文档视界 最新最全的文档下载
当前位置:文档视界 › 专升本高等数学2复习题

专升本高等数学2复习题

专升本高等数学2复习题
专升本高等数学2复习题

数学

1、函数Z=ln(x+2y)的定义域。 解: x+2y >0

2、f(xy)=x 2+(y-2)arctan 3

xy ,则)2,(x x f '。

解:把y 看作常数

f(x,2)=x 2 2

3)2,(x x f ='?

3、。则δd b y a x D

??≤+2,122

22

解:ab 222πδ==??S D D

d

4、。

则等比级数<∑∞

=1

,1满足l 、

r 设实数n n r r 解:r r r r r n n n n -=-=∑∑∞

=-∞

=11,11

1

1 的两个特解,是线性微分方程、证)()(,521x Q y x p y x e y e y x x =+'+==

则其通解为:

解:()x

e Cx y y x Q y x p y +-=+'通解为:为齐次方程的解;;

1

22)()(

。)(收敛,则交错级数、正项级数∑

∑∞

=∞=-1

1

16n n n

n n U U 解:讨论绝对值情况

∴为绝对收敛

7、δd y x R x R y x ??--≥≤+2

22222,0,则。

解:z=22222222222R z y x y x R z y x R =++?--=?--

∵333

1

2121340R R x ππ=???

≥ 8、处连续的充分条件。(全微分存在是函数在点

在点(),),),(0000y x y x y x f 可微是连续的必要条件,连续是可微的充分条件。

9、幂级数的收敛半径为∑∞

=02

n n n

x

解1:2

21211

=+n n

解2:

21212

1n

1==n 10、梯度grad (1)、

}{),(fy fx fyj fxi y x f ?=+=(求x,y 的偏导数)。

(2)、

梯度)2,1(,2

2-+=y x f 解:{-2,4}

}22{2,2梯度为y x y

fy x fx ?==

1≥==-n n n n

U U U )(

(3)、()∑∞

=+0

31n n n

n x

解:3311312

3

)2(1

3

11121

→?++→?++=+++n n n n

n n n n )(

解得:R=3 (4)、x y y x cos =+

',下列哪个正确(C )

A.x cos

B.x sin

C.x x sin 1

D.x x

cos 1

11、设。

求y x y

z z y x z ''-=,,)( 解:1

1)()()

(---='-?-='y x y x y x y y x y x y z

)ln()ln(ln y x y y x z y -=-= y x y

y x y x y x y y x z z y y ---='-?-?+-='?)ln()(1)ln(1

两边同乘以z 得:

])[ln()(])[ln(y

x y y x y x y x y y x z z y

y ----=---=' ])ln()[()

1

y y x y x y x y ----=-(

12、

dz y x z 求全微分,3

3+= 解:dy y dx x dy z dx z dz y

x 2

233+='+'=

13、计算??D

xd δ,其中3210≤≤-≤≤y x D ,:

。 解1:

???

??--==-1

10

3

2

)]2(3[xdx y d xdx xd D

δ

2

5215510

2

1

0=?==?x

xdx 14、计算1,222

2≤+??+y x D d e

D

y x :其中δ

解:用极坐标θθsin ,cos r y r x ==

10≤≤r D :

πθ20≤≤ 222r y x =+ θ

δrdrd d =

?????

??=

?=

+D

D r r y x rdr e

d rdrd e

d e

π

θθδ20

1

02

2

2

2

)1(212)(211

2

20

1

022-=?==??e e

r d e r r πππ

15、求幂级数∑

=1n n

x

x 的收敛域。 解:111lim 1lim lim a a lim n n 1

11n 1n n

n =??

? ??+=+===∞

→∞→+∞

→+∞→n n n R n n 得收敛区间(-1,1),即当1≤x 时,幂级数绝对收敛

在端点1=x 处,幂级数成为调和级数∑∞

=11

n n ,发散;

在端点1-=x 处,幂级数成为交错级数∑∞

=?-1

1

1n n

n )(,收敛;

∴幂级数的收敛域为[-1,1)

16、判定级数∑∞

=+2

4)11(n n

n 的敛散域。

解:0])11[(lim )11(lim lim 4

4n 4n n ≠=+=+=∞→∞

→∞→e n

n U n n n 不满足级数收敛的必要条件,故该级数发散。

17、求微分方程y

x

dx dy -=的通解。

解:

xdx ydy y

x

dx dy -=?-= 两端分别积分得??-=xdx ydy

为微分方程的通解

C y x x C C y x C x y C x y =+∴≥=+?+-=+-=22222222)(21

2121 18、求微分方程044=+'-''y y y 的通解。 解:特征方程为0442=+-r r 即()022=-r 得二重根221==r r

故微分方程的通解为为任意常数)、21221()(C C e x C C y x +=

专升本高数真题及答案

2005年河南省普通高等学校 选拔优秀专科生进入本科阶段学习考试 高等数学 试卷 一、单项选择题(每小题2分,共计60分) 在每小题的四个备选答案中选出一个正确答案,并将其代码写在题 干后面的括号内。不选、错选或多选者,该题无分. 1. 函 数 x x y --= 5)1ln(的定义域为为 ( ) A.1>x 5->-51050 1. 2. 下 列 函 数 中 , 图 形 关 于 y 轴对称的是 ( ) A .x x y cos = B. 13++=x x y C. 222x x y --= D.2 22x x y -+= 解:图形关于y 轴对称,就是考察函数是否为偶函数,显然函数2 22x x y -+=为 偶函数,应选D. 3. 当0→x 时,与12 -x e 等价的无穷小量是 ( ) A. x B.2x C.x 2 D. 22x

解: ?-x e x ~12~12 x e x -,应选B. 4.=?? ? ??++∞ →1 21lim n n n ( ) A. e B.2e C.3e D.4e 解:2)1(2lim 2 )1(221 21lim 21lim 21lim e n n n n n n n n n n n n n n =? ?? ????? ??? ??+=?? ? ??+=?? ? ? ? + +∞→+?∞ →+∞ →∞→,应选B. 5.设 ?? ? ??=≠--=0,0,11)(x a x x x x f 在0=x 处连续,则 常数=a ( ) A. 1 B.-1 C.21 D.2 1 - 解:2 1 )11(1lim )11(lim 11lim )(lim 0000 =-+=-+=--=→→→→x x x x x x x f x x x x ,应选C. 6.设函数)(x f 在点1=x 处可导,且2 1 )1()21(lim 0 =--→h f h f h ,则=')1(f ( ) A. 1 B.21- C.41 D.4 1 - 解:4 1 )1(21)1(22)1()21(lim 2)1()21(lim 020-='?='-=----=--→-→f f h f h f h f h f h h , 应选D. 7.由方程y x e xy +=确定的隐函数)(y x 的导数dy dx 为 ( ) A. )1()1(x y y x -- B.)1()1(y x x y -- C.)1()1(-+y x x y D.) 1() 1(-+x y y x 解:对方程y x e xy +=两边微分得)(dy dx e ydx xdy y x +=++, 即dy x e dx e y y x y x )()(-=-++, dy x xy dx xy y )()(-=-,

成人高考专升本高等数学二复习教程

《高等数学二》复习教程 第一讲函数、连续与极限 一、理论要求 1.函数概念与性质函数的基本性质(单调、有界、奇偶、周期) 几类常见函数(复合、分段、反、隐、初等函数) 2.极限极限存在性与左右极限之间的关系 夹逼定理和单调有界定理 会用等价无穷小和罗必达法则求极限 3.连续函数连续(左、右连续)与间断 理解并会应用闭区间上连续函数的性质(最值、有界、介值) 二、题型与解法 A.极限的求法(1)用定义求 (2)代入法(对连续函数,可用因式分解或有理化消除零因子) (3)变量替换法 (4)两个重要极限法 (5)用夹逼定理和单调有界定理求 (6)等价无穷小量替换法 (7)洛必达法则与Taylor级数法 (8)其他(微积分性质,数列与级数的性质)

1.61 2arctan lim )21ln(arctan lim 3 030- =-=+->->-x x x x x x x x (等价小量与洛必达) 2.已知2030) (6lim 0)(6sin lim x x f x x xf x x x +=+>->-,求 解:2 0303' )(6cos 6lim )(6sin lim x xy x f x x x xf x x x ++=+>->- 72 )0(''06)0(''32166 ' ''''36cos 216lim 6'''26sin 36lim 00=∴=+-=++-=++-=>->-y y xy y x x xy y x x x 362 72 2''lim 2'lim )(6lim 0020====+>->->-y x y x x f x x x (洛必达) 3.1 21)1 2( lim ->-+x x x x x (重要极限) 4.已知a 、b 为正常数,x x x x b a 3 0)2( lim +>-求 解:令]2ln )[ln(3 ln ,)2(3 -+=+=x x x x x b a x t b a t 2/300)() ln(23)ln ln (3lim ln lim ab t ab b b a a b a t x x x x x x =∴=++=>->-(变量替换) 5.) 1ln(1 2) (cos lim x x x +>- 解:令)ln(cos ) 1ln(1 ln ,) (cos 2 ) 1ln(1 2 x x t x t x +==+ 2/100 2 1 2tan lim ln lim ->->-=∴-=-=e t x x t x x (变量替换) 6.设)('x f 连续,0)0(',0)0(≠=f f ,求1)()(lim 2 2 =? ? >-x x x dt t f x dt t f (洛必达与微积分性质) 7.已知???=≠=-0 ,0 ,)ln(cos )(2x a x x x x f 在x=0连续,求a 解:令2/1/)ln(cos lim 2 -==>-x x a x (连续性的概念)

专升本高等数学测试及答案(第二章)

高等数学测试(第二章) 一.选择题(每小题2分,共20分) 1 .设函数0()10 2 x f x x ≠=??=?? 在0x =处( ) A .不连续B .连续但不可导C .可导D .可微 2.设函数()ln 2f x x x =在0x 处可导,且0()2f x '=,则0()f x 等于( )A .1 B .2 e C .2e D .e 3.设函数()f x 在点x a =处可导,则0()()lim x f a x f a x x →+--等于( ) A .0 B .()f a ' C .2()f a ' D .(2)f a ' 4.设x x x f += ??? ??11,x x g ln )(=,则[()]f g x '= ( ) A . 2) 1(1x + B .2)1(1x +- C .1x x + D .22 )1(x x +- 5.设函数 )(x f 在),(+∞-∞内可导,则下列结论中正确的是 ( ) A .若)(x f 为周期函数,则)(x f '也是周期函数 B .若)(x f 为单调增加函数,则)(x f '也是单调增加函数 C .若)(x f 为偶函数,则)(x f '也是偶函数 D .若 )(x f 为奇函数,则)(x f '也是奇函数 6.设)(x f 可导,则下列不成立的是 ( ) A .)0()0()(lim 0 f x f x f x '=-→ B .)()()2(lim 0 a f h a f h a f h '=-+→ C .)()()(lim 0 000 x f x x x f x f x '=??--→? D .)(2)()(lim 0000 x f x x x f x x f x '=??--?+→?

普通专升本高等数学真题汇总

. 2011年普通专升本高等数学真题一 一. 选择题(每个小题给出的选项中,只有一项符合要求:本题共有5个小题,每小题4分,共20分) 1.函数()() x x x f cos 12 +=是( ). ()A 奇函数 ()B 偶函数 ()C 有界函数 ()D 周期函数 2.设函数()x x f =,则函数在0=x 处是( ). ()A 可导但不连续 ()B 不连续且不可导 ()C 连续且可导 ()D 连续但不可导 3.设函数()x f 在[]1,0上,02 2>dx f d ,则成立( ). ()A ()()010 1 f f dx df dx df x x ->> == () B ()()0 1 10==> ->x x dx df f f dx df ()C ()()0 1 01==> ->x x dx df f f dx df ()D ()()1 01==> > -x x dx df dx df f f 4.方程2 2y x z +=表示的二次曲面是( ). ()A 椭球面 ()B 柱面 ()C 圆锥面 ()D 抛物面 5.设()x f 在[]b a ,上连续,在()b a ,内可导,()()b f a f =, 则在()b a ,内,曲线()x f y =上平 行于x 轴的切线( ). ()A 至少有一条 ()B 仅有一条 ().C 不一定存在 ().D 不存在 二.填空题:(只须在横线上直接写出答案,不必写出计算过程,每小题4分,共40分) 1.计算_______ __________2sin 1lim 0=→x x x 报考学校:______________________报考专业:______________________姓名: 准考证号: ------------------------------------------------------------------------------------------密封线---------------------------------------------------------------------------------------------------

福建省专升本高等数学真题卷

【2017】1.函数()()2()1,1x f x x x =∈+∞-则1(3)f -=() 【2017】2.方程31x x =-至少存在一个实根的开区间是() 【2017】3.当x →∞时,函数()f x 与2x 是等价无穷小,则极限()lim x xf x →∞的值是() 【2017】4.已知函数()f x 在[a,b]上可导,且()()f a f b =,则()0f x '=在(a,b)内() A.至少有一个实根 B.只有一个实根 C.没有实根 D.不一定有实根 【2017】5.已知下列极限运算正确的是() 【2017】6.已知函数()f x 在0x 处取得极大值,则有【】 【2017】7.方程x=0表示的几何图形为【】 A .xoy 平面 B .xoz 平面 C .yoz 平面 D .x 轴 【2017】8.已知()x f x dx xe c =+?则()2f x dx =?是() 【2017】9.已知函数()f x 在R 上可导,则对任意x y ≠都()()f x f y x y -<-是()1f x '<() 【2017】10.微分方程0y y '''-=的通解是【】 A .y x = B .x y e = C .x y x e =+ D .x y xe = 2、填空题 【2017】11.函数0 00(),lim ()3,()=x x f x x f x f x -→=在处连续则 【2017】12.函数22,0()sin ,0x x f x a x x ?+>?=?≤??,在R 上连续,则常数a = 【2017】13.曲线32312 y x x =-+的凹区间为 【2017】14.0 0cos lim x x tdt x →=? 【2017】15.积分22-2 sin x xdx ππ=? 【2017】16.直线{}{}1 k 11,0k 向量,,与向量,垂直,则常数k = 3、计算题

2020成人高考专升本高等数学二知识点汇总复习(自编)

2020年成人高考专升本高等数学二知识点复习 第一章:极限与连续 1-1、极限的运算 1、极限的概念 (1)设函数y=f(x)在点x0的某个邻域内有定义,如果当x无限趋于x0时函数f(x)无限地趋于 f(x)=A 一个常数A,则称A为函数f(x)当x→x0时的极限,记作lim x→x0 (2)左极限、右极限;在某点极限存在,左右极限存在且唯一。 lim f(x)=A x→x0? f(x)=A lim x→x0+ 2、无穷小量与无穷大量 无穷小量定义:对于函数y=f(x),如果当x在某个变化过程中,函数f(x)的极限为0,则 f(x)=0 称在该变化过程中, f(x)为无穷小量,记作lim x→x0 无穷大量定义:对于函数y=f(x),如果当x在某个变化过程中,函数f(x)的极限值越来越 f(x)=∞ 大,则称在该变化过程中, f(x)为无穷大量,记作lim x→x0 3、无穷小量与无穷大量的关系 为无穷小量; 在同一变化过程中,如果f(x)为无穷大量,且f(x)≠0,则1 f(x) 为无穷大量; 在同一变化过程中,如果f(x)为无穷小量,且f(x)≠0,则1 f(x) 4、无穷小量的性质 性质1:有限个无穷小量的代数和仍是无穷小量 ★性质2:无穷小量与有界函数的积仍是无穷小量 5、无穷小量的比较与替换 定义:设α,β是同一变化过程中的无穷小量,即limα=0,limβ=0 =0,则称β是α比较高阶的无穷小量 (1)如果limβ α

(2)如果lim β α=∞,则称β是α比较低阶的无穷小量 (3)如果lim β α =c ≠0,则称β是与α同阶的无穷小量 (4)如果lim β α=1,则称β与α是等价的无穷小量 ★常见的等价无穷小量: 当x →0时,x ~sin x ~tan x ~ arc sin x ~ arc tan x ~ e x ?1 ~ ln (1+x) 1?cos x ~1 2x 2 ★★6、两个重要极限 (1)lim x→0 sin x x =1 (2)lim x→∞ (1+1 x )x =e 或lim x→0 (1+x)1 x =e ★★7、求极限的方法 (1)直接代入法:分母不为零 (2)分子分母消去为0公因子 (3)分子分母同除以最高次幂 (4)利用等价代换法求极限(等价无穷小) (5)利用两个重要极限求极限 (6)洛必达求导法则(见第二章) 1-2、函数的连续性 1、函数在某一点上的连续性 定义1:设函数y =f(x)在点x 0的某个邻域内有定义,如果有自变量?x 趋近于0时,相应的函数改变量?y 也趋近于0,即lim ?x→0 [f (x 0+?x )?f (x 0)]=0,则称函数y =f(x)在x 0处连续。 定义2:设函数y =f(x)在点x 0的某个邻域内有定义,如果当 x →x 0时,函数f(x)的极限存在,且等于x 0处的函数值f(x 0), lim x→x 0 f (x )=f(x 0),则称函数y =f(x)在x 0处连续。

成人高考高数二专升本真题及答案

2012年成人高等学校专升本招生全国统一考试 高等数学(二) 一、选择题:每小题10分,共40分。在每小题的四个选项中,只有一项是符合题 目要求。 1. 3 lim →x ( ) A. 1 B. C. 0 D. π 答案:B 解读:3 lim →x cos1 2. 设函数y= , 则 ( ) A. B. C. 2x D. 答案:C 3. 设函数 , 则f ’( π ( ) A. B. C. 0 D. 1 答案:A 解读:()12sin 2,sin -=-=?? ? ??'-='ππf x x f 4. 下列区间为函数 的单调增区间的是( )

A. (0,π B. π π C. π π D. (0, π 答案:A 5. =( ) A. 3 B. C. D. +C 答案:C 解读:由基本积分公式C x a dx x a a ++= +? 1 1 1可得 6. ( ) A. B. C. D. ln|1+x|+C 答案:D 解读: ()C x x d x dx x ++=++=+??1ln 11111 7. 设函数z=ln(x+y), 则 ( ) A. B. C. D. 1 答案:B 解读: ,将1,1==y x 代入, 8. 曲线y= 与x 轴所围成的平面图形的面积为( ) A. B. C. π D. π

答案:C 解读:画图可知此图形是以坐标原点为圆心,半径为2且位于x 轴上方的半圆, 也可用定积分的几何意义来做 9. 设函数 , 则22z x ?=?( ) A. B. C. D. 答案:D 解读:x e x z =??,x e x z =??22 10. 设事件A,B 互不相容, P(A)=0.3, P(B)=0.2, 则P(A+B)=( ) A. B. C. D. 答案:B 解读:因为A ,B 互不相容,所以P(AB)=0,P(A+B)= P(A)+ P(B)- P(AB)=0.5 二、填空题:每小题4分,共40分. 11. 1 lim →x =. 答案:2- 解读:1 lim →x 12. → =.

2018年成人高考专升本高数二真题解析

2018年成人高考专升本高数二真题解析年2010年的成人高考专升本高数二真题解析一、选择题:1,10小题,每小题4分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的,将近选项前的字母填涂在答题卡相应题号的信息点上。 正确答案:A【解析】根据函数的连续性立即得出结果【点评】计算极限最常见的题型。在教学中一直被高度重视。 正确答案:c【解析】使用基本初等函数求导公式 【点评】基本初等函数求导公式是历年必考的内容,我们要求考生必须牢记。 【答案】D【解析】本题考查一阶求导简单题,根据前两个求导公式 正确答案:D【解析】如果知道基本初等函数则易知答案;也能根据导数的符号确定 【点评】这是判断函数单调性比较简单的题型。

正确答案:A【解析】基本积分公式【点评】这是每年都有的题目。 【点评】用定积分计算平面图形面积在历年考试中,只有一两年未考。应当也一直是教学的重点 正确答案:C【解析】变上限定积分求导【点评】这类问题一直是考试的热点。 正确答案:D【解析】把x看成常数,对y求偏导【点评】本题属于基本题目,是年年考试都有的内容 【点评】古典概型问题的特点是,只要做过一次再做就不难了。 二、填空题:11,20小题,每小题4分,共40分,把答案写在答题卡相应题号后。

【解析】直接代公式即可。 【点评】又一种典型的极限问题,考试的频率很高。 【答案】0 【解析】考查极限将1代入即可, 【点评】极限的简单计算。 【点评】这道题有点难度,以往试题也少见。 【解析】求二阶导数并令等于零。解方程。题目已经说明是拐点,就无需再判断 【点评】本题是一般的常见题型,难度不大。 【解析】先求一阶导数,再求二阶 【点评】基本题目。 正确答案:2 【解析】求出函数在x=0处的导数即可 【点评】考查导数的几何意义,因为不是求切线方程所以更简单了。

成人高考专升本高等数学真题及答案

2013年成人高等学校专升本招生全国统一考试 高等数学(二) 答案必须答在答题卡上指定的位置,答在试卷上无效....... 。 选择题 一、选择题:1~10 小题,每小题4分,共40分。在每小题给出的四个选项中, 只有一项是符合题目要求的,把所选项前的字母填涂在答题卡相应题号的信点.......... 上. 。 1、2 2lim x cos x x π → = A. 2 π B. 2 π - C. 2 π D. 2 π - 2、设函数ln 3x y e =-,则 dy dx = A. x e B. 1 3 x e + C. 13 D. 13 x e - 3、设函数()ln(3)f x x =,则'(2)f = A. 6 B. ln 6 C. 12 D. 16 4、设函数3()1f x x =-在区间(,)-∞+∞ A.单调增加 B.单调减少 C.先单调增加,后单调减少 D.先单调减少,后单调增加 5、 2 1 dx x ?= A. 1 C x + B. 2 ln x C + C. 1 C x - + D. 2 1C x + 6、 2 (1) x d dt t dx +?= A. 2 (1)x + B. 0 C. 31(1)3 x + D. 2(1)x + 7、曲线||y x =与直线2y =所围成的平面图形的面积为 A. 2 B. 4 C. 6 D. 8 8、设函数cos()z x y =+,则 (1,1)|z x ?=? A. cos 2 B. cos 2- C. sin 2 D. -sin 2

9、设函数y z xe =,则 2 z x y ???= A. x e B. y e C. y xe D.x ye 10、设A ,B 是两随机事件,则事件A B -表示 A.事件A ,B 都发生 B.事件B 发生而事件A 不发生 C.事件A 发生而事件B 不发生 D.事件A ,B 都不发生 非选择题 二、填空题:11~20小题,每小题4分,共40分,将答案填写在答题卡相应题...... 号后..。 11、3123x x lim x →-= _______________. 12、设函数ln ,1,(),1x x f x a x x ≥?=?-

普通专升本高等数学试题及答案

高等数学试题及答案 一、单项选择题(本大题共5小题,每小题2分,共10分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.设f(x)=lnx ,且函数?(x)的反函数1?-2(x+1) (x)=x-1 ,则 []?=f (x)( ) ....A B C D x-2x+22-x x+2 ln ln ln ln x+2x-2x+22-x 2.()0 2lim 1cos t t x x e e dt x -→+-=-?( ) A .0 B .1 C .-1 D .∞ 3.设00()()y f x x f x ?=+?-且函数()f x 在0x x =处可导,则必有( ) .lim 0.0.0.x A y B y C dy D y dy ?→?=?==?= 4.设函数,1 31,1 x x x ?≤?->?22x f(x)=,则f(x)在点x=1处( ) A.不连续 B.连续但左、右导数不存在 C.连续但 不可导 D. 可导 5.设C +?2 -x xf(x)dx=e ,则f(x)=( ) 2 2 2 2 -x -x -x -x A.xe B.-xe C.2e D.-2e 二、填空题(本大题共10小题,每空3分,共30分) 请在每小题的空格中填上正确答案。错填、不填均无分。 6.设函数f(x)在区间[0,1]上有定义,则函数f(x+14)+f(x-1 4 )的定义域是__________. 7.()()2lim 1_________n n a aq aq aq q →∞ +++ +<= 8.arctan lim _________x x x →∞ = 9.已知某产品产量为g 时,总成本是2 g C(g)=9+800 ,则生产100 件产品时的边际成本100__g ==MC 10.函数3()2f x x x =+在区间[0,1]上满足拉格朗日中值定理的点ξ是_________.

专升本:高等数学备考时常见问题解答

最近有不少同学在我们的微信后台问小编,专升本高数难考吗?在备考专升本高数的过程中,应该注意什么样的问题?等等,下面小编将会为大家汇总备考时常见的高数问题,帮助大家解答疑难问题。 问题一:做题时喜欢回顾以往做过的类似题型,需要多次尝试才能解答 解决办法:喜欢回顾做过的类似题,可以说是大部分学生的通病(比如:很多学生说,我现在的题会做,但是以前的题又不会做了,怎么回事?还有学生会问,为什么老师讲过的题我会做,但是一遇到新题我就不会做呢?更有学生问,我一到考场就紧张,会的题也做不出来了,怎么回事),这个问题就是题海战术所产生的必然现象。很多学生问我,老师,我该买套什么试卷来做,我的数学成绩才能提高?或者问,我的数学成绩怎么学都提不上来为什么? 小编想跟大家讲,学习和做事都要有一个基本的原则:就是要认真、专注、善于反思。 如果你的成绩非常不好,那么请你按照下面的方式去做:因为数学学科的特殊性,任何题都可能找到原型题,但是题目稍微条件一变,或者是所求的内容不一样,把以往做过的题中,结论当成条件,

条件拿来做设问,大家就不会了,或者是做题时需要花费很长时间才能做对。 这是典型的“经验主义或者是主观思维惯性”,我建议那些总是“回顾以往题型”的同学及时调整,在做题过程中,把觉得熟悉的题目都单独的挑出来,整理在一起。当你挑的多了后,就能容易的将题归类汇总,找出这些题目的差异点和相同点。这样,你就能对这一类题有一个整体上的认识和把握,进而总结自己的解题思路。训练自己以后见到这类题如何着手,第一步从哪里想起,怎么做。 如果你是一名能力较强的同学,建议在平时学习的时候加大看题的比例。即看每一道题的解题步骤。同时思考“凭什么”从第一步走到第二步,它们之间的关联性、逻辑性是怎样的?平时遇到题多思考、多比较,多归纳总结后,考试就能摆脱“套”的局限,从而真正形成自己的做题思维,数学解题能力获得很大提高。 问题二考试时紧张,怯场,导致平时会做的题也丢分。容易形成脑空白 解决办法:关于考试时紧张怯场等问题,是少部分学生遇到的。这个问题比较好解决,就是平时多练习整套试卷。即掐表做题,如正常考试数学是120分钟,那么平时掐表110分钟做卷子。并且平时在做卷子的时候有选择的放弃不会做的题,一旦遇到某个障碍题,思考1分钟左右还没有头绪的话,立即说服跳过做下一道题。做完会做的题后,再看不会做的题,直到110分钟结束。这样去不断的训练自己,考试时就能形成良好的习惯,能正确取舍及安排做题时间。达到正常

高等数学(专升本)第2阶段测试题

江南大学现代远程教育 2012年下半年第二阶段测试卷 考试科目:《高等数学》专升本 第四章至第六章(总分100分) 时间:90分钟 _____学习中心(教学点) 批次: 层次: 专业: 学号: 身份证号: 姓名: 得分: 一. 选择题(每题4分,共20分) 1. 下列函数中在给定区间满足拉格朗日中值定理条件的是 ( b ). (a) ,[2,1]y x =- (b) 2,[2,6]y x = (c)23,[2,1]y x =- (d)1,[2,6]3y x = - 2. 曲线 331y x x =-+ 的拐点是a (a) (0,1) (b) (1,0) (c) (0,0) (d) (1,1) 3. 下列函数中, ( ) 是 2cos x x 的原函数.d (a) 21cos 2x - (b) 1sin 2x - (c) 21sin 2x - (d) 21sin 2 x 4. 设()f x 为连续函数, 函数1 ()x f t dt ? 为 (b ). (a) ()f x '的一个原函数 (b) ()f x 的一个原函数 (c) ()f x '的全体原函数 (d) ()f x 的全体原函数 5. 已知函数()F x 是()f x 的一个原函数, 则4 3 (2)f x dx -?等于( c ). (a) (4)(3)F F - (b) (5)(4)F F - (c) (2)(1)F F - (d) (3)(2)F F -

二.填空题(每题4分,共28分) 6. 函数 3 33y x x =-+的单调区间为(,1),[1,1],(1,)-∞--+∞ 7. 函数 333y x x =-+的下凸区间为(,0)-∞ 8. tan (tan )xd x ?=21(tan ),(为任意实数)2 x C C +. 9. 233()()x f x f x dx '?=321(f(x )),(为任意实数)6 C C +. 10. 220062sin x xdx -?=_____0_____. 11. 0 cos x dx π ?=___2____. 12. 极限230 00 ln(1)lim x x x t dt tdt →+??=12. 三. 解答题(满分52分) 13. 求函数 254(0)y x x x =-< 的极小值。 254y =2x (0);0=-3x<-3,0;3,0.x=-3y =27 x y x y x y ''+ <=''<>->极小值解答: 时,x 所以在时取到极小值, 14. 求函数 333y x x =-++ 的单调区间、极值及其相应的上下凸区间与拐点。

专升本高等数学(二)

成人高考(专升本)高等数学二 第一章极限和连续 第一节极限 [复习考试要求] 1.了解极限的概念(对极限定义等形式的描述不作要求)。会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。 2.了解极限的有关性质,掌握极限的四则运算法则。 3.理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。会进行无穷小量阶的比较(高阶、低阶、同阶和等价)。会运用等价无穷小量代换求极限。 4.熟练掌握用两个重要极限求极限的方法。 第二节函数的连续性 [复习考试要求] 1.理解函数在一点处连续与间断的概念,理解函数在一点处连续与极限存在之间的关系,掌握判断函数(含分段函数)在一点处连续性的方法。 2.会求函数的间断点。 3.掌握在闭区间上连续函数的性质会用它们证明一些简单命题。 4.理解初等函数在其定义区间上的连续性,会利用函数连续性求极限。 第二章一元函数微分学 第一节导数与微分 [复习考试要求] 1.理解导数的概念及其几何意义,了解可导性与连续性的关系,会用定义求函数在一点处的导数。 2.会求曲线上一点处的切线方程与法线方程。 3.熟练掌握导数的基本公式、四则运算法则以及复合函数的求导方法。 4.掌握隐函数的求导法与对数求导法。会求分段函数的导数。 5.了解高阶导数的概念。会求简单函数的高阶导数。 6.理解微分的概念,掌握微分法则,了解可微和可导的关系,会求函数的一阶微分。 第二节导数的应用 [复习考试要求] 1.熟练掌握用洛必达法则求“0·∞”、“∞-∞”型未定式的极限的方法。 2.掌握利用导数判定函数的单调性及求函数的单调增、减区间的方法。会利用函数的单调性证明简单的不等式。

成人高考专升本高数二真题及答案

A. -2x -1 + cos x+ c B. -2x - + cos x + c 2015年成人高考专升本高数二真题及答案 x 1 2, x > 0 A. 有定义且有极限 C. 无定义但有极限 D. 无定义且无极 限 n 4. 设函数 f(x)=x e 2,则 f'(x)=() n 丿 n 1 A.(1+x) e 2 B.( 2+x) e 2 5. 下列区间为函数f(x)=x 4-4x 的单调增区间的是() 7. /(x -2 + sin x) dx=( ) 3 1 6. 已知函数f(x)在区间[-3,3 ]上连续,则厶f(3x) dx=() 1. x+1 阳 ??2+T =( A. 0 1 B .2 C.1 2.当 x ~0 时,sin 3x 是 2x 的() A.低阶无穷小量 C.同阶但不等价无穷小量 D.2 B.等阶无穷小量 D.高阶无穷小量 3.函数 f(x)= x+1,x < 0,在 x=0 处() A.(-汽 B. (- g, 0) C. (-1,1 ) D. (1 , + g ) 1 3 1 1 A.0 B.3 / 3 f(t) dt c 込 / f(t) dt 3 D.3 厶 f(t) dt x - C. (1+ 2)e 2 n D. (1+2x) e 2

3 x -3 C.-亍 cos x + c x 8. 设函数 f(x)= £(t - 1)dt ,则 f “ (x)=() 11 .x m 0sin ??= 12. lim (1 - 2)3= x 13.设函数 y= ln(4x - x 2),则 y '(1)= 14.设函数 y=x+ sin x,贝U dy= (1+ cos x ) dx 15.设函数 3 y= x 2+ e -x 则 y ” |x -2 +e -x 16.若 /f(x) dx = cos(ln x) + C,则 f(x)= sin (In x) x 1 17.厶 x|x| dx = 18. /d(x ln x)= xln x+C 19.由曲线y=x 2,直线x=1及x 轴所围成的平面有界图形的面积 S= y_ ?z 20.设二兀函数 z= e x ,则 j(1,1) = -e A.-1 B.O C.1 D.2 9.设二元函数 z=x y ,则?Z =( A.yx y-1 B. yx y+1 C. y x ln x D. x y 10.设二元函数 z= cos(xy),左= () 2 A.y sin(xy) 2 B.y cos(xy) 2 C.-y sin(xy) D.- y cos(xy)

全国各类成人高等学校招生复习考试大纲专升本高数二

全国各类成人高等学校专升本招生复习考试大纲 高等数学(二) 本大纲适用于经济学、管理学以及职业教育类、生物科学类、地理科学类、环境科学类、心理学类、药学类(除中药学类外)六个一级学科的考生。 总要求 本大纲内容包括“高等数学”及“概率论初步”两部分,考生应按本大纲的要求了解或理解“高等数学”中极限和连续、一元函数微分学、一元函数积分学和多元函数微分学的基本概念与基本理论;了解或理解“概率论”中古典概型、离散型随机变量及其数字特征的基本概念与基本国际要闻学会、掌握或熟练掌握上述各部分的基本方法,应注意各部分知识的结构及知识的内在联系;应具有一定的抽象思维能力、逻辑推理能力、运算能力;能运用基本概念、基本理论和基本方法正确地判断和证明,准确地计算;能综合运用所学知识分析并解决简单的实际问题。 本大纲对内容的要求由低到高,对概念和理论分为“了解”和“理解”两个层次;对方法和运算分为“会”、“掌握”和“熟练”三个层次。 复习考试内容 一、极限和连续 (1)极限 1.知识范围

(1)数列极限的概念和性质 数列数列极限的定义 唯一性有界性四则运算法则夹逼定理单调有界数列极限存在定理 (2)函数极限的概念和性质 函数在一点处极限的定义左、右极限及其与极限的关系χ趋于无穷(χ→∞,χ→+∞,χ→-∞)时函数的极限函数极限的几何意义 唯一性四则运算法则夹逼定理 (3)无穷小量与无穷大量 无穷小量与无穷大量的定义无穷小量与无穷大量的关系无穷小量的性质无穷小量的比较 (4)两个重要极限 2.要求 (1)了解极限的概念(对极限定义中“ε—N”、“ε—δ”、“ε—M”的描述不作要求)。掌握函数在一点处的左极限与右极限以及函数在一点处极限存在的充分必要条件。 (2)了解极限的有关性质,掌握极限的四则运算法则。 (3)理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系,会进行无穷小量阶的比较(高阶、低阶、同阶和等价)。会运用等价无穷小量代换求极限。

专升本高等数学知识点汇总

专升本高等数学知识点汇总 常用知识点: 一、常见函数的定义域总结如下: (1) c bx ax y b kx y ++=+=2 一般形式的定义域:x ∈R (2)x k y = 分式形式的定义域:x ≠0 (3)x y = 根式的形式定义域:x ≥0 (4)x y a log = 对数形式的定义域:x >0 二、函数的性质 1、函数的单调性 当21x x <时,恒有)()(21x f x f <,)(x f 在21x x ,所在的区间上是增加的。 当21x x <时,恒有)()(21x f x f >,)(x f 在21x x ,所在的区间上是减少的。 2、 函数的奇偶性 定义:设函数)(x f y =的定义区间D 关于坐标原点对称(即若D x ∈,则有D x ∈-) (1) 偶函数)(x f ——D x ∈?,恒有)()(x f x f =-。 (2) 奇函数)(x f ——D x ∈?,恒有)()(x f x f -=-。 三、基本初等函数 1、常数函数:c y =,定义域是),(+∞-∞,图形是一条平行于x 轴的直线。 2、幂函数:u x y =, (u 是常数)。它的定义域随着u 的不同而不同。图形过原点。 3、指数函数

定义: x a x f y ==)(, (a 是常数且0>a ,1≠a ).图形过(0,1)点。 4、对数函数 定义: x x f y a log )(==, (a 是常数且0>a ,1≠a )。图形过(1,0)点。 5、三角函数 (1) 正弦函数: x y sin = π2=T , ),()(+∞-∞=f D , ]1,1[)(-=D f 。 (2) 余弦函数: x y cos =. π2=T , ),()(+∞-∞=f D , ]1,1[)(-=D f 。 (3) 正切函数: x y tan =. π=T , },2 ) 12(,|{)(Z R ∈+≠∈=k k x x x f D π , ),()(+∞-∞=D f . (4) 余切函数: x y cot =. π=T , },,|{)(Z R ∈≠∈=k k x x x f D π, ),()(+∞-∞=D f . 5、反三角函数 (1) 反正弦函数: x y sin arc =,]1,1[)(-=f D ,]2 ,2[)(π π- =D f 。 (2) 反余弦函数: x y arccos =,]1,1[)(-=f D ,],0[)(π=D f 。 (3) 反正切函数: x y arctan =,),()(+∞-∞=f D ,)2 ,2()(π π- =D f 。 (4) 反余切函数: x y arccot =,),()(+∞-∞=f D ,),0()(π=D f 。 极限 一、求极限的方法 1、代入法 代入法主要是利用了“初等函数在某点的极限,等于该点的函数值。”因此遇到大部分简单题目的时候,可以直接代入进行极限的求解。 2、传统求极限的方法 (1)利用极限的四则运算法则求极限。 (2)利用等价无穷小量代换求极限。 (3)利用两个重要极限求极限。 (4)利用罗比达法则就极限。

2011年普通专升本高等数学真题汇总

2011年普通专升本高等数学真题一 一. 选择题(每个小题给出的选项中,只有一项符合要求:本题共有5个小题,每小题4分,共20分) 1.函数()() x x x f cos 12 +=是( ). ()A 奇函数 ()B 偶函数 ()C 有界函数 ()D 周期函数 2.设函数()x x f =,则函数在0=x 处是( ). ()A 可导但不连续 ()B 不连续且不可导 ()C 连续且可导 ()D 连续但不可导 3.设函数()x f 在[]1,0上,02 2>dx f d ,则成立( ). ()A ()()010 1 f f dx df dx df x x ->> == () B ()()0 1 10==> ->x x dx df f f dx df ()C ()()0 1 01==> ->x x dx df f f dx df ()D ()()1 01==> > -x x dx df dx df f f 4.方程2 2y x z +=表示的二次曲面是( ). ()A 椭球面 ()B 柱面 ()C 圆锥面 ()D 抛物面 5.设()x f 在[]b a ,上连续,在()b a ,内可导,()()b f a f =, 则在()b a ,内,曲线()x f y =上平 行于x 轴的切线( ). ()A 至少有一条 ()B 仅有一条 ().C 不一定存在 ().D 不存在 二.填空题:(只须在横线上直接写出答案,不必写出计算过程,每小题4分,共40分) 1.计算_______ __________2sin 1lim 0=→x x x 报考学校:______________________报考专业:______________________姓名: 准考证号: ---------------------------------------------------------------------------------------密封线---------------------------------------------------------------------------------------------------

成人高考专升本高数二真题及答案

成人高考专升本高数二 真题及答案 文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]

2015年成人高考专升本高数二真题及答案 1. lim x →?1 x +1 x 2+1=( ) A. 0 B.12 C.1 D.2 2.当x →0时,sin 3x是2x 的() A. 低阶无穷小量 B.等阶无穷小量 C. 同阶但不等价无穷小量 D.高阶无穷小量 3.函数f(x)= x+1,x <0,在x=0处() 2, x ≥0 A.有定义且有极限 B.有定义但无极限 C.无定义但有极限 D.无定义且无极限 4.设函数f(x)=x e π 2 ,则f'(x)=() A.(1+x)e π 2 B. (12+x)e π 2 C. (1+x 2 )e π 2 D. (1+2x)e π2 5.下列区间为函数f(x)=x 4-4x 的单调增区间的是() A.(-∞,+∞) B. (-∞,0) C.(-1,1) D. (1,+∞) 6.已知函数f(x)在区间[?3,3]上连续,则∫f (3x )1 ?1dx=( ) A.0 B.13∫f (t )3?3dt C. 1 3 ∫f (t )1 ?1dt D.3∫f (t )3 ?3dt 7.∫(x ?2+sin x )dx=( )

A. -2x -1+cos x +c B. -2x -3 +cos x +c C. -x ?3 3-cos x +c D. –x -1 -cos x +c 8.设函数f(x)=∫(t ?1)dt x 0,则f “(x)=( ) A.-1 B.0 C.1 D.2 9.设二元函数z=x y ,则?z ?x =( ) A.yx y-1 B. yx y+1 C. y x ln x D. x y 10.设二元函数 z=cos (xy ),?2 y ?x 2 =() A.y 2sin (xy ) B.y 2cos (xy ) C.-y 2sin (xy ) D.- y 2cos (xy ) 11.lim x →0 sin 1 x = . 0 12.lim x →∞ (1?2x )x 3= . e ?2 3 13.设函数y=ln (4x ?x 2),则y ′(1)= . 23 14.设函数y=x+sin x ,则dy= . (1+cos x)dx 15.设函数y=x 32 +e ?x ,则 y ”= . 34x ?12+e -x 16.若∫f (x )dx =cos (ln x )+C ,则f (x )= . - sin (ln x ) x 17.∫x |x |1?1dx = . 0 18.∫d (x ln x )= . x ln x +C 19.由曲线y=x 2,直线x=1及x 轴所围成的平面有界图形的面积S= . 13 20.设二元函数z=e y x ,则?z ?x |(1,1)= . -e 21.计算lim x →1 e x ?e ln x lim x →1e x ?e ln x =lim x →1 e x 1x

相关文档
相关文档 最新文档