文档视界 最新最全的文档下载
当前位置:文档视界 › 有限元理论与技术-习题-弹性力学

有限元理论与技术-习题-弹性力学

弹性力学

填空题:

1、连续体力学包括固体力学、流体力学、热力学和电磁场力学,非连续体力学包括量子力学。

2、弹性力学所研究的范围属于固体力学中弹性阶段。

3、弹性力学的基本假定为:连续性、完全弹性、均匀性和各向同性、变形很小、无初应力。

4、连续性假设是指:物体内部由连续介质组成,物体中应力、应变和位移分量为连续的,可用连续函数表示。

5、均匀性和各向同性假设是指:物体内各点和各方向的介质相同,即物理性质

相同,物体的弹性常数杨氏模量和泊松比不随坐标和方向的变化而变化。

6、完全弹性假设是指:物体在外载荷作用下发生变形,在外载荷去除后,物体

能够完全恢复原形,材料服从胡克定律,即应力与形变成正比。

7、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别

建立三套方程为:平衡方程、几何方程和物理方程,三组方程分别表示:应力与载荷关系、应变与位移关系、应力与应变关系。

8、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的

应力、形变和位移。

9、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号

规定相适应。

10、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。

11、物体受外力以后,其内部将发生以,它的集度称为应力。与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。

12、建立平衡方程时,在正六面微分体的6个面上共有2_个应力分量,分别为:,其中正应力为:,剪应力为:,这些应力分量与外载荷共同建立2个方程。

13、建立几何方程时,线应变为,角应变为,这些应变与位移共同建立6 个方程。

14、物理方程表示应力与应变的关系,即为3克定律,其中弹性常数E和〃分别表示材料的杨氏模量和泊松比,物理方程组共包含6个方程。

15、平面问题分为平面应力问题和平面应变问题,两者所研究得对象分别为等厚度薄平板和等截面长柱体。

16、平面应力问题和平面应变问题基本方程中:平衡方程和几何方程相同,物理方程不相同。(相同或不相同)

17、表示应力分量与体力分量之间关系的方程为平衡微分方程。

15、边界条件表示边界上位移与约束,或应力与面力之间的关系式。

18、按应力求解平面问题时常采用逆解法和半逆解法。

19、弹性力学中边界条件通常可以分为:位移边界条件、应力边界条件和混合边界条件。

20、弹性力学问题的解法分为解析法、变分法和差分法,就解题方法而言,又分为如下两种方法:位移法和应力法。

21、将平面应力情况下的物理方程中的弹性模量E,泊松比分别换成及就要得到平面应变情况下相应的物理方程。

22、位移法为物理方程与几何方程联立消除应变分量,得到应力与位移的函数方程式,再与平衡方程联立消除应力,得到载荷与位移的方程式。

简答题:

答:在弹性力学中,(1)根据微元的力平衡分析导出了平衡微分方程,它表达变形体微元内部应力与作用在微元上外载荷之间的关系;(2)根据微元变形的连续性推导出几何方程,它表达变形体内部应变与位移之间的关系;(3)根据广义胡克定律导出物理方程,它表达变形体内部应变与应力之间的关系。

答:泛函:泛函也是一种“函数”,它的独立变量一般不是通常函数的“自变量”,而是通常函数本身。泛函是函数的函数。由于函数的值是由自变量的选取

而确定的,而泛函的值是由自变量函数确定的,故也可以将其理解为函数的函数。

变分原理:将弹性力学的基本方程一偏微分方程的边值问题转换为代数方程求解的一种方法。

虚位移:位移边界条件所容许的位移的微小改变量。

最小能量原理:在所有几何可能位移中,真实位移使得总势能取最小值。

虚功方程:表达外力所做虚功与变形体内部变形能量(内能)增加之间的关系。

3、什么是平面应力问题?什么是平面应变问题?分别写出平面应力问题和平面应变问题的物理方程。

答:平面应力和平面应变都是简化空间问题而设定的概念。

平面应力:只在平面内有应力,与该面垂直方向的应力可忽略,即平面应力是指所有的应力都在一个平面内,如果平面是OXY平面,那么只有正应力ox, oy, 剪应力Txy(它们都在一个平面内),没有oz, Tyz, TZX。例如薄板微小变形拉压问题。

平面应变:只在平面内有应变,与该面垂直方向的应变可忽略,即平面应变是指所有的应变都在一个平面内。如果平面是OXY平面,则只有正应变£x, gy和剪应变yxy,而没有£Z, Yyz, Yzx。例如水坝侧向水压问题。

答:平面应力问题是指很薄的等厚度薄板,只在板边上受有平行于板面并且不沿 厚度变化的面力,同时,体力也平行于板面并且不沿厚度变化。对应的应力分量 只有O X ,°y ,T xy 。而平面应变问题是指很长的柱形体,在柱面上受有平行于横 截面并且不沿长度变化的面力,同时体力也平行于横截面并且不沿长度变化,对 应的位移分量只有u 和V 。

答:1)连续性假定:引用这一假定后,物体中的应力、应变和位移等物理量就 可看成是连续的,因此,建立弹性力学的基本方程时就可以用坐标的连续函数来 表示他们的变化规律。

2)完全弹性假定:这一假定包含应力与应变成正比的含义,亦即二者呈线性关 系,

复合胡克定律,从而使物理方程成为线性的方程。

3)均匀性假定:在该假定下,所研究的物体内部各点的物理性质显然都是相同 的。

因此,反应这些物理性质的弹性常数(如弹性模量E 和泊松比〃等)就不 随位置坐标而变化。

4)各向同性假定:各向同性是指物体的物理性质在各个方向上都是相同的,也 就

是说,物体的弹性常数也不随方向变化。

5)小变形假定:研究物体受力后的平衡问题时,不用考虑物体尺寸的改变,而 仍

然按照原来的尺寸和形状进行计算。同时,在研究物体的变形和位移时,可以 将它们的二次幂或乘积略去不计,使得弹性力学的微分方程都简化为线性微分方 程。

c

1 C ) £ = _ b - RO /

c

1 L ) £ = _ 6 - RO /

T Y 二廿 -RO -RO

1

xy

xy

答:在研究对象方面,材料力学基本上只研究杆状构件,也就是长度远大于高度和宽度的构件;而弹性力学除了对杆状构件作进一步的、较精确的分析外,还对非杆状结构,例如板和壳,以及挡土墙、堤坝、地基等实体结构加以研究。

在研究方法方面,材料力学研究杆状构件,除了从静力学、几何学、物理学三方面进行分析以外,大都引用了一些关于构件的形变状态或应力分布的假定,这就大简化了数学推演,但是,得出的解答往往是近似的。弹性力学研究杆状构件,一般都不必引用那些假定,因而得出的结果就比较精确,并且可以用来校核材料力学里得出的近似解答。

答:在弹性体区域内部,考虑静力学、几何学和物理学三方面条件,分别建立三套方程。即根据微分体的平衡条件,建立平衡微分方程;根据微分线段上形变与位移之间的几何关系,建立几何方程;根据应力与形变之间的物理关系,建立物理方程。此外,在弹性体的边界上还要建立边界条件。在给定面力的边界上,根据边界上微分体的平衡条件,建立应力边界条件;在给定约束的边界上,根据边界上的约束条件建立位移边界条件。求解弹性力学问题,即在边界条件下根据平衡微分方程、几何方程、物理方程求解应力分量、形变分量和位移分量。

答:弹性力学中正应力用。表示,并加上一个下标字母,表明这个正应力的作用面与作用方向;切应力用。表示,并加上两个下标字母,前一个字母表明作用面垂直于哪一个坐标轴,后一个字母表明作用方向沿着哪一个坐标轴。并规定作用在正面上的应力以沿坐标轴正方向为正,沿坐标轴负方向为负。相反,作用在负面上的应力以沿坐标轴负方向为正,沿坐标轴正方向为负。

有限元法

填空题:

1、利用有限单元法求解弹性力学问题时,简单来说包含结构离散化、单元分析、整体分析三个主要步骤。

2、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。其具体步骤分为单元分析和整体分析两部分。

3、每个单元的位移一般总是包含着两部分:一部分是由本单元的形变引起的,另一部分是由于其他单元发生了形变而连带引起的。

4、每个单元的应变一般总是包含着两部分:一部分是与该单元中各点的位置坐标有关的,是各点不相同的,即所谓变量应变;另一部分是与位置坐标无关的,是各点相同的,即所谓常量应变。

5、为了能从有限单元法得出正确的解答,位移模式必须能反映单元的』体位移和常量应变,还应当尽可能反映相邻单元的位移连续性。

6、为了使得单元内部的位移保持连续,必须把位移模式取为坐标的单值连续函数,为了使得相邻单元的位移保持连续,就不仅要使它们在公共结点处具有相同的位移时,也能在整个公共边界上具有相同的位移。

7、在有限单元法中,单元的形函数N.在上结点N.=X;在其他结点N,= 0_及£

N. = 1。

1 -

8、为了提高有限单元法分析的精度,一般可以采用两种方法:一是将单元的尺寸减小,以便较好地反映位移和应力变化情况;二是采用包含更高次项的位移模式,使位移和应力的精度提高。

9、在有限单元法中,结点力是指结点对单元的作用力。(J)

10、在平面三结点三角形单元的公共边界上应变和应力均有突变。(J )

11、形函数N1(xi,yi)= (i=j)

N1(xi,yi)= —(i/j)

简答题:

答:首先,将物体或求解域离散为有限个互不重叠仅通过节点互相连接的子域(即

单元),原始边界条件也被转化为节点上的边界条件,此过程称为离散化。

其次,在单元内,选择简单近似函数来分片逼近未知的求解函数,即分片近似。具体做法是在单元上选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,这是有限元法的创意和精华所在。而整体区域上的解函数就是这些单元上的简单近似函数的组合。

最后,基于与原问题数学模型(基本方程和边界条件)等效的变分原理或加权残值法,建立有限元方程(即刚度方程),从而将微分方程转化为一组变量或其导数的节点值为未知量的代数方程组。从而借助矩阵表示和计算机求解代数方程组得到原问题的近似解。

答:(1)几何逼真,(2)受力真实,(3)计算准确,(4)计算量少,(5)单元编号遵循右手准则(相邻单元编号差值最小)。

5 4

度矩阵

单元刚

0 0

0 0

0 - 1

0 0 0 0

0一 1

0 0 0

0 0 0 2

k ④ 0 k

k 0 2

22

24

25

0 k

k

0 k 3

“ 0

0 0 0 0

3

K ③=

33

34 36

K ④=

0 0 k k 0 k

4

0 k 0 k k 0 4

43

44

46

42

44

45

0 0 0

0 0

5

0 k 0 k

k 0 5

52

54

55

0 0 k k 0 k 6

0 0 0 0

0 6

1—

63

64

66

1

—1

整体刚度矩阵:

答:1.结构的离散化,2单元分析2.1选择位移函数2.2载荷等效2.3单元刚度 矩阵3整体分析3.1集成等效节点载荷3.2集成整体刚度

k 11

K ①二k 21 k

31 31 k 12 晨]1 k 22 k 23 2

k 32 k 灯

_| 3

k 22 k 24 k 23

2 K ②= k 42 k 44 k 43

4

k 32 k 34 k 33

3

k

44

k

64

k

k 46 k 43 4

k 66

k 63

6

k 36 k 灯

_| 3

k k k 2 22 25 24

K ④= k k k 5 52 55 54

k k k 4

42 45 44

单元刚度贡献矩阵:

1

2

3

4 5 6

6

1 2 3 4 5

k ① k ① k ① 0 0 0- 1

11 k ①

12 k ① 13

k ①

0 0 0 2 乙

K ①= 21 k ① 22 k ① 23

k ①

0 0 0 3 31 0

32 0 33

0 0 0 0 4

0 0 0 0 0 5

_ 0

0 0 0 0_

6

0 0 0- 1

k ② k

k 0 0 2

22

23

24

k k k 0 0 3 K ②=

32 33 34

0 k k k 0 0 4

42 43 44

0 0 0 0 0 0 5

_0

0 0 0 0_ 6

12

3

4 5 6

6

1234

5

12 3

4

5 6

k ①

11 k ① 21 k ①

31

k ①

12

k ①+ k ②+ k ④ k ①+ k ② k ②+ k ④

k ④

52

k ①

13

k ①+ k ② k ①+ k ②+ k ③

k ②+ k ③

3

0 3

0 1 k ②+ k ④

k ④

2

24

24

25

k ②+ k ③

0 0 3 34 34

4

k ②+ k ③+ k ④

k ④ k ③ 44 44 44 45 46

k ④ k 0 5 54 55

6

k ③

0 k ③ 24 3

2 5

4

矩阵3.3约束边界条件

1)建立实际工程问题的计算模型利用几何、载荷的对称性简化模型建立

等效模型

2)选择适当的分析工具侧重考虑以下几个方面:多物理场耦合问题大变形网格重划分

3)前处理(Preprocessing)

建立几何模型(Geometric Modeling,自下而上,或基本单元组合)有限

单元划分(Meshing)与网格控制

4)求解(Solution)

给定约束(Constraint)和载荷(Load)求解方法选择计算参数设定

5)后处理(Postprocessing)

后处理的目的在于分析计算模型是否合理,提出结论。

用可视化方法(等值线、等值面、色块图)分析计算结果,包括位移、应力、应变、温度等;最大最小值分析;特殊部位分析。

答:(1)位移模式必须包含单元刚体位移;(2)位移模式必须包含单元的常应变;(3)位移模式在单元内要连续,且唯一在相邻单元之间要协调。

答:(1)对称性;(2)奇异性;(3)主对角元恒正;(4)稀疏性;(5)非零元素带状分布。

答:(1)单元刚度矩阵为对称矩阵;(2)单元刚度矩阵为奇异矩阵;(3)单元刚度矩阵主对角线元素恒为正值;(4)单元刚度矩阵仅与单元本身有关。

答:(1)形函数N.在节点i处的值为1,在其他两个节点j, m处的值为0;

(2)在单元上任意一点处,3个形函数的和都等于1。

答:一般原则:

(1)广义坐标的个数应该与结点自由度数相等;

(2)选取多项式时,常数项和坐标的一次项必须完备;

(3)多项式的选取应由低阶到高阶;

(4)尽量选取完全多项式以提高单元的精度。

答:(1)位移函数必须能够反映单元的常量应变;

(2)位移函数必须能够反映单元的刚性位移;

(3)位移函数在单元内部必须是连续函数;

(4)位移函数必须保证相邻单元间唯一协调。

答:为了保证有限单元法解答的收敛性,位移模式应满足下列条件:(1)位移模式必须能反映单元的刚体位移;

(2)位移模式必须能反映单元的常量应变;

(3)位移模式应尽可能反映位移的连续性。

答:(1)取三角形单元的结点位移为基本未知量。

(2)应用插值公式,由单元的结点位移求出单元的位移函数。

(3)应用几何方程,由单元的位移函数求出单元的应变。

(4)应用物理方程,由单元的应变求出单元的应力。

(5)应用虚功方程,由单元的应力出单元的结点力。

(6)应用虚功方程,将单元中的各种外力荷载向结点移置,求出单元的结点荷载。

(7)列出各结点的平衡方程,组成整个结构的平衡方程组。

答:每个单元的位移一般总是包含着两部分:一部分是由本单元的形变引起的,另一部分是本单元的形变无关的,即刚体位移,它是由于其他单元发生了形变而连带引起的。甚至在弹性体的某些部位,例如在靠近悬臂梁的自由端处,单元的形变很小,单元的位移主要是由于其他单元发生形变而引起的刚体位移。因此,为了正确反映单元的位移形态,位移模式必须能反映该单元的刚体位移。

13、在有限单元法中,为什么要求位移模式必须能反映单元的常量应变?答:每个单元的应变一般总是包含着两部分:一部分是与该单元中各点的位置坐标有关的,是各点不相同的,即所谓变量应变;另一部分是与位置坐标无关的,是各点相同的,即所谓常量应变。而且,当单元的尺寸较小时,单元中各点的应变趋于相等,也就是单元的应变趋于均匀,因而常量应变就成为应变的主要部分。因

此,为了正确反映单元的形变状态,位移模式必须能反映该单元的常量应变。14、采用有限单元法怎么样求解弹性力学问题(基本思路和基础步骤)?答:基本思想:

根据近似分割和能量极值原理,把求解区域离散为有限个单元的组合,研究每个单元的特性,组装各单元,通过变分原理,把问题化成线性代数方程组求解。

基本步骤:

(1)将结构进行离散化,包括单元划分、结点编号、单元编号、结点坐标计算、位移约束条件确定;

(2)等效结点力的计算;

(3)刚度矩阵的计算(先逐个计算单元刚度,再组装成整体刚度矩阵);

(4)建立整体平衡方程,引入约束条件,求解结点位移;

(5)应力计算。

答:(1)静力学分析,(2)模态分析,(3)动力学分析,(4)热力学分析,(5)其他:接触分析、压杆稳定性分析、结构-流体耦合分析等。

答:(1)是在取位移模式和进行图形变换时所取变换参数相同,叫做等参变换单元

(2)等参变换是为了可以把任意四边形和正方形单元联系起来。由于等参变换的采用使等参单元的刚度、质量、阻尼、荷载等特性矩阵的计算仍在前面所表示单元的规则域内进行,因此不管各个积分形式的矩阵表示的被积函数如何复杂,仍然可以方便地采用标准化的数值积分方法计算。

(完整版)有限元第二章课后题答案

2 弹性力学问题的有限单元法 思考题 2.1 有限元法离散结构时为什么要在应力变化复杂的地方采用较密网格,而在其他地方采用较稀疏网格? 答:在应力变化复杂的地方每一结点与相邻结点的应力都变化较大,若网格划分较稀疏,则在应力突变处没有设置结点,而使得所求解的误差很大,若网格划分较密时,则应力变化复杂的地方可以设置更多的结点,从而使得所求解的精度更高一些。 2.2 因为应力边界条件就是边界上的平衡方程,所以引用虚功原理必然满足应力边界条件,对吗? 答:对。 2.3 为什么有限元只能求解位移边值问题和混合边值问题?弹性力学中受内压和外压作用的圆环能用有限元方法求解吗?为什么?答:有限元法是一种位移解法,故只能求解位移边值问题和混合边值问题。而应力边值问题没有确定的位移约束,不能用位移法求解,所以也不能用有限元法求解。 2.4 矩形单元旋转一个角度后还能够保持在单元边界上的位移协调吗? 答:能。矩形单元的插值函数满足单元内部和单元边界上的连续性要求,是一个协调元。矩形的插值函数只与坐标差有关,旋转一个角度后各个结点的坐标差保持不变,所以插值函数保持不变。因此矩形单

元旋转一个角度后还能够保持在单元边界上的位移协调。 2.5 总体刚度矩阵呈带状分布,与哪些因素有关?如何计算半带宽? 答:因素:总体刚度矩阵呈带状分布与单元内最大结点号与最小结点号的差有关。 计算:设半带宽为B ,每个结点的自由度为n ,各单元中结点整体码的最大差值为D ,则B=n(D+1),在平面问题中n=2。 2.6 为什么单元尺寸不要相差太大,如果这样,会导致什么结果? 答:由于实际工程是一个二维或三维的连续体,将其分为具有简单而规则的几何单元,这样便于网格计算,还可以通过增加结点数提高单元精度。在几何形状上等于或近似与原来形状,减小由于形状差异过大带来的误差。若形状相差过大,使结构应力分析困难加大,误差同时也加大。 2.7 剖分网格时,在边界出现突变和有集中力作用的地方要设置结点或单元边界,试说明理由。 答:有限元处于弹性力学问题的方法是离散法。它将一个受外力作用的连续弹性体离散成一定数量的有限小的单元集合体,单元之间只在结点上相互联系,即只有结点才能传递力。所以在边界出现突变和有集中力作用的地方要设置结点和单元边界。 2.8 为什么说三角形三结点单元是常应变单元,如果在每边中点增加一个结点,那么单元内应力如何分布? 答:(1)应变矩阵[B]中的参数m j i m j i c c c b b b 、、、、、由坐标变量x 、y 之差确定。当单元的坐标差确定之后,这些参数与坐标变量x 、y 无关,

弹性力学及有限元大作业

1、已知平面应力问题(单连通域)的应变场为:)(22y x C x +=ε, Dx Cx y +=2ε, Cxy xy 2=γ(C 、D 为常数) 当无体力时,试判断它们是 否为可能的应变场。(10分) 解:将)(22y x C x +=ε,Dx Cx y +=2ε,Cxy xy 2=γ代入到应变表示的相容 方程 y x x y xy y x ∂∂∂=∂∂+∂∂γεε2 2222 因为 C y x 22 2=∂∂ε , C x y 222 =∂∂ε , C y x xy 22=∂∂∂γ 即: 02222-2 2222≠=-+=∂∂∂∂∂+∂∂C C C C y x x y xy y x γεε 因为不满足相容方程,所以它们不是可能的应变场。 2、试推导弹性力学平面问题的平衡微分方程(须画出受力分析图)。(10分) 解:取微元体PABC (P 点附近),x PA d =,dy PB =,Z 方向取单位长度。 设PA 面受到的应力为yx y τσ,;PB 面上受到的应力为xy x τσ,;微单元体的体力为X ,Y 。

因正应力分量是位置坐标的函数,所以: x z y x f σ=),,( dx x dx x f z y x f K dx x f dx x f z y x f z y dx x f x x ∂∂+≈∂∂+≈+∂∂+∂∂+=+σσ),,()(!21),,(),,(22 2 同理可求得AC 面的切应力为: dx x dx x dx x xy xy xy xy xy ∂∂+≈+∂∂+∂∂+τττττ 2 2 2 )(!21 同理可得BC 面上的正应力和切应力为: ⎪⎪⎩ ⎪⎪⎨⎧ ∂∂+∂∂+dy y dy y yx yx y y ττσσ 由微元体PABC 平衡,可得: ⎪⎪⎩⎪ ⎪⎨⎧===∑∑∑000y y D F F M 由0=∑D M 可得: 2 121)(2121)(=⨯⨯-⨯⨯∂∂+-⨯⨯+⨯⨯∂∂+dy dx dy dx dy y dx dy dx dy dx x yx yx yx xy xy xy ττττττ整理得:dy y dx x yx yx xy xy ∂∂+=∂∂+ττττ2121 当0,0→→dy dx 时,有yx xy ττ= 由0=∑x F 可得:

弹性力学与有限元分析复习题(含答案)

分析计算题 1、试写出无体力情况下平面问题的应力分量存在的必要条件,并考虑下列平面问题的 应力分量是否可能在弹性体中存在。 (1)By Ax x +=σ,Dy Cx y +=σ,Fy Ex xy +=τ; (2))(22y x A x +=σ,)(22y x B y +=σ,Cxy xy =τ; 其中,A ,B ,C ,D ,E ,F 为常数。 解:应力分量存在的必要条件是必须满足下列条件:(1)在区域内的平衡微分方程 ?? ? ? ???=??+??=??+??00x y y x xy y yx x τστσ;(2)在区域内的相容方程()02 222=+??? ? ????+??y x y x σσ;(3)在边界上的应力 边界条件()()()() ?? ?? ?=+=+s f l m s f m l y s xy y x s yx x τστσ;(4)对于多连体的位移单值条件。 (1)此组应力分量满足相容方程。为了满足平衡微分方程,必须A =-F ,D =-E 。此 外还应满足应力边界条件。 (2)为了满足相容方程,其系数必须满足A +B =0;为了满足平衡微分方程,其系数必须满足A =B =-C /2。上两式是矛盾的,因此,此组应力分量不可能存在。 2、已知应力分量312x C Qxy x +-=σ,222 3xy C y -=σ,y x C y C xy 2 332--=τ,体力不计,Q 为常数。试利用平衡微分方程求系数C 1,C 2,C 3。 解:将所给应力分量代入平衡微分方程 ?? ? ? ?? ?=??+??=??+??00x y y x xy y yx x τστσ 得 ? ? ?=--=--+-0230 33322322212xy C xy C x C y C x C Qy 即 ()()()?? ?=+=+--0 230333222231xy C C y C Q x C C 由x ,y 的任意性,得

有限元习题与答案

习题 解释如下的概念:应力、应变,几何方程、物理方程、虚位移原理。 解 ○1应力是某截面上的应力在该处的集度。 ○2 应变是指单元体在某一个方向上有一个ΔU 的伸长量,其相对变化量就是应变。 X U X x ??= ε表示在x 轴的方向上的正应变,其包括正应变和剪应变。 ○3几何方程是表示弹性体内节点的应变分量与位移分量之间的关系,其完整表示如下: T xz yz xy z y x x w z u z v y w y u x v z w y v x u x w z u z v y w y u x v z w y v x u ?? ?? ????+????+????+????????=???? ?????? ??? ??? ???????????? ??????+????+????+????????=????????????????????=γγγεεεε ○4物理方程:表示应力和应变关系的方程某一点应力分量与应变分量之间的关系如下: ????????????????????=??????????????????? ?=6665 64636261565554535251464545434241363534333231 2625242322211615141312 11 αααααααααααααααααααααααααααααααααααατττσσσσxz yz xy z y x ?????????? ????????? ?xz yz xy zz yy xx γγγεεε ○5虚位移原理:在弹性有一虚位移情况下,由于作用在每个质点上的力系,在相应的虚位移上虚功 总和为零,即为:若弹性体在已知的面力和体力的作用下处于平衡状态,那么使弹性体产生虚位移,所有作用在弹性体上的体力在虚位移上所做的工就等于弹性体所具有的虚位能。 说明弹性体力学中的几个基本假设。 ○1 连续性假设:就是假定整个物体的体积都被组成该物体的介质所填满,不存在任何间隙。 ○2 完全弹性假设:就是假定物体服从虎克定律。 ○3 各向同性假设:就是假定整个物体是由同意材料组成的。 ○4 小变形和小位移假设:就是指物体各点的位移都远远小于物体原来的尺寸,并且其应变和转角都小于1。 简述线应变与剪应变的几何含义。 线应变:应变和刚体转动与位移导数的关系,剪应变表示单元体棱边之间夹角的变化。 推到平面应变平衡微分方程。 解:对于单元体而言其平衡方程:

有限元理论与技术-习题-弹性力学

弹性力学 填空题: 1、连续体力学包括固体力学、流体力学、热力学和电磁场力学,非连续体力学包括量子力学。 2、弹性力学所研究的范围属于固体力学中弹性阶段。 3、弹性力学的基本假定为:连续性、完全弹性、均匀性和各向同性、变形很小、无初应力。 4、连续性假设是指:物体内部由连续介质组成,物体中应力、应变和位移分量为连续的,可用连续函数表示。 5、均匀性和各向同性假设是指:物体内各点和各方向的介质相同,即物理性质 相同,物体的弹性常数杨氏模量和泊松比不随坐标和方向的变化而变化。 6、完全弹性假设是指:物体在外载荷作用下发生变形,在外载荷去除后,物体 能够完全恢复原形,材料服从胡克定律,即应力与形变成正比。 7、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别 建立三套方程为:平衡方程、几何方程和物理方程,三组方程分别表示:应力与载荷关系、应变与位移关系、应力与应变关系。 8、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的 应力、形变和位移。 9、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号 规定相适应。 10、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。 11、物体受外力以后,其内部将发生以,它的集度称为应力。与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。 12、建立平衡方程时,在正六面微分体的6个面上共有2_个应力分量,分别为:,其中正应力为:,剪应力为:,这些应力分量与外载荷共同建立2个方程。

13、建立几何方程时,线应变为,角应变为,这些应变与位移共同建立6 个方程。 14、物理方程表示应力与应变的关系,即为3克定律,其中弹性常数E和〃分别表示材料的杨氏模量和泊松比,物理方程组共包含6个方程。 15、平面问题分为平面应力问题和平面应变问题,两者所研究得对象分别为等厚度薄平板和等截面长柱体。 16、平面应力问题和平面应变问题基本方程中:平衡方程和几何方程相同,物理方程不相同。(相同或不相同) 17、表示应力分量与体力分量之间关系的方程为平衡微分方程。 15、边界条件表示边界上位移与约束,或应力与面力之间的关系式。 18、按应力求解平面问题时常采用逆解法和半逆解法。 19、弹性力学中边界条件通常可以分为:位移边界条件、应力边界条件和混合边界条件。 20、弹性力学问题的解法分为解析法、变分法和差分法,就解题方法而言,又分为如下两种方法:位移法和应力法。 21、将平面应力情况下的物理方程中的弹性模量E,泊松比分别换成及就要得到平面应变情况下相应的物理方程。 22、位移法为物理方程与几何方程联立消除应变分量,得到应力与位移的函数方程式,再与平衡方程联立消除应力,得到载荷与位移的方程式。 简答题: 答:在弹性力学中,(1)根据微元的力平衡分析导出了平衡微分方程,它表达变形体微元内部应力与作用在微元上外载荷之间的关系;(2)根据微元变形的连续性推导出几何方程,它表达变形体内部应变与位移之间的关系;(3)根据广义胡克定律导出物理方程,它表达变形体内部应变与应力之间的关系。 答:泛函:泛函也是一种“函数”,它的独立变量一般不是通常函数的“自变量”,而是通常函数本身。泛函是函数的函数。由于函数的值是由自变量的选取

弹性力学及有限元试题

弹性力学及有限元试题 (一) 问答题(20分) 1、什么是圣维南原理?举例说明怎样把它应用于工程问题 的简化中。 2、什么叫做一点的应力状态?如何表示一点的应力状态(要 求具体说明或表达)。 3、何谓逆解法和半逆解法?它们的理论依据是什么? 4、什么是平面应力问题?什么是平面应变问题?分别写出弹性力学平面应力问题和平面应变问题的物理方程。 5、要保证有限元方法解答的收敛性,位移模式必须满足那些条 件? (二) (10分) 1.利用坐标变换从直角坐标的平衡方程推导极坐标下平衡方程(无体力)。 2.利用坐标变换从直角坐标下几何方程推导极坐标下几何方程。 (三)已知,其他应力分量为零,求位移场。(10分) (四)设有矩形截面的悬臂粱,在 自由端受有集中荷载F;体力可以不

计。试根据材料力学公式,写出弯应力σx和切应力τxy的表达式,并取挤压应力σy=0,然后证明,这些表达式满足平衡微分方程和相容方程,再说明,这些表达式是否就表示正确的解答(10分)。 (五)设半平面体在直边界上受有集中力偶,单位宽度上力偶矩为M,试求应力分量(10分)。 提示:单位厚度上的力偶矩M的量纲是LMT-2,应力只能是M/ρ2的形式,所以可假设应力函数由:Φ=Φ(φ). (六) 铅直平面内的正方形薄板,边长为2a,四边固定,图5—18,只受重力的作用。设μ=0,试取位移分量的表达式为 用瑞利—里茨法求解(15分)。

(七)试按图示网格求解结点位移,取t =1m,μ= 0(15分)。 (八)用刚度集成法求下图所示结构的整体刚度矩阵K。(10分) 要求:单元刚度矩阵元素用e k形式表示;单元刚度矩阵用e K形式表 ij 示,其中e为单元号。

(绝密试题)弹性力学与有限元分析试题及其答案

2012年度弹性力学与有限元分析复习题及其答案 (绝密试题) 一、填空题 1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。 2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。 3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。 4、物体受外力以后,其内部将发生内力,它的集度称为应力。与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。应力及其分量的量纲是L -1MT -2。 5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。 6、平面问题分为平面应力问题和平面应变问题。 7、已知一点处的应力分量100=x σMPa ,50=y σMPa ,5010=xy τ MPa ,则主应力=1σ150MPa ,=2σ0MPa ,=1α6135' 。 8、已知一点处的应力分量, 200=x σMPa ,0=y σMPa ,400-=xy τ MPa ,则主应力=1σ512 MPa ,=2σ-312 MPa ,=1α-37°57′。 9、已知一点处的应力分量,2000-=x σMPa ,1000=y σMPa ,400-=xy τ MPa ,则主应力=1σ1052 MPa ,=2σ-2052 MPa ,=1α-82°32′。 10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。 11、表示应力分量与体力分量之间关系的方程为平衡微分方程。 12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。分为位移边界条件、应力边界条件和混合边界条件。 13、按应力求解平面问题时常采用逆解法和半逆解法。 14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。其具体步骤分为单元分析和整体分析两部分。 15、每个单元的位移一般总是包含着两部分:一部分是由本单元的形变引起的,另一部分是由于其他单元发生了形变而连带引起的。 16、每个单元的应变一般总是包含着两部分:一部分是与该单元中各点的位置坐标有关的,是各点不相同的,即所谓变量应变;另一部分是与位置坐标无关的,是各点相同的,即所谓常量应变。 17、为了能从有限单元法得出正确的解答,位移模式必须能反映单元的刚体位移和常量应变,还应当尽可能反映相邻单元的位移连续性。 18、为了使得单元内部的位移保持连续,必须把位移模式取为坐标的单值连续函数,

弹性力学有限元考试试卷及答案AB卷

2009-2010学年第一学期《弹性力学有限元》课内考试A 卷 授课班号 年级专业 学号 姓名 一、判断正误 (×)1. 节点的位置依赖于形态,而并不依赖于载荷的位置 (√)2. 对于高压电线的铁塔那样的框架结构的模型化处理使用梁单元 (×)3. 不能把梁单元、壳单元和实体单元混合在一起作成模型 (√)4. 四边形的平面单元尽可能作成接近正方形形状的单元 (×)5. 平面应变单元也好,平面应力单元也好,如果以单位厚来作模型化 处理的话会得到一样的答案 (×)6. 用有限元法不可以对运动的物体的结构进行静力分析 (√)7. 一般应力变化大的地方单元尺寸要划的小才好 (×)8. 所谓全约束只要将位移自由度约束住,而不必约束转动自由度 (×)9. 线性应力分析也可以得到极大的变形 (√)10. 同一载荷作用下的结构,所给材料的弹性模量越大则变形值越小 二、填空 1.平面应力问题与薄板弯曲问题的弹性体几何形状都是 薄板 ,但前者受力特点是: 平行于板面且沿厚度均布载荷作用 ,变形发生在板面内; 后者受力特点是: 垂直于板面 的力的作用,板将变成有弯有扭的曲面。(3分) 2.平面应力问题与平面应变问题都具有三个独立的应力分量: σx ,σy ,τxy ,三个独立的应变分量:εx ,εy ,γxy ,但对应的弹性体几何形状前者为 薄板 ,后者为 长柱体 。(3分)3.位移模式需反映 刚体位移 ,

反映 常变形 ,满足 单元边界上位移连续 。(3分) 4.单元刚度矩阵的特点有:对称性 , 奇异性 ,还可按节点分块。(2分) 5.薄板弯曲问题每个节点有个3自由度,分别是:w 、θx 、θy ,但其中只有 一个是独立的,其余两个可以用它表示为:,x y w w y x θθ∂∂= =-∂∂。(3分) 6.用有限元程序计算分析一结构的强度须提供(4分) ① 几何信息:节点坐标,单元节点组成,板厚度,梁截面等 ② 材料信息:弹性模量,泊松比,密度等 ③ 约束信息:固定约束,对称约束等 ④ 载荷信息:集中力,集中力矩,分布面力,分布体力等 7.轴对称问题单元形状为:三角形或四边形截面的空间环形单元 ,由于轴对称的特性,任意一点变形只发生在子午面上,因此可以作为 二 维问题处理。(3分) 8.等参数单元指的是:描述位移和描述坐标采用相同的形函数形式。等参数单元优点是:可以采用高阶次位移模式,能够模拟复杂几何边界,方便单元刚度矩阵和等效节点载荷的积分运算。(3分) 9.有限单元法首先求出的解是 节点位移 ,单元应力可由它求得,其计算公式为{}{}[][]e D B σδ=。(用符号表示即可)(3分) 10.一个空间块体单元的节点有 3 个节点位移: u ,v ,w (3分) 三、剖分单元准备数据 下面为一水坝的截面示意图,将其剖分成15~30个单元,指出单元类型、设定单位制,写出须输入到有限元程序中的数据(节点坐标和单元节点组成可只写各5个,材料常数已知)

弹性力学试题和答案及解析

弹性力学与有限元分析复习题及其答案 一、填空题 1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。 2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。 3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。 4、物体受外力以后,其内部将发生内力,它的集度称为应力。与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。应力及其分量的量纲是L -1MT -2。 5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。 6、平面问题分为平面应力问题和平面应变问题。 7、已知一点处的应力分量100=x σMPa,50=y σMPa, 5010=xy τ MPa,则主应力 =1σ150MPa,=2σ0MPa,=1α6135' 。 8、已知一点处的应力分量,200=x σMPa,0=y σMPa,400-=xy τ MPa,则主应力=1σ512 MPa,=2σ-312 MPa,=1α-37°57′。 9、已知一点处的应力分量,2000-=x σMPa,1000=y σMPa,400-=xy τ MPa,则主应力=1σ1052 MPa,=2σ-2052 MPa,=1α-82°32′。 10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。 11、表示应力分量与体力分量之间关系的方程为平衡微分方程。 12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。分为位移边界条件、应力边界条件和混合边界条件。 13、按应力求解平面问题时常采用逆解法和半逆解法。 14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。其具体步骤分为单元分析和整体分析两部分。 15、每个单元的位移一般总是包含着两部分:一部分是由本单元的形变引起的,另一部分是由于其他单元发生了形变而连带引起的。 16、每个单元的应变一般总是包含着两部分:一部分是与该单元中各点的位置坐标有关的,是各点不相同的,即所谓变量应变;另一部分是与位置坐标无关的,是各点相同的,即所谓常量应变。 17、为了能从有限单元法得出正确的解答,位移模式必须能反映单元的刚体位移和常量应变,还应当尽可能反映相邻单元的位移连续性。 18、为了使得单元内部的位移保持连续,必须把位移模式取为坐标的单值连续函数,为了使得相邻单元的位移保持连续,就不仅要使它们在公共结点处具有相同的位移时,也能在整个公共边界上具有相同的位移。 19、在有限单元法中,单元的形函数N i 在i 结点N i =1;在其他结点N i =0及∑N i =1。 20、为了提高有限单元法分析的精度,一般可以采用两种方法:一是将单元的尺寸减小,以便较好地反映位移和应力变化情况;二是采用包含更高次项的位移模式,使位移和应力的精度提高。 二、判断题〔请在正确命题后的括号内打"√",在错误命题后的括号内打"×"

最新弹性力学与有限元分析试题答案

最新弹性力学与有限元分析复习题及其答案 一、 填空题 1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、 形变和位移。 2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相 适应。 3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规 定相适应。 4、物体受外力以后,其内部将发生内力,它的集度称为应力。与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。应力及其分量的量纲是L -1MT -2。 5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。 6、平面问题分为平面应力问题和平面应变问题。 7、已知一点处的应力分量100=x σMPa ,50=y σMPa ,5010=xy τ MPa ,则主应力 =1σ150MPa ,=2σ0MPa ,=1α6135' 。 8、已知一点处的应力分量, 200=x σMPa ,0=y σMPa ,400-=xy τ MPa ,则主应力=1σ512 MPa ,=2σ-312 MPa ,=1α-37°57′。 9、已知一点处的应力分量,2000-=x σMPa ,1000=y σMPa ,400-=xy τ MPa ,则主应力 =1σ1052 MPa ,=2σ-2052 MPa ,=1α-82°32′。 10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三 套方程。 11、表示应力分量与体力分量之间关系的方程为平衡微分方程。 12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。分为位移边界条件、 应力边界条件和混合边界条件。 13、按应力求解平面问题时常采用逆解法和半逆解法。

相关文档
相关文档 最新文档