文档视界 最新最全的文档下载
当前位置:文档视界 › 风力发电机的分类

风力发电机的分类

风力发电机的分类
风力发电机的分类

.

1,风力发电机按叶片分类。按照风力发电机主轴的方向分类可分为水平轴风力发电机和垂直轴风力发电机。水平轴风力发电机:旋转轴与叶片垂直,一般与地面平行,旋转轴处于水平的风力发(1)

水平轴风力发电机相对于垂直轴发电机的优点;叶片旋转空间大,转速高。适合于大型风电机。力发电厂。水平轴风力发电机组的发展历史较长,已经完全达到工业化生产,结构简单,效率比垂直轴风力发电机组高。到目前为止,用于发电的风力发电机都为水平轴,还没有商业化的垂直轴的风力发电机组。

垂直轴风力发电机:旋转轴与叶片平行,一般与地面吹垂直,旋转轴处于垂直的风力2)(发电机。垂直轴风力发电机相对于水平轴发电机的优点在于;发电效率高,对风的转向没有要求,垂直轴与水平式12-14级台风),启动风速小维修保养简单。叶片转动空间小,抗风能力强(可抗的风力发电机对比,有两大优势:一、同等风速条件下垂直轴发电效率比水平式的要高,特别是低风速地区;二、在高风速地区,垂直轴风力发电机要比水平式的更加安全稳定;另外,国内外大量的案例证明,水平式的风力发电机在城市地区经常不转动,在北方、西北等高风速地区又经常容易出现风机折断、脱落等问题,伤及路上行人与车辆等危险事故。

按照桨叶数量分类可分为“单叶片”﹑“双叶片”﹑“三叶片”和“多叶片”型风机。这是由于若采用偶数片形状对称的扇叶,不易调凡属轴流风扇的叶片数目往往是奇数设计。整平衡。还很容易使系统发生共振,倘叶片材质又无法抵抗振动产生的疲劳,将会使叶片或心轴因此设计多为轴心不对称的奇数片扇叶设计。对于轴心不对称的奇数片扇叶,这一原发生断裂。则普遍应用于大型风机以及包括部分直升机螺旋桨在内的各种扇叶设计中。包括家庭使用的电风,这样的叶片流量大,噪声低,符合流体力学个叶片的,叶片形状是鸟翼型(设计术语)扇都是3原理。所以绝大多数风扇都是三片叶的。三片叶有较好的动平衡,不易产生振荡,减少轴承的磨损。降低维修成本。按照风机接受风的方向分类,则有“上风向型”――叶轮正面迎着风向和“下风向型”――叶轮背顺着风向,两种类型。上风向风机一般需要有某种调向装置来保持叶轮迎风。由于一部分从而免除了调向装置。但对于下风向风机, 而下风向风机则能够自动对准风向,

使性能有塔架就干扰了流过叶片的气流而形成所谓塔影效应,, 这样, 空气通过塔架后再吹向叶轮所降低。2,按照风力发电机的输出容量可将风力发电机分为小型,中型,大型,兆瓦级系列。

(1)小型风力发电机是指发电机容量为0.1~1kw的风力发电机。

(2)中型风力发电机是指发电机容量为1~100kw的风力发电机。

(3)大型风力发电机是指发电机容量为100~1000kw的风力发电机。

(4)兆瓦级风力发电机是指发电机容量为1000以上的风力发电机。

3,按功率调节方式分类。可分为定桨距时速调节型,变桨距型,主动失速型和独立变桨型风力发电机。

(1)定桨距失速型风机;桨叶于轮毂固定连接,桨叶的迎风角度不随风速而变化。依靠桨叶

的气动特性自动失速,即当风速大于额定风速时依靠叶片的失速特性保持输入功率基本恒定。

.

.

(2)变桨距调节:风速低于额定风速时,保证叶片在最佳攻角状态,以获得最大风能;当风速超过额定风速后,变桨系统减小叶片攻角,保证输出功率在额定范围内。

(3)主动失速调节:风速低于额定风速时,控制系统根据风速分几级控制,控制精度低于变桨距控制;当风速超过额定风速后,变桨系统通过增加叶片攻角,使叶片“失速”,限制风轮吸收功率增加

(4)独立变桨控制风力机:由于叶片尺寸较大,每个叶片有十几吨甚至几十吨,叶片运行在不同的位置,受力状况也是不同的故叶片中立对风轮力矩的影响也是不可忽略的。通过对三个叶片进行独立的控制,可以大大减小风力机叶片负载的波动及转矩的波动,进而减小传动机构与齿轮箱的疲劳度,减小塔架的震动,输出功率基本恒定在额定功率附近。

4,按机械形式分类:按照风机组机构中是否包括齿轮箱,可分为有齿轮箱的风力机,无齿轮的风力机和混合驱动型风力机。

(1)带齿轮箱的风力发电机:由于叶尖速度的限制,风轮旋转速度一般较慢。风轮直径在100m 以上时,风轮转速在15r/min或更低。为了使发电机的体积变小,就必须是发电机输入转速更高,这时就必须使用变速箱体搞转速使得发动机输入转速在1500/min或者3000/min这样,发电机体积就可以设计的尽可能小。

(2)无齿轮箱发电机:将叶轮和发电机直接连接在一起结构的风力发电机成为无齿轮箱使风力发电机。这种发电机由于没有齿轮箱,所以结构简单,制造方便,维护方便故无齿轮箱的风力发电机将来有可能发展与海上风力发电机上使用。

(3)混合驱动型风力发电机:混合驱动型风力发电机采用一级齿轮进行传动,齿轮箱结构简单效率高。由于增加了点击转速点击尺寸和重量比一般的直趋机组的电机尺寸小,重量也比较轻。所以这种风力发电机具有直趋风力发电机的特点也有体积小,重量轻的有点,逐渐成为3GW以上的大型风机组设计开发的一种趋势

5,根据风力发电机组的发电机类型分类,可分为异步型风力发电机和同步型风力发电机。

(1)异步发电机按其转子结构不同又可分为:

(a)笼型异步发电机――转子为笼型。由于结构简单可靠、廉价、易于接入电网,而在小、中型机组中得到大量的使用;

(b) 绕线式双馈异步发电机――转子为线绕型。定子与电网直接连接输送电能,同时绕线式转子也经过变频器控制向电网输送有功或无功功率。

(2)同步发电机型按其产生旋转磁场的磁极的类型又可分为:

(a) 电励磁同步发电机――转子为线绕凸极式磁极,由外接直流电流激磁来产生磁场。

(b) 永磁同步发电机――转子为铁氧体材料制造的永磁体磁极,通常为低速多极式,不用外界激磁,简化了发电机结构,因而具有多种优势。

.

.

6,主轴,齿轮箱和发电机相对位置可分为紧凑型和长轴布置型。(1)紧凑型风力发电机的风轮直接与齿轮箱低速轴相连,齿轮高速轴输出端通过弹性联轴节与发电机连接,发电机与齿轮箱外壳连接。这种结构齿轮箱使专门设计的,由于结构紧凑,可以节省材料和相对的费用。作用在风轮和发电机上的力都是通过齿轮箱外壳体传递到主框架上的。紧凑型风力发电机的结构主轴与发电机轴在同一平面内,在齿轮箱损坏是,需要将风轮,齿轮箱,发电机一块拆下来进行修理,比较麻烦。

(2)长轴布置型风力发电机:通过固定在机舱主框架的主轴,与齿轮箱低速轴连接。长轴布置型风力发电机的主轴是单独的,有单独的轴承支撑。这种结构的优点是风轮没有直接作用在齿轮箱的低速轴上,齿轮箱可以采用标准结构,减小齿轮箱低速轴收到的复杂力矩,降低了费用,减少了齿轮箱受损的可能性。

7,按照发电机的转速及并网方式可以将发电机分为定速风机和变速风机。

(3)定速型风力发电机:定速风力机一般采用时速控制的桨叶控制方式,使用直接与电网相连的异步感应电动机,由于风能的随机性,驱动异步发电机的风力机低于额定运行的时间占全年运行时间的60%~70%。为了充分利用低风速的风能,增加发电量,广泛应用双速异步发电机,设计成4级和6级绕组。在低速运转时,双速异步发电机的效率比氮素异步发电机搞,滑差损耗小,当风力发电机组在低风速运行时,不仅桨叶具备有较高的启动效率,发电机效率也能保持在较高的水平。

(4)变速风力机:变速风力机一般配备变桨距功率调节方式。风力机必须有一套控制系统来调节,限制转速和功率。调速与功率调节装置的首要任务是使风力机在大风,运行发生故障和过载荷是得到保护:其次,使风电机组能够在启动时顺利切入运行,电能质量符合公共电网要求。

8,按照塔架的不同可分为塔筒式风力机和桁架式风力机。

(1)塔架式风力发电机:国内及国外绝大多数风力发电机组采用塔筒式结构,这种结构的优点是刚性好,冬季人员登塔安全,连接部分的螺栓与桁架塔相比要少得多,维护工作两少,便于安装和调节。

(2)桁架式风力机:桁架式采用类似电力塔的结构形式。这种结构风阻小,便于运输。但组装复杂,需要每年对他家的螺栓进行紧固,工作量很大,而且冬季爬塔架的条件恶劣。在我国,这种结构的机型更适合南方海岛使用,特别是阵风达,风向不稳定的风场,桁架塔更能吸收手机组运行时产生的扭矩和震动。

.

§3-1 交流发电机的功用、分类;交流发电机的结构

浙江工业职业技术学院

)定子总成 定子总成是产生和输出交流电的部件,又叫电枢,由定子铁心和定子绕组组成,如图 定子铁心由相互绝缘的内圆带槽的环状硅钢片叠成。定子槽内置有三相对称绕组,三相绕组大多数采用“Y”形(星形)连结,也有用“△”形连结的。

某一交流发电机定子绕组的展开图 转子总成是发电机的励磁部分,它主要由两块爪极、磁场绕组、集电环及轴等组成, 两块爪极被压装在转轴上,且内腔装有磁轭,并绕有励磁绕组。绕组两端的引线分别焊在与轴绝缘的两个集电环上。两个电刷装在与端盖绝缘的电刷架内,通过弹簧力使其与集电环保持接触。当发电机工作时,两电剧与直流电源连通,可为磁场绕组提供定向电流并产生轴向磁通。使两块爪极被分别磁化为N极和S极,从而形成犬牙交错的6对磁极,并沿圆周方向均匀分布。子每转一周,定子的每相绕组上就能产生周期个数等于磁极对数的交流电动势。

)整流器 整流器由正整流板和负整流板组成,如右图所示。其作用是将三相定子绕组输出的交流电,通过三相桥式整流变成直流电输出。 交流发电机的整流器大多由6只硅二极管组成。外壳为正极、中心引线为负极的二极管,称为负极管,管壳底上注有黑色标记;外壳为负极、中心引线为正极的二极管,称为正极管,管壳 )前后端盖 前后端盖的作用是支承转子总成并封闭内部构造。它由铝合金制成,具有轻便、阻磁(减少漏磁)、散热性能好等特征。 )电刷与电刷架 电刷是通过集电环给励磁绕组提供电流的元件。电刷装在电刷架内,通过弹簧与集电环紧密接触,如图3-6所示。

车用无刷交流发电机是指没有集电环、电刷与电刷架装置的交流发电机。它不会因为电刷和集电环的磨损或接触不良造成励磁不稳定或发电机不发电等故障;也不会产生火花,从而减少了无线电干扰。具有结构新颖、性能优良、工作稳定、故障少等优点。但与有刷发电机相比,在相同体积条件下,其设计功率将有所下降。 无刷交流发电机有爪极式、励磁机式、永磁式和感应式四种,其中爪极式和感应式比较常见。 )感应式无刷交流发电机 感应式无刷交流发电机由定子、转子、整流器和机壳组成。它的转子由齿轮状硅钢片铆成,其上有若干个沿圆周均匀分布的齿形凸极,而没有励磁绕组。励磁绕组和电枢绕组均安放在定子

风力发电机的分类

1,风力发电机按叶片分类。 按照风力发电机主轴的方向分类可分为水平轴风力发电机和垂直轴风力发电机。 (1)水平轴风力发电机:旋转轴与叶片垂直,一般与地面平行,旋转轴处于水平的风力发电机。水平轴风力发电机相对于垂直轴发电机的优点;叶片旋转空间大,转速高。适合于大型风力发电厂。水平轴风力发电机组的发展历史较长,已经完全达到工业化生产,结构简单,效率比垂直轴风力发电机组高。到目前为止,用于发电的风力发电机都为水平轴,还没有商业化的垂直轴的风力发电机组。 (2)垂直轴风力发电机:旋转轴与叶片平行,一般与地面吹垂直,旋转轴处于垂直的风力发电机。垂直轴风力发电机相对于水平轴发电机的优点在于;发电效率高,对风的转向没有要求,叶片转动空间小,抗风能力强(可抗12-14级台风),启动风速小维修保养简单。垂直轴与水平式的风力发电机对比,有两大优势:一、同等风速条件下垂直轴发电效率比水平式的要高,特别是低风速地区;二、在高风速地区,垂直轴风力发电机要比水平式的更加安全稳定;另外,国内外大量的案例证明,水平式的风力发电机在城市地区经常不转动,在北方、西北等高风速地区又经常容易出现风机折断、脱落等问题,伤及路上行人与车辆等危险事故。 按照桨叶数量分类可分为“单叶片”﹑“双叶片”﹑“三叶片”和“多叶片”型风机。 凡属轴流风扇的叶片数目往往是奇数设计。这是由于若采用偶数片形状对称的扇叶,不易调整平衡。还很容易使系统发生共振,倘叶片材质又无法抵抗振动产生的疲劳,将会使叶片或心轴发生断裂。因此设计多为轴心不对称的奇数片扇叶设计。对于轴心不对称的奇数片扇叶,这一原则普遍应用于大型风机以及包括部分直升机螺旋桨在内的各种扇叶设计中。包括家庭使用的电风扇都是3个叶片的,叶片形状是鸟翼型(设计术语),这样的叶片流量大,噪声低,符合流体力学原理。所以绝大多数风扇都是三片叶的。三片叶有较好的动平衡,不易产生振荡,减少轴承的磨损。降低维修成本。 按照风机接受风的方向分类,则有“上风向型”――叶轮正面迎着风向和“下风向型”――叶轮背顺着风向,两种类型。 上风向风机一般需要有某种调向装置来保持叶轮迎风。 而下风向风机则能够自动对准风向, 从而免除了调向装置。但对于下风向风机, 由于一部分空气通过塔架后再吹向叶轮, 这样, 塔架就干扰了流过叶片的气流而形成所谓塔影效应,使性能有所降低。 2,按照风力发电机的输出容量可将风力发电机分为小型,中型,大型,兆瓦级系列。 (1)小型风力发电机是指发电机容量为0.1~1kw的风力发电机。 (2)中型风力发电机是指发电机容量为1~100kw的风力发电机。 (3)大型风力发电机是指发电机容量为100~1000kw的风力发电机。 (4)兆瓦级风力发电机是指发电机容量为1000以上的风力发电机。 3,按功率调节方式分类。可分为定桨距时速调节型,变桨距型,主动失速型和 独立变桨型风力发电机。 (1)定桨距失速型风机;桨叶于轮毂固定连接,桨叶的迎风角度不随风速而变化。依靠桨叶的气动特性自动失速,即当风速大于额定风速时依靠叶片的失速特性保持输入功率基本恒定。

风力发电机介绍

风能发电机 一风力机的分类 风力机按照风轮轴所在的位置分为:水平轴风力机HAWT (Horizontal-axis wind turbines)和垂直轴风力机V AWT (V ertical-axis wind turbines),如图1所示。 图1 两种类型的风力机 这两种类型的风力机各有优缺点: 垂直轴风力机V AWT的优点有:(1) 无需偏航对风系统;(2) 设备在地面,安装维护方便;(3) 制造工艺简单,造价低。其缺点为:(1) 难以自启动;(2) 易失速;(3) 风能利用率低。 水平轴风力机HAWT的优点有:(1) 转轮相对较高;(2) 占地面积小;(3) 风能利用率高。其缺点为:(1) 叶片悬臂梁固定,受力大;(2) 设备安装在塔柱顶部,安装维护困难。 其中,水平轴风力机HAWT制作工艺成熟,风能利用率高而被广泛采用。 二风力机的构成 下面以水平轴风力机HAWT为例,介绍风力机的组成。 风力发电机主要由风轮(叶片和轮毂)、机舱、高速轴、低速轴、增速齿轮箱、发电机、调向装置、调速装置、刹车制动装置、塔架、避雷装置等组成,如图2所示。 风力机的组成分为三部分: 1. 旋转部件主要为风轮,将风能转化为低速旋转的机械能。 2. 发电部件风力机的核心部件,包括发电机、调向装置、调速装置、高速轴、低 速轴、增速齿轮箱。通过增速齿轮箱将低速旋转变成合适的高速旋转。 3. 支撑部件包括塔架和旋转关节。

图2风力机的组成 三风力机的工作原理 风力发电是将风能转换为机械能,再由机械能转换为电能,所以,风力资源的好坏将是影响风力发电成本的最重要的因素。风速会随着高度的增加而变大,如图3所示。 图3 风速与高度的关系 风力发电机出力受风速变化的影响,图4是风机的典型出力曲线图。 图4 风力机的典型出力曲线

发电机原理结构及主要零部件功能简介∷北京奥博汽车电子

发电机原理结构及主要零部件功能简介∷北京奥博汽车电子结构及要紧零部件的功能简介 一、概述 发电机是汽车的要紧电源,其功用是在发动机正常运转时,向除启动机外的所有用电设备供电,同时给蓄电池充电,汽车用发电机可分为直流发电机和交流发电机,由于交流发电机的性能在许多方面优于直流发电机,直流发电机已被剔除。目前汽车采纳三相交流发电机,内部带有二极管整流电路,将交流电整流为直流电,因此,汽车交流发电机输出的是直流电。交流发电机必须配装电压调剂器,电压调剂器对发电机的输出电压进行操纵,使其保持差不多恒定,以满足汽车用电器的需求。 二、交流发电机的分类 一、交流发电机的分类 1.按总体结构分 (1)一般交流发电机。这种发电机即无专门装置,也无专门功能特点,使用时需要配装电压调剂器。 (2)整体式交流发电机,发电机和调剂器制成一个整体的发电机。(3)带泵的交流发电机。发电机和汽车制动系统用真空助力泵安装在一起的发电机。 (4)无刷交流发电机,不需要电刷的发电机。 (5)永磁交流发电机,转子磁极为永磁铁制成的发电机 我们的产品要紧以整体式交流发电机、带泵交流发电机为主。 2、按输出电压分为14V和28V两大类 3、按发电机的输出电流分有专门多种,我们的产品要紧有25A、35A、 55A、70A、75A、80A、90A、100A、110A、120A、140A、150A 等。 三、交流发电机的型号 依照中华人民共和国汽车行业标准QC/T73-93《汽车电器设备产品型号编制方法》的规定,汽车交流发电机型号组成如下: 1. 产品代号 产品代号用中文字母表示,例:JF——一般交流发电机JFZ——整体式(内置调剂器)交流发电机JFB——带泵的交流发电机JFW——无刷交流发电机

直驱式风力发电机知识(技术研究)

是我们初中学的磁极数,一个发电机是有南北极的(货是正负极),就是指的这个,但是3相的就不是了,你可以通过数住绕组的个数来辨别是多少级数,或者说发电机的转速也可以看出来是多少级数 以50HZ为例,2级的就是3000转,4级就3000/2,1500转这样就好理解了 直驱永磁风力发电机组特点 直驱式风力发电机(Direct-driven Wind Turbine Generators),是一种由风力直接驱动发电机,亦称无齿轮风力发动机,这种发电机采用多极电机与叶轮直接连接进行驱动的方式,免去齿轮箱这一传统部件。由于齿轮箱是目前在兆瓦级风力发电机中属易过载和过早损坏率较高的部件,因此,没有齿轮箱的直驱式风力发动机,具备低风速时高效率、低噪音、高寿命、减小机组体积、降低运行维护成本等诸多优点。 直驱式(无齿轮)风力发电机始于20多年前,由于电气技术和成本等原因,发展较慢。随着近几年技术的发展,其优势才逐渐凸现。德国、美国、丹麦都是在该技术领域发展较为领先的国家,其中德国西门子公司开发的(直驱式)无齿轮同步发电机安装在世界最大的挪威风力发电场,最高效率达98%。 1997年的风机市场上出现了兼具无齿轮、变速变桨距等特征的风力发电机,这些高产能、运行维护成本低的先进机型有E-33、E-48、E-70等型号,容量从330千瓦至2兆瓦,由德国ENERCONGmbH公司制造,它们的研制始于1992年。2000年,瑞典ABB公司成功研制了3兆瓦的巨型可变速风力发电机组,其中包括永磁式转子结构的高压风力发电机Wind former,容量3兆瓦、高约70米、风扇直径约90米。2003年,在Okinawa电力公司开始运行的MWT-S2000型风力发电机,是日本三菱重工首度完全自行制造的2兆瓦级风机,采用小尺寸的变速无齿轮永磁同步电机,新型轻质叶片。 目前,国内多家企业也开始进军直驱式风力发电机领域,湘潭电机集团与日本原弘产株式会社合资组建的湖南湘电风能有限公司,2兆瓦直驱式永磁风力发电整机机组已试车成功;广西银河艾万迪斯风力发电有限公司与德国AVAVTIS公司联合推出的2.5兆瓦直驱变桨风力发电也将于2008年二季度完成样机;具有自主知识产权的新疆金凤科技股份公司、哈尔滨九州电气公司也分别研制出1.5兆瓦直驱式风力发电机。 编辑本段直驱永磁风力发电机组特点 直驱永磁风力发电机有以下几个方面优点[1]: 1.发电效率高:直驱式风力发电机组没有齿轮箱,减少了传动损耗,提高了发电效率,尤其是在低风速环境下,效果更加显著。

发电机分类

中华人民共和国国家标准 汽轮发电机通用技术条件UDC 621.313.322 GB 7064-86 General requirements on turbogenerators 国家标准局1986-12-18 发布1987-12-01 实施 1 适用范围 本标准适用于6000~600000kW,安装在固定地点,其冷却方式为空气、氢气、水或两 种冷却介质同时使用进行间接或直接冷却的三相汽轮发电机. 凡本标准中未规定的事项,均应符合GB755—81《电机基本技术要求》的规定. 对具体产品若有特殊要求,可在本标准的基础上,由订货方与制造厂共同商定. 2 型式和基本参数 2.1 额定转速 对50Hz 的电机1500r/min 或3000r/min. 2.2 型式 2.2.1 拖动型式 本标准规定的汽轮发电机由汽轮机直接拖动. 2.2.2 通风型式 采用闭式循环的通风系统,由气体冷却器将空气或氢气冷却. 2.2.3 供水型式 绕组用水直接冷却的电机,其冷却水一般应由独立循环的水系统供给,并用水-水冷却器将该系统的水冷却. 2.2.4 轴承型式 汽轮发电机采用座式轴承或端盖轴承.如汽轮机端的轴瓦设在汽轮机体内时,由汽轮机制造厂供给.汽轮发电机需要具有单独的不设在汽轮机体内的轴承时,则该轴承应由电机制 造厂供给. 2.2.5 励磁型式 汽轮发电机的励磁电流一般由同轴励磁机供给,也可以用其他方式供给. 2.3 旋转方向 汽轮发电机的旋转方向,从汽轮机端向发电机看为顺时针方向. 2.4 电机绝缘 汽轮发电机的定子绕组、励磁绕组和定子铁心绝缘采用“B”级或耐热等级更高的绝缘材料. 2.5 定子绕组、出线端数目和相序 定子绕组一般接成星形,但有特殊说明的可接成三角形. 出线端数目可为6 个、9 个或12 个.

风力发电机的控制方式综述

风力发电机及风力发电控制技术综述 摘要:本文分析比较了各种风力发电机的优缺点,介绍了相关风力发电控制技术,风力发 电系统中的应用,最后对未来风力发电机和风力发电控制技术作了展望。 关键词:风力发电机电力系统控制技术 Overview of Wind Power Generators and the Control Technologies SU Chen-chen Abstract:This paper analyzes the advantages and disadvantages of the various wind turbine control technology of wind power, wind power generation system, and finally prospected the future control of wind turbines and wind power technology. 1 引言 在能源短缺和环境趋向恶化的今天,风能作为一种可再生清洁能源,日益为世界各国所重视和开发。由于风能开发有着巨大的经济、社会、环保价值和发展前景,近20年来风电技术有了巨大的进步,风电开发在各种能源开发中增速最快。德国、西班牙、丹麦、美国等欧美国家在风力发电理论与技术研发方面起步较早,因而目前处于世界领先地位。与风电发达国家相比,中国在风力发电机制造技术和风力发电控制技术方面存在较大差距,目前国内只掌握了定桨距风机的制造技术和刚刚投入应用的兆瓦级永磁直驱同步发电机技术,在风机的大型化、变桨距控制、主动失速控制、变速恒频等先进风电技术方面还有待进一步研究和应用[1]。发电机是风力发电机组中将风能转化为电能的重要装置,它不仅直接影响输出电能的质量和效率,也影响整个风电转换系统的性能和装置结构的复杂性。风能是低密度能源,具有不稳定和随机性特点,控制技术是风力机安全高效运行的关键,因此研制适合于风电转换、运行可靠、效率高、控制且供电性能良好的发电机系统和先进的控制技术是风力发电推广应用的关键。本文分析比较了各种风力发电机的优缺点,介绍了相关风力发电控制技术,风力发电系统中的应用,最后对未来风力发电机和风力发电控制技术作了展望。 2 风力发电机 2.1 风电机组控制系统概述 图1为风电机组控制系统示意图。系统本体由“空气动力学系统”、“发电机系统”、“变流系统”及其附属结构组成; 电控系统(总体控制)由“变桨控制”、“偏航控制”、“变流控制”等主模块组成(此外还有“通讯、监控、健康管理”等辅助模块)。各种控制及测量信号在机组本体系统与电控系统之间交互。“变桨控制系统”负责空气动力系统的“桨距”控制,其成本一般不超过整个机组价格5%,但对最大化风能转换、功率稳定输出及机组安全保护至关重要,因此是风机控制系统研究重点之一。“偏航控制系统”负责风轮自动对风及机舱自动解缆,一般分主动和被动两种偏航模式,而大型风电机组多采用主动偏航模式。“变 流控制系统”通常与变桨距系统配合运行,通过双向变流器对发电机进行矢量或直接转矩控制,独立调节有功功率和无功功率,实现变速恒频运行和最大(额定)功率控制。

发电机转速表的分类

一、转速检测仪表的分类: 1. 离心式转速表,利用离心力与拉力的平衡来指示转速。离心式转速表是最传统的转速测量工具,是利用离心力原理的机械式转速表;测量精度一般在1~2级,一般就地安装。一只优良的离心式转速表不但有准确直观的特点,还具备可靠耐用的优点。但是结构比较复杂。 2. 磁性转速表,利用旋转磁场,在金属罩帽上产生旋转力,利用旋转力与游丝力的平衡来指示转速。磁性转速表,是成功利用磁力的一个典范,是利用磁力原理的机械式转速表;一般就地安装,用软轴可以短距离异地安装。磁性转速表,因结构较简单,目前较普遍用于摩托车和汽车以及其它机械设备。异地安装时软轴易损坏。 3. 电动式转速表,由小型交流发电机、电缆、电动机和磁性表头组成。小型交流发电机产生交流电,交流电通过电缆输送,驱动小型交流电动机,小型交流电动机的转速与被测轴的转速一致。磁性转速表头与小型交流电动机同轴连接在一起,磁性表头指示的转速自然就是被测轴的转速;电动式转速表,异地安装非常方便,抗振性能好,广泛运用于柴油机和船舶设备。 4. 磁电式转速表,磁电传感器加电流表,异地安装非常方便。 5. 闪光式转速表,利用视觉暂留的原理。闪光式转速表,除了检测转速(往复速度)外,还可以观测循环往复运动物体的静像,对了解机械设备的工作状态,是一必不可少的观测工具。 6. 电子式转速表,电子技术的不断进步,使这一类转速表有了突飞猛进的发展。 上述6种转速表,具有各自独特的结构和原理,既代表着不同时期的技术发展水平,也体现人类认识自然的阶段性发展过程。时代在不断前进,有些东西将会成为历史;但我们留心回顾一下,不禁要惊叹前贤的匠心! 1. 离心式转速表,是机械力学的成果; 2. 磁性式转速表,是运用磁力和机械力的一个典范; 3. 电动式转速表,巧妙运用微型发电机和微型电动机将旋转运动异地拷贝; 4. 磁电式转速表,电流表头和传感器都是电磁学的普及运用; 5. 闪光式转速表,人类认识自然的同时也认识了自我,体现了人类的灵性; 6. 电子式转速表,电子技术的千变万化,给了我们今天五彩缤纷的世界,同样也造就了满足人们各种需要的转速测量仪表。 二、电子式转速表 电子式转速表是一个比较笼统的概念:以现代电子技术为基础,设计制造的转速测量工具。它一般有传感器和显示器,有的还有信号输出和控制。因为传感器和显示器件方面的多种多样,还有测量方法的多样性,很难像前5种一样来归类。本文将电子类转速表,从传感器和二次仪表分开来分类。如果从安装使用方式上来分,还有就地安装式、台式、柜装式和便携式以及手持式。本文对此不做详述。 转速传感器 转速传感器从原理(或器件)上来分,有磁电感应式、光电效应式、霍尔效应式、磁阻效应式、介质电磁感应式等。另外还有间接测量转速的转速传感器:如加速度传感器(通过积分运算,间接导出转速),位移传感器通过微分运算,间接导出转速),等等。测速发电机和某些磁电传感器在线性区域,可以直接通过交流有效值转换,来测量转速;大多数都输出脉冲信号(近似正弦波或矩形波)。针对脉冲信号测转速的方法有:频率积分法(也就是F/V转换法,其直接结果是电压或电流),和频率运算法(其直接结果是数字)。 转速显示仪 显示仪从指示形式来分有指针式、数字式、图形及其混合式和虚拟仪表等; 1.指针式: ·动圈式:线圈、游丝指针联于一旋转轴上,给线圈输入电流,线圈感应出磁力,且互成正比;磁力与游丝的扭力平衡,扭力与指针转角成正比,指针的角度也就反映出输入电流的大小;

直驱风力发电机分类

直驱风力发电机分类 直驱式风力发电机组在我国是一种新型的产品,但在国外已经发展了很长时间。目前我国在直驱式风机中系统的研究相对传统机型较少,但开发直驱式风力发电机组也是我国日后风机制造的趋势之一。 直驱永磁风力发电机取消了沉重的增速齿轮箱,发电机轴直接连接到叶轮轴上,转子的转速随风速而改变,其交流电的频率也随之变化,经过置于地面的大功率电力电子变换器,将频率不定的交流电整流成直流电,再逆变成与电网同频率的交流电输出。另外一些无齿轮箱直驱风力发电机,沿用低速多极永磁发电机,并使用一台全功率变频器将频率变化的风电送入电网。直接驱动式风力发电机组由于没有齿轮箱,零部件数量相对传统风电机组要少得多。 我国主要的直驱型风力发电机组采用水平轴、三叶片、上风向、变桨距调节、直接驱动、永磁同步发电机并网的总体设计方案,相对于传统的异步发电机组其优点如下:(1)由于传动系统部件的减少,提高了风力发电机组的可靠性和可利用率; (2)永磁发电技术及变速恒频技术的采用提高了风电机组的效率; (3)机械传动部件的减少降低了风力发电机组的噪音; (4)可靠性的提高降低了风力发电机组的运行维护成本; (5)机械传动部件的减少降低了机械损失,提高了整机效率; (6)利用变速恒频技术,可以进行无功补偿; (7)由于减少了部件数量,使整机的生产周期大大缩短。

永磁式硅整流风力发电机设计 小型永磁式硅整流风力发电机,由于采用了永磁体励磁,省去了碳刷、滑环及励磁绕组,避免了碳刷与滑环引起的火花放电,且工艺简单、维护方便、效率较高。但由于永磁式发电机的磁场无法人工调节,在电机制成之后,输出电压随风速(转速)的变化而波动。而其所带负载—蓄电池及用电设备则要求供电电压恒定不变。当供电电压较低时,对蓄电池无法充电,用电设备无法长期工作,而当电压超过额定值较多时,则会造成蓄电池的过充损伤,降低使用寿命,严重的可能烧坏用电设备。图1表示风力发电机输出电压对12V灯泡发光强度及使用寿命的关系特性。 图1端电压相对光通量和使用寿命的关系

发电机 电动机的类型,及工作分类

同步发电机既可作发电机运行,也可作电动机运行。当运行中的发电机危急保安器误动或调速系统故障而导致主汽门关闭时,发电机失去原动力,此时若发电机的横向联动保护或逆功率保护未动作,发电机则变为调相机运行。 1.发电机变为调相机运行的现象: 1)“主汽门关闭”光字牌信号报警。 2)发电机有功功率表指示为负值,电能表反转。发电机的主汽门关闭后,发电机从系统吸取少量有功功率维持其同步运行,与原来相比,发电机由发出有功功率变为吸取有功功率,故有功功率表指示为负值,电能表反转。 3)发电机无功功率表指示升高。由于发电机主汽门关闭,输出有功功率突然消失,仅从系统吸取少量有功功率维持空载转动,而发电机的励磁电流未发生变化。由发电机的电压相量图或发电机功率输出P—Q特性曲线可知,其功角d减小时,功率因数角加大,故无功功率增大。 4)发电机定子电压升高,定子电流减小。定子电流的减小是由于发电机输出有功功率突然消失引起的,虽然输出无功功率增加,并从系统吸取少量有功功率,但定子总的电流仍减小。由于定子电流的减小,电流在定子电抗上的压降减小,故定子电压升高。由于发电机与系统相连,发电机向系统输送的无功功率增加,使发电机的去磁作用增加,定子电压自动降低保持发电机电压与系统电压平衡。 5)发电机励磁回路仪表指示正常,系统频率可能有降低。因励磁系统未发生变化,故励磁回路各表计指示正常。发电机调相运行时不仅不输出有功,还要从系统吸取少量有功维持其同步运行。当该发电机占系统总负荷比例较大时,由于系统有功不足,使系统频率下降。 2.发电机变为调相机运行的处理: 发电机变为调相机运行,对发电机本身来说,并无什么危害,但不允许长期无蒸汽运行。这是由于运行时,叶片与空气摩擦将会造成过热,使排汽温度很快升高,故发电机不允许持续调相运行。 当发电机发生调相运行后,逆功率保护应动作跳闸,按事故跳闸处理;若逆功率保护拒动,运行人员应根据表计指示及信号情况迅速作出判断,在lmin内将机组手动解列,此时应注意厂用电联动正常。若能很快恢复,则可再并列带负荷;若不能很快恢复,应将发电机操作至备用状态 常用的三相交流电动机的转子通常做成“鼠笼式的,当电机通电后,定子将会产生一个旋转磁场,此时转子由于切割磁力线在鼠笼绕组产生电流,我们知道,有电流流过的导体在磁场中会受到力的作用,所以转子获得力矩而产生旋转。双鼠笼电动机的转子里包含着两个分开的转子绕组(如图ZJ-3所示),分为外鼠笼和内鼠笼两组。 外鼠笼是由电阻率较高的黄铜或青铜等合金材料制成的,而其导体截面积比内鼠笼导体的截面积要小,故具有较高的电阻,内鼠笼的导体是由电阻率较低的纯铜(紫铜)制成的,导体

风力发电机的种类

风力发电机的种类 尽管风力发电机多种多样,但归纳起来可分为两类:①水平轴风力发电机,风轮的旋转轴与风向平行;②垂直轴风力发电机,风轮的旋转轴垂直于地面或者气流方向。 水平轴风力发电机 水平轴风力发电机可分为升力型和阻力型两类。升力型风力发电机旋转速度快,阻力型旋转速度慢。对于风力发电,多采用升力型水平轴风力发电机。大多数水平轴风力发电机具有对风装置,能随风向改变而转动。对于小型风力发电机,这种对风装置采用尾舵,而对于大型的风力发电机,则利用风向传感元件以及伺服电机组成的传动机构。 风力机的风轮在塔架前面的称为上风向风力机,风轮在塔架后面的则成为下风向风机。水平轴风力发电机的式样很多,有的具有反转叶片的风轮,有的再一个塔架上安装多个风轮,以便在输出功率一定的条件下减少塔架的成本,还有的水平轴风力发电机在风轮周围产生漩涡,集中气流,增加气流速度。 垂直轴风力发电机 垂直轴风力发电机在风向改变的时候无需对风,在这点上相对于水平轴风力发电机是一大优势,它不仅使结构设计简化,而且也减少了风轮对风时的陀螺力。利用阻力旋转的垂直轴风力发电机有几种类型,其中有利用平板和被子做成的风轮,这是一种纯阻力装置;S型风车,具有部分升力,但主要还是阻力装置。这些装置有较大的启动力矩,但尖速比低,在风轮尺寸、重量和成本一定的情况下,提供的功率输出低。 达里厄式风轮 是法国G.J.M达里厄于19世纪30年代发明的。在20世纪70年代,加拿大国家科学研究院对此进行了大量的研究,现在是水平轴风力发电机的主要竞争者。达里厄式风轮是一种升力装置,弯曲叶片的剖面是翼型,它的启动力矩低,但尖速比可以很高,对于给定的风轮重量和成本,有较高的功率输出。现在有多种达里厄式风力发电机,如Φ型,Δ型,Y型和H型等。这些风轮可以设计成单叶片,双叶片,三叶片或者多叶片。 双馈型发电机 随着电力电子技术的发展,双馈型感应发电机(Double-Fed Induction Generator)在风能发电中的应用越来越广。这种技术不过分依赖于蓄电池的容

几种典型的风力发电系统对比分析

几种典型的风力发电系统对比分析 摘要:随着环境和能源问题的日益严峻,可再生能源的开发,尤其是风力发电技术已被越来越多的国家所重视,而对应用在风力发电系统中的逆变器和调制方法的研究尤为重要。重点阐述了我国的风能资源情况和我国目前的发展状况,指出了存在的主要问题,分析了产生这些问题的原因,明确了我国风力发电事业发展的主要措施和途径,并进一步阐述了风力发电在未来的发展趋势及风力发电的优势。 引言 能源与环境问题已经成为全球可持续发展面临的主要问题,日益引起国际社会的广泛关注,并寻求积极的对策。风能是一种可再生、无污染的绿色能源,是取之不尽、用之不竭的,而且储量十分丰富。据估计,全球可利用的风能总量在53000TWh/年。风能的大规模开发利用,将会有效减少化石能源的使用、减少温室气体排放、保护环境。大力发展风能已经成为各国政府的重要选择。 在风力发电中,当风力发电机与电网并联运行时,要求风电频率和电网频率保持一致,即风电频率保持恒定,因此,风力发电系统分为恒速恒频发电机系统(CSCF系统)和变速恒频发电机系统(VSCF系统)。恒速恒频发电机系统是指在风力发电过程中保持发电机的转速不变从而得到和电网频率一致的恒频电能。恒速恒频系统(CSCF系统)一般来说比较简单,所采用的发电机主要是同步发电机和鼠笼型感应发电机,前者运行于电机极数和频率所决定的同步转速,后者则以稍高于同步转速的速度运行。变速恒频发电机系统(VSCF),是指在风力发电过程中发电机的转速,并以随风速变化而通过其它的控制方式来得到和电网1恒速恒频发电系统 目前,单机容量为600kW~750kW的风电机组多采用恒速运行方式,这种机组控制简单,可靠性好,大多采用制造简单,并网容易,励磁功率可直接从电网中获得的笼型异步发电机。恒速风电机组主要有两种类型:定桨距失速型和变桨距风力机。定桨距失速型风力机利用风轮叶片翼型的气动失速特性来限制叶片吸收过大的风能,功率调节由风轮叶片来完成,对发电机的控制要求比较简单。这种风力机的叶片结构复杂,成型工艺难度较大。而变桨距风力机则是通过风轮叶片的变桨距调节机构控制风力机的输出功率。由于采用的是笼型异步发电机,无论是定桨距还是变桨距风力发电机,并网后发电机磁场旋转速度由电网频率所固定,异步发电机转子的转速变化范围很小,转差率一般为3%~5%,属于恒速恒频风力发电机。 1.1定桨距失速控制 定桨距风力发电机组的主要特点是桨叶与轮毅固定连接,当风速变化时,桨叶的迎风角度固定不变。利用桨叶翼型本身的失速特性,在高于额定风速下,气流的功角增大到失速条件,使桨叶的表面产生紊流,效率降低,达到限制功率的目的。采用这种方式的风力发电系统控制调节简单可靠,但为了产生失速效应,导致叶片重,结构复杂,机组的整体效率较低,当风速达到一定值时必须停机。 1.2变距调节方式 在目前应用较多的恒速恒频风力发电系统中,一般情况要维持风力机转速的稳定,这在风速处于正常范围之中时可以通过电气控制而保证,而在风速过大时,输出功率继续增大可能导致电气系统和机械系统不能承受,因此需要限制输出功率并保持输出功率恒定。这时就要通过调节叶片的桨距,改变气流对叶片攻角,从而改变风力发电机组获得的空气动力转矩。由于变桨距调节型风机在低风速时,可使桨叶保持良好的攻角,比失速调节型风机有更好的能量输出,因此,比较适合于平均风速较低的地区安装。变桨距调节的另外一个优点是在风速超速时可以逐步变化到无负载的全翼展模式位置,避免停机,增加风机发电量。对变桨距

发电机概述

发电机概述、结构和工作原理及分类 1.概述 电能是现代社会最主要的能源之一。发电机是将其他形式的能源转换成电能的机械设备,它由水轮机、汽轮机、柴油机或其他动力机械驱动,将水流,气流,燃料燃烧或原子核裂变产生的能量转化为机械能传给发电机,再由发电机转换为电能。发电机在工农业生产,国防,科技及日常生活中有广泛的用途。 发电机的形式很多,但其工作原理都基于电磁感应定律和电磁力定律。因此,其构造的一般原则是:用适当的导磁和导电材料构成互相进行电磁感应的磁路和电路,以产生电磁功率,达到能量转换的目的。 发电机的分类可归纳如下: 直流发电机、交流发电机;同步发电机、异步发电机(很少采用) 交流发电机还可分为单相发电机与三相发电机。 2.结构及工作原理 发电机通常由定子、转子、端盖、机座及轴承等部件构成。 定子由机座.定子铁芯、线包绕组、以及固定这些部分的其他结构件组成。 转子由转子铁芯(有磁扼.磁极绕组)滑环、(又称铜环.集电环).风扇及转轴等部件组成。 由轴承及端盖将发电机的定子,转子连接组装起来,使转子能在定子中旋转,做切割磁力线的运动,从而产生感应电势,通过接线端子引出,接在回路中,便产生了电流。 汽轮发电机与汽轮机配套的发电机。为了得到较高的效率,汽轮机一般做成高速的,通常为3000转/分(频率为50赫)或3600转/分(频率为60赫)。核电站中汽轮机转速较低,但也在1500转/分以上。高速汽轮发电机为了减少因离心力而产生的机械应力以及降低风摩耗,转子直径一般做得比较小,长度比较大,即采用细长的转子。特别是在3000转/分以上的大容量高速机组,由于材料强度的关系,转子直径受到严格的限制,一般不能超过1.2米。而转子本体的长度又受到临界速度的限制。当本体长度达到直径的6倍以上时,转子的第二临界速度将接近于电机的运转速度,运行中可能发生较大的振动。所以大型高速汽轮发电机转子的尺寸受到严格的限制。10万千瓦左右的空冷电机其转子尺寸已达到上述的极限尺寸,要再增大电机容量,只有靠增加电机的电磁负荷来实现。为此必须加强电机的冷却。所以5~10万千瓦以上的汽轮发电机都采用了冷却效果较好的氢冷或水冷技术。70年代以来,汽轮发电机的最大容量已达到130~150万千瓦。从1986年以来,在高临界温度超导电材料研究方面取得了重大突破。超导技术可望在汽轮发电机中得到应用,这将在汽轮发电机发展史上产生一个新的飞跃。 3.水轮发电机 由水轮机驱动的发电机。由于水电站自然条件的不同,水轮发电机组的容量和转速的变化范围很大。通常小型水轮发电机和冲击式水轮机驱动的高速水轮发电机多采用卧式结构,

发电机常见类型

本文摘自再生资源回收-变宝网(https://www.docsj.com/doc/ff12555366.html,) 发电机常见类型 发电机按照原动机的不同分为: 1水轮发电机2汽轮发电机3燃气轮发电机4柴油发电机 按照转子的不同分为 1隐极式:用于汽轮发电机和燃气轮发电机,转速高 2凸极式发电机:用于水轮发电机,转速低 按照冷却介质不同分为 1空气冷却2氢气冷却3油冷却4水冷却 汽轮发电机 与汽轮机配套的发电机。为了得到较高的效率,汽轮机一般做成高速的,通常为3000转/分(频率为50赫)或3600转/分(频率为60赫)。核电站中汽轮机转速较低,但也在1500转/分以上。高速汽轮发电机为了减少因离心力而产生的机械应力以及降低风摩耗,转子直径一般做得比较小,长度比较大,即采用细长的转子。特别是在3000转/分以上的大容量高速机组,由于材料强度的关系,转子直径受到严格的限制,一般不能超过1.2米。而转子本体的长度又受到临界速度的限制。当本体长度达到直径的6倍以上时,转子的第二临界速度将接近于电机的运

转速度,运行中可能发生较大的振动。所以大型高速汽轮发电机转子的尺寸受到严格的限制。10万千瓦左右的空冷电机其转子尺寸已达到上述的极限尺寸,要再增大电机容量,只有靠增加电机的电磁负荷来实现。为此必须加强电机的冷却。所以5~10万千瓦以上的汽轮发电机都采用了冷却效果较好的氢冷或水冷技术。70年代以来,汽轮发电机的较大容量已达到130~150万千瓦。从1986年以来,在高临界温度超导电材料研究方面取得了重大突破。超导技术可望在汽轮发电机中得到应用,这将在汽轮发电机发展史上产生一个新的飞跃。 水轮发电机 由水轮机驱动的发电机。由于水电站自然条件的不同,水轮发电机组的容量和转速的变化范围很大。通常小型水轮发电机和冲击式水轮机驱动的高速水轮发电机多采用卧式结构,而大、中型代速发电机多采用立式结构。由于水电站多数处在远离城市的地方,通常需要经过较长输电线路向负载供电,因此,电力系统对水轮发电机的运行稳定性提出了较高的要求:电机参数需要仔细选择;对转子的转动惯量要求较大。所以,水轮发电机的外型与汽轮发电机不同,它的转子直径大而长度短。水轮发电机组起动、并网所需时间较短,运行调度灵活,它除了一般发电以外,特别适宜于作为调峰机组和事故备用机组。水轮发电机组的较大容量已达70万千瓦。

汽车发电机整流原理

汽车交流发电机及电压调节器 汽车使用的电源有蓄电池和发电机两种。现代汽车采用交流发电机作为主要电源,蓄电池作为辅助电源。在汽车行驶过程中,由发电机向用电设备提供电源,并向蓄电池充电。蓄电池在汽车起动时提供起动电流,当发电机发出电量不足时,可以协同发电机供电。 与直流发电机相比,具有如下几个特点: 体积小,质量轻 在发动机低速运转时,仍能进行充电 故障少,使用寿命长,保修简便 调节器结构简单 很少产生干扰波 交流发电机的构造 交流发电机的工作原理 1.发电原理:在汽车用交流发电机中,由于转子磁极是鸟嘴形,其磁场的分布近似于正弦规律,所以交流电动势也近似于正弦波形,相位差互为120度。 2.整流原理::硅二极管具有单向导电性。 在某一瞬间,正极二极管上那一项的电压最高,那一项的正极管子就获得正向电压而导通。负极管上那一项的电压最低,那一项的负极管子就获得正向电压而导通。 实际上,在汽车交流发电机中选用的二极管,其允许的反向电压要高得多,可以承受电路中各种瞬时过电压对二极管的冲击。 3.励磁方法 汽车用交流发电机最常用的是九管的交流发电机,也就是具有九个硅二极管的发电机。其中六个硅二极管组成整流器,利用二极管的单向导电性将交流发电机产生的交流电压转变成直流电压,另外三个二极管提供通过发电机中的励磁绕阻的电流,称为励磁二极管。九管交流发电机不仅可以控制充电指示灯指示蓄电池的充电情况,指示充电系统是否发生故障,还可以在停车时,提醒驾驶员断开点火开关。

由于二极管有0.6v的门坎电压,所以汽车用交流发电机只有在发电机在较高转速的时候才能自己发电,称为自励过程。当发电机的转速较低时,由蓄电池供给电流,称为他励过程。因此,交流发电机发电,要先经过他励过程,再经过自励过程。工作原理如下:当开关闭合后,首先由蓄电池提供电流。电路为: 蓄电池正极→充电指示灯→调节器触点→励磁绕阻Rf→搭铁→蓄电池负极。此时,充电指示灯由于有电流通过,所以灯会亮。 但发动机起动后,随着发电机转速提高,发电机的端电压也不断升高,。当发电机的输出电压与蓄电池电压相等时,发电机“B”端和“D”端的电位相等,此时,充电指示灯由于两端电位差为零而熄灭。指示发电机已经正常工作,励磁电流由发电机自己供给。发电机中三相绕阻所产生的三相交流电动势经六只二极管整流后,输出直流电,向负载供电,并向蓄电池充电。 当发电机高速运转、充电系统发生故障而导致发电机不发电时,“D”端无电压输出,所以充电指示灯由于两端电位差增大而发亮,警告驾驶员及时排除故障。九管交流发电机在停车后,蓄电池向充电指示灯继续提供电流,则充电指示灯会一直亮,提醒驾驶员断开点火开关。 交流发电机的工作特性 汽车交流发电机的工作特点是转速变化围大,因此,必须了解其输出电流、端电压与转速变化之间的关系,即交流发电机的工作特性。

风力发电机的简介

浅析风力发电机组 一.引言 随着全球化石能源的枯竭和供应紧张以及气候变化形势的日益严峻,世界各国都认识到了发展可再生能源的重要性,风能作为清洁可再生能源之一,受到了各国的高度重视,世界风电产业也因此得到了迅速发展。中国风能资源十分丰富:陆上和近海可供开发和利用的风能储量分别为2.53亿千瓦和7.5亿千瓦,具有发展风能的潜力和得天优厚的优势。在未来的能源市场上,充分开发和挖掘这一潜力和优势,将有助于持续保持本国的能源活力和维持经济的可持续发展。在开发利用风能的过程中,风电场的建设是其必须的环节,而风电机组的应用又是建设风电场的重中之重。 二.风力发电机组的分类 (1)风力发电机组类型按容量分 容量在0.1~1kW为小型机组,1~100kW为中型机组,100~1000kW 为大型机组 ,大于10000kW 为特大型机组。 (2)风力发电机组类型按风轮轴方向分 水平轴风力机组:风轮围绕水平轴旋转。风轮在塔架前面迎风的称为上风向风力机,在塔架后面迎风的称为下风向风力机。上风向风力机需利用调向装置来保持风轮迎风。 垂直轴风力机组:风轮围绕垂直轴旋转,可接收来自任何方向的风,故无需对风。垂直轴风力机又分为利用空气动力的阻力作功和利用翼型的升力作功两个主要类别。 (3)风力发电机组类型按功率调节方式分 定桨距机组:叶片固定安装在轮毂上,角度不能改变,风力机的功率调节完全依靠叶片的气动特性(失速)或偏航控制。 变桨距(正变距)机组:须配备一套叶片变桨距机构,通过改变翼型桨距角,使翼型升力发生变化从而调节输出功率。 主动失速(负变距)机组:当风力机达到额定功率后,相应地增加攻角,使叶片的失速效应加深,从而限制风能的捕获。 (4)风力发电机组类型按传动形式分 高传动比齿轮箱型机组:风轮的转速较低,必须通过齿轮箱、齿轮副的增速来满足发电机转速的要求。齿轮箱的主要功能是增速和动力传递。 直接驱动型机组:应用了多极同步风力发电机,省去风力发电系统中常见的齿轮箱,风

柴油发电机组的类型很多,主要有以下八种分类方式

柴油发电机组的类型很多,主要有以下 八种分类方式 环球柴油发电机组网: (1)按照发动机燃料分类;可分为柴油发电机组价格和复合燃料发电机组。 (2)按照转速高低分类,可分为高速柴油发电机组、中速柴油发电机组和低速柴油发电机组。 1)高速柴油发电机组的转速大于1000r/min。 2)中速柴油发电机组的转速小于500r/min。 3)低速柴油发电机组的转速小于500r/min。 (3)按照使用条件分类,可分为陆用柴油发电机组、船用柴油发电机组、挂车式柴油发电机组和汽车式柴油发电机组。其中陆用柴油发电机组,包括移动 式和固定式。陆用机组又可分为普通型、自动化型、低噪声型、低噪声自动化 型四种。 (4)按照发电机输出电压和频率分类,可分为交流发电机组和直流发电机组。其中交流发电机组,包括中频400Hz和工频50Hz,对于50Hz工频,中小型发 电机的标定电压一般为400V;大型发电机的标定电压一般为6.3-10.5kv。 (5)按照同步发电机的励磁方式分类,可分为旋转交流励磁机和禁止励磁机。 1)旋转交流励磁机励磁系统,包括交流励磁机禁止整流器系统和无刷励磁 系统。 2)静止励磁机励磁系统,包括电压源静止励磁机励磁系统交流侧串联复合 电压源静止励磁机励磁系统和谐波(或基波)辅助绕组励磁系统。

(6)按照不同用途分类,可分为常用发电机组、备用发电机组、应急发电机组和战备发电机组。 1)常用发电机组。这类发电机组常年运行,一般设在远离电力网(或称市电)的地区或工矿企业附近,以满足这些地方的施工、生产和生活用电。目前在紧 急发展比较快的地区,需要建设周期短的常用柴油发电机组来满足用户的需求。这类发电机组一般容量较大。 2)备用发电机组。在通常情况下用户所需电力由市电供给,当市电限位电 拉闸或其他原因中断供电时,为保证用户的基本生产和生活而设置的发电机组。这类发电机组场设在市电供应紧张的工矿企业、医院、宾馆、银行、机场和电 台等重要用电单位。 3)应急发电机组。对市电突然中断将造成重大损失或人身事故的用电设备,常设置应急发电机组对这些设备紧急供电,如高层建筑的消防系统、疏散照明、电梯、自动化生产线的控制系统及重要的通信系统等。这类发电机组需要安装 自启动柴油发电机组,自动化程度要求较高。 4)备战发电机组。这类发电机组是为人防和国防设施供电,平时具有备用 发电机组的性质,而在战时市电被破坏后,则具有常用发电机组的性质。这类 发电机组一般安装在地下,具有一定的防护能力。 (7)按照控制和操作的方式分类,可分为现场操作发电机组、隔室操作发电机组和自动化发电机组。 1)现场操作发电机组。操作人员在机房内对发电机组进行启动、合闸、调速、分闸、停机等操作。这类发电机组运行时所产生的振动、噪声、油雾和废 气对操作人员的身体有不良影响。 2)隔室操作发电机组,这类发电机组的机房和控制室分开设置,操作人员 在操作室内对机房内的柴油发电机组进行启动、调速、停机等操作,并对机组 的运行参数进行监测,对机房内的辅机也实施集中控制。隔室操作可改善操作 人员的工作环境。

相关文档