文档视界 最新最全的文档下载
当前位置:文档视界 › 过渡金属铜催化下酰胺与芳基卤化物的偶联反应探索

过渡金属铜催化下酰胺与芳基卤化物的偶联反应探索

过渡金属铜催化下酰胺与芳基卤化物的偶联反应探索
过渡金属铜催化下酰胺与芳基卤化物的偶联反应探索

钯催化反应及其机理

钯催化反应及其机理研究 摘要:目前过渡金属催化的有机反应研究一直是一个比较热的话题,其中由于钯催化的反应活性和稳定性等原因,使其在有机反应中得到了广泛的使用,被全球广泛关注。本文主要列举了钯催化的交叉偶联反应的机理,及与偶联反应相关的钯催化的碳氢键活化反应、钯催化的脂肪醇的芳基化反应等的机理。 关键词:过渡金属催化偶联反应钯催化机理 1.引言 进入二十一世纪以后,钯催化的偶联反应已经建立了比较完整的理论体系,研究的侧重点也和以前有所不同化学键的断裂和形成是有机化学的核心问题之一。在众多化学键的断裂和形成方式中,过渡金属催化的有机反应有着独特的优势:这类反应通常具有温和的反应条件,产率很高并有很好的选择性(包含立体、化学、区域选择性)。很多常规方法根本无法实现的化学反应,采用了过渡金属催化后可以很容易地得到实现。在众多过渡金属中,金属钯是目前研究得最深入的一个。自上世纪七十年代以来,随着 Kumada,Heck,Suzuki,Negishi [1]等偶联反应的陆续发现,钯催化的有机反应发展十分迅速,时至今日,钯催化的偶联反应作为形成碳-碳、碳-杂键最简洁有效的方法之一,已经得到了广泛应用。 2.钯催化各反应机理的研究 2.1.钯催化的交叉偶联反应 自上世纪七十年代以来,随着 Kumada,Heck,Suzuki,Negishi 等偶联反应的陆续发现[1],钯催化的有机反应发展十分迅速,时至今日,钯催化的偶联反应作为形成碳-碳、碳-杂键最简洁有效的方法之一,已经得到了广泛应用[2]。交叉偶联,就是两个不同的有机分子通过反应连在了一起(英文中交叉偶联为crosscoupling,同种分子偶联为 homo coupling)。 2.1.1Heck反应 Heck 反应是不饱和卤代烃和烯烃在强碱和钯催化下生成取代烯烃的反应,是一类形成与不饱和双键相连的新 C—C 键的重要反应[3]。反应物主要为卤代芳烃(碘、溴)与含有α-吸电子基团的烯烃,生成物为芳香代烯烃。所用的不饱和卤化烃是一类芳基化合物。亲电性不饱和碳(sp 或 sp2杂化)与亲核性碳、氮、氧、硫、硒原子经过某些过渡金属的催

钯催化交叉偶联反应

钯催化交叉偶联反应 钯催化交叉偶联反应是一类用于碳碳键形成的重要化学反应,在有机合成中应用十分广泛。 简介: 为制造复杂的有机材料,需要通过化学反应将碳原子集合在一起。但是碳原子在有机分子中与相邻原子之间的化学键往往非常稳定,不易与其他分子发生化学反应。以往的方法虽然能令碳原子更加活跃,但是,过于活跃的碳原子却又会产生大量副产物,而用钯作为催化剂则可以解决这个问题。钯原子就像“媒人”一样,把不同的碳原子吸引到自己身边,使碳原子之间的距离变得很近,容易结合——也就是“偶联”。这样的反应不需要把碳原子激活到很活跃的程度,副产物比较少,因此更加精确而高效。赫克、根岸英一和铃木章通过实验发现,碳原子会和钯原子连接在一起,进行一系列化学反应。这一技术让化学家们能够精确有效地制出他们需要的复杂化合物。 发展阶段: 一、大约100年前,法国化学家维克多·格林尼亚发现,将一个镁原子同一个碳原子偶联在一起,会将额外的电子推向这个碳原子,使得它能够更容易同另外一个碳原子连接在一起。不过,科学家们发现,这样的方法在创造简单的分子时起到了效果,但是在对更为复杂的分子进行合成时,却在试管里发现了很多并不需要的副产品。 二、早在上世纪60年代,赫克就为钯催化交叉偶联反应奠定了基础,1968年,他报告了新的化学反应——赫克反应,该反应使用钯作为主要的催化剂来让碳原子连接在一起。 三、1977年,根岸英一对其成果进行了精练,他使用一种有机氯化物作为催化剂;两年后,铃木章发现使用有机硼化合物的效果会更好。应用: 如今,“钯催化交叉偶联反应”被应用于许多物质的合成研究和工业化生产。例如合成抗癌药物紫杉醇和抗炎症药物萘普生,以及有机分子中一个体格特别巨大的成员——水螅毒素。科学家还尝试用这些方法改造一种抗生素——万古霉素的分子,用来灭有超强抗药性的细菌。此外,利用这些方法合成的一些有机材料能够发光,可用于制造只有几毫米厚、像塑料薄膜一样的显示器。科学界一些人士表示,依托“钯催化交

重氮化反应

重氮化反应 diazo-reaction 一级胺与亚硝酸在低温下作用生成重氮盐的反应。例如: 脂肪族、芳香族和杂环的一级胺都可进行重氮化反应。通常,重氮化试剂是由亚硝酸钠与盐酸作用临时产生的。除盐酸外,也可使用硫酸、过氯酸和氟硼酸等无机酸。脂肪族重氮盐很不稳定,能迅速自发分解;芳香族重氮盐较为稳定。芳香族重氮基可以被其他基团取代,生成多种类型的产物。所以芳香族重氮化反应在有机合成上很重要。 重氮化反应的机理是首先由一级胺与重氮化试剂结合,然后通过一系列质子转移,最后生成重氮盐。重氮化试剂的形式与所用的无机酸有关。当用较弱的酸时,亚硝酸在溶液中与三氧化二氮达成平衡,有效的重氮化试剂是三氧化二氮。当用较强的酸时,重氮化试剂是质子化的亚硝酸和亚硝酰正离子。因此重氮化反应中,控制适当的pH值是很重要的。芳香族一级胺碱性较弱,需要用较强的亚硝化试剂,所以通常在较强的酸性下进行反应。 概述 芳香族伯胺和亚硝酸作用生成重氮盐的反应标为重氮化,芳伯胺常称重氮组分,亚硝酸为重氮化剂,因为亚硝酸不稳定,通常使用亚硝酸钠和盐酸或硫酸使反应时生成的亚硝酸立即与芳伯胺反应,避免亚硝酸的分解,重氮化反应后生成重氮盐。 重氮化反应可用反应式表示为: Ar-NH2 + 2HX + NaNO2--—Ar-N2X + NaX + 2H20 重氮化反应进行时要考虑下列三个因素: 一、酸的用量 从反应式可知酸的理论用量为2mol,在反应中无机酸的作用是,首先使芳胺溶解,其次与亚硝酸销生成亚硝酸,最后生成重氮盐。重氮盐一般是容易分解的,只有在过量的酸液中才比较稳定,所以重氮化时实际上用酸量过量很多,常达 3mol,反应完毕时介质应呈强酸性(pH值为3),对刚果红试纸呈蓝色.重氮过程中经常检查介质的pH值是十分必要的。 反应时若酸用量不足,生成的重氮盐容易和未反应的芳胺偶合,生成重氮氨基化合物: Ar-N2Cl + ArNH2——Ar-N=N—NHAr + HCl 这是一种自我偶合反应,是不可逆的,一旦重氮氨基物生成,即使补加酸液也无法使重氮氨基物转变为重氮盐,因此使重氮盐的质量变坏,产率降低。在酸量不足的情况下,重氮盐容易分解,温度越高,分解越快。 二、亚硝酸的用量 重氮化反应进行时自始至终必须保持亚硝酸稍过量,否则也会引起自我偶合反应。重氮化反应速度是由加入亚硝酸钠溶液加速度来控制的,必须保持一定的加料速度,过慢则来不及作用的芳胺会和重氮盐作用生成自我偶合反应。亚硝酸钠溶液常配成30%的浓度使用.因为在这种浓度下即使在-15℃也不会结冰。 反应时检定亚硝酸过量的方法是用碘化钾淀粉试纸试验,一滴过量亚硝酸液的存在可使碘化钾淀粉试纸变蓝色。由于空气在酸性条件下也可位碘化钾淀粉试纸氧化变色,所以试验的时间以0.5-2s内显色为准。

金属有机化学中的钯催化的反应讲解

XXXX大学研究生学位课程论文(2012 ---- 2013 学年第一学期) 学院(中心、所):化学化工学院 专业名称:应用化学 课程名称:高等有机化学 论文题目:金属有机化学中的钯催化的反应 授课教师(职称)XXXX(教授) 研究生姓名:XXXX 年级:2012级 学号:XXXXXXXXX 成绩: 评阅日期: XXXX大学研究生学院 2012年12 月25 日

金属有机化学中的钯催化的反应 XXXXXX (XXXX大学化学化工学院,山西,太原,030006) 摘要:过渡金属钯在金属有机化学方面具有丰富的反应性,在各类有机化学反应中如氢化、氧化脱氢、偶联、环加成等反应中,钯是优良的催化剂,或是催化剂的重要组分之一。本文在查阅大量近几年文献资料的基础上,综述了钯催化的反应,同时综述了钯催化反应的机理以及钯催化反应的研究现状。 关键词:钯,催化剂,反应机理,研究进展 1钯催化的反应类型及反应机理 在现今炼油、石油化工等工业催化反应中,有很多的钯催化反应,尤其是氢化反应中的选择加氢,以及氧化反应中选择氧化生产乙醛、醋酸乙烯、甲基丙烯酸甲酯,均广泛采用和开发钯催化剂。对石油重整反应,钯也是常选取的催化剂组分之一。 1.1氢化反应 钯催化剂具有很大的活性和极优良的选择性,部分氢化选择性高,常用作烯烃选择性氢化催化剂。 1.1.1反应式及反应机理 反应底物首先和氢气分子分别被吸附到催化剂上,然后和催化剂的活性中心形成配位键,最后完成氢的转移,氢和反应底物形成σ-键。 1.1.2反应方程式举例 1.2氧化反应 烯烃和炔烃是十分常见并且重要的有机化合物,选择性地氧化这类不饱和碳氢化合物一直是化学工业和学术界的重要研究目标之一。 1.2.1分子氧参与的钯催化烯烃的氧化反应 根据亲核试剂的不同,如氧、氮和碳等亲核试剂,把催化烯烃的氧化反应可以形成C-O、C-N和C-C键。 1.2.1.1反应机理 钯催化烯烃的氧化反应都经过三个过程:首先,把插入烯烃形成新的C-Pd键;接着,有机钯中间体进行β-H消除产生Pd(0);最后,Pd(0)被重新氧化为Pd(П)。 1.2.1.2形成C-C键 1.2.1.2.1烯-烯偶联

铜催化交叉偶联反应研究的新进展

2004年第24卷第2期,150~165 有机化学 Chinese J ournal of Organic C hem istry Vol.24,2004 No.2,150~165 #综述与进展# 铜催化交叉偶联反应研究的新进展 邓维刘磊郭庆祥X X (中国科学技术大学化学系合肥230026) 摘要对Cu催化交叉偶联反应的最新研究进展作了综述.该反应涉及碳)碳、碳)氮、碳)氧、碳)硫、碳)硒、以及碳)卤的成键.反应的类型包括Ull mann反应、Suzuki反应、Stille反应以及Heck反应等.还详细地介绍了Cu催化交叉偶联反应中选用不同的铜盐、配体以及溶剂时所产生的效果. 关键词Cu催化剂,交叉偶联反应,绿色化学 Recent Progress in Copper2Catalyzed Cross2Coupling Reactions D ENG,Wei L IU,L ei G UO,Qing2Xiang X (Department o f Chemis try,U niv ersity o f Science and Techno lo gy o f China,He f ei230026) Abstr act The cross2coupling reaction of unsaturated carbons is one of the most important methods in organic synthesis.It has been widely used in the manufactures of dyes,pharmaceuticals,polymers,and many other fine chemicals.Due to their low price and toxicity,Cu salts have recently e merged as novel catalysts in cross2coupling reactions of unsaturated carbons,w hose replacement of toxic and expensive Pd or Ni catalysts will greatly improve the chemical industry in both the economic and environmental aspects.In this review the ne west development of the Cu catalysts in cross2coupling reactions was summarized.C)C,C)N,C)O,C)S,as well as C)X coupling reactions w ere revie wed.The article also provided detail information about the eff ects of Cu salts,ligands and solvents on the ef ficiency of the cross2coupling reactions. Keyword Cu catalyst,c ross2coupling reaction,green chemistry 亲电性不饱和碳(sp或sp2)与亲核性碳、氮、氧、硫、硒原子经过某些过渡金属的催化可以直接成键.这种交叉偶联反应是现代有机合成中重要的手段之一.它使得我们能够高效地合成一系列芳基以及烯烃、炔烃化合物,因而在染料、医药、农药、日用化工品、以及高聚物的制备中有着广泛的应用[1]. 迄今为止,绝大多数的碳)碳和碳)杂交叉偶联反应使用了含Pd和Ni的催化剂.尽管这样的交叉偶联反应有较高的效率,然而Pd高昂的价格以及Pd和Ni较强的毒性阻碍了这类交叉偶联反应在很多场合中(例如药物合成)的应用. 与Pd和Ni相比,Cu是一种廉价而且低毒的金属.如何使用Cu催化剂来实现碳)碳和碳)杂交叉偶联反应,不仅是过渡金属催化领域中的一个新动向,而且是化学工业绿色化进程中的一个挑战性课题.最近,Coll man以及B uc hwald等在Cu催化交叉偶联反应方面进行了开创性的研究,并向人们展示了Cu催化剂在实际应用中巨大前景.为了更好地了解这方面的最新动态,本文拟对铜催化交叉偶联反应的最新进展作一综述. 1Cu催化交叉偶联反应的类型 迄今为止,人们发现C u可以催化碳)碳、碳)氮、碳)氧、碳)硫、碳)硒、以及碳)卤键的交叉偶联.为了方便读者查询,我们将所有报道过的Cu催化交叉偶联反应列在表1中. X E2mail:qxguo@us https://www.docsj.com/doc/9b13980255.html, Received March19,2003;revi sed May19,2003;accepted June30,2003.

钯催化下偶合反应研究进展

目录 摘要 (1) 关键词 (1) 1前言 (1) 2三个重要发展阶段 (2) 2.1发现钯催化效应 (2) 2.2赫克反应 (2) 2.3进一步发展 (2) 3形成C-C健研究进展 (2) 3.1钯催化Suzuki偶联反应合成C-C健 (2) 3.1.1有配体钯催化Suzuki偶联反应合成C-C健 (3) 3.1.2无配体钯催化Suzuki偶联反应合成C-C健 (3) 3.1.3负载体钯催化Suzuki偶联反应合成C-C健化 (4) 3.2 钯催化Heck偶联反应合成C-C健 (4) 3.2.1负载体钯催化Heck偶联反应合成C-C健 (4) 3.2.2有配体钯催化Heck偶联反应合成C-C健 (5) 3.3其他钯催化偶联联反应合成C-C健反应 (5) 4 形成C-N健研究进展 (6) 4.1钯催化Suzuki偶联反应合成C-N健 (6) 4.1.1有配体钯催化Suzuki偶联反应合成C-N健 (6) 4.1.2无配位钯催化Suzuki偶联反应合成C-N健 (6) 4.1.3负载体钯催化Suzuki偶联反应合成C-N健 (6) 4.2钯催化Heck偶联反应合成C-N健 (7) 4.2.1负载体钯催化Heck偶联反应合成C-N健 (7) 4.2.2无配体钯催化Heck偶联反应合成C-N健 (7) 4.2.3有配体钯催化Heck偶联反应合成C-N健 (7) 4.3其他钯催化偶联联反应合成C-N健反应 (7) 5形成C-O健进展 (8) 5.1钯催化Heck偶合反应形成C-O健 (8) 6展望 (8)

钯催化下偶合反应研究进展 摘要:钯催化偶合反应是一类用于碳碳键形成,碳氮健形成和碳氧健形成的重要化学反应,是由两个有机化学单位进行某种化学反应而得到一个有机分子的过程,在有机合成中应用十分广泛.本文综述了钯催化下碳碳键形成等的偶联反应研究进展. 关键词:钯催化偶联反应研究进展 Research progress of coupling reaction under the palladium catalyzed Mingzhu Le Abstract:Palladium catalyzed coupling reaction is a kind important chemical reactions of used for carbon-carbon bonds to form,carbon-nitrogen bonds and carbon-oxygen bonds to from ,that chemical reaction by two organic chemistry unit is a process of obtain organic molecules,they are widely used in organic synthesis.This paper is reviewed the research progress carbon-carbon bonds to form and so on of coupling reaction under the palladium catalyzed. Keywords:palladium catalyzed coupling reaction research progress 1前言 为了制造特殊的有机材料,需要通过化学反应将碳、氮、氧等原子集合在一起.然而碳原子在有机分子中与相邻的原子之间的化学键是非常稳定的,不容易与其他的分子发生化学反应.一些方法虽然能令碳原子活跃,但是,过于活跃的碳原子又会产生大量副产物.用钯作为催化剂则可以很好的解决这个问题.钯原子作为一种传递介质,把不同的碳原子吸引到附近,使碳原子间的距离减小,容易结合,这一反应称为偶联反应,这样的偶联反应不需要把碳原子激活到很活跃的程度,因此副产物比较少,更加精确而高效.钯催化偶联反应被应用于许多物质的合成研究和工业化生产,目前这个成果已经在医药、材料等相关领域有了广泛的应用.这一技术让化学家们能够精确有效地制出他们需要的复杂化合物.有机化学反应可认为是定向地断裂和生成C-X键的过程,因此在反应中通常需要定位基团来高效地构筑C-X键,但在在些过程中也有这样一个问题,那就是定位基团的引入使得反应原子经济性不高,而如果不引入定位基

有机合成钯催化交叉偶联反应

有机合成中钯的催化交叉偶联反应 20102401046吴健华摘要:2010年诺贝尔化学奖授予给美国化学家理查德·赫克、日本化学家根岸英一和铃木章,以表彰其发现的钯催化交叉偶联反应,更有效的连接碳原子以构建复杂分子。钯催化交叉偶联反应,用于碳碳键形成的重要化学反应,因其反应条件温和,化学选择性高,副产品少,在有机合成领域中应用广泛。本文综合概述了钯催化交叉偶联反应机理与发展,并对其应用领域及发展前景作简单介绍。 关键词:钯催化;交叉偶联反应;反应机理;碳碳键;有机合成; 引言: 碳是构成生命体的重要组成物质,而这些物质是以C-C单键或双键为基础,形成各种形式的碳胳化合物,组成生命体的各个部分。而经过多年来的探究与改进,美国化学家理查德·赫克、日本化学家根岸英一及铃木章在有机合成中取得重大贡献与研究进展,发现钯催化交叉偶联反应,有效地连接碳原子,为构造更复杂的分子提供反应方法。因此于2010年,诺贝尔化学奖颁发给他们三位在有机合成中杰出并取得重大贡献的有机化学家,以表彰他们在有机合成领域中所取得的卓越成就。钯催化交叉偶联反应,作为五个被授予诺贝尔化学奖反应之一,其重要性则不言而喻。前四个反应分别是Grignard反应(格氏反应,1912年),Diels-Alder反应(迪尔斯-阿尔德反应,1950年),Wittig反应(叶立德、维蒂斯反应,1979年)和Olefinmetathesis反应(烯烃的转位反应,2005年)。在钯催化的交叉偶联反应中,反应步骤缩短,所需条件温和,副产品少,且可使大量的官能团在进程中得以保留而不被破坏,是一种可靠、实用的工具,广泛应用于精细化学及制药工业中, 对有机合成具有长久和深远的影响力, 得到合成化学者的普遍应用。 一、钯催化交叉偶联反应机理与发展 1.格氏试剂——拉开钯催化交叉偶联反应的序幕 有机合成化学所构造出来的物质大部分都是以碳胳为骨架所构建起来的,

偶联反应及举例

偶联反应[编辑] 偶联反应,也写作偶合反应或耦联反应,是两个化学实体(或单位)结合生成一个分子的有机化学反应。狭义的偶联反应是涉及有机金属催化剂的碳-碳键形成反应,根据类型的不同,又可分为交叉偶联和自身偶联反应。在偶联反应中有一类重要的反应,RM(R = 有机片段, M = 主基团中心)与R'X的有机卤素化合物反应,形成具有新碳-碳键的产物R-R'。[1]由于在偶联反应的突出贡献,根岸英一、铃木章与理查德·赫克共同被授予了2010年度诺贝尔化学奖。[2] 偶联反应大体可分为两种类型: ?交叉偶联反应:两种不同的片段连接成一个分子,如:溴苯 (PhBr)与氯乙烯形成苯乙烯(PhCH=CH2)。 ?自身偶联反应:相同的两个片段形成一个分子,如:碘苯 (PhI)自身形成联苯 (Ph-Ph)。 反应机理[编辑] 偶联反应的反应机理通常起始于有机卤代烃和催化剂的氧化加成。第二步则是另一分子与其发生金属交换,即将两个待偶联的分子接于同一金属中心上。最后一步是还原消除,即两个待偶联的分子结合在一起形成新分子并再生催化剂。不饱和的有机基团通常易于发生偶联,这是由于它们在加合一步速度更快。中间体通常不倾向发生β-氢消除反应。[3] 在一项计算化学研究中表明,不饱和有机基团更易于在金属中心上发生偶联反应。[4]还原消除的速率高低如下: 乙烯基-乙烯基> 苯基-苯基> 炔基-炔基> 烷基-烷基 不对称的R-R′形式偶联反应,其活化能垒与反应能量与相应的对称偶联反应R-R与R′-R′ 的平均值相近,如:乙烯基-乙烯基> 乙烯基-烷基> 烷基-烷基。 另一种假说认为,在水溶液当中的偶联反应其实是通过自由基机理进行,而不是金属-参与机理。[5] §催化剂[编辑] 偶联反应中最常用的金属催化剂是钯催化剂,有时也使用镍与铜催化剂。钯催化剂当中常用的如:四(三苯基膦)钯等。钯催化的有机反应有许多优点,如:官能团的耐受性强,有机钯化合物对于水和空气的低敏感性。 如下一些关于钴催化的偶联反应的综述[6],钯[7][8][9][10][11]和镍[12]介导的反应以及它们的应用[13][14]。 §离去基团[编辑] 离去基团X在有机偶联反应中,常常为溴、碘或三氟甲磺酰基。较理想的离去基团为氯,因有机氯化合物相对其他的这些离去基团更廉价易得。与之反应的有机金属化合物还有锡、锌或硼。 §操作条件[编辑]

铜催化芳基卤代烃与咪唑的偶联反应资料

目录 摘要: (2) 关键词: (2) 引言 (3) 1 实验部分 (4) 1.1 实验原理 (4) 1.2 实验仪器及试剂 (4) 1.3 实验步骤 (4) 1.4 产物及产率 (5) 2 结果与分析 (5) 3 讨论 (6) 3.1 本实验的优点 (6) 3.2 实验中的注意事项 (6) 相关产物谱图: (7) 参考文献 (10) 致谢 (10)

铜催化芳基卤代烃与咪唑的偶联反应 田小李 化学化工学院应用化学专业 2008级指导老师:秦大斌 摘要:某些过度金属可催化亲电性不饱和碳与含活泼氢的氮、氧、硫、碳原子直接成键,这种交叉偶联反应是现代有机合成中重要的手段之一,与钯、镍等过度金属相比,铜是一种廉价且毒性低的金属。近年来,亚铜催化的碳杂偶联反应以其高效、低成本和易制备等优点被广泛研究并应用于工业生产、有机合成及生物活性分子的制备中。用铜来催化这些交叉偶联反应不仅可以节省贵金属的消耗,降低成本,而且可以减少对环境的污染,促进绿色化学的发展。 偶联反应,是由两个有机化学单位进行某种化学反应而得到一个有机分子的过程.偶联反应又可分为交叉偶联和自身偶联反应。进行偶联反应时,介质的酸碱性是很重要的。 在这里,我们研究了以亚铜为催化剂,在弱碱性条件下芳基卤代烃与咪唑的偶联反应,其产物为咪唑衍生物。咪唑衍生物种类繁多,如烷基咪唑、硝基咪唑、苯并咪唑、吡啶并咪唑,其在农业,医药等领域都有广泛应用。 关键词:铜催化;偶联反应;咪唑衍生物 Copper catalyzed aryl radical coupling reaction of alkyl halides with imidazole Li Tianxiao School of Chemistry and Chemical Engineering Grade 2008 Instructor:Dabin Qin Abstract:Some transition metal catalyzed electrophonic unsaturated carbon containing active hydrogen, nitrogen, oxygen, sulfur, carbon atoms directly bonded, this cross-coupling reaction is one of the important tool in modern organic synthesis, Compared with palladium,

偶联反应

偶联反应 目录 偶联反应 常见的偶联反应包括 偶联反应具体说明 偶联反应所需要注意的 用途 Suzuki反应 偶联反应 偶联反应(英文:Coupled reaction),也作偶连反应、耦联反应、氧化偶联,是由两个有机化学单位(molecules)进行某种化学反应而得到一个有机分子的过程.这里的化学反应包括格氏试剂与亲电体的反应 偶联反应 (Grinard),锂试剂与亲电体的反应,芳环上的亲电和亲核反应(Diazo,Addition-Elimination),还有钠存在下的Wutz反应,由于偶联反应 (Coupled Reaction)含义太宽,一般前面应该加定语.而且这是一个比较非专业化的名词. 狭义的偶联反应是涉及有机金属催化剂的碳-碳键生成反应,根据类型的不同,又可分为交叉偶联和自身偶联反应。进行偶联反应时,介质的酸碱性是很重要的。一般重氮盐与酚类的偶联反应,是在弱碱性介质中进行的。在此条件下,酚形成苯氧负离子,使芳环电子云密度增加,有利于偶联反应的进行。重氮盐与芳胺的偶联反应,是在中性或弱酸性介质中进行的。在此条件下,芳胺以游离胺形式存在,使芳环电子云密度增加,有利于偶联反应进行。如果溶液酸性过强,胺变成了铵盐,使芳环电子云密度降低,不利于偶联反应,如果从重氮盐的性质来看,强碱性介质会使重氮盐转变成不能进行偶联反应的其它化合物。偶氮化合物是一类有颜色的化合物,有些可直接作染料或指示剂。在有机分析中,常利用偶联反应产生的颜色来鉴定具有苯酚或芳胺结构的药物。 常见的偶联反应包括 反应名称--年代--反应物A--反应物B --类型--催化剂--注 Wurtz反应 1855 R-X sp³ 自身偶联 Na Glaser偶联反应 1869 R-X sp 自身偶联 Cu Ullmann反应 1901 R-X sp² 自身偶联 Cu Gomberg-Bachmann反应 1924 R-N2X sp² 自身偶联以碱作介质

铜催化下C-N偶联反应研究进展

科研开发 2018·02 143 Chenmical Intermediate 当代化工研究 铜催化下C-N 偶联反应研究进展 *尹浩 王露露 陈家威 李呼努 马威 李志忠 李怡 (西北民族大学化工学院 甘肃 730000) 摘要:铜是一种不但廉价低毒,而且储量丰富的金属, 用铜作为催化剂促使C-N交叉偶联反应的发生,不仅可以替代贵重金属, 从而降低 成本,而且可以减少对环境的污染, 促进绿色化学的发展。本文综述了铜催化下C-N键偶联反应的研究情况。关键词:C-N交叉偶联反应;铜;催化;进展 中图分类号:O 文献标识码:A Research Progress on in Copper-Catalyzed C-N Coupling Reaction Yin Hao, Wang LuLu, Chen Jiawei, Li Hunu, Ma Wei, Li Zhiz h ong, Li Yi (School of chemical engineering, Northwest Minzu University, Gansu, 730000) Abstract :Copper is a cheap, low-toxic, and abundantly abundant metal. Copper is used as a catalyst to promote the occurrence of CN cross-coupling reaction. It can not only replace precious metals, thus reducing costs, but also reducing environmental pollution and promoting green chemistry. development of. In this paper, the research on the coupling of C-N bond catalyzed by copper is reviewed. Key words :C-N cross-coupling reaction ;copper ;catalysis ;progress 含C-N键的有机化合物是一类非常重要的物质,不仅大量存在于各类具有生理活性的天然产物、药物中,也是许多化工材料的重要组成部分,甚至是生命活动不可缺少的物质。因此新的C-N键在简单化合物基础上构建显得尤为重要,而这一领域的研究也一直较为火热。 目前,绝大多数的C-N键的偶联反应使用含Pd和Ni的催 下化学反应的变化进行分析,并将结果充分利用在化工生产设备相关设备的数据中,来将供热系统进行改善及升级,让化学反应能够在较大范围内进行反应的热和冷能源流的转换和优化,从而将能源进行合理的利用。这样有利于供热系统能源的节约,并将生产工艺设备进一步优化,还把不同零件进行组合整合出一套能实用的配置运用在实际生产中。 (4)尾料进行回收 在进行化工生产时会产生废气、废水等可以回收的资源。为了环境的保护和节约资源的浪费,企业应将可回收的资源进行回收,并且变废为宝,并从中加强废水、废气的净化处理,并将废气中的化学物质进行回收,以此来减少污水、废物的排放,从而来减少环境及空气的污染。此外还需将余热进行回收,将生产过程中资源的循环利用,实现能源使用率最大化,并从最大程度上来将企业的成本降到最低。 (5)加入新的设备、技术及工艺 在维持化学生产当中最低要求就是利用新的技术、新的工艺、新的设备,当一切都用新的时候,化工生产的速度和质量就又提升了一个阶段,加快了步伐。随着工艺技术的发展,在工艺中化工企业是最重要的组成部分,同时也得到快速的发展,并在化工生产的技术、节能设备和工艺上,逐步得到了完善和升级,导致化工工艺、化工设备及化工技术得到不断更新。在化工生产中根据实际情况来选取先进的生产工艺,并对生产工艺进行改造和升级,将化学产品的生产综合效益进行提高;其次,化工企业应将企业生产实际进行结合,将生产的连续性进行增加,将间隙性生产导致能源浪费现象的出现进行杜绝化;最后,分离的装置和分离的方法需 合理,如果出现分离装置不够严密的情况,则会使化学产品的纯度不够,就需进行二次的分离和提纯,从而导致能源浪费程度大大增加。所以在进行高效的分离时应采用合理的分离装置,能够在分离过程中从最大程度上避免能源消耗。如精馏的蒸馏塔过程中,在进行分离时,采用传热装置和高效填料的高效设备,可将转换的效率和传热的效率进行提升。而对于传统设备而言,则就有了将热量损失减少的优势,以此来积极地将新设备运用到生产中。 3.结束语 在化工企业中,化工生产是一项复杂程度较高的技术,那么在生产过程中出现的能量消耗问题则需进行解决,因为这对企业工艺的发展有着很大的影响。随着我国经济技术的发展,化工工艺在其中占有着非常重要的作用,而且我国已在对能量降耗中大力施行节能降耗政策,并将这一理念贯彻落实。同时企业在进行发展时,应将化工工艺、化工设备、化工技术等多方面来进行大力度的实施节能降耗政策的内容,并将人员进行专业培训,将企业的规章制度进行完善,需让员工严格执行,对生产过程中的每一个环节进行优化调整,逐步将能源消耗进行降低,来将化工企业的生产力进行提高。 ?【参考文献】 [1]王大力.化工工艺中常见的节能降耗技术措施的探究[J].工程技术,2017(9):221. [2]季源.化工工艺中常见基恩降耗技术措施的探讨[J].理论广角,2016(8):294. ?【作者简介】 李富斌(1989-),男,多氟多化工股份有限公司;研究方向:锂电池新材料的研究及开发。 上接第142页 下转第144页

可见光氧化还原与金属镍协同催化偶联反应研究

投稿网址:https://www.docsj.com/doc/9b13980255.html, 可见光氧化还原与金属镍协同催化偶联反应 研究 李蕾,宫清嵩,王贺 (辽宁石油化工大学化学化工与环境学部,辽宁抚顺113001) 摘要:可见光催化反应已经成为有机合成化学的重要工具之一。可见光氧化还原与金属镍协同催化偶联反应由于具有反应能垒低、条件温和以及选择性高等优点得到人们广泛关注。综述了近年来光氧化还原与金属镍协同催化碳-碳和碳-杂键形成反应的最新进展,另外,对光氧化还原催化C-X(X=C、N、O、P、S)键形成反应中涉及到的机理进行了详细的探讨。 关键词:可见光氧化还原;镍催化;交叉偶联反应;碳-碳键;碳-杂键 中图分类号:O621.3文献标志码:A doi:10.3969/j.issn.1006-396X.2018.06.001 Study on Visible-Light-Induced and Nickel-Cocatalyzed Cross-Coupling Reactions Li Lei,Gong Qingsong,Wang He (College of Chemistry,Chemical Engineering and Environmental Engineering,Liaoning Shihua University,Fushun Liaoning113001,China) Abstract:Visible-light-photoredox catalysis has been recognized as a powerful technique to facilitate activation of organic molecules,enabling achievement of a wide variety of new chemical reactions.The combination of photoredox catalysis and nickel catalysis has shown even greater potential in promoting the cross-coupling reactions,owing to the advantages of low energy barrier, mild reaction condition and high selectivity.This review mainly focuses on the progress of carbon-carbon and carbon-heteroatom bond formation via the combination of photoredox catalysis and nickel catalysis in recently.The mechanisms of visible-light-photoredox catalyzed C-X(X=C,N,O,P,S)bond formation are discussed in details. Keywords:Visible?light?photoredox catalysis;Nickel catalysis;Coupling reaction;Carbon-carbon bond;Carbon?heteroatom bond 随着现代经济的高速发展,能源消耗日益增大,传统的化石资源也接近枯竭。与此同时,环境污染以及生态恶化等问题日渐严重。探索并合理使用绿色、可持续能源去发展温和、绿色、高效的化学反应,一直是有机化学家所追求的目标和前进的方向。可见光是清洁绿色可再生的自然资源,直接利用可见光作为能源实现有机反应在一定程度上可减少环境的污染以及能源的消耗。由于有机化合物的结构特征,大部分有机化合物对可见光的吸收非常少,但是通过引入光催化剂(光敏剂)和光催化循环,为可见光诱导的有机反应带来了新的研究契机[1-2]。光催化剂(以[Ru(bpy)3]2+络合物为例[3-4])受到光照激发形成不稳定的三重激发态,再通过得失电子的形式进行能量的转移,从而实现可见光在有机合成中的应用(如图1所示)。在可见光促进的有机反应中,光催化过程在十分温和的条件下产生了自由基阳离子或自由基阴离子。这些中间体它们不仅可以自身发生反应,而且还可以通过其他方式转化为反应性的自由基或离子。其反应途径与经典的热活化反应相比,具有更低的反应能垒、更 第31卷第6期2018年12月Vol.31No.6 Dec.2018 文章编号:1006-396X(2018)06-0001-10石油化工高等学校学报 JOURNAL OF PETROCHEMICAL UNIVERSITIES 收稿日期:2018-08-01修回日期:2018-08-25 基金项目:国家自然科学青年基金项目(21702087、21801105);辽宁省教育厅项目(L2017LQN010、L2017LQN001);辽宁省科技厅项目(20170520353)。 作者简介:李蕾(1989-),女,博士,副教授,从事可见光催化有机小分子合成研究;E-mail:https://www.docsj.com/doc/9b13980255.html,@https://www.docsj.com/doc/9b13980255.html,。

铜催化的偶联反应

水相中铜催化的偶联反应 摘要 在胺的、醇、硫醇等的芳基偶联反应中,铜是一种强有力催化剂,但是,这些是在有毒的有机溶剂中进行的。因此,使用温和的和良性的水作为溶剂已经引起了关注。这里回顾了最近的铜催化的水相中的偶联反应。并且对于水相反应中水的作用和铜催化的C-N键的形成进行了简述。 引言 在过去的几年当中,对于碳杂键的建立,铜催化剂被认为是一种有效的物质,并且在工业生产中得到了使用。在这一类型的反应中,许多的温和的不同于以往在反应中使用的有害的有机溶剂水被开发。这一工作实现了绿色化学的目标,避免了少量的有机溶剂带来的环境污染问题。在许多的绿色溶剂中水是比较理想的[1]。 水被认为是一种比较好的良性溶剂。在化工的生产中,水是一种消费较低、安全、使用和绿色的物质。而在偶联反应中水不仅是一种好的溶剂而且还影响着反应的速度。 水的作用 在反应中,催化剂和化学计量的水在提高反应速率和化学反应选择和立体选择性上都有很大的影响[2]。 据报道一些研究的工作者认为水能够加速反应,这主要归咎于有机物质的疏水作用。在反应中,由于有机物质不溶于水中这样它们能够和好的聚集在一起,紧密的接触而更好的反应。这是因为反应物的

非极性部分不能与水有很好的相容性而致,同时这对于在许多的有机溶剂中的反应有较好的立体和电子效应的影响[3]。然而,在么有加溶剂的情况下,让有机反应物很好的接触却没有得到好的产率,这可能是由于水的加入形成氢键的作用吧! 另一方面,有报道说,某些在水中发生的反应的加速和得到很高的产率的现象是因为有机反应物只能在水相的表面,以致这一反应发生在水相和有机相的界面一点接着一点地发生[4]。报道还说在这样的反应体系中,不均匀性是加速反应的必要条件同时报道不均匀不是提高产率的原因。报道还说氢键是发生加速反应的重要因素而不是前面说的由于紧密接触引起的。最近有报道支持这一说法[5],有人通过研究水分子在水和油界面的行为,得出水分子在界面容易和产物形成氢键。 另外,在过渡金属催化的特殊情况下,通过水分子中的氧原子水分子可能会改变这过渡金属盒配合物螯合的立体结构。比起在缺水的情况下,这一种螯合能够加速反应的进行。总之,在反应中水的使用在绿色化学中表现处较好的优势。 铜催化的C-N键的形成 据报道[6]说在水中发生的对苯基邻氨基苯甲酸的芳基化在铜的作用下发生的例子。由于水的本质特征在最初的水相反应中它的规模受到了较大的限制,因此,常常被有机溶剂所替代。例如[7],有研究者在做溴吡啶的胺化时,用水做溶剂时没有用乙二醇做溶剂得到的产率高。但是,也有报道说在酰胺的N芳基化中少量水的加入有助于反

钯催化的交叉偶联反应——2010年诺贝尔化学奖简介

doi:10.3969/j.issn0253-9608.2010.06.005 钯催化的交叉偶联反应 ———2010年诺贝尔化学奖简介 肖唐鑫① 刘 立② 强琚莉③ 王乐勇④ ①②博士研究生,③博士,④教授,南京大学化学化工学院,南京210093 关键词 钯催化 偶联反应 诺贝尔化学奖 2010年10月6日,瑞典皇家科学院宣布将2010年诺贝尔化学奖授予美国科学家Richar d F.Heck,日本科学家Ei-ichi Ne g ishi和A kira Suzuki。这三名科学家是因为在有机合成领域中钯催化交叉偶联反应方面的卓越研究而获奖。它为化学家提供了一款精致的工具来合成复杂的有机分子。这一成果广泛应用于制药、电子工业和先进材料等领域。笔者对钯催化交叉偶联反应领域作了粗浅的介绍,以期起到抛砖引玉之作用。 2010年的诺贝尔化学奖揭晓后,很多专业人士对此 并不感到惊讶,认为这次的评选结果实乃众望所归。确实如此,三位科学家都已近耄耋之年,他们所做的贡献早已造福全球,按理早应摘取这个桂冠了。当瑞典皇家科学院在2010年10月6日宣布将诺贝尔化学奖颁发给美国科学家Richard F.Heck和日本科学家Ei-ichi Negishi,Akira Suzuki时,Heck所说的一句话———这是个圆满的结局———道出了所有人的心声。目前,钯催化的交叉偶联反应在全球的科研、医药生产、电子工业和先进材料等领域都有广泛应用。以在此领域有卓越贡献的科学家名字命名的有机反应对于从事化学的人来说是耳熟能详的,如Heck反应、Negishi反应、Suzuki反应、Stille反应、Kumada反应、Sonogashira反应以及Hiyama反应等等。 众所周知,有机合成化学以其强大的生命力制造出了几千万种新的物质,并且这个数目仍在迅速的膨胀,而有机合成化学的基础核心是新型、高效有机合成方法学的研究和发展。我们从21世纪这10年来三次与有机合成方法学相关的诺贝尔化学奖授予情况可以看出这一领域的重要性:2001年W.S.Knowles,R.Noyori 和K.B.Sharpless因在发展催化不对称合成研究方面获奖;2005年Y.Chauvin,R.H.Grubbs和R.R. Schrock因在发展烯烃复分解反应所作出的贡献而获奖;最后就是2010年的钯催化交叉偶联反应的获奖。下面对钯催化交叉偶联反应的早期研究、反应机理以及发展应用等做一个粗浅的介绍,以期达到抛砖引玉之作用。1早期研究 有机合成化学制造出的这几千万种新的物质绝大多数都是以碳原子为主来构建的。为了制备结构更复杂、功能更强大的新型材料,就要想办法通过各种化学反应将碳原子连接在一起。然而碳原子本身是十分稳定的,在化学反应中并不活泼,所以就得想办法来激活碳原子,让它更容易参与反应并与其他碳原子连接起来,逐步形成更高层次的碳基骨架。1912年,法国人Grignard因发明有机镁试剂(格氏试剂)而荣获诺贝尔化学奖,可以说是碳基活化史上的第一个里程碑。随着时代的发展,人们对碳基的研究愈加深入。在研究的前期,要么无法活化碳基,化合物难于参加反应;要么使碳原子过于活跃,虽然能有效地制造出很多简单的有机物,但要是合成复杂分子却有大量的副产物生成。正如大家所知,在有机合成操作中提纯是一项繁琐的工作。Heck,Negishi和Suzuki等人通过实验发现,当碳原子和钯原子连接在一起,会形成一种“温和”的碳钯键,在这里钯既活跃了碳基,又使其不至于过于活泼,然后又可以把别的碳原子吸引过来,这样使得两个碳原子距离拉近,容易成键而偶联起来。在这里钯原子就相当于“媒人”的作用,只需使用催化剂就行。所以“钯催化交叉偶联反应”就是一款精致的工具,让化学家得以像艺术家一样来雕刻和拼接类似积木的模块(小的基团),构筑令人叹为观止的艺术品(有机复杂分子)。与此同时还避免了过多不必要副产物的生成。 Heck1931年出生于美国麻省斯普林菲尔德(Spri- · 332·Chinese J ournal o f N ature V ol.32N o.6   Brief Introduction of No bel Prize

相关文档
相关文档 最新文档