照风力发电机主轴的方向分类可分为水平轴风力发电机和垂直轴风力发电机。 (1)水平轴风力发电机:旋转轴与叶片垂直,一般与地面平行,旋转轴处于水平的风力发电机。水平轴风力发电机相对于垂直轴发电机的优点;叶片旋转空间大,转速高。适合于大型风力发电厂。水平轴风力发电机组的发展历史较长,已经完全达到工业化生产,结构简单,效率比垂直轴风力发电机组高。到目前为止,用于发电的风力发电机都为水平轴,还没有商业化的垂直轴的风力发电机组。 (2)垂直轴风力发电机:旋转轴与叶片平行,一般与地面吹垂直,旋转轴处于垂直的风力发电机。垂直轴风力发电机相对于水平轴发电机的优点在于;发电效率高,对风的转向没有要求,叶片转动空间小,抗风能力强(可抗12-14级台风),启动风速小维修保养简单。垂直轴与水平式的风力发电机对比,有两大优势:一、同等风速条件下垂直轴发电效率比水平式的要高,特别是低风速地区;二、在高风速地区,垂直轴风力发电机要比水平式的更加安全稳定;另外,国内外大量的案例证明,水平式的风力发电机在城市地区经常不转动,在北方、西北等高风速地区又经常容易出现风机折断、脱落等问题,伤及路上行人与车辆等危险事故。 按照桨叶数量分类可分为“单叶片”﹑“双叶片”﹑“三叶片”和“多叶片”型风机。 凡属轴流风扇的叶片数目往往是奇数设计。这是由于若采用偶数片形状对称的扇叶,不易调整平衡。还很容易使系统发生共振,倘叶片材质又无法抵抗振动产生的疲劳,将会使叶片或心轴发生断裂。因此设计多为轴心不对称的奇数片扇叶设计。对于轴心不对称的奇数片扇叶,这一原则普遍应用于大型风机以及包括部分直升机螺旋桨在内的各种扇叶设计中。包括家庭使用的电风扇都是3个叶片的,叶片形状是鸟翼型(设计术语),这样的叶片流量大,噪声低,符合流体力学原理。所以绝大多数风扇都是三片叶的。三片叶有较好的动平衡,不易产生振荡,减少轴承的磨损。降低维修成本。 按照风机接受风的方向分类,则有“上风向型”――叶轮正面迎着风向和“下风向型”――叶轮背顺着风向,两种类型。 上风向风机一般需要有某种调向装置来保持叶轮迎风。 而下风向风机则能够自动对准风向, 从而免除了调向装置。但对于下风向风机, 由于一部分空气通过塔架后再吹向叶轮, 这样, 塔架就干扰了流过叶片的气流而形成所谓塔影效应,使性能有所降低。 2,按照风力发电机的输出容量可将风力发电机分为小型,中型,大型,兆瓦级系列。 (1)小型风力发电机是指发电机容量为0.1~1kw的风力发电机。 (2)中型风力发电机是指发电机容量为1~100kw的风力发电机。 (3)大型风力发电机是指发电机容量为100~1000kw的风力发电机。 (4)兆瓦级风力发电机是指发电机容量为1000以上的风力发电机。 3,按功率调节方式分类。可分为定桨距时速调节型,变桨距型,主动失速型和 独立变桨型风力发电机。 (1)定桨距失速型风机;桨叶于轮毂固定连接,桨叶的迎风角度不随风速而变化。依靠桨叶的气动特性自动失速,即当风速大于额定风速时依靠叶片的失速特性保持输入功率基本恒定。

风力发电机结构图分析风力发电机原理

风力发电机结构图分析风力发电机原理 风力发电的原理,是利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。风力研究报告显示:依据目前的风车技术,大约是每秒三公尺的微风速度(微风的程度),便可以开始发电。风力发电正在世界上形成一股热潮,为风力发电没有燃料问题,也不会产生辐射或空气污染。下面先看风力发电机结构图。 风力发电在芬兰、丹麦等国家很流行;我国也在西部地区大力提倡。小型风力发电系统效率很高,但它不是只由一个发电机头组成的,而是一个有一定科技含量的小系统:风力发电机+充电器+数字逆变器。风力发电机由机头、转体、尾翼、叶片组成。每一部分都很重要,各部分功能为:叶片用来接受风力并通过机头转为电能;尾翼使叶片始终对着来风的方向从而获得最大的风能;转体能使机头灵活地转动以实现尾翼调整方向的功能;机头的转子是永磁体,定子绕组切割磁力线产生电能。

风力发电机结构图指出:风力发电机因风量不稳定,故其输出的是13~25v变化的交流电,须经充电器整流,再对蓄电瓶充电,使风力发电机产生的电能变成化学能。然后用有保护电路的逆变电源,把电瓶里的化学能转变成交流220v市电,才能保证稳定使用。 通常人们认为,风力发电的功率完全由风力发电机的功率决定,总想选购大一点的风力发电机,而这是不正确的。风力发电机结构图显示:目前的风力发电机只是给电瓶充电,而由电瓶把电能贮存起来,人们最终使用电功率的大小与电瓶大小有更密切的关系。功率的大小更主要取决于风量的大小,而不仅是机头功率的大小。在内地,小的风力发电机会比大的更合适。因为它更容易被小风量带动而发电,持续不断的小风,会比一时狂风更能供给较大的能量。当无风时人们还可以正常使用风力带来的电能,也就是说一台200w风力发电机也可以通过大电瓶与逆变器的配合使用,获得500w甚至1000w乃至更大的功率出。 现代变速双馈风力发电机的工作原理就是通过叶轮将风能转变为机械转距(风轮转动惯量),通过主轴传动链,经过齿轮箱增速到异步发电机的转速后,通过励磁变流器励磁而将发电机的定子电能并入电网。如果超过发电机同步转速,转子也处于发电状态,通过变流器向电网馈电。 最简单的风力发电机可由叶轮和发电机两部分构成,立在一定高度的塔干上,这是小型离网风机。最初的风力发电机发出的电能随风变化时有时无,电压和频率不稳定,没有实际应用价值。为了解决这些问题,现代风机增加了齿轮箱、偏航系统、液压系统、刹车系统和控制系统等。 齿轮箱可以将很低的风轮转速(1500千瓦的风机通常为12-22转/分)变为很高的发电机转速(发电机同步转速通常为1500转/分)。同时也使得发电机易于控制,实现稳定的频率和电压输出。偏航系统可以使风轮扫掠面积总是垂直于主风向。要知道,1500千瓦的风机机舱总重50多吨,叶轮30吨,使这样一个系统随时对准主风向也有相当的技术难度。 风机是有许多转动部件的,机舱在水平面旋转,随时偏航对准风向;风轮沿水平轴旋转,以便产生动力扭距。对变桨矩风机,组成风轮的叶片要围绕根部的中心轴旋转,以便适应不同的风况而变桨距。在停机时,叶片要顺桨,以便形成阻尼刹车。 早期采用液压系统用于调节叶片桨矩(同时作为阻尼、停机、刹车等状态下使用),现在电变距系统逐步取代液压变距。 就1500千瓦风机而言,一般在4米/秒左右的风速自动启动,在13米/秒左右发出额定功率。然后,随着风速的增加,一直控制在额定功率附近发电,直到风速达到25米/秒时自动停机。 现代风机的设计极限风速为60-70米/秒,也就是说在这么大的风速下风机也不会立即破坏。理论上的12级飓风,其风速范围也仅为32.7-36.9米/秒。 风力发电机结构图显示:风机的控制系统要根据风速、风向对系统加以控制,在稳定的电压和频率下运行,自动地并网和脱网;同时监视齿轮箱、发电机的运行温度,液压系统的油压,对出现的任何异常进行报警,必要时自动停机,属于无人值守独立发电系统单元

风力发电机介绍

风能发电机 一风力机的分类 风力机按照风轮轴所在的位置分为:水平轴风力机HAWT (Horizontal-axis wind turbines)和垂直轴风力机V AWT (V ertical-axis wind turbines),如图1所示。 图1 两种类型的风力机 这两种类型的风力机各有优缺点: 垂直轴风力机V AWT的优点有:(1) 无需偏航对风系统;(2) 设备在地面,安装维护方便;(3) 制造工艺简单,造价低。其缺点为:(1) 难以自启动;(2) 易失速;(3) 风能利用率低。 水平轴风力机HAWT的优点有:(1) 转轮相对较高;(2) 占地面积小;(3) 风能利用率高。其缺点为:(1) 叶片悬臂梁固定,受力大;(2) 设备安装在塔柱顶部,安装维护困难。 其中,水平轴风力机HAWT制作工艺成熟,风能利用率高而被广泛采用。 二风力机的构成 下面以水平轴风力机HAWT为例,介绍风力机的组成。 风力发电机主要由风轮(叶片和轮毂)、机舱、高速轴、低速轴、增速齿轮箱、发电机、调向装置、调速装置、刹车制动装置、塔架、避雷装置等组成,如图2所示。 风力机的组成分为三部分: 1. 旋转部件主要为风轮,将风能转化为低速旋转的机械能。 2. 发电部件风力机的核心部件,包括发电机、调向装置、调速装置、高速轴、低 速轴、增速齿轮箱。通过增速齿轮箱将低速旋转变成合适的高速旋转。 3. 支撑部件包括塔架和旋转关节。

图2风力机的组成 三风力机的工作原理 风力发电是将风能转换为机械能,再由机械能转换为电能,所以,风力资源的好坏将是影响风力发电成本的最重要的因素。风速会随着高度的增加而变大,如图3所示。 图3 风速与高度的关系 风力发电机出力受风速变化的影响,图4是风机的典型出力曲线图。 图4 风力机的典型出力曲线

风电安装手册

风力发电机安全手册 盛年不重来,一日难再晨。及时宜自勉, 岁月不待人。 编号:FT000320-IT 版本:00 编写:批准: 文档VWS 日期:核对:第页/共页风力发电机安全手册 编号:FT000320-IT R00

目录 1.责任与义务 2.安全和防护设备 2.1 必备设备 2.2 用于特殊操作的设备2.2.1 用于紧急下降的设备2.2.2 其它特殊操作 3.基本安装注意事项 3.1 概述 3.2 对风力发电机的操作 3.3 在风力发电机附近逗留及活动3.4 访问控制单元和面板 3.5 访问变压器平台 4.安全设备 4.1 紧急停止 4.2 与电网断开 4.3 过速保护设备(VOG) 4.4 机械安全设备 4.4.1 啮合锁 4.4.2 活动元件的保护罩4.4.3 机舱顶的栏杆 4.4.4 机舱后门的栏杆 5.在风力发电机内部检查或工作6.对风力发电机的设备的操作6.1 使用绞盘 6.2 使用紧急下降器 7.风力发电机的固定 8.急救 9.应急计划 10.发生火灾时的应急措施11.发生事故时的措施

1.责任与义务 Gamesa Eólica将安全与健康方向的考虑放在首位并一以贯之,因此在我们生产的风力发电机的设计中体现了防护的需要。 设计是在决不损害人、动物或者财产的前提下进行的。因此,只要风力发电机的安装、维护和使用遵照Gamesa Eólica的设计,就不会出现这方向的问题。 经批准接触或使用风力发电机的人员在《工作场所安全与健康》方面有权得到有效保护。 同样,经批准在风力发电机中进行有关工作的人员必须遵守《工作场所的安全与健康以防工作场所事故》的有关法律及法规,在执行任务时必须正确地使用工作设备和所有防护性设备,在可能遇到的危险情况的出现必须及时报告。 经批准执行安装任务的人员必须已经接收了足够且合适的理论与实践方面的训练以正 确执行任务。 本文档介绍基本的预防,在接触风力发电机时在安全方面必须遵守的义务及程序。不同维护工作的具体安全措施将在有关这些操作的具体文档中介绍。 2.安全及防护设备 2.1必备设备 在对风力发电机进行任何检查或者维护工作之前,每个人至少应该理解如下设备的使用说明: ●安全设备 ●可调的系索 ●系索(1m和2m) ●安全头盔 ●安全手套 ●防护服 除了上面指出的设备外,每个维护或者检查小组必须具有如下物件: ●紧急下降设备 ●灭火器(在运输工具中有) ●移动电话 在任何时候,不管是在风力发电机内部还是在其外部,都应该使用安全头盔。 建议在上升设备中准备手电筒、安全眼镜和保护性耳塞,这取决于要完成的工作(是对正在运行的风力发电机的检查还是维护)。 操作者必须正确使用安全设备并在使用之前和之后都对安全设备进行检查。对安全设备

风力发电机原理

《可再生能源与可持续发展》作业题目:风力发电机原理 班级:08机制4班 姓名:毛羽西 学号:0822405 教师:李永国 2011年11 月

目录 1 风力发电机概述 (2) 2 水平轴涡轮发电机 (2) 2.1 水平轴涡轮机结构 (3) 2.2 水平轴涡轮机叶片 (4) 2.3 发电机 (5) 2.4 制动系统 (6) 3 风力发电前景展望 (7) 结论 (7) 参考文献: (7)

风力发电机原理 1 风力发电机概述 风力发电的原理,是利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。依据目前的风车技术,大约是每秒三公尺的微风速度(微风的程度),便可以开始发电。风力发电正在世界上形成一股热潮,为风力发电没有燃料问题,也不会产生辐射或空气污染。 风力发电在芬兰、丹麦等国家很流行;我国也在西部地区大力提倡。小型风力发电系统效率很高,但它不是只由一个发电机头组成的,而是一个有一定科技含量的小系统:风力发电机+充电器+数字逆变器。风力发电机由机头、转体、尾翼、叶片组成。每一部分都很重要,各部分功能为:叶片用来接受风力并通过机头转为电能;尾翼使叶片始终对着来风的方向从而获得最大的风能;转体能使机头灵活地转动以实现尾翼调整方向的功能;机头的转子是永磁体,定子绕组切割磁力线产生电能。 风力发电机因风量不稳定,故其输出的是13~25V变化的交流电,须经充电器整流,再对蓄电瓶充电,使风力发电机产生的电能变成化学能。然后用有保护电路的逆变电源,把电瓶里的化学能转变成交流220V市电,才能保证稳定使用。 风力发电机的基本工作原理比较简单,风轮在风力的作用下旋转,将风的动能转变为风轮轴的机械能,风轮轴带动发电机旋转发电。其中风能转化装置称为风力机。风力机的核心部分为叶轮的设计,随着空气动力学的飞速发展,叶轮设计已经取得了巨大的进步。[1] 2 水平轴涡轮发电机 正如其名字的含义,水平轴风力涡轮机的转轴是水平安装的,与地面平行。水平轴风力涡轮机需要使用偏航调整装置时刻根据风向进行调整。偏航系统通常包括电机和变速箱,用于缓慢左右移动整个转子。涡轮机的电子控制器读取风向标设备(机械或电子风向标)的位置,并调整转子位置以尽量捕获最大的风能。水平轴风力涡轮机使用塔架将涡轮机组件上升到最适合风速的高度(这样叶片便不会碰到地面),并且占用非常少的地面空间,因为几乎所有组件都在高达80米的空中。

风力机的基本参数与理论

风力发电机风轮系统 2.1.1 风力机空气动力学的基本概念 1、风力机空气动力学的几何定义 (1)翼型的几何参数 翼型 翼型本是来自航空动力学的名词,是机翼剖面的形状,风力机的叶片都是采用机翼或类似机翼的翼型,与翼型上表面和下表面距离相等的曲线称为中弧线。下面是翼型的几何参数图 1)前缘、后缘 翼型中弧线的最前点称为翼型的前缘,最后点称为翼型的后缘。 2)弦线、弦长 连接前缘与后缘的直线称为弦线;其长度称为弦长,用c表示。弦长是很重要的数据,翼型上的所有尺寸数据都是弦长的相对值。 3)最大弯度、最大弯度位置 中弧线在y坐标最大值称为最大弯度,用f表示,简称弯度;最大弯度点的x坐标称为最大弯度位置,用x f表示。 4)最大厚度、最大厚度位置 上下翼面在y坐标上的最大距离称为翼型的最大厚度,简称厚度,用t表示;最大厚度点的x坐标称为最大厚度位置,用x t表示。

5)前缘半径 翼型前缘为一圆弧,该圆弧半径称为前缘半径,用r1表示。 6)后缘角 翼型后缘上下两弧线切线的夹角称为后缘角,用τ表示。 7)中弧线 翼型内切圆圆心的连线。对称翼型的中弧线与翼弦重合。 8)上翼面凸出的翼型表面。 9)下翼面平缓的翼型表面。 (2)风轮的几何参数 1)风力发电机的扫风面积 风轮旋转扫过的面积在垂直于风向的投影面积是风力机截留风能的面积,称为风力机的扫掠面积,下图是一个三叶片水平轴风力机的扫掠面积示意图。 下图是一个四叶片的H型升力垂直轴风力发电机的扫掠面积示意图。 根据前面两表可由所需发电功率估算出风力机所需的扫风面积,例如200W的升力型垂直轴风力发电机工作风速为6m/s,全效率按25%计算所需扫风面积约为6.2m2,如果工作风速为10m/s则所需扫风面积约为1.4m2即可;例如10kW的升力型垂直轴风力发电机工作风速为10m/s,全效率按30%计算所需扫风面积约为56m2,如果工作风速为13m/s则所需扫风面积约为25m2即可。按高风速设计的风力机体积小成本相对低些,但必须用在高风速环境,例如把一台设计风速为10m/s的风力机放在风速为6m/s的环境工作,其功率会下降80%;按风速

风力发电机的组成部件其功用

风力发电机的组成部件及其功用 风力发电机是将风能转换成机械能,再把机械能转换成电能的机电设备。风力发电机通常由风轮、对风装置、调速装置、传动装置、发电机、塔架、停车机构等组成。下面将以水平轴升力型风力发电机为主介绍它的各主要组成部件及其工作情况。图3-3-4和3-3-5是小型和中大型风力发电机的结构示意图。 图3-3-4 小型风力发电机示意图 1—风轮2—发电机3—回转体4—调速机构5—调向机构6—手刹车机构7—塔架8—蓄电池9—控制/逆变器 图3-3-5 中大型风力发电机示意图 1—风轮;2—变速箱;3—发电机;4—机舱;5—塔架。 1 风轮 风轮是风力机最重要的部件,它是风力机区别于其它动力机的主要标志。其作用是捕捉和吸收风能,并将风能转变成机械能,由风轮轴将能量送给传动装置。

风轮一般由叶片(也称桨叶)、叶柄、轮毂及风轮轴等组成(见图3-3-6)。叶片横截面形状基本类型有3种(见图第二节的图3-2-3):平板型、弧板型和流线型。风力发电机的叶片横截面的形状,接近于流线型;而风力提水机的叶片多采用弧板型,也有采用平板型的。图3-3-7所示为风力发电机叶片(横截面)的几种结构。 图3-3-6 风轮 1.叶片 2.叶柄 3.轮毂 4.风轮轴 图3-3-7 叶片结构 (a)、(b)—木制叶版剖面; (c)、(d)—钢纵梁玻璃纤维蒙片剖面; (e) —铝合金等弦长挤压成型叶片;(f)—玻璃钢叶片。 木制叶片(图中的a与b)常用于微、小型风力发电机上;而中、大型风力发电机的叶片常从图中的(c)→(f)选用。用铝合金挤压成型的叶片(图中之e),基于容易制造角度考虑,从叶根到叶尖一般是制成等弦长的。叶片的材质在不

风力发电机组安装

4风力发电机组安装 4.1风力发电机安装 (1)风机设备吊装总体部署 结合风电场区域地形条件,根据吊装重量及起吊高度,吊装车辆采用800t 履带吊作为风机及塔架的主力吊装机械,150t液压汽车吊一台作为辅助机械,配合主吊车提升塔架和叶轮,使部件在吊装时保持向上位置,同时还可单独用于在地面组装叶轮。另外,还需配备2台50t吊车,用于在设备安装期间风场内搬运设备附件和重型工具。 风机设备安装采用组合与散装相结合的施工方案,总体安装顺序如下: 塔架下段吊装→塔架中段吊装→塔架上段吊装→机舱吊装→叶轮组合→叶轮组件吊装。 (2)塔架安装 ①塔架下段吊装 在塔架中下法兰对角安装2个“塔架中下段吊具”,在塔架下法兰安装1个“塔架辅助吊具”。 使用800t履带吊吊住塔架中下法兰面上的2个“塔架中下段吊具”;辅吊抬吊塔架下法兰的1个“塔架辅助吊具”。两车配合将塔架立直,然后辅吊摘钩,由主吊将塔架下段吊装就位。 ②塔架中段吊装 在塔架中下法兰安装1个“塔架辅助吊具”,在塔架中上法兰对角安装2个“塔架中下段吊具”。 使用主吊住塔架中上法兰面上的2个“塔架中上段吊具”,辅吊抬吊塔架中下法兰的1个“塔架辅助吊具”,两车配合将塔架立直,然后辅吊摘钩,由主吊单车将塔架中段吊装就位。 ③塔架上段吊装 在塔架上段法兰安装2个“塔架上段吊具”,在塔架中上法兰对角安装1个“塔架辅助吊具”。 使用主吊吊住塔架上法兰面上的2个“塔架上段吊具”,辅吊抬吊塔架中上法兰的1个“塔架辅助吊具”,两车配合将塔架立直,然后汽车吊摘钩,由主吊单车将塔架上段吊装就位。 (3)机舱安装 该项工作需用800t履带吊一台。 i)将固定机舱和塔架的螺栓及固定叶轮的螺栓放置在机舱内。 ii)将机舱专用吊具安装在机舱的四个吊点上,挂上吊钩。 iii)起吊机舱时机舱纵轴线应处于偏离主风向90°的位置,以便于叶轮的安装。 iv)使用800t履带吊缓慢吊起机舱至上法兰约1厘米处,安装人员用导正棒调整机舱的相对位置,同时指挥吊车缓慢下落机舱,拧上连接螺栓,按对角线顺序均匀地紧固上法兰与偏航轴承连接螺栓。 v)进入机舱,卸开吊具。 (4)叶轮组合及安装 ①叶轮组合

风力发电机的工作原理

风力发电机的工作原理 风力发电机原理 是将风能转换为机械功的动力机械,又称风车。广义地说,它是一种以太阳为热源,以大气为工作介质的热能利用发动机。风力发电利用的是自然能源。相对柴油发电要好的多。但是若应急来用的话,还是不如柴油发电机。风力发电不可视为备用电源,但是却可以长期利用。 风力发电的原理,是利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。依据目前的风车技术,大约是每秒三公尺的微风速度(微风的程度),便可以开始发电。 风力发电正在世界上形成一股热潮,为风力发电没有燃料问题,也不会产生辐射或空气污染。 风力发电在芬兰、丹麦等国家很流行;我国也在西部地区大力提倡。小型风力发电系统效率很高,但它不是只由一个发电机头组成的,而是一个有一定科技含量的小系统:风力发电机+充电器+数字逆变器。风力发电机由机头、转体、尾翼、叶片组成。每一部分都很重要,各部分功能为:叶片用来接受风力并通过机头转为电能;尾翼使叶片始终对着来风的方向从而获得最大的风能;转体能使机头灵活地转动以实现尾翼调整方向的功能;机头的转子是永磁体,定子绕组切割磁力线产生电能。 风力发电机因风量不稳定,故其输出的是13~25V变化的交流电,须经充电器整流,再对蓄电瓶充电,使风力发电机产生的电能变成化学能。然后用有保护电路的逆变电源,把电瓶里的化学能转变成交流220V市电,才能保证稳定使用。 通常人们认为,风力发电的功率完全由风力发电机的功率决定,总想选购大一点的风力发电机,而这是不正确的。目前的风力发电机只是给电瓶充电,而由电瓶把电能贮存起来,人们最终使用电功率的大小与电瓶大小有更密切的关系。功率的大小更主要取决于风量的大小,而不仅是机头功率的大小。在内地,小的风力发电机会比大的更合适。因为它更容易被小风量带动而发电,持续不断的小风,会比一时狂风更能供给较大的能量。当无风时人们还可以正常使用风力带来的电能,也就是说一台200W风力发电机也可以通过大电瓶与逆变器的配合使用,获得500W甚至1000W乃至更大的功率出。 使用风力发电机,就是源源不断地把风能变成我们家庭使用的标准市电,其节约的程度是明显的,一个家庭一年的用电只需20元电瓶液的代价。而现在的风力发电机比几年前的性能有很大改进,以前只是在少数边远地区使用,风力发电机接一个15W的灯泡直接用电,一明一暗并会经常损坏灯泡。而现在由于技术进步,采用先进的充电器、逆变器,风力发电成为有一定科技含量的小系统,并能在一定条件下代替正常的市电。山区可以借此系统做一个常年不花钱的路灯;高速公路可用它做夜晚的路标灯;山区的孩子可以在日光灯下晚自习;城市小高层楼顶也可用风力电机,这不但节约而且是真正绿色电源。家庭用风力发电机,不但可以防止停电,而且还能增加生活情趣。在旅游景区、边防、学校、部队乃至落后的山区,风力发电机正在成为人们的采购热点。无线电爱好者可用自己的技术在风力发电方面为山区人民服务,使人们看电视及照明用电与城市同步,也能使自己劳动致富。

小型风力发电机的构造原理

小型风力发电机介绍 一,小型风力发电机的使用条件 小型风力发电机一般应在风力资源较丰富的地区使用。即年平均风速在3m/s以上,全年3-20m/s有效风速累计时数3000h以上;全年3-20m/s平均有效风能密度lOOW/m2以上。在选择使用风力发电机时,要做到心中有数,避免盲目性,这样才能充分地利用当地的风力资源,最大限度地发挥风力发电机的效率,取得较高的经济效益。 应该指出的是,在风力资源丰富地区,最好选择风机额定设计风速与当地最佳设计风速相吻合的风力发电机。如能做到这一点无论是从风力机的选择上,还是利用风力资源的经济意义上都有重要的意义。风洞试验证明,风轮的转换功率与风速的立方成正比,也就是说,风速对功率影响最大。例如,在当地最佳设计风速为6m/s的地区,安装一台额定设计风速为8m/s的风力发电机,结果其年额定输出功率只达到原设计输出功率的42%,也就是说,风力发电机额定输出功率较设计值降低了58%。若选用的风力发电机额定设计风速越高,那么其额定功率输出的效果就越加不理想。但也必须指出,风力发电机额定设计风速偏低,其风轮直径、电机相对要增大,整机造价相应也就加大.从制造和产品的经济意义上考虑都是不合算的。 二,小型风力发电执使用的一般要求 目前,小型风力发电机都采用蓄电池贮能,家用电器的用电都由蓄电池提供。所以,用电时总的原则是,蓄电池放电后能及时由风力发电机给以补充。也就是说,蓄电池充入的电量和用电器所需消耗的电量要大致相等(一般以日计算)。下面举一例说明这一问题:某地区使用了一台风力发电机,额定风速输出功率为IOOW,假设,该地区某日相当于额定风速的风力吹刮时数连续为4h,则该风机日输出并贮存到蓄电池里的能量为400Wh。考虑到铅蓄电池的转换效率为70%,则用户用电器实际可利用的能量280Wh。如果该用户使用的电器有: (1)15W灯泡两只,使用4h,耗能为120Wh; (Z)35W电视机一台,使用3h,耗能为105Wh; (3)15W收录机一台,使用4h,耗能为60Wh。 以上总耗能为285Wh。 这样,用电器日总耗能比风力发电机所能提供的能量超出了5Wh,也就是出现了所谓的“入不付出”用电;这种入不付出的用电,将会使蓄电池处在亏电的状态下工作。如果经常长时间地这么用电,将会使蓄电池严重亏电而损坏,缩短其使用寿命。 上例,是假定风力发电机在额定风速状击下的用电情况,而实际上,由于风的多变性,间歇性,风既有大小的不同(风速)又有吹刮时间长短的不同(风频)。所以,在使用用电器时要做到风况好时可适当多用电,风况差时少用电。这就需要用户在使用时认真总结经验。 另外,有条件的地区和用户可备一台千瓦级的柴油发电机组,当风况差的时候给蓄电池补充充电,做到蓄电池不间断地供电。 三,小型风力发电机的合理配套

风力发电机原理及结构

风力发电机原理及结构 风力发电机是一种将风能转换为电能的能量转换装置,它包括风力机和发电机两大部分。空气流动的动能作用在风力机风轮上,从而推动风轮旋转起来,将空气动力能转变成风轮旋转机械能,风轮的轮毂固定在风力发电机的机轴上,通过传动系统驱动发电机轴及转子旋转,发电机将机械能变成电能输送给负荷或电力系统,这就是风力发电的工作过程。 1、风机基本结构特征 风力机主要有风轮、传动系统、对风装置(偏航系统)、液压系统、制动系统、控制与安全系统、机舱、塔架和基础等组成。 (1)风轮 风力机区别于其他机械的主要特征就是风轮。风轮一班有2~3个叶片和轮毂所组成,其功能是将风能转换为机械能。 风力发电厂的风力机通常有2片或3片叶片,叶尖速度50~70m/s,3也片叶轮通常能够提供最佳效率,然而2叶片叶轮及降低2%~3%效率。更多的人认为3叶片从审美的角度更令人满意。3叶片叶轮上的手里更平衡,轮毂可以简单些。 1)叶片叶片是用加强玻璃塑料(GRP)、木头和木板、碳纤维强化塑料(CFRP)、钢和铝职称的。对于小型的风力发电机,如叶轮直径小于5m,选择材料通常关心的是效率而

不是重量、硬度和叶片的其他特性,通常用整块优质木材加工制成,表面涂上保护漆,其根部与轮毂相接处使用良好的金属接头并用螺栓拧紧。对于大型风机,叶片特性通常较难满足,所以对材料的选择更为重要。 目前,叶片多为玻璃纤维增强负荷材料,基体材料为聚酯树脂或环氧树脂。环氧树脂比聚酯树脂强度高,材料疲劳特性好,且收缩变形小,聚酯材料较便宜它在固化时收缩大,在叶片的连接处可能存在潜在的危险,即由于收缩变形,在金属材料与玻璃钢之间坑能产生裂纹。 2)轮毂轮毂是风轮的枢纽,也是叶片根部与主轴的连接件。所有从叶片传来的力,都通过轮毂传到传动系统,在传到风力机驱动的对象。同时轮毂也是控制叶片桨距(使叶片作俯仰转动)的所在。 轮毂承受了风力作用在叶片上的推理、扭矩、弯矩及陀螺力矩。通常安装3片叶片的水平式风力机轮毂的形式为三角形和三通形。 轮毂可以是铸造结构,也可以采用焊接结构,其材料可以是铸钢,也可以采用高强度球墨铸铁。由于高强度球墨铸铁具有不可替代性,如铸造性能好、容易铸成、减振性能好、应力集中敏感性低、成本低等,风力发电机组中大量采用高强度球墨铸铁作为轮毂的材料。 轮毂的常用形式主要有刚性轮毂和铰链式轮毂(柔性轮毂

(完整版)【速度收藏】风力发电机工作原理

风力发电机工作原理__图文 前言:由于环境污染,人类对大自然的过度开采,我们对无污染、可再生的能源越来越重视。风能就是这样一种无须燃料、无污染、可再生的能源。风力发电机作为把风能运用率较高的产品,受到世界各国的重视。为了让风力发电机更好的为人们服务,今天我们来研究一下风力发电机工作原理。 关键词:风力发电机,风力发电机工作原理,风力发电机结构 一、风力发电机结构 高 由电子控制器操作,电子控制器可以通过风向标来感觉风向。图中显示了风力发电机偏航。通常,在风改变其方向时,风力发电机一次只会偏转几度。 7、电子控制器:包含一台不断监控风力发电机状态的计算机,并控制偏航装置。为防止任何故障(即齿轮箱或发电机的过热),该控制器可以自动停止风力发电机的转动,并通过电话调制解调器来呼叫风力发电机操作员。 8、液压系统:用于重置风力发电机的空气动力闸。 9、冷却元件:包含一个风扇,用于冷却发电机。此外,它包含一个油冷却元件,用于冷却齿轮箱内的油。一些风力发电机具有水冷发电机。

10、塔:风力发电机塔载有机舱及转子。通常高的塔具有优势,因为离地面越高,风速越大。现代600千瓦风汽轮机的塔高为40至60米。它可以为管状的塔,也可以是格子状的塔。管状的塔对于维修人员更为安全,因为他们可以通过内部的梯子到达塔顶。格状的塔的优点在于它比较便宜。 11、风速计及风向标:用于测量风速及风向。 二、风力发电机原理 现代风力发电机采用空气学原理,就像飞机的机翼一样。风并非“推动”风轮叶片,而是吹过叶片正反面的压差,这种压差会产生升力,令风轮旋转并不断横切风流。 面向来风,从而令风轮刹车。 在风速很低的时候,风力发电机风轮会保持不动。当到达切入风速时(通常每秒3到4米),风轮开始旋转并牵引发电机开始发电。随著风力越来越强,输出功率会增加。当风速达到额定风速时,风电机会输出其额定功率。之后输出功率会保留大致不变。当风速进一步增加,达到切出风速的时候,风电机会刹车,不再输出功率,为免受损。 青岛恒风风力发电机有限公司是一家专注研发、制造、销售为一体的科技型企业,公司始建于2004年,厂房占地面积5000 余平。公司主要生产150瓦至500千瓦的水平和垂直轴的中小型风力发电机组,风光互补供电系统,广泛应用于离网和并网型发电系统。生产中我们严格按照ISO9001国际标准生产管理体系,并拥有标准的生产线,自动包装流水线,严

风电安装手册

风力发电机安全手册编号:FT000320-IT R00

目录 1.责任与义务 2.安全和防护设备 2.1 必备设备 2.2 用于特殊操作的设备2.2.1 用于紧急下降的设备2.2.2 其它特殊操作 3.基本安装注意事项 3.1 概述 3.2 对风力发电机的操作 3.3 在风力发电机附近逗留及活动3.4 访问控制单元和面板 3.5 访问变压器平台 4.安全设备 4.1 紧急停止 4.2 与电网断开 4.3 过速保护设备(VOG) 4.4 机械安全设备 4.4.1 啮合锁 4.4.2 活动元件的保护罩4.4.3 机舱顶的栏杆 4.4.4 机舱后门的栏杆 5.在风力发电机内部检查或工作6.对风力发电机的设备的操作6.1 使用绞盘 6.2 使用紧急下降器 7.风力发电机的固定 8.急救 9.应急计划 10.发生火灾时的应急措施11.发生事故时的措施

1.责任与义务 Gamesa Eólica将安全与健康方向的考虑放在首位并一以贯之,因此在我们生产的风力发电机的设计中体现了防护的需要。 设计是在决不损害人、动物或者财产的前提下进行的。因此,只要风力发电机的安装、维护和使用遵照Gamesa Eólica的设计,就不会出现这方向的问题。 经批准接触或使用风力发电机的人员在《工作场所安全与健康》方面有权得到有效保护。 同样,经批准在风力发电机中进行有关工作的人员必须遵守《工作场所的安全与健康以防工作场所事故》的有关法律及法规,在执行任务时必须正确地使用工作设备和所有防护性设备,在可能遇到的危险情况的出现必须及时报告。 经批准执行安装任务的人员必须已经接收了足够且合适的理论与实践方面的训练以正 确执行任务。 本文档介绍基本的预防,在接触风力发电机时在安全方面必须遵守的义务及程序。不同维护工作的具体安全措施将在有关这些操作的具体文档中介绍。 2.安全及防护设备 2.1必备设备 在对风力发电机进行任何检查或者维护工作之前,每个人至少应该理解如下设备的使用说明: ●安全设备 ●可调的系索 ●系索(1m和2m) ●安全头盔 ●安全手套 ●防护服 除了上面指出的设备外,每个维护或者检查小组必须具有如下物件: ●紧急下降设备 ●灭火器(在运输工具中有) ●移动电话 在任何时候,不管是在风力发电机内部还是在其外部,都应该使用安全头盔。 建议在上升设备中准备手电筒、安全眼镜和保护性耳塞,这取决于要完成的工作(是对正在运行的风力发电机的检查还是维护)。 操作者必须正确使用安全设备并在使用之前和之后都对安全设备进行检查。对安全设备

风力发电机控制原理

风力发电机控制原理 本文综述了风力发电机组的电气控制。在介绍风力涡轮机特性的基础上介绍了双馈异步发电系统和永磁同步全馈发电系统,具体介绍了双馈异步发电系统的运行过程,最后简单介绍了风力发电系统的一些辅助控制系统。 关键词:风力涡轮机;双馈异步;永磁同步发电系统 概述: 经过20年的发展风力发电系统已经从基本单一的定桨距失速控制发展到全桨叶变距和变速恒频控制,目前主要的两种控制方式是:双馈异步变桨变速恒频控制方式和低速永磁同步变桨变速恒频控制方式。 在讲述风力发电控制系统之前,我们需要了解风力涡轮机输出功率与风速和转速的关系。 风力涡轮机特性: 1,风能利用系数Cp 风力涡轮从自然风能中吸取能量的大小程度用风能利用系数Cp表示: P---风力涡轮实际获得的轴功率 r---空气密度 S---风轮的扫风面积 V---上游风速 根据贝兹(Betz)理论可以推得风力涡轮机的理论最大效率为:Cpmax=0.593。 2,叶尖速比l 为了表示风轮在不同风速中的状态,用叶片的叶尖圆周速度与风速之比来衡量,称为叶尖速比l。 n---风轮的转速 w---风轮叫角频率 R---风轮半径 V---上游风速 在桨叶倾角b固定为最小值条件下,输出功率P/Pn与涡轮机转速N/Nn的关系如图1所示。从图1中看,对应于每个风速的曲线,都有一个最大输出功率点,风速越高,最大值点对应得转速越高。如故能随风速变化改变转速,使得在所有风速下都工作于最大工作点,则发出电能最多,否则发电效能将降低。

涡轮机转速、输出功率还与桨叶倾角b有关,关系曲线见图2 。图中横坐标为桨叶尖速度比,纵坐标为输出功率系统Cp。在图2 中,每个倾角对应于一条Cp=f(l)曲线,倾角越大,曲线越靠左下方。每条曲线都有一个上升段和下降段,其中下降段是稳定工作段(若风速和倾角不变,受扰动后转速增加,l加大,Cp减小,涡轮机输出机械功率和转矩减小,转子减速,返回稳定点。)它是工作区段。在工作区段中,倾角越大,l和Cp越小。 3,变速发电的控制 变速发电不是根据风速信号控制功率和转速,而是根据转速信号控制,因为风速信号扰动大,而转速信号较平稳和准确(机组惯量大)。 三段控制要求: 低风速段N<Nn,按输出功率最大功率要求进行变速控制。联接不同风速下涡轮机功率-转速曲线的最大值点,得到PTARGET=f(n)关系,把PTARGET作为变频器的给定量,通过控制电机的输出力矩,使风力发电实际输出功率P=PTARGET。图3是风速变化时的调速过程示意图。设开始工作与A2点,风速增大至V2后,由于惯性影响,转速还没来得及变化,工作点从A2移至A1,这时涡轮机产生的机械功率大于电机发出的电功率,机组加速,沿对应于V2的曲线向A3移动,最后稳定于A3点,风速减小至V3时的转速下降过程也类似,将沿B2-B1-B3轨迹运动。 中风速段为过渡区段,电机转速已达额定值N=Nn,而功率尚未达到额定值P<Pn。倾角控制器投入工作,风速增加时,控制器限制转速升,而功率则随着风速增加上升,直至P=Pn。 高风速段为功率和转速均被限制区段N=Nn/P=Pn,风速增加时,转速靠倾角控制器限制,功率靠变频器限制(限制PTARGET值)。 4,双馈异步风力发电控制系统 双馈异步风力发电系统的示意见图4,绕线异步电动机的定子直接连接电网,转子经四象限IGBT电压型交-直-交变频器接电网。 转子电压和频率比例于电机转差率,随着转速变化而变化,变频器把转差频率的转差功率变为恒压、恒频(50HZ)的转差功率,送至电网。由图4可知: P=PS-PR;PR=SPS;P=(1-S)PS P是送至电网总功率;PS和PR分别是定子和转子功率 转速高于同步速时,转差率S<0,转差功率流出转子,经变频器送至电网,电网收到的功率为定、转子功率之和,大于定子功率;转速低于同步转速食,S>0,转差功率从电网,

风力发电机的分类

,风力发电机按叶片分类. 按照风力发电机主轴地方向分类可分为水平轴风力发电机和垂直轴风力发电机. ()水平轴风力发电机:旋转轴与叶片垂直,一般与地面平行,旋转轴处于水平地风力发电机. 水平轴风力发电机相对于垂直轴发电机地优点;叶片旋转空间大,转速高.适合于大型风力发电厂.水平轴风力发电机组地发展历史较长,已经完全达到工业化生产,结构简单,效率比垂直轴风力发电机组高.到目前为止,用于发电地风力发电机都为水平轴,还没有商业化地垂直轴地风力发电机组. 资料个人收集整理,勿做商业用途 ()垂直轴风力发电机:旋转轴与叶片平行,一般与地面吹垂直,旋转轴处于垂直地风力发电机.垂直轴风力发电机相对于水平轴发电机地优点在于;发电效率高,对风地转向没有要求,叶片转动空间小,抗风能力强(可抗级台风),启动风速小维修保养简单. 垂直轴与水平式地风力发电机对比,有两大优势:一、同等风速条件下垂直轴发电效率比水平式地要高,特别是低风速地区;二、在高风速地区,垂直轴风力发电机要比水平式地更加安全稳定;另外,国内外大量地案例证明,水平式地风力发电机在城市地区经常不转动,在北方、西北等高风速地区又经常容易出现风机折断、脱落等问题,伤及路上行人与车辆等危险事故.资料个人收集整理,勿做商业用途 按照桨叶数量分类可分为“单叶片”﹑“双叶片”﹑“三叶片”和“多叶片”型风机. 凡属轴流风扇地叶片数目往往是奇数设计. 这是由于若采用偶数片形状对称地扇叶,不易调整平衡.还很容易使系统发生共振,倘叶片材质又无法抵抗振动产生地疲劳,将会使叶片或心轴发生断裂. 因此设计多为轴心不对称地奇数片扇叶设计.对于轴心不对称地奇数片扇叶,这一原则普遍应用于大型风机以及包括部分直升机螺旋桨在内地各种扇叶设计中.包括家庭使用地电风扇都是个叶片地,叶片形状是鸟翼型(设计术语),这样地叶片流量大,噪声低,符合流体力学原理.所以绝大多数风扇都是三片叶地.三片叶有较好地动平衡,不易产生振荡,减少轴承地磨损.降低维修成本.资料个人收集整理,勿做商业用途 按照风机接受风地方向分类,则有“上风向型”――叶轮正面迎着风向和“下风向型”――叶轮背顺着风向,两种类型.资料个人收集整理,勿做商业用途 上风向风机一般需要有某种调向装置来保持叶轮迎风. 而下风向风机则能够自动对准风向, 从而免除了调向装置.但对于下风向风机, 由于一部分空气通过塔架后再吹向叶轮, 这样, 塔架就干扰了流过叶片地气流而形成所谓塔影效应,使性能有所降低.资料个人收集整理,勿做商业用途 ,按照风力发电机地输出容量可将风力发电机分为小型,中型,大型,兆瓦级系列. ()小型风力发电机是指发电机容量为地风力发电机. ()中型风力发电机是指发电机容量为地风力发电机. ()大型风力发电机是指发电机容量为地风力发电机. 兆瓦级风力发电机是指发电机容量为以上地风力发电机. ,按功率调节方式分类.可分为定桨距时速调节型,变桨距型,主动失速型和独立变桨型风力发电机. ()定桨距失速型风机;桨叶于轮毂固定连接,桨叶地迎风角度不随风速而变化.依靠桨叶地气动特性自动失速,即当风速大于额定风速时依靠叶片地失速特性保持输入功率基本恒定.资料个人收集整理,勿做商业用途 ()变桨距调节:风速低于额定风速时,保证叶片在最佳攻角状态,以获得最大风能;当风速超过额定风速后,变桨系统减小叶片攻角,保证输出功率在额定范围内.资料个人收集整理,勿做商业用途 ()主动失速调节:风速低于额定风速时,控制系统根据风速分几级控制,控制精度低于变桨距控制;当风速超过额定风速后,变桨系统通过增加叶片攻角,使叶片“失速”,限制风轮吸收功率增加资料个人收集整理,勿做商业用途 ()独立变桨控制风力机:由于叶片尺寸较大,每个叶片有十几吨甚至几十吨,叶片运行在不同地位置,受力状况也是不同地故叶片中立对风轮力矩地影响也是不可忽略地.通过对三个叶片进行独立地控制,可以大大减小风力机叶片负载地波动及转矩地波动,进而减小传动机构与齿轮箱地疲劳度,减小塔架地震动,输出功率基本恒定在额定功率附近.资料个人收集整理,勿做商业用途

相关文档
相关文档 最新文档