文档视界 最新最全的文档下载
当前位置:文档视界 › 天然气中硫化氢含量的测定 亚甲蓝法(标准状态:被代替)

天然气中硫化氢含量的测定 亚甲蓝法(标准状态:被代替)

天然气中硫化氢含量的测定 亚甲蓝法(标准状态:被代替)
天然气中硫化氢含量的测定 亚甲蓝法(标准状态:被代替)

水质 阴离子表面活性剂的测定 亚甲蓝分光光度法GB 7494-37 方法确认

水质阴离子表面活性剂的测定亚甲蓝分光光度法GB 7494-37 方法确认 1.目的 通过分光光度法测定水中阴离子表面活性剂的浓度,分析方法检出限、回收率及精密度,判断本实验室的检测方法是否合格。 2. 适用范围 本标准适用于测定饮用水、地面水、生活污水及工业废水中的低浓度亚甲蓝活性物质(MBAS)。亦即阴离子表面活性物质。 3. 职责 3.1 检测人员负责按操作规程操作,确保测量过程正常进行,消除各种可能影 响试验结果的意外因素,掌握检出限、方法回收率与精密度的计算方法。 3.2 复核人员负责检查原始记录、检出限、方法回收率及精密度的计算方法。 3.3技术负责人负责审核检测结果及检出限、方法回收率、精密度分析结果。 4.分析方法 4.1 测量方法简述 4.1.1空白试验:按同试样完全相同的处理步骤进行空白实验,仅用100ml蒸馏水代替试样。 4.1.2测定 4.1.2.1将所取试份移至分液漏斗,以酚酞为指示剂,逐滴加入1mol/L氢氧化

钠溶液至水溶液呈桃红色,再滴加0.5mol/L硫酸到桃红色刚好消失。 4.1.2.2加入25ml亚甲蓝溶液,摇匀后再移入10ml氯仿,激烈振摇30s,注意放气。过分的摇动会发生乳化,加入少量异丙醇(小于10ml)可消除乳化现象。加相同体积的异丙醇至所有标准中,再慢慢旋转分液漏斗,使滞留在内壁上的氯仿液珠降落,静置分层。 4.1.2.3将氯仿层放入预先盛有50ml洗涤液的第二个分液漏斗,用数滴氯仿淋洗第一个分液漏斗的放液管,重复萃取三次,每次用10ml氯仿。合并所有氯仿至第二个分液漏斗中,激烈振摇30s,静置分层。将氯仿层通过玻璃棉或脱脂棉,放入50ml容量瓶中。再用氯仿萃取洗涤液两次(每次用5ml),此氯仿层也并入容量瓶中,加氯仿到标线。 4.1.2.4每一批样品要做一次空白试验及一种校准溶液的完全萃取。 4.1.2.5每次测定前,震荡容量瓶内的氯仿萃取液,并以此液洗三次比色皿,然后将比色皿充满。在652nm处,以氯仿清洗比色皿。 以试份的吸光度减去空白试验的吸光度后,从校准曲线上查得LAS的质量。 4.1.3校准曲线:取一组分液漏斗10个,分别加入100、99、95、93、91、89、87、85、80ml水,然后分别移入0、1.00、3.00、 5.00、7.00、9.00、11.00、13.00、15.00、20.00ml直链烷基苯磺酸钠标准溶液,摇匀。按(4.1.2)处理每一标准,以测得的吸光度扣除试剂空白值(零标准溶液的吸光度)后与相应的LAS量(ug)绘制校准曲线。 4.2 计算方法: c=m/V 式中:c—水样中亚甲蓝活性物(MBAS)的浓度,mg/L;

磷钼蓝分光光度法

磷钼蓝分光光度法 1适用范围 本方法适用于炉水中含量在0.02~10.0mg/L磷酸盐的测定。 2方法提要 在酸性溶液中,用过硫酸钾作分解剂,将聚磷酸盐和有机磷转化成正磷酸盐。 正磷酸盐与钼酸铵反应生产黄色的磷钼杂多酸,再用抗坏血酸还原成磷钼蓝,于710nm最大吸收波长处用分光光度法测定。 3仪器 2800分光光度计 4试剂 4.1硫酸溶液:1+35 4.2酒石酸锑钾: AR 4.3过硫酸钾:40g/L 称取20g过硫酸钾,精确至0.5g,溶于500mL水中,贮存于棕色瓶内(保存期一个月)。 4.4抗坏血酸:20g/l 称取10g抗坏血酸,精确至0.5g,称取0.2gEDTA,精确至0.01g,溶于200mL水中,加入8.0mL甲酸,用水稀释至500mL,混匀,贮存于棕色瓶中(有效期一个月)。 4.5钼酸铵:26g/L

称取13g钼酸铵,精确至0.5g,称取0.5g酒石酸锑钾,精确至0.01g,溶于200mL水中,加入230mL硫酸溶液(1+1),混匀,冷却后用水稀释500mL,贮存于棕色瓶中(有效期一个月)。 4.6磷酸盐标准溶液:1mL=0.05mg 4.6.1贮备液: 称取0.7165g于105℃干燥过的磷酸二氢钾,溶于水中,转入1000mL容量瓶,稀释至刻度摇匀,此溶液1mL=0.5mg PO 43-。 4.6.2标准液: 吸取50mL贮备液于500mL容量瓶中,稀释至刻度,此溶液1mL= 0.05mgPO 43-。5分析步骤: 5.1工作曲线的绘制 取7个50mL容量瓶,分别取 0、2. 0、4. 0、6. 0、8. 0、10. 0、12.0mL磷标准溶液,用约20mL水稀释,依次向各瓶中加入2.0mL钼酸铵溶液,3.0mL抗坏血酸溶液,用水稀释至刻度,摇匀,室温下放置10分钟,在710nm,用比色皿,以试剂空白对照,测定各自吸光度,利用仪器建立 A=MC+N线性回归方程,保存方法号。

T 环境空气 硫化氢的测定 亚甲蓝分光光度法

FHZHJDQ0147 环境空气硫化氢的测定亚甲蓝分光光度法 F-HZ-HJ-DQ-0147 环境空气—硫化氢的测定—亚甲蓝分光光度法 1 范围 本方法规定了用亚甲蓝分光光度法测定居住区空气中硫化氢的浓度。 本方法适用于居住区空气硫化氢浓度的测定,也适用于室内和公共场所空气中硫化氢浓度的测定。 10mL吸收液中含有1μg硫化氢应有0.155±0.010吸光度。 检出下限为0.15μg/10mL。若采样体积为30L时,则最低检出浓度为0.005mg/ m3。 测定范围为10mL样品溶液中含0.15~4μg硫化氢。若采样体积为30L时,则可测浓度范围为0.005~0.13mg/m3。如硫化氢浓度大于0.13mg/m3,应适当减小采样体积,或取部分样品溶液,进行分析。 由于硫化镉在光照下易被氧化,所以采样期和样品分析之前应避光,采样时间不应超过1h,采样后应在6h之内显色分析。空气SO2浓度小于1mg/m3,NO2浓度小于0.6mg/m3,不干扰测定。 2 原理 空气中硫化氢被碱性氢氧化镉悬浮液吸收,形成硫化镉沉淀。吸收液中加入聚乙烯醇磷酸铵可以减低硫化镉的光分解作用。然后,在硫酸溶液中,硫化氢与对氨基二甲基苯胺溶液和三氯化铁溶液作用,生成亚甲基蓝。根据颜色深浅,比色定量。 3 试剂 本法所用试剂纯度为分析纯,所用水为二次蒸馏水,即一次蒸馏水中加少量氢氧化钡和高锰酸钾再蒸馏制得。 3.1 吸收液:称量 4.3g硫酸镉(3CdSO4·8H2O)和0.3g氢氧化钠以及10g聚乙烯醇磷酸铵分别溶于水中。临用时,将三种溶液相混合,强烈振摇至完全混溶,再用水稀释至1L。此溶液为白色悬浮液,每次用时要强烈振摇均匀再量取,贮于冰箱中可保存—周。 3.2 对氨基二甲基苯胺溶液: 3.2.1 储备液:量取50mL浓硫酸,缓慢加入30mL水中,放冷后,称量12g对氨基二甲基苯胺盐酸盐[N,N-dimethyl-p-phenylenediamine dihydrochloride,(CH3)2NC6H4·2HCl]溶液中。置于冰箱中,可保存一年。 3.2.2 使用液:量取2.5mL储备液,用1+1硫酸溶液稀释至100mL。 3.3 三氯化铁溶液:称量100g三氯化铁(FeCl3·6H2O)溶于水中,稀释至100mL。若有沉淀,需要过滤后使用。 3.4 混合显色液:临用时,按1mL对氨基二甲基苯胺使用液和1滴(0.04mL)三氯化铁溶液的比例相混合。此混合液要现用现配,若出现有沉淀物生成,应弃之不用。 3.5 磷酸氢二铵溶液:称量40g磷酸氢二铵[(NH4)2HPO4]溶于水中,并稀释至100mL。 3.6 0.0100mol/L硫代硫酸钠标准溶液;准确吸量100mL 0.1000N硫代硫酸钠标准溶液,用新煮沸冷却后的水稀释至1L。配制和浓度标定方法见附录A。 3.7 碘溶液c(1/2I2)=0.1mol/L,称量40g碘化钾,溶于25mL水中,再称量12.7g碘,溶于碘化钾溶液中,并用水稀释1L。移入容量色瓶中,暗处贮存。 3.8 0.01mol/L碘溶液:精确吸量100mL 0.1mol/L 碘溶液于1L棕色容量瓶中,另称量18g 碘化钾溶于少量水中,移入容量瓶中,用水稀释至刻度。 3.9 0.5g/100mL淀粉溶液:称量0.5g可溶性淀粉,加5mL水调成糊状后,再加入100mL沸水中,并煮沸2~3min,至溶液透明,冷却,临用现配。 3.10 1+1盐酸溶液:50mL浓盐酸与50mL水相混合。

分光光度法

第二节分光光度法 (一)基础知识 分类号:P2-O 一、填空题 1.分光光度法测定样品的基本原理是利用朗伯—比尔定律,根据不同浓度样品溶液对光信号具有不同的,对待测组分进行定量测定。 答案:吸光度(或吸光性,或吸收) 2.应用分光光度法测定样品时,校正波长是为了检验波长刻度与实际波长的,并通过适当方法进行修正,以消除因波长刻度的误差引起的光度测定误差。 答案:符合程度 3.分光光度法测定样品时,比色皿表面不清洁是造成测量误差的常见原因之一,每当测定有色溶液后,一定要充分洗涤。可用涮洗,或用浸泡。注意浸泡时间不宜过长,以防比色皿脱胶损坏。 答案:相应的溶剂(1+3)HNO3 二、判断题 1.分光光度计可根据使用的波长范围、光路的构造、单色器的结构、扫描的机构分为不同类型的光度计。( ) 答案:正确 2.应用分光光度法进行试样测定时,由于不同浓度下的测定误差不同,因此选择最适宜的测定浓度可减少测定误差。一般来说,透光度在20%~65%或吸光值在0.2~0.7之间时,测定误差相对较小。( ) 答案:正确 3.分光光度法主要应用于测定样品中的常量组分含量。( ) 答案:错误 正确答案为:分光光度法主要应用于测定样品中的微量组分。 4.应用分光光度法进行样品测定时,同一组比色皿之间的差值应小于测定误差。( ) 答案:错误 正确答案为:测定同一溶液时,同组比色皿之间吸光度相差应小于0.005,否则需进行校正。 5.应用分光光度法进行样品测定时,摩尔吸光系数随比色皿厚度的变化而变化。( ) 答案:错误 正确答案为:摩尔吸光系数与比色皿厚度无关。 三、选择题 1.利用分光光度法测定样品时,下列因素中不是产生偏离朗伯—比

硫化氢 亚甲基蓝分光光度法(打印版 《空气和废气监测分析方法》第

硫化氢亚甲基蓝分光光度法 《空气和废气监测分析方法》(第四版增补版) 1.原理 硫化氢被氢氧化镉-聚乙烯醇磷酸铵溶液吸收,生成硫化镉胶状沉淀。聚乙烯醇磷酸铵能保护硫化镉胶体,使其隔绝空气和阳光,以减少硫化物的氧化和光分解作用。在硫酸溶液中,硫离子与对氨基二甲基苯胺溶液和三氯化铁溶液作用,生成亚甲基蓝,根据颜色深浅,用分光光度法测定。 方法检出限为0.07μg/10ml(按与吸光度0.01相对应的硫化氢浓度计),当采样体积为60L 时,最低检出浓度为0.001mg/m3。 2.仪器 ①大型气泡吸收管:10ml。 ②具塞比色管:10ml ③空气采样器:0~1L/min ④分光光度计 3.试剂 1)吸收液:4.3g硫酸镉(3CdSO4·8H2O)、0.30g氢氧化钠和10.0g聚乙烯醇磷酸铵,分别溶于少量水后,并混合,强烈振摇混合均匀,用水稀释至1000ml。此溶液为乳白色悬浮液。在冰箱中可保存一周。 2)三氯化铁溶液:50g三氯化铁(FeCl3·6H2O),溶解于水中,稀释至50ml。 3)磷酸氢二铵溶液:20g磷酸氢二铵[(NH4)2HPO4],溶解于水,稀释至50ml。 4)硫代硫酸钠溶液C(Na2S2O3)=0.1mol/L:称取25g硫代硫酸钠(Na2S2O3·5H2O),溶于1000ml新煮沸并已冷却的水中,加0.20g无水碳酸钠,贮于棕色细口瓶中,放置一周后标定其浓度,若溶液呈现浑浊时,应该过滤。

5)硫代硫酸钠标准溶液C(Na2S2O3)=0.0100mol/L:取50.00ml标定过的0.1mol/L硫代硫酸钠溶液,置于500ml容量瓶中,用新煮沸并已冷却的水稀释至标线。 6)碘贮备液C(1/2 I2)=0.10mol/L:称取12.7g碘于烧杯中、加入40g碘化钾、25ml水,搅拌至全部溶解后,用水稀释至1000ml,贮于棕色细口瓶中。 7)碘溶液C(1/2 I2)=0.010mol/L:量取50ml碘贮备液,用水稀释至500ml,贮于棕色细口瓶中。 8)0.5%淀粉溶液:称取0.5g可溶性淀粉,用少量水调成糊状,搅拌下倒入100ml沸水中,煮沸至溶液澄清,冷却后贮于细口瓶中。 9)0.1%乙酸锌溶液:0.20g乙酸锌溶于200ml水中。 10)(1+1)盐酸溶液。 11)对氨基二甲基苯胺溶液(NH2C6H4N(CH3)2·2HCl): ①贮备液:量取浓硫酸25.0ml,边搅拌边倒入15.0ml水中,待冷。称取6.0g对氨基二甲基苯胺盐酸盐,溶解于上述硫酸溶液中,在冰箱中可长期保存。 ②使用液:吸取2.5ml贮备液,用(1+1)硫酸溶液稀释至100ml。 ③混合显色剂:临用时,按1.00ml对氨基二甲基苯胺使用液和一滴(约0.04ml)三氯化铁溶液的比例相混合。若溶液呈现浑浊,应弃之,重新配制。

实验二十七 亚甲蓝分光光度法测定阴离子洗涤剂

实验二十八亚甲蓝分光光度法测定阴离子洗涤剂 一﹑实验目的 1.学习萃取和索氏提取的基本操作。 2.学习测定水样中阴离子洗涤剂的方法。 二﹑实验原理 阴离子洗涤剂主要指直链烷基苯磺酸钠和烷基磺酸钠类物质。洗涤剂的污染会造成水面产生不易消失的泡沫,并消耗水中的溶解样。 水中阴离子洗涤剂测定方法,常用的有亚甲蓝分光光度法和液相色谱法,前者操作简便,但选择性较差,后者需要有专用设备。 阴离子染料亚甲蓝与阴离子表面活性剂(包括直链烷基苯磺酸钠﹑烷基磺酸纳和脂肪醇硫酸钠)作用,生成蓝色的离子对化合物,这类能与亚甲蓝作用的物质统称亚甲蓝活性物质(MBAS)。生成的显色物可被三氯甲烷萃取,其色度与浓度成正比,并可用分光光度计在波长652nm 处测量三氯甲烷层的吸光度。 由于测定对象是水中溶解态的阴离子表面活性剂,样品在测定前需经中速定性滤纸过滤以除去悬浮物。因此,吸附在悬浮物上的表面活性剂不计在内。 三﹑实验仪器 1.分光光度计 2.250mL分液漏斗 3.索氏抽提器(150mL平底烧瓶,φ35×160 mm抽提桶,蛇型冷凝管)。四﹑试剂 1.4%氢氧化钠溶液 2.3%硫酸 3.三氯甲烷 4.直链烷基苯磺酸钠标准储备溶液:称取0.100g标准物LAS(平均分子量344.4,称准至0.001g),溶于50mL水中,转移到100mL容量瓶中,稀释至标线,混匀,每毫升含1.00mgLAS。保存于4℃冰箱中。如需要,每周配制一次。 5.直链烷基苯磺酸钠标准溶液:准确吸取10.00mL直链烷基苯磺酸钠标准储备溶液,用水稀释至1000mL,每毫升含10.0μgLAS。当天配制。 6.亚甲蓝溶液:称取50g磷酸二氢钠(NaH 2PO 4 ·H 2 O)置于烧杯中,溶于水, 缓慢加入6.8mL浓硫酸,混匀,转移入1000mL容量瓶中。另称取30mg亚甲蓝(指示剂级),用50mL水溶解后也移入容量瓶中,用水稀释至标线,摇云。此溶液储

紫外分光光度法在药物分析中的应用

紫外分光光度法在药物分析中的应用 蒋贤森临床52 2152001037 摘要 药物分析是分析化学的一个重要应用领域,在药物分析工作中经常出现含复杂成分的药物或复方药物,对此经典的容量分析,重量分析等化学分析方法往往难于处理,一般都要借助于仪器分析方法,我国在药物分析方法上的研究经过几十年的发展已经有了很大的进步,用于药品质量控制的分析方法日益增多,使用的仪器类型日趋先进,并且仪器分析所占的比率越来越大,常用的仪器分析方法有紫外红外分光光度法气相色谱法液相色谱法毛细管电泳质谱法热分析法等,这些方法都有各自的特点和应用范围,紫外分光光度法由于具有方法简便灵敏度和精确度高重现性好可测范围广等明显优点,加之其仪器价格相对低廉易于维护因而越来越为分析工作者所重视,发展成为仪器分析方法中应用最广泛的方法以我国历版药典为例,紫外分光光度法的应用在其中占据很大的比例,高居各种仪器分析方法之首。虽然不断有新的分析方法出现,但紫外分光光度法因为具有灵敏度高快速准确等特点一直是制剂含量测定的首选方法,紫外分光光度法可广泛应用于分析合成药物,生物药品以及中药制剂等各种药物。 对紫外分光光度法,在飞速发展的现代药物分析领域中的可靠性

和作用作了总结,以大量的文献和数据说明紫外分光光度法仍然是有效可行的一种药物分析方法,紫外分光光度法发展到今天已经成为一种非常成熟的方法,衍生出许多种具体的应用方法如:双波长和三波长分光光度法差示分光光度法导数分光光度法薄层扫描紫外光谱法光声光谱法热透镜光谱分析法催化动力学分光光度法速差动力学分光光度法流动注射分光光度法以及化学计量学辅助的紫外分光光度法等等。 这些方法大都可用于药物分析的含量测定之中。 在此仅介绍其中的几种方法。 关键词:紫外分光光度法双波长三波长分光光度法差示分光光度法导数分光光度法 双波长三波长分光光度法 普通的单波长分光光度法要求试样透明无浑浊,对于吸收峰相互重叠的组分,或背景很深的试样分析往往难以得到准确的结果,双波长分光光度法简称双波长法,是在传统的单波长分光光度法的基础上发展起来的。使用二个单色器得到二个不同波长的单色光,它取消了参比池,通过波长组合在一定程度上能消除浑浊背景和重叠谱图的干扰,双波长法一般要求有二个等吸光度点,而三波长法,则只需在吸收曲线上任意选择三个波长 1 2 3 处测量吸光度,由这三个波长处的吸光度 A1 A2 A3计算 A A 与待测物浓度成正,因而可通过 A-C

硫化氢——亚甲基蓝分光光度法方法确认

硫化氢——亚甲基蓝分光光度法 《空气和废气监测分析方法》(第四版)第三篇第一章十一(二)方法确认 1.目的 通过分光光度法测定吸收液中硫化氢的浓度,分析方法检出限、回收率及精密度,判断本实验室的检测方法是否合格。 2.适用范围 本标准方法规定了测定空气中硫化氢的亚甲基蓝分光光度法。 本标准方法适用于空气中硫化氢的测定。 3. 职责 3.1 检测人员负责按操作规程操作,确保测量过程正常进行,消除各种可能影响试验结果的 意外因素,掌握检出限、方法回收率与精密度的计算方法。 3.2 复核人员负责检查原始记录、检出限、方法回收率及精密度的计算方法。 3.3技术负责人负责审核检测结果及检出限、方法回收率、精密度分析结果。 4.分析方法 4.1标准曲线的绘制 向各管加入混合显色剂1.00ml,立即加盖,倒转缓慢混匀,放置30min。加1滴磷酸氢二铵溶液,以排除三价铁离子的颜色,混匀。在波长665nm处,用2cm比色皿,以水为参比,测定吸光度。以吸光度对硫化氢含量(μg),绘制标准曲线。 4.2样品测定 采样后,加入吸收液使样品溶液体积为10.0ml,以下步骤同标准曲线的绘制。 4.3计算 W/ 硫化氢(H2S,mg/m3)=Vn 式中:W——样品溶液中硫化氢的含量,μg; Vn——标准状态下的采样体积,L。

5. 结果分析 5.1检出限 选取10份空白样品,按4进行测试。结果见附表。由附表可知,检出限满足此标准方法的要求。 5.2方法回收率与精密度 选取6份样品加标,使加标浓度均为1.00mg/L,按4进行测试。结果见附表。由附表可知,回收率在97.7%-100.3%之间,满足要求。

比色法及分光光度法

比色法及分光光度法 第一节 一、填空题。 1.比色法及分光光度法同化学分析法比较具有___________、_____________、_____________、_______________等四个特点。 2.光的波长范围在___________称为可见光,波长小于__________称为紫外光,波长大于___________称为红外光。 3.____________通过三棱镜就可分解为____________________,这种现象称为光的色散。 4.光吸收程度最大外的波长叫做_____________,用_________表示。 5.同物质不同浓度的溶液λmax不变,具有____________的吸收曲线,不同物质具有__________的吸收曲线,可以此进行物质的___________。 6.物质呈现一定的颜色是由于___________。 7.同一物质不同浓度在一定波长处吸光度随浓度增加而________,这个特性可作为_________的依据。 二、选择题。 1.已知光的波长λ=800nm,则它应属于() A、红光 B、紫光 C、红外光 D、紫外光 2.Fe(SCN)3溶液(红色)的吸收光颜色为() A、红色 B、黄色 C、蓝色 D、蓝绿色 3.绿光的互补色为() A、紫红色 B、橙色 C、绿蓝 D、蓝绿色 4.二苯硫腙的CCl4溶液吸收580~600nm范围的光,它显()色。 A、绿色 B、蓝色 C、紫色 D、黄色 三、判断题。 1.白光是一种可见光。() 2.同一物质不同浓度的有色溶液λmax不变。() 3.在λmax处测定吸光度则灵敏度最高。() 4.比色法及分光光度法同化学分析比较,准确度高,灵敏度低。() 5.硫酸铜溶液因吸收了白光中的红色而呈现蓝色。() 第二节光吸收定律 一、填空题。 1.光吸收定律又称_______,它表明当_______________垂直通过______________,溶液的吸光度A与______________及____________成______。其数学表达式为_______________。 2.偏离朗伯—比耳定律的因素有________、_________、_________、_______等四方面。 二、选择题。 1.某有色溶液,其他测定条件相同,若增加液层厚度,则其吸光度A( ) A、增加 B、不变 C、减小 D、不确定 2.某有色溶液,其他测定条件相同,若增加液层厚度,则其透射比T() A、增加 B、不变 C、减小 D、不确定 3.若某有色溶液透射比为0.333,则其吸光度为() A、0.333 B、0.500 C、0.666 D、0.478 4.若某溶液ε=1.1×104L\(mol·cm),с=3.00×10-5mol/L,b=2.0cm,则A为() A、0.10 B、0.32 C、1.30 D、0.66 三、判断题。

天然气中硫化氢含量的测定及安全防护(精)

维护得到技术上的保证。 (4该仪表监测量程宽、自动化程度高、安装方便、操作简单易学,由于微机能将分离器的管道压力、含水情况及时显示出来,并能够对特殊情况作报警,使得分离器操作人员能随时了解分离器的工作状态,给现场操作人员带来诸多方便,使油田原油计量水平上了一个台阶。 (5该仪表是低剂量同位素工业仪表,对γ射线采用了严密的辐射屏蔽,没有任何剂量的泄漏,仪表周围任意距离的γ剂量大大低于国家安全剂量标准。 此外,仪表防爆等级为d ⅡB T4,保证环境和工作人员的绝对安全。 [参考文献] [1]戴光曦.实验原子核物理学[M ].北京:原子能出版社, 1995. [2]徐克尊.粒子探测技术[M ].上海:科技出版社,1981.[3]魏宝文.原子核物理实验方法[M ].北京:原子能出版 社,1990. [4]中国大百科全书总编辑委员会.中国大百科全书—物理 学卷[M ].北京:中国大百科全书出版社,1987. [编辑:薛敏] 天然气中硫化氢含量的 测定及安全防护 晁宏洲,柯庆军

(塔里木油田公司开发事业部,新疆库尔勒841000 [收稿日期]2005-05-13 [作者简介]晁宏洲(1972-,男,陕西宝鸡人,助理工程师,毕业于西安石油学院,从事企业计量工作。[摘要]文章阐述了天然气中硫化氢含量的测定方法,介绍了作业现场硫化氢监测仪器及其检定,提出了含硫化氢 环境中人身安全防护措施。 [关键词]硫化氢含量;检测仪;安全防护 [中图分类号]TH 83[文献标识码]B [文章编号]1002-1183(200505-0028-03 由地层采出的天然气通常除含有水蒸气外,往往 还含有一些酸性气体。这些酸性气体一般是硫化氢、二氧化碳、硫醇、硫醚等气相杂质。其中,硫化氢是酸性天然气中毒性最大的酸性组分,准确测定天然气中的硫化氢含量,采取先进的天然气处理工艺、使其在天然气中的含量符合管道输送和商品贸易的条件,不但可以减轻金属腐蚀,而且对人身安全的防护也是极其重要的。 1硫化氢形成的地质原因 (1生物原因 生物作用生成硫化氢的一个主要途径是通过硫酸盐还原作用直接形成,此类硫化氢形成的先决条件是有硫酸盐和硫酸盐还原菌的存在。硫酸盐还原菌进行厌氧的硫酸盐呼吸作用,将硫酸盐还原生成硫化氢,这是天然气中硫化氢最主要的成因和来源。 (2热化学原因 硫化氢热化学成因从形成机理上分为两种类型。

钼蓝分光光度法之单水氢氧化锂和硅的测定

1 范围 本方法适用于工聚氯化铝业级单水氢氧化锂中质量分数0.00050%~0.050%硅的测定。 2 原理 试料以盐酸分解,在弱酸性介质中硅与钼酸铵形成硅钼黄杂多酸,以硫酸-草酸消除磷、砷的干扰,用抗坏血酸将硅钼黄还原为硅钼蓝。于分光光度计波长800nm处测量其吸光度。 3 试剂 3.1盐酸,1+1,优级纯。 3.2硫酸,3+97,优级纯。 3.3硫酸,33+67 优级纯。 3.4氨水,1+5,超纯。 3.5钼酸铵溶液,50g/L,必要时过滤。 3.6草酸溶液,50g/L,优级纯。 以上试剂均需贮存于塑料瓶中。 3.7抗坏血酸溶液,20g/L,用时现配。 3.8硅标准贮存溶液,100μg / mL: 称取0.2140g预先在1000℃灼烧1h并在干燥器中冷却至室温的二氧化硅,置于盛有1g无水碳酸钠(优级纯)的铂坩埚中,加入3g无水碳酸钠,在950~1000℃高温炉中熔融至熔体为亮红色并清澈透明,取出冷却,放入聚四氟乙烯烧杯中,用热水浸出,加热至溶液清亮,冷却,移入1000mL容量瓶中,以水稀释至刻度,混匀,立即移入塑瓶中。此溶液1mL含100μg硅。 3.9硅标准溶液,10μg / mL: 移取25.00mL100μg /mL硅标准贮存溶液,置于250mL容量瓶中,以水稀释至刻度,混匀,立即移入塑料瓶中。此溶液1mL含10μg硅。 3.10硅标准溶液,1μg / mL: 移取10.00mL10μg /mL硅标准溶液,置于100mL容量瓶中,以水稀释至刻度,混匀,立即移入塑料瓶中。此溶液1mL 含1μg硅。用时现配。 3.11对硝基酚指示剂溶液,1g/L。 用乙醇配制。

分光光度法考试题例

艾科锐公司化学基础知识考试题 分光光度法 科室姓名成绩时间 一、单项选择题(20分) 1、一束___通过有色溶液时,溶液的吸光度与浓度和液层厚度的乘积成正比。(B ) A、平行可见光 B、平行单色光 C、白光 D、紫外光 2、________互为补色。(A ) A、黄与蓝 B、红与绿 C、橙与青 D、紫与青蓝 3、摩尔吸光系数很大,则说明_____(C ) A、该物质的浓度很大 B、光通过该物质溶液的光程长 C、该物质对某波长光的吸收能力强 D、测定该物质的方法的灵敏度低。 4、下述操作中正确的是_____。(C ) A、比色皿外壁有水珠 B、手捏比色皿的磨光面 C、手捏比色皿的毛面 D、用报纸去擦比色皿外壁的水 5、用邻菲罗啉法测定锅炉水中的铁,pH需控制在4~6之间,通常选择____缓冲溶液较合适。(D ) A、邻苯二甲酸氢钾 B、NH3—NH4Cl C、NaHCO3—Na2CO3 D、HAc—NaAc 6、紫外-可见分光光度法的适合检测波长范围是_______。(C ) A、400~760nm; B、200~400nm C、200~760nm D、200~1000nm 7、邻二氮菲分光光度法测水中微量铁的试样中,参比溶液是采用_____。(B ) A、溶液参比; B、空白溶液; C、样品参比; D、褪色参比 8、722型分光光度计适用于________。(A ) A、可见光区 B、紫外光区 C、红外光区 D、都适用 9、722型分光光度计不能测定________。(C ) A、单组分溶液 B、多组分溶液 C、吸收光波长>800nm的溶液 D、较浓的溶液 10、下列说法正确的是________。(B ) A、透射比与浓度成直线关系; B、摩尔吸光系数随波长而改变; C、摩尔吸光系数随被测溶液的浓度而改变; D、光学玻璃吸收池适用于紫外光区 11、控制适当的吸光度范围的途径不可以是(C ) A、调整称样量 B、控制溶液的浓度 C、改变光源 D、改变定容体积12.双波长分光光度计与单波长分光光度计的主要区别在于(B ) A. 光源的种类及个数 B. 单色器的个数 C. 吸收池的个数 D. 检测器的个数 比尔定律的范围内,溶液的浓度、最大吸收波长、吸光度三者-在符合朗伯特13.的关系是(B ) A. 增加、增加、增加 B. 减小、不变、减小 C. 减小、增加、减小 D. 增加、不变、减小

亚甲蓝分光光度法测阴离子表面活性剂的不确定度分析

亚甲蓝分光光度法测阴离子表面活性剂的不确 定度分析 根据实际工作中所测饮用水中LAS含量较低,而LAS为常规必检项目, 本文通过亚甲蓝分光光度法测阴离子表面活性剂的方法,得出本方法的不确定度以定量表达本方法的可信程度,数值只有包含了不确定度才真正有意义。 1.实验部分 1.1 原理 阴离子染料亚甲蓝与阴离子表面活性剂作用,生成蓝色的盐类,该生成物可被氯仿萃取,其色度与浓度成正比,用分光光度计在波长652nm处测量氯仿层的吸光度。 1.2试剂与仪器 在测定过程中,使用分析纯试剂和蒸馏水,7230G可见光分光光度计, 配有10 mm光程的比色皿。氯仿(CHCl3),分析纯,十二烷基苯磺酸钠标准溶液(1000mg/L)。当天配制10.0mg L的标准贮备液。亚甲蓝溶液和洗涤液按GB5750-85.16.1配制。 1.3 实验方案及过程 按照《生活饮用水标准检验法》GB5750-85-16.1的步骤进行实验,于250mL 容量瓶中分别加入适量的水,再移取系列直链烷基苯磺酸钠标准溶液于 250mL分液漏斗中,加水刚好100mL,以酚酞为指示剂,滴加NaOH溶液至刚好呈桃红色,再滴加0.5mol/L硫酸至桃红色刚好消失。加入25mL亚甲蓝溶液,用氯仿萃取三次,萃取液用洗涤液洗涤,定容50mL,用分光光度计于波长652nm处测吸光度。 1.4测量的数学模型 1)回归曲线:y=a+bx

2)浓度计算公式:c=m/v 3)根据样品测定计算公式的独立分量,根据不确定度的传播规律,亚甲蓝分光光度法测定水中直链烷基苯磺酸钠标准溶液测量的合成相对标准不确定度公式表达为: 式中:u rel (C)—水中LAS 浓度的相对标准不确定度; u rel (C LAS )—LAS 标准贮备液中引入的相对标准不确定度; u rel (f)—将贮备液稀释至使用液引入的相对标准不确定度; u rel (m)—标准网线拟合求得LAS 含量时引入的相对标准不确定度; u rel (A)—重复测定时引入的相对标准不确定度; u rel (R)—回收率引入的相对标准不确定度; 2. 不确定度的评定 2.1 LAS 标准溶液引入的不确定度 u 1标液浓度:1.000±0.020mg/mL 其不确定度为:U 11=0.020/3=0.011547mg/mL 、灵敏度系数c 11=0.02。 在使用过程中,取2 mL 标准物到100mL 容量瓶中,在稀释过程中使用了2 mL 移液管,最大允许误差为±0.01ml 。 U 12=0.01/3=0.00577、灵敏度系数c 12=0.005 稀释过程中使用了100mL 容量瓶,最大误差为±0.1mL 则: U 13=0.1/3=0.0577,灵敏度指数c 13=-1.0×10-4mg/mL 由于实验室温度基本恒定为20℃,所以温度引入的不确定度可不计,所以: U 1=212 212212212211211u c u c u c ?+?+?=2.333×10-4mg/mL 2.2 光度法测量导致的吸光度A 的不确定度分量u 2 光度计的测量误差为±0.001 按均匀分布:u 2=0.001/3=0.0005774mg/mL 标准系列溶液中,LAS 质量引入的不确定度1.306μg ) ()()()()(22222R u A u m u f u c u u rel rel rel rel LAs rel rel ++++=

[光度,土壤,含量]浅析铋磷钼蓝分光光度法测定土壤中磷含量

浅析铋磷钼蓝分光光度法测定土壤中磷含量 磷在生物圈内的分布很广泛,在地壳中含量丰富,列元素含量的前10位,并广泛存在于动、植物组织中,也是人体含量较多的元素之一,稍次于钙列第6位。磷存在于人体所有细胞中,是维持骨骼和牙齿健康的必要物质,几乎参与所有生理上的化学反应。磷还是使心脏有规律跳动、维持肾脏正常机能和传达神经刺激的重要物质。缺少磷,烟酸不能被吸收。磷的正常机能需要维生素D(维生素食品)和钙(钙食品)来维持。 环境污染源中的磷主要来自化肥、冶炼、合成洗涤剂等行业,生活污水中也常含有较大量磷。磷对土壤的污染主要是人为污染,来源于人类过量施用农药、化肥及污水灌溉等。土壤污染具有隐蔽性,即从开始污染到导致后果有一个长期、间接、逐步积累的过程。了解土壤中磷含量,对土壤的科学利用有一定的参考价值。 1方法原理 将土壤环境样品用硝酸、氢氟酸分解,以高氯酸、硫酸氧化磷。硫酸冒烟处理后,以盐酸溶解盐类,用氨水使氢氧化铁和磷酸铁共沉淀而与基体中大部分钼分离。以硫酸溶解沉淀,在硫酸介质中,用硫代硫酸钠还原高价砷,磷与硝酸铋、钼酸铵形成三元配合物,用抗坏血酸还原后,生成铋磷钼铵蓝,用分光光度计于波长700nm处测量其吸光度。 2试剂 (1)氢氟酸:=1.15g/mL。 (2)高氯酸:=1.67g/mL。 (3)氨水:=0.90g/mL。 (4)硫酸:=1.84g/mL。 (5)硝酸:=1.51g/mL。 (6)盐酸:=1.19g/mL。 (7)抗坏血酸溶液:称取抗坏血酸10g,用100mL蒸馏水溶解,混匀。用时现配。 (8)硫酸铁铵溶液:称取硫酸铁铵90g,用100mL蒸馏水溶解,混匀。 (9)硫代硫酸钠溶液:1L水中含20g无水硫代硫酸钠,用时现配。 (10)硝酸铋溶液:称取30g硝酸铋,加入100mL浓硝酸,待完全溶解后,加入900mL蒸馏水、4g尿素,混匀。 (11)钼酸铵溶液:称取15g钼酸铵,置于400mL烧杯中,加入200mL蒸馏水,温热溶解,

磷钼蓝分光光度法测定水中的磷

磷钼蓝分光光度法 1 适用范围和应用领域 适用于海水中活性磷酸盐的测定 2 方法原理 在酸性介质中,活性磷酸盐与钼酸铵反应生成磷钼黄,用抗坏血酸还原为磷钼蓝后,于882 nm波长测定吸光值。 3 试剂及其配制 3.1硫酸溶液[c(H 2SO4)=6.0 mol/L] 在搅拌下将300 mL硫酸(H 2 SO4,ρ=1.84 g/mL)缓缓加到600 mL水中。酒石酸锑钾-钼酸铵混合溶液 3.2 钼酸铵溶液:溶解56 g钼酸铵〔(NH 4) 6 Mo 7 O 24 ·4H 2 O〕于400 mL水中。溶 液变混浊时,应重配。 3.3酒石酸锑钾溶液:溶解12 g酒石酸锑钾(C 4H 4 KO 7 Sb·1/2H 2 O)于400 mL水中, 贮于聚乙烯瓶中。溶液变混浊时,应重配。 3.4混合溶液: 搅拌下将45 mL钼酸铵溶液加到200 mL硫酸溶液中,加入5 mL 酒石酸锑钾溶液,混匀。贮于棕色玻璃瓶中。溶液变混浊时,应重配。 3.5 抗坏血酸溶液:溶解20 g抗坏血酸(C 6H 8 O 6 )于200 mL水中,盛于棕色试 剂瓶或聚乙烯瓶。在4℃避光保存,可稳定1个月。 3.6 磷酸盐标准贮备溶液:(0.300 mg/mL -P)称取1.318 g磷酸二氢钾(KH 2PO 4 ), 优级纯,在110~115℃烘1~2 h)溶于10 mL硫酸溶液及少量水中,全量转入1 000 mL量瓶,加水至标线,混匀,加1 mL三氯甲烷(CHCL 3 )。此溶液1.00 mL 含0.300 mg磷。置于阴凉处,可以稳定半年。 3.7 磷酸盐标准使用溶液:(3.00 μg/mL-P)量取1.00 mL磷酸盐标准贮备溶 液至100 mL量瓶中,加水至标线,混匀,加两滴三氯甲烷(CHCL 3 )。此溶液1.00 mL含3.00 μg磷。有效期为一周。 4 仪器及设备 仪器及设备如下 ---分光度计:配5cm测定池; ---量筒:容量10ml、50ml、100ml、250ml、500ml

海水一活性硅酸盐的测定一硅钼蓝分光光度法

FHZDZHS0036 海水活性硅酸盐的测定硅钼蓝分光光度法 F-HZ-DZ-HS-0036 海水一活性硅酸盐的测定一硅钼蓝分光光度法 1 范围 本方法适用于硅酸盐含量较低的海水的测定。 2 原理 活性硅酸盐在酸性介质中与钼酸铵反应,生成黄色的硅钼黄,当加入含有草酸(消除磷和砷的干扰)的对甲替氨基苯酚-亚硫酸钠还原剂,硅钼黄被还原为硅钼蓝,于812nm波长测定其吸光度。 3 试剂 为取得好的结果,使用优级纯等硅含量低的试剂。试剂溶液及纯水用塑料瓶保存,可降低空白值,本法中所用水均指无硅蒸馏水或等效纯水。 3.1 硫酸,1+3:在搅拌下,将1体积硫酸(ρ1.84g/mL,优级纯)缓慢地加入3体积水中,冷却后盛于聚乙烯瓶中。 3.2 钼酸铵(酸性)溶液:称取2.0g钼酸铵[(NH4)6Mo7O24·4H2O],溶于70mL水,加6mL盐酸(ρ1.19g/mL)稀释至100mL(如浑浊应过滤),贮于聚乙烯瓶中。 3.3 草酸溶液,100g/L:称取10g草酸(H2C2O4·2H2O,优级纯),溶于水,稀释至100mL,过滤,贮于聚乙烯瓶中。 3.4 对甲替氨基酚(硫酸盐)-亚硫酸钠溶液:称取5g对甲替氨基酚(米吐尔)[(CH3NHC6H4OH)2·H2SO4],溶于240mL水,加3g亚硫酸钠

(Na2SO3),溶解后稀释至250mL,贮于棕色试剂瓶中,并密封保存于冰箱中,此溶液可稳定一个月。 3.5 还原剂:将100mL对甲替氨基酚-亚硫酸钠溶液和60mL草酸溶液混合,加120mL硫酸(1+3),搅匀,冷却后稀释至300mL,贮于聚乙烯瓶中,此溶液临用时配制。 3.6 硅标准溶液 3.6.1 硅酸盐标准溶液系列(国家海洋局第二海洋研究所配制生产) 硅酸盐标准也可按下述方法自行配制,但必须定期用二所标准溶液校准。 3.6.2 用氟硅酸钠配制,300mg/L硅:将氟硅酸钠(Na2SiF6,优级纯)在105℃烘1h,取出置于干燥器中冷却至室温,称取2.0087g氟硅酸钠置于塑料烧杯中,加入约600mL水。用磁力搅拌至完全溶解(需半小时)移入1000mL容量瓶中,加水并稀释至刻度,摇匀。此溶液1.00mL 含300.0μg硅.贮于塑料瓶中,有效期一年。 3.6.3 用二氧化硅配制,300mg/L硅:称取0.6418g研细至200目二氧化硅(光谱纯)或色层用硅胶(SiO2高纯,经1000℃灼烧1h)于铂坩埚中,加4g无水碳酸钠(Na2CO3)混匀。在960℃~1000℃高温炉中融熔1h,取出冷却后用热水溶解,移入1000mL容量瓶中。用水稀释至刻度,摇匀。移入干燥的聚乙烯瓶中,此溶液1.00mL含300.0μg硅,有效期一年。 1 3.6.4 硅标准使用溶液,15.0μg/mL:移取5.00mL硅标准溶液(300.0

分光光度法

第十章 吸光光度法 吸光光度法是基于物质对光的选择性吸收而建立起来的分析方法。 吸光光度法或光度分析根据入射光的波长范围可分为紫外吸收光谱法、可见分光光度法、红外光谱法。可见吸光光度法又分为比色法(光电比色法和目视比色法)和分光光度法。 目视比色法:基于有色物质溶液颜色的深浅与其浓度有关,浓度愈大,颜色愈深。通过与标准色阶比较颜色深浅的方法确定溶液中有色物质的含量。目视法仪器简单,操作简便,但灵敏度和准确度不如分光光度法,只是在一些准确度要求不高的分析中仍有一定的实用性。如果用光电比色计代替人眼观察,则为光电比色法。 分光光度法:如果是使用分光光度计,利用溶液对单色光的吸收程度来确定物质含量,则称为分光光度法。 分光光度法灵敏度较高,可不经富集直接测定低至5510%-?微量组分。一般情况下,测定浓度的下限也可达0.11()g ppm g μ,相当于含量为0.001% 0.0001%的微量组分。 如果是采用高灵敏度的显色试剂,或事先将待测组分加以富集,甚至可能测定低至 6710%10%--的组分。 虽然光度法的准确度相对于重量分析法和滴定分析法要低得多,通常分光光度法的相对误差为2%5%(比色法为5%20%),但这已经能满足一般微量组分测定准确度的要求。若用差示分光光度法,其相对误差甚至可达0.5%,已接近重量分析法和滴定分析法的误差水平。相反滴定分析法或重量分析法却难于完成这些微量组分的测定。 光度分析技术比较成熟,所需仪器相对廉价,操作简便易行,已广泛用于工农业生产和生物、医学、临床、环保等领域。几乎所有的金属元素和众多的有机化合物都可用光度法测定。 我们主要学习可见分光光度法。 §10.1物质对光的选择性吸收 一、光的基本性质 光是一种电磁波,具有波动性和微粒性。 光的折射、衍射、偏振和干涉等现象可用光的波动性来解释。描述波动性的重要参数是波长(cm ),频率ν(Hz )。它们与光速的关系是: c νλ = 真空中101310c cm s -=? 光电效应、光的吸收和发射等,只能用光的微粒性才能解释,即把光看作是带有能量的微粒流。这种微粒称为光子或光量子。单个光子的能量E 决定于光的频率。 c E h h νλ == E 为光子的能量(J ),h :普朗克常数(346.62610J s -?) 理论上,将仅具有某一波长的光称为单色光,单色光由具有相同能量的光子组成。由不同波长的光组成的光称为复合光。 当人为地按照波长将电磁波划分为不同的区域时,得到电磁波谱或光谱(见表10-1)。

亚甲基蓝分光光度法-硫化氢

硫化氢——亚甲基蓝分光光度法 1.原理 硫化氢倍氢氧化镉-聚乙烯醇磷酸铵溶液吸收,生成硫化镉胶状沉淀。聚乙烯醇磷酸铵能保护硫化镉胶体,使其隔绝空气和阳光,以减少硫化物的氧化和光分解作用。在硫酸溶液中,硫离子与对氨基二甲基苯胺溶液和三氯化铁溶液作用,生成亚甲基蓝,根据颜色深浅,用分光光度法测定。 方法检出限为0.07μg/10ml(按与吸光度0.01相对应的硫化氢浓度计),当采样体积为60L 时,最低检出浓度为0.001mg/m3。 2.仪器 ①大型气泡吸收管:10ml。 ②具塞比色管:10ml ③空气采样器:0~1L/min ④分光光度计 3.试剂 吸收液:4.3g硫酸镉(3CdSO ·8H2O)、0.30g氢氧化钠和10.0g聚乙烯醇磷酸铵,分别溶 4 于少量水后,并混合,强烈振摇混合均匀,用水稀释至1000ml。此溶液为乳白色悬浮液。在冰箱中可保存一周。 三氯化铁溶液:50g三氯化铁(FeCl ·6H2O),溶解于水中,稀释至50ml。 3 磷酸氢二铵溶液:20g磷酸氢二铵[(NH )2HPO4],溶解于水,稀释至50ml。 4 硫代硫酸钠溶液C(Na2S2O3)=0.1mol/L:25g硫代硫酸钠(Na2S2O3·5H2O),溶于1000ml 新煮沸并已冷却的水中,加0.20g无水碳酸钠,贮于棕色细口瓶中,放置一周后标定其浓度,若溶液呈现浑浊时,应该过滤。标定方法见空气和废气监测分析方法(第四版)P171。 硫代硫酸钠标准溶液C(Na2S2O3)=0.0100mol/L:取50.00ml标定过的0.1mol/L硫代硫酸钠溶液,置于500ml容量瓶中,用新煮沸并已冷却的水稀释至标线。 碘贮备液C(1/2 I2)=0.10mol/L:称取12.7g碘、40g碘化钾、25ml水溶解稀释至1000ml。碘溶液C(1/2 I2)=0.010mol/L: 0.5%淀粉溶液:称取0.5g可溶性淀粉,用少量水调成糊状倒入100ml沸水中,煮沸至溶液澄清,冷却后贮于细口瓶中。 0.1%乙酸锌溶液:0.20g乙酸锌溶于200ml水中。 (1+1)盐酸溶液。 对氨基二甲基苯胺溶液(NH2C6H4N(CH3)2·2HCl):

相关文档
相关文档 最新文档