文档视界 最新最全的文档下载
当前位置:文档视界 › 高考文科数学专题训练 选择题中“瓶颈题”突破练

高考文科数学专题训练 选择题中“瓶颈题”突破练

高考文科数学专题训练 选择题中“瓶颈题”突破练
高考文科数学专题训练 选择题中“瓶颈题”突破练

选择题中“瓶颈题”突破练

1.已知x =π

12是函数f (x )=3sin(2x +φ)+cos(2x +φ)(0<φ<π)图象的一条对称轴,将函数f (x )的图象向右平移3π

4个单位长度后得到函数g (x )的图象,则函数g (x )在??????

-π4,π6上的最小值为( ) A.-2 B.-1 C.- 2

D.- 3

解析 ∵x =π12是f (x )=2sin ? ????

2x +π6+φ图象的一条对称轴,

∴π3+φ=k π+π2(k ∈Z ),∵0<φ<π,∴φ=π

6,

则f (x )=2sin ? ????2x +π3,∴g (x )=-2sin ? ????2x -π6在??????-π4,π6上的最小值为g ? ????

π6=-1.

答案 B

2.已知椭圆C :x 2a 2+y 2

b 2=1(a >b >0)与直线y =x +3只有一个公共点,且椭圆的离心率为5

5,则椭圆C 的方程为( ) A.x 216+y 2

9=1 B.x 25+y 2

4=1 C.x 29+y 2

5=1

D.x 225+y 2

20=1

解析 把y =x +3代入椭圆的方程,得(a 2+b 2)x 2+6a 2x +9a 2-a 2b 2=0,由于只有一个公共点,所以Δ=0,得a 2

+b 2

=9,又c a =55,所以b 2a 2=4

5,解得a 2=5,b 2

=4. 答案 B

3.已知函数f (x )的定义域为R ,且f ′(x )>1-f (x ),f (0)=2,则不等式f (x )>1+e -x 的

解集为( ) A.(-1,+∞) B.(0,+∞) C.(1,+∞)

D.(e ,+∞)

解析 令g (x )=e x f (x )-e x ,则g ′(x )=e x ·[f (x )+f ′(x )-1]>0,所以函数g (x )在R 上单调递增.

又g (0)=e 0f (0)-e 0=1,所以不等式f (x )>1+e -x ? e x f (x )-e x >1?g (x )>g (0)?x >0, 故不等式f (x )>1+e -x 解集为(0,+∞). 答案 B

4.在△ABC 中,C =2π

3,AB =3,则△ABC 的周长为( ) A.6sin ? ?

???A +π3+3

B.6sin ? ?

???A +π6+3

C.23sin ? ?

?

??A +π3+3

D.23sin ? ?

?

??A +π6+3

解析 设△ABC 的外接圆半径为R ,则2R =

3

sin 2π3

=23, 于是BC =2R sin A =23sin A , AC =2R sin B =23sin ? ??

??

π3-A ,

所以,△ABC 的周长为23??????

sin A +sin ? ????π3-A +3

=23sin ? ?

???A +π3+3.

答案 C

5.在△ABC 中,D 为BC 边上一点,且满足AD → =12(AB → +AC →

),BC =10,AD =12,且AD → ·BC → =0,则AD → ·AC → =( ) A.144 B.100 C.169

D.60

解析 ∵AD → =12(AB → +AC → ), ∴D 为BC 边的中点,∴DC =5.

又∵AD → ·BC → =0,∴AD ⊥BC ,

∴AC =13,∴AD → ·AC → =13×12×cos ∠DAC =144. 答案 A

6.已知抛物线T 的焦点为F ,准线为l ,过F 的直线m 与T 交于A ,B 两点,C ,D 分别为A ,B 在l 上的射影,M 为AB 的中点,若m 与l 不平行,则△CMD 是( ) A.等腰三角形且为锐角三角形 B.等腰三角形且为钝角三角形 C.等腰直角三角形 D.非等腰的直角三角形

解析 不妨设抛物线T 的方程为y 2=2px (p >0).∵点A 在抛物线y 2=2px 上,F 为抛物线的焦点,C ,D 分别为A ,B 在l 上的射影,M 为AB 的中点,NM 是M 到抛物线准线的垂线,垂足为N ,准线与x 轴的交点为E ,如图:

∴△CMD 中,|CN |=|ND |,所以△CMD 是等腰三角形, 又根据抛物线定义,|AC |=|AF |,|BD |=|BF |,

∴∠CFD =∠CFE +∠DFE =∠ACF +∠BDF =∠AFC +∠BFD . 可得∠CFD =90°,又|MN |>|EF |,可得∠CMD <90°. 则△CMD 是等腰三角形且为锐角三角形. 答案 A

7.在直三棱柱ABC -A 1B 1C 1中,平面α与棱AB ,AC ,A 1C 1,A 1B 1分别交于点E ,F ,G ,H ,且直线AA 1∥平面α.有下列三个命题:①四边形EFGH 是平行四边形;②平面α∥平面BCC 1B 1;③平面α⊥平面BCFE .其中正确的命题有( ) A.①② B.②③ C.①③

D.①②③

解析 直线AA 1∥平面α,平面α∩平面AA 1B 1B =EH ,所以AA 1∥EH .同理

AA 1∥GF ,所以EH ∥GF ,又ABC -A 1B 1C 1是直三棱柱,易知EH =GF =AA 1,所以四边形EFGH 是平行四边形,故①正确;若平面α∥平面BCC 1B 1,由平面α∩平面A 1B 1C 1=GH ,平面BCC 1B 1∩平面A 1B 1C 1=B 1C 1,知GH ∥B 1C 1,而GH ∥B 1C 1不一定成立,故②错误;由AA 1⊥平面BCFE ,结合AA 1∥EH 知EH ⊥平面BCFE ,又EH ?平面α,所以平面α⊥平面BCFE ,故③正确.

答案 C

8.若曲线y =ln x +ax 2(a 为常数)不存在斜率为负数的切线,则实数a 的取值范围是( ) A.? ????-12,+∞ B.??????

-12,+∞ C.(0,+∞)

D.[0,+∞)

解析 由题意得y ′=1

x +2ax ≥0在(0,+∞)上恒成立, ∴a ≥-1

2x 2在x ∈(0,+∞)上恒成立,

令f (x )=-12x 2,x ∈(0,+∞),则f (x )在(0,+∞)上单调递增,又f (x )=-1

2x 2<0,∴a ≥0. 答案 D

9.已知F 1,F 2为双曲线的焦点,过F 2垂直于实轴的直线交双曲线于A ,B 两点,BF 1交y 轴于点C ,若AC ⊥BF 1,则双曲线的离心率为( ) A. 2 B. 3 C.2 2

D.2 3

解析 不妨设双曲线方程为x 2a 2-y 2

b 2=1(a >0,b >0).由AB 为双曲线的通径,则

A ? ????c ,b 2

a ,B ? ?

?

??c ,-b 2a ,F 1(-c ,0),由OC 为△F 1F 2B 中位线,得|OC |=b 22a ,则C ? ?

?

??0,-b 22a .

则AC → =? ????-c ,-3b 22a ,BF 1→ =? ????-2c ,b 2a ,由AC ⊥BF 1,则AC → ·BF 1→ =2c 2

-3b 42a 2=0,整理得3b 4=4a 2c 2.

由b 2=c 2-a 2,得3c 4-10a 2c 2+3a 4=0,则3e 4-10e 2+3=0,解得e 2=3或e 2=1

3,由e >1,则e = 3. 答案 B

10.如果实数x ,y 满足约束条件???2x +y -4≤0,x -y -1≤0,x ≥1,

则z =3x +2y +y x 的最大值为(

)

A.7

B.8

C.9

D.11

解析 作出不等式组对应的平面区域(阴影部分),由u =3x +2y ,平移直线u =3x +2y ,由图象可知当直线u =3x +2y 经过点A 时,直线u =3x +2y 的截距最大,此时u 最大.

而且y

x 也恰好是AO 的连线时,取得最大值,由???x =1,2x +y -4=0,解得A (1,2).

此时z 的最大值为z =3×1+2×2+2

1=9. 答案 C

11.已知函数f (x )是定义在R 上的偶函数,f (x +1)为奇函数,f (0)=0,当x ∈(0,1]时,f (x )=log 2x ,则在区间(8,9)内满足方程f (x )+2=f ? ????

12的实数x 为( )

A.172

B.678

C.334

D.658

解析 ∵f (x +1)为奇函数,则f (x +1)=-f (-x +1),即f (x )=-f (2-x ).当x ∈(1,

2)时,2-x ∈(0,1),

∴f (x )=-f (2-x )=-log 2(2-x ). 又f (x )为偶函数,即f (x )=f (-x ),

于是f (-x )=-f (-x +2),所以f (x )=-f (x +2)=f (x +4),故f (x )是以4为周期的函数. ∵f (1)=0,

∴当8

由f ? ????12=-1,f (x )+2=f ? ????

12可化为log 2(x -8)+2=-1,得x =658.

答案 D

12.若直角坐标平面内两点P ,Q 满足条件:①P ,Q 都在函数y =f (x )的图象上;②P ,Q 关于原点对称,则称(P ,Q )是函数y =f (x )的一个“伙伴点组”(点组(P ,Q )与(Q ,P )看作同一个“伙伴点组”).已知函数f (x )=???kx -1,x >0,-ln (-x ),x <0,有两个

“伙伴点组”,则实数k 的取值范围是( ) A.(-∞,0) B.(0,1) C.? ??

??0,12 D.(0,+∞)

解析 根据题意可知,“伙伴点组”满足两点:都在函数图象上,且关于坐标原点对称.

可作出函数y =-ln(-x )(x <0)关于原点对称的函数y =ln x (x >0)的图象, 使它与函数y =kx -1(x >0)交点个数为2个即可. 设切点为(m ,ln m ),y =ln x 的导数为y ′=1x , 可得km -1=ln m ,k =1

m ,解得m =1,k =1, 可得函数y =ln x (x >0)过(0,-1)点的切线斜率为1, 结合图象可知k ∈(0,1)时有两个交点,符合题意.

答案 B

13.点M (3,2)到抛物线C :y =ax 2(a >0)准线的距离为4,F 为抛物线的焦点,点N (1,1),当点P 在直线l :x -y =2上运动时,|PN |-1

|PF |的最小值为( ) A.3-

228 B.2-24 C.5-228

D.5-224

解析 ∵点M (3,2)到抛物线C :y =ax 2(a >0)准线的距离为4, ∴2+14a =4,∴a =1

8,∴抛物线C :x 2=8y ,

直线l :x -y =2与x 轴交于A (2,0),则F A ⊥l ,且点N ,A ,F 三点共线, 设|AP |=t ,则|AN |=2,|AF |=22,|PN |=t 2+2,|PF |=t 2+8, 设t 2

+2-1=m (m ≥2-1),则|PN |-1

|PF |=

t 2+2-1

t 2+8

m

(m +1)2+6

17? ??

??1m +172+67,

∴m =2-1,即t =0时,|PN |-1|PF |的最小值为2-24. 答案 B

14.如图,在△ABC 中,AB =BC =6,∠ABC =90°,点D 为AC 的中点,将△ABD 沿BD 折起到△PBD 的位置,使PC =PD ,连接PC ,得到三棱锥P -BCD ,若该三棱锥的所有顶点都在同一球面上,则该球的表面积是( )

A.7π

B.5π

C.3π

D.π

解析 依题意可得该三棱锥的面PCD 是边长为3的正三角形,且BD ⊥平面PCD ,设三棱锥P -BDC 外接球的球心为O ,△PCD 外接圆的圆心为O 1,则OO 1⊥

平面PCD ,所以四边形OO 1DB 为直角梯形,由BD =3,O 1D =1,及OB =OD ,可得OB =72,则外接球的半径R =7

2.所以该球的表面积S 球=4πR 2=7π. 答案 A

15.已知F 为双曲线x 2a 2-y 2

b 2=1(a >0,b >0)的右焦点,定点A 为双曲线虚轴的一个顶点,过F ,A 的直线与双曲线的一条渐近线在y 轴左侧的交点为B ,若F A → =(2-1)AB → ,则此双曲线的离心率是( ) A. 2 B. 3 C.2 2

D. 5

解析 设F (c ,0),A (0,-b ),渐近线方程为y =b a x ,则直线AF 的方程为x c -y b =1,与y =b a x 联立可得B ? ????ac a -c ,bc a -c ,∵F A → =(2-1)AB → ,∴(-c ,-b )=(2-1)? ??

??

ac a -c ,bc a -c +b , ∴-c =(2-1)ac a -c ,∴e =c a = 2.

答案 A

16.已知函数f (x )=?????|x |+2,x <1,x +2x ,x ≥1.设a ∈R ,若关于x 的不等式f (x )≥??????

x 2+a 在R

上恒成立,则a 的取值范围是( ) A.[-2,2] B.[-23,2] C.[-2,23]

D.[-23,23]

解析 作出f (x )的图象如图所示,当y =??????

x 2+a 的图象经过点(0,2)时,可知a =±2.

当y =x 2+a 的图象与y =x +2x 的图象相切时,由x 2+a =x +2

x ,得x 2-2ax +4=0,由Δ=0,并结合图象可得a =2.

要使f (x )≥??????

x 2+a 恒成立,只需f (0)≥|a |,当a ≤0时,需满足-a ≤2,即-2≤a ≤0;

当a >0时,需满足a ≤2,所以-2≤a ≤2. 答案 A

高考文科数学解答题专项训练(含解析)

20XX届高考文科数学---解答题专项训练 中档题满分练(一) 1.(2015·山东高考)在△ABC中,角A,B,C所对的边分别为a,b, c.已知cos B= 3 3,sin (A+B)= 6 9,ac=23,求sin A和c的值. 2.一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a,b,c. (1)求“抽取的卡片上的数字满足a+b=c”的概率; (2)求“抽取的卡片上的数字a,b,c不完全相同”的概率.

3.在如图所示的多面体中,四边形ABB1A1和ACC1A1都为矩形. (1)若AC⊥BC,证明:直线BC⊥平面ACC1A1; (2)设D,E分别是线段BC,CC1的中点,在线段AB上是否存在一点M,使直线DE∥平面A1MC?请证明你的结论. 4.(2015·湖北高考)设等差数列{a n}的公差为d,前n项和为S n,等比数列{b n}的公比为q,已知b1=a1,b2=2,q=d,S10=100. (1) 求数列{a n},{b n}的通项公式; (2) 当d>1时,记c n=a n b n,求数列{ c n}的前n项和T n.

中档题满分练(二) 1.已知函数f (x )=2a sin ωx cos ωx +23cos 2ωx -3(a >0,ω>0)的最大值为2,且最小正周期为π. (1)求函数f (x )的解析式及其对称轴方程; (2)若f (α)=4 3,求sin ? ????4α+π6的值. 2.(2015·西安调研)对于给定数列{a n },如果存在实常数p ,q ,使得a n +1=pa n +q 对于任意n ∈N *都成立,我们称数列{a n }是“M 类数列”. (1)已知数列{b n }是“M 类数列”且b n =3n ,求它对应的实常数p ,q 的值; (2)若数列{c n }满足c 1=-1,c n -c n +1=2n (n ∈N *),求数列{c n }的通项公式,判断{c n }是否为“M 类数列”并说明理由.

高考数学数列大题训练答案版

高考数学数列大题训练 1. 已知等比数列432,,,}{a a a a n 中分别是某等差数列的第5项、第3项、第2项,且1,641≠=q a 公比 (Ⅰ)求n a ;(Ⅱ)设n n a b 2log =,求数列.|}{|n n T n b 项和的前 解析: (1)设该等差数列为{}n c ,则25a c =,33a c =,42a c =Q 533222()c c d c c -==- ∴2334()2()a a a a -=-即:223111122a q a q a q a q -=- ∴12(1)q q q -=-,Q 1q ≠, ∴121, 2q q ==,∴1164()2n a -=g (2)121log [64()]6(1)72n n b n n -==--=-g ,{}n b 的前n 项和(13)2n n n S -= ∴当17n ≤≤时,0n b ≥,∴(13)2 n n n n T S -== (8分) 当8n ≥时,0n b <,12789n n T b b b b b b =+++----L L 789777()()2n n n S b b b S S S S S =-+++=--=-L (13)422 n n -=- ∴(13)(17,)2(13)42(8,)2 n n n n n T n n n n -?≤≤∈??=?-?-≥∈??**N N 2.已知数列}{n a 满足递推式)2(121≥+=-n a a n n ,其中.154=a (Ⅰ)求321,,a a a ; (Ⅱ)求数列}{n a 的通项公式; (Ⅲ)求数列}{n a 的前n 项和n S 解:(1)由151241=+=-a a a n n 及知,1234+=a a 解得:,73=a 同理得.1,312==a a (2)由121+=-n n a a 知2211+=+-n n a a

(完整word版)高三理科数学选择题填空题专项训练

高三理科数学限时训练 一、选择题(本大题共10小题,每题5分,共50分.每题都给出四个结论,其中有且只有一个 结论是正确的.) 1. 复数z 满足(2)z z i =+,则z =( ) A .1i + B .1i - C .1i -+ D .1i -- 2. 已知实数a ≠0,函数2,1()2,1x a x f x x a x +

2013年高考文科数学真题及答案全国卷1

2013年高考文科数学真题及答案全国卷1 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟。 第Ⅰ卷(选择题 共60分) 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2013课标全国Ⅰ,文1)已知集合A ={1,2,3,4},B ={x |x =n 2 ,n ∈A },则A ∩B =( ). A .{1,4} B .{2,3} C .{9,16} D .{1,2} 【答案】A 【考点】本题主要考查集合的基本知识。 【解析】∵B ={x |x =n 2 ,n ∈A }={1,4,9,16}, ∴A ∩B ={1,4}. 2.(2013课标全国Ⅰ,文2) 2 12i 1i +(-)=( ). A. B .11+ i 2 - C . D . 【答案】B 【考点】本题主要考查复数的基本运算。 【解析】 2 12i 12i 12i i 2i 1i 2i 22++(+)-+===(-)-=1 1+i 2 -. 3.(2013课标全国Ⅰ,文3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ). A .12 B .13 C .14 D .16 【答案】B 【考点】本题主要考查列举法解古典概型问题的基本能力。 【解析】由题意知总事件数为6,且分别为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),满足条件的事件数是2,所以所求的概率为 13 . 4.(2013课标全国Ⅰ,文4)已知双曲线C :2222=1x y a b -(a >0,b >0) C 的渐近线方程 为( ). A . B . C .1 2 y x =± D . 【答案】C 【考点】本题主要考查双曲线的离心率、渐近线方程。 【解析】∵2e = 2c a =,即2254 c a =.

(完整)高考文科数学导数专题复习

高考文科数学导数专题复习 第1讲 变化率与导数、导数的计算 知 识 梳 理 1.导数的概念 (1)函数y =f (x )在x =x 0处的导数f ′(x 0)或y ′|x =x 0,即f ′(x 0)=0 lim x ?→f (x 0+Δx )-f (x 0) Δx . (2)函数f (x )的导函数f ′(x )=0 lim x ?→f (x +Δx )-f (x ) Δx 为f (x )的导函数. 2.导数的几何意义函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率,过点P 的切线方程为y -y 0=f ′(x 0)(x -x 0). 3.基本初等函数的导数公式 4.导数的运算法则若f ′(x ),g ′(x )存在,则有: 考点一 导数的计算 【例1】 求下列函数的导数: (1)y =e x ln x ;(2)y =x ? ?? ??x 2+1x +1x 3; 解 (1)y ′=(e x )′ln x +e x (ln x )′=e x ln x +e x 1x =? ?? ??ln x +1x e x .(2)因为y =x 3 +1+1x 2, 所以y ′=(x 3)′+(1)′+? ?? ??1x 2′=3x 2 -2x 3. 【训练1】 (1) 已知函数f (x )的导函数为f ′(x ),且满足f (x )=2x ·f ′(1)+ln x ,则f ′(1)等于( ) A.-e B.-1 C.1 D.e 解析 由f (x )=2xf ′(1)+ln x ,得f ′(x )=2f ′(1)+1 x ,∴f ′(1)=2f ′(1)+1,则f ′(1)=-1.答案 B (2)(2015·天津卷)已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________. (2)f ′(x )=a ? ?? ??ln x +x ·1x =a (1+ln x ).由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3,所以a =3.答案 (2)3 考点二 导数的几何意义 命题角度一 求切线方程 【例2】 (2016·全国Ⅲ卷)已知f (x )为偶函数,当x ≤0时,f (x )=e -x -1 -x ,则曲线y =f (x )在点(1,2)处的 切线方程是________.解析 (1)设x >0,则-x <0,f (-x )=e x -1 +x .又f (x )为偶函数,f (x )=f (-x )=e x -1 +x , 所以当x >0时,f (x )=e x -1 +x .因此,当x >0时,f ′(x )=e x -1 +1,f ′(1)=e 0 +1=2.则曲线y =f (x )在点(1, 2)处的切线的斜率为f ′(1)=2,所以切线方程为y -2=2(x -1),即2x -y =0. 答案 2x -y =0 【训练2】(2017·威海质检)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为( )A.x +y -1=0 B.x -y -1=0 C.x +y +1=0 D.x -y +1=0

高考数学前三道大题练习

1 A B C D S E F N B 高考数学试题(整理三大题) (一) 17.已知0αβπ<<4,为()cos 2f x x π? ?=+ ?8??的最小正周期,1tan 14αβ????=+- ? ????? ,, a (cos 2)α=, b ,且?a b m =.求 2 2cos sin 2() cos sin ααβαα ++-的值. 18. 在一次由三人参加的围棋对抗赛中,甲胜乙的概率为0.4,乙胜丙的概率为0.5,丙胜 甲的概率为0.6,比赛按以下规则进行;第一局:甲对乙;第二局:第一局胜者对丙; 第三局:第二局胜者对第一局败者;第四局:第三局胜者对第二局败者,求: (1)乙连胜四局的概率; (2)丙连胜三局的概率. 19.四棱锥S -ABCD 中,底面ABCD 为平行四边形,侧面SBC ⊥底面ABCD 。已知∠ABC =45°,AB =2,BC=22,SA =SB =3。 (Ⅰ)证明:SA ⊥BC ; (Ⅱ)求直线SD 与平面SAB 所成角的大小; (二) 17.在ABC △中,1tan 4A =,3 tan 5 B =. (Ⅰ)求角C 的大小; (Ⅱ)若ABC △ 18. 每次抛掷一枚骰子(六个面上分别标以数字1,2,3,4,5,6). (I )连续抛掷2次,求向上的数不同的概率; (II )连续抛掷2次,求向上的数之和为6的概率; (III )连续抛掷5次,求向上的数为奇数恰好出现3次的概率。 19. 如图,在四棱锥S-ABCD 中,底面ABCD 为正方形,侧棱SD ⊥底面ABCD ,E 、F 分别是 AB 、SC 的中点。 求证:EF ∥平面SAD ; (三) 17.已知ABC △的面积为3,且满足06AB AC ≤≤,设AB 和AC 的夹角为θ. (I )求θ的取值范围;(II )求函数2()2sin 24f θθθ?? =+ ??? π的最大值与最小值. 18. 某商场举行抽奖促销活动,抽奖规则是:从装有9个白球、1个红球的箱子中每次随机地摸出一个球,记下颜色后放回,摸出一个红球获得二得奖;摸出两个红球获得一等奖.现有甲、乙两位顾客,规定:甲摸一次,乙摸两次.求 (1)甲、乙两人都没有中奖的概率; (2)甲、两人中至少有一人获二等奖的概率. 19. 在Rt AOB △中,π 6 OAB ∠= ,斜边4AB =.Rt AOC △可以通过Rt AOB △以直线AO 为轴旋转得到,且二面角B AO C --是直二面角.动点D 的斜边AB 上. (I )求证:平面COD ⊥平面AOB ; (II )当D 为AB 的中点时,求异面直线AO 与CD 所成角 的大小; (III )求CD 与平面 AOB 所成角的最大值 (四) 17.已知函数2 π()2sin 24f x x x ??=+ ???,ππ42x ??∈???? ,. (I )求()f x 的最大值和最小值; (II )若不等式()2f x m -<在ππ42 x ??∈???? ,上恒成立,求实数m 的取值范围. 18. 甲、乙两班各派2名同学参加年级数学竞赛,参赛同学成绩及格的概率都为0.6,且参赛同学的成绩相互之间没有影响,求: (1)甲、乙两班参赛同学中各有1名同学成绩及格的概率; (2)甲、乙两班参赛同学中至少有1名同学成绩及格的概率. 19. 如图,在四棱锥O ABCD -中,底面ABCD 四边长为1的菱形, 4 ABC π ∠= , OA ABCD ⊥底面, 2OA =,M 为OA 的中点,N 为BC 的中点。 (Ⅰ)证明:直线MN OCD 平面‖; (Ⅱ)求异面直线AB 与MD 所成角的大小; (Ⅲ)求点B 到平面OCD 的距离。 O C A D B E

(完整)高考数学选择题专项训练(二)

高考数学选择题专项训练(二) 1、函数y =cos 4x -sin 4x 图象的一条对称轴方程是( )。 (A )x =-2π (B )x =-4π (C )x =8 π (D )x =4π 2、已知l 、m 、n 为两两垂直且异面的三条直线,过l 作平面α与m 垂直,则直线n 与平面α的关系是( )。 (A )n //α (B )n //α或n ?α (C )n ?α或n 不平行于α (D )n ?α 3、已知a 、b 、c 成等比数列,a 、x 、b 和b 、y 、c 都成等差数列,且xy ≠0,那么y c x a +的值为( )。 (A )1 (B )2 (C )3 (D )4 4、如果在区间[1, 3]上,函数f (x )=x 2+px +q 与g (x )=x + 21x 在同一点取得相同的最小值,那么下列说法不对.. 的是( )。 (A )f (x )≥3 (x ∈[1, 2]) (B )f (x )≤4 (x ∈[1, 2]) (C )f (x )在x ∈[1, 2]上单调递增 (D )f (x )在x ∈[1, 2]上是减函数 5、在(2+43)100展开式中,有理数的项共有( )。 (A )4项 (B )6项 (C )25项 (D )26项 6、等比数列{a n }的公比q <0,前n 项和为S n , T n =n n a S ,则有( )。 (A )T 1T 9 (D )大小不定

7、设集合A =ο/,集合B ={0},则下列关系中正确的是( ) (A )A =B (B )A ?B (C )A ?B (D )A ?B 8、已知直线l 过点M (-1,0),并且斜率为1,则直线l 的方程是( ) (A ) x +y +1=0 (B )x -y +1=0 (C )x +y -1=0 (D )x ―y ―1=0 9、已知集合A ={整数},B ={非负整数},f 是从集合A 到集合B 的映射,且f :x → y =x 2(x ∈A ,y ∈B ),那么在f 的作用下象是4的原象是( ) (A )16 (B )±16 (C )2 (D )±2 10、已知函数y =1 -x x ,那么( ) (A )当x ∈(-∞,1)或x ∈(1,+∞)时,函数单调递减 (B )当x ∈(-∞,1)∪(1,+∞)时,函数单调递增 (C )当x ∈(-∞,-1)∪(-1,+∞)时,函数单调递减 (D )当x ∈(-∞,-1)∪(-1,+∞)时,函数单调递增 11、在(2-x )8的展开式中,第七项是( ) (A )112x 3 (B )-112x 3 (C )16x 3x (D )-16x 3x 12、设A ={x | x 2+px +q =0},B ={x | x 2+(p -1)x +2q =0}, 若A ∩B ={1},则( )。 (A ) A ?B (B )A ?B (C )A ∪B ={1, 1, 2} (D )A ∪B =(1,-2)

高考文科数学练习题高考常考的6大题型

第3课时 题型上——全析高考常考的6大题型 题型一 圆锥曲线中的定点问题 圆锥曲线中的定点问题一般是指与解析几何有关的直线或圆过定点的问题(其他曲线过定点太复杂,高中阶段一般不涉及),其实质是:当动直线或动圆变化时,这些直线或圆相交于一点,即这些直线或圆绕着定点在转动.这类问题的求解一般可分为以下三步: 一选:选择变量,定点问题中的定点,随某一个量的变化而固定,可选择这个量为变量(有时可选择两个变量,如点的坐标、斜率、截距等,然后利用其他辅助条件消去其中之一). 二求:求出定点所满足的方程,即把需要证明为定点的问题表示成关于上述变量的方程. 三定点:对上述方程进行必要的化简,即可得到定点坐标. [典例] (2019·成都一诊)已知椭圆C :x 2a 2+y 2 b 2=1(a >b >0)的右焦点F (3,0),长半轴 的长与短半轴的长的比值为2. (1)求椭圆C 的标准方程; (2)设不经过点B (0,1)的直线l 与椭圆C 相交于不同的两点M ,N ,若点B 在以线段MN 为直径的圆上,证明直线l 过定点,并求出该定点的坐标. [解] (1)由题意得,c =3,a b =2,a 2=b 2+ c 2, ∴a =2,b =1, ∴椭圆C 的标准方程为x 24 +y 2 =1. (2)当直线l 的斜率存在时,设直线l 的方程为y =kx +m (m ≠1),M (x 1,y 1),N (x 2,y 2). 联立,得? ???? y =kx +m ,x 2+4y 2=4,消去y 可得(4k 2+1)x 2+8kmx +4m 2-4=0. ∴Δ=16(4k 2+1-m 2)>0,x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-4 4k 2+1 . ∵点B 在以线段MN 为直径的圆上, ∴BM ―→·BN ―→ =0. ∵BM ―→·BN ―→=(x 1,kx 1+m -1)·(x 2,kx 2+m -1)=(k 2+1)x 1x 2+k (m -1)(x 1+x 2)+(m -1)2 =0, ∴(k 2+1) 4m 2-44k 2 +1+k (m -1)-8km 4k 2+1 +(m -1)2=0, 整理,得5m 2-2m -3=0, 解得m =-3 5 或m =1(舍去).

高考文科数学专题复习导数训练题文

欢迎下载学习好资料 高考文科数学专题复习导数训练题(文)一、考点回顾导数的概念及其运算是导数应用的基础,是高考重点考查的内容。考查方式以客观题为主,主1. 要考查导数的基本公式和运算法则,以及导数的几何意义。导数的应用是高中数学中的重点内容,导数已由解决问题的工具上升到解决问题必不可少的工2.具,特别是利用导数来解决函数的单调性与最值问题是高考热点问题。选择填空题侧重于利用导不等式、解答题侧重于导数的综合应用,即与函数、数确定函数的单调性、单调区间和最值问题,数列的综合应用。3.应用导数解决实际问题,关键是建立恰当的数学模型(函数关系),如果函数在给定区间内只有一个极值点,此时函数在这点有极大(小)值,而此时不用和端点值进行比较,也可以得知这就是最大(小)值。 二、经典例题剖析 考点一:求导公式。 13f(x)?x?2x?1??ff(?1)(x)3的值是的导函数,则。例1. 是 ????2?1?2?1?f'32x??xf'解析:,所以 答案:3 点评:本题考查多项式的求导法则。 考点二:导数的几何意义。 1x?y?2(1?(1))f(x)My,f2,点则图数2. 例已知函的象程的处切线方在是 ??(1)(f1?)f。 115???fk?'1M(1,f(1))222,所的纵坐标为,所以,由切线过点,可得点M 解析:因为5???f1?????3'f1?f12以,所以3 答案: 学习好资料欢迎下载 32?3)(1,2??4x?yx?2x例3. 。在点曲线处的切线方程是 2?3)(1,4??4xy'?3x5?k?3?4?4??解析:,所以设切线方程,处切线的斜率为点?3)(1, ?3)y??5x?b(1,2b?,将点处的切线为带入切线方程可得,所以,过曲线上点5x?y?2?0方程为:5x?y?2?0答案:点评:以上两小题均是对导数的几何意义的考查。 考点三:导数的几何意义的应用。 ??23x?,y0x l:y?kx x?3x?2y?xl与曲线C且直线相切于点,,例,4.已知曲线C:直线000l的方程及切点坐标。求直线y??00k??x??0x y,x?0在曲析解:线直线过原点,C则。由点上, ??00232x?2x?3xy?x yx,y'?3x?6x?2??0在,处,。又 则00y20?x?3x?2 000000??222x?3x?2?3x?6x?22x?'6x??3xk?f?,整曲线C,的切线斜率为 0000000331y???k??x03x??2x x?00082400。所以,(舍),此时,,解得:理得:,或033??1,???y??x82l??4的方程为,切点坐标是直线。 33??1,???y??x82l??4的方程为,切点坐标是答案:直线点评:本小题考查导数

高考数学大题练习

高考数学大题 1.(12分)已知向量a =(sin θ,cos θ-2sin θ),b =(1,2) (1)若a ⊥b ,求tan θ的值; (2)若a ∥b ,且θ为第Ⅲ象限角,求sin θ和cos θ的值。 2.(12分)在如图所示的几何体中,EA ⊥平面ABC ,DB ⊥平面ABC ,AC ⊥BC ,且AC=BC=BD=2AE ,M 是AB 的中点. (I)求证:CM ⊥EM: (Ⅱ)求DE 与平面EMC 所成角的正切值. 3.(13分)某地区为下岗人员免费提供财会和计算机培训,以提高 下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加 两项培训或不参加培训.已知参加过财会培训的有60%,参加过计算机培训的 有75%.假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响. (Ⅰ)任选1名下岗人员,求该人参加过培训的概率; (Ⅱ)任选3名下岗人员,求这3人中至少有2人参加过培训的概率. 4.(12分) 在△ABC 中,∠A .∠B .∠C 所对的边分别为a .b .c 。 若B A cos cos =a b 且sinC=cosA (1)求角A .B .C 的大小; (2)设函数f(x)=sin (2x+A )+cos (2x- 2C ),求函数f(x)的单调递增区间,并指出它相邻两对称轴间的距离。 5.(13分)已知函数f(x)=x+x a 的定义域为(0,+∞)且f(2)=2+22,设点P 是函数图象上的任意一点,过点P 分别作直线y=x 和y 轴的垂线,垂足分别为M ,N. (1)求a 的值; (2)问:|PM|·|PN|是否为定值?若是,则求出该定值, 若不是,则说明理由: (3)设O 为坐标原点,求四边形OMPN 面积的最小值。 6.(13分)设函数f(x)=p(x-x 1)-2lnx,g(x)=x e 2(p 是实数,e 为自然对数的底数) (1)若f(x)在其定义域内为单调函数,求p 的取值范围; (2)若直线l 与函数f(x),g(x)的图象都相切,且与函数f(x)的图象相切于点(1,0),求p 的值; (3)若在[1,e]上至少存在一点x 0,使得f(x 0)>g(x 0)成立,求p 的取值范围.

高考数学选择题专项训练(十)

高考数学选择题专项训练(十)1、平面α与平面β平行,它们之间的距离为d (d>0),直线a在平面α内,则在平面β内与直线a相距2d的直线有()。 (A)一条(B)二条(C)无数条(D)一条也没有2、互不重合的三个平面可能把空间分成()部分。 (A)4或9 (B)6或8 (C)4或6或8 (D)4或6或7或8 3、若a, b是异面直线,a?α,b?β,α∩β=c,那么c()。(A)同时与a, b相交(B)至少与a, b中一条相交(C)至多与a, b中一条相交(D)与a, b中一条相交, 另一条平行4、直线a//平面M,直线b?/M, 那么a//b是b//M的()条件。(A)充分不必要(B)必要而不充(C)充要(D)不充分也不必要5、和空间不共面的四个点距离相等的平面的个数是()。 (A)7个(B)6个(C)4个(D)3个 6、在长方体相交于一个顶点的三条棱上各取一个点,那么过这三点的截面一定是()。 (A)三角形或四边形(B)锐角三角形(C)锐角三角形或钝角三角形(D)钝角三角形7、圆锥底面半径为r,母线长为l,且l>2r, M是底面圆周上任意一点,从M拉一条绳子绕侧面转一周再回到M,那么这条绳子的最短长

度是( )。 (A )2πr (B )2l (C )2lsin l r π (D )lcos l r π 8、α、β是互不重合的两个平面,在α内取5个点,在β内取 4个点,这些点最多能确定的平面个数是( )。 (A ) 142 (B )72 (C )70 (D )66 9、各点坐标为A(1, 1)、B(-1, 1)、C(-1, -1)、D(1, -1),则 “点P 在y 轴”是“∠APD =∠BPC ”的( )。 (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D )不充分也不必要条件 10、函数y =1-|x -x 2|的图象大致是( )。 (A ) (B ) (C ) (D ) 11、若直线y =x +b 和函数y =21x -有两个不同的交点,则b 的取值范围是( )。 (A )(-2, 2) (B )[-2, 2] ( C )(-∞,-2)∪[2, +∞) (D )[1, 2)

高考文科数学数列经典大题训练(附答案)

1.(本题满分14分)设数列{}n a 的前n 项和为n S ,且34-=n n a S (1,2,)n =, (1)证明:数列{}n a 是等比数列; (2)若数列{}n b 满足1(1,2,)n n n b a b n +=+=,12b =,求数列{}n b 的通项公式. 2.(本小题满分12分) 等比数列{}n a 的各项均为正数,且212326231,9.a a a a a +== 1.求数列{}n a 的通项公式. 2.设 31323log log ......log ,n n b a a a =+++求数列1n b ?? ???? 的前项和. 3.设数列{}n a 满足21112,32n n n a a a -+=-= (1) 求数列{}n a 的通项公式; (2) 令n n b na =,求数列的前n 项和n S

4.已知等差数列{a n}的前3项和为6,前8项和为﹣4. (Ⅰ)求数列{a n}的通项公式; (Ⅱ)设b n=(4﹣a n)q n﹣1(q≠0,n∈N*),求数列{b n}的前n项和S n. 5.已知数列{a n}满足,,n∈N×. (1)令b n=a n+1﹣a n,证明:{b n}是等比数列; (2)求{a n}的通项公式.

1.解:(1)证:因为34-=n n a S (1,2,)n =,则3411-=--n n a S (2,3,)n =, 所以当2n ≥时,1144n n n n n a S S a a --=-=-, 整理得14 3 n n a a -= . 5分 由34-=n n a S ,令1n =,得3411-=a a ,解得11=a . 所以{}n a 是首项为1,公比为4 3 的等比数列. 7分 (2)解:因为14 ()3 n n a -=, 由1(1,2,)n n n b a b n +=+=,得114 ()3 n n n b b -+-=. 9分 由累加得)()()(1231`21--++-+-+=n n n b b b b b b b b =1)34(33 41)34(1211 -=--+--n n , (2≥n ), 当n=1时也满足,所以1)3 4 (31-=-n n b . 2.解:(Ⅰ)设数列{a n }的公比为q ,由23269a a a =得32 34 9a a =所以21 9 q =。有条件可知a>0,故13 q =。 由12231a a +=得12231a a q +=,所以113 a =。故数列{a n }的通项式为a n =1 3n 。 (Ⅱ )111111log log ...log n b a a a =+++ (12...) (1) 2 n n n =-++++=- 故 12112()(1)1 n b n n n n =-=--++ 12111111112...2((1)()...())22311 n n b b b n n n +++=--+-++-=-++

高考文科数学专题复习导数训练题(文)

高考文科数学专题复习导数训练题(文) 一、考点回顾 1.导数的概念及其运算是导数应用的基础,是高考重点考查的内容。考查方式以客观题为主,主要考查导数的基本公式和运算法则,以及导数的几何意义。 2.导数的应用是高中数学中的重点内容,导数已由解决问题的工具上升到解决问题必不可少的工具,特别是利用导数来解决函数的单调性与最值问题是高考热点问题。选择填空题侧重于利用导数确定函数的单调性、单调区间和最值问题,解答题侧重于导数的综合应用,即与函数、不等式、数列的综合应用。 3.应用导数解决实际问题,关键是建立恰当的数学模型(函数关系),如果函数在给定区间内只有一个极值点,此时函数在这点有极大(小)值,而此时不用和端点值进行比较,也可以得知这就是最大(小)值。 二、经典例题剖析 考点一:求导公式。 例1. ()f x '是3 1()213f x x x =++的导函数,则(1)f '-的值是 。 解析: ()2'2+=x x f ,所以()3211'=+=-f 答案:3 点评:本题考查多项式的求导法则。 考点二:导数的几何意义。 例2. 已知函数()y f x =的图象在点(1 (1))M f ,处的切线方程是1 22y x = +,则 (1)(1)f f '+= 。 解析:因为 21= k ,所以()211'= f ,由切线过点(1(1))M f ,,可得点M 的纵坐标为25 ,所 以 ()25 1= f ,所以()()31'1=+f f 答案:3

例3.曲线 32 242y x x x =--+在点(13)-,处的切线方程是 。 解析: 443'2 --=x x y ,∴点(13)-,处切线的斜率为5443-=--=k ,所以设切线方程为b x y +-=5,将点(13)-, 带入切线方程可得2=b ,所以,过曲线上点(13)-,处的切线方程为:025=-+y x 答案:025=-+y x 点评:以上两小题均是对导数的几何意义的考查。 考点三:导数的几何意义的应用。 例4.已知曲线C :x x x y 232 3+-=,直线kx y l =:,且直线l 与曲线C 相切于点()00,y x 00 ≠x ,求直线l 的方程及切点坐标。 解析: 直线过原点,则 ()000 ≠= x x y k 。由点 () 00,y x 在曲线C 上,则 02 30023x x x y +-=,∴?2302 00 0+-=x x x y 。又263'2 +-=x x y ,∴ 在 ()00,y x 处 曲线C 的切线斜率为 ()263'02 00+-==x x x f k ,∴?2632302 002 0+-=+-x x x x ,整理 得:0 3200=-x x ,解得: 230= x 或00=x (舍),此时,830-=y ,41 - =k 。所以,直线l 的方程为 x y 41 -=,切点坐标是??? ??-83,23。 答案:直线l 的方程为 x y 41 -=,切点坐标是??? ??-83,23 点评:本小题考查导数几何意义的应用。解决此类问题时应注意“切点既在曲线上又在切线上”这个条件的应用。函数在某点可导是相应曲线上过该点存在切线的充分条件,而不是必要条件。 考点四:函数的单调性。 例5.已知()132 3 +-+=x x ax x f 在R 上是减函数,求a 的取值范围。 解析:函数()x f 的导数为 ()163'2 -+=x ax x f 。对于R x ∈都有()0'

高考数学选择题专项训练(九)

高考数学选择题专项训练(九) 1、如果(1+x)3+(1+x)4+(1+x)5+……+(1+x)50=a 0+a 1x +a 2x 2 +……+a 50x 50,那么a 3等于( )。 (A )2350C (B )351C (C )451C (D )450C 2、299除以9的余数是( )。 (A )0 (B )1 (C )-1 (D )8 3、化简)4 sin()4cos()4sin()4cos(x x x x +π++π+π-+π的结果是( ) 。 (A )-tanx (B )tan 2 x (C )tan2x (D )cotx 4、如果函数y =f (x)的图象关于坐标原点对称,那么它必适合关系式( )。 (A )f (x)+f (-x)=0 (B )f (x)-f (-x)=0 (C )f (x)+f -1(x)=0 (D )f (x)-f -1(x)=0 5、画在同一坐标系内的曲线y =sinx 与y =cosx 的交点坐标是( )。 (A )(2n π+2π, 1), n ∈Z (B )(n π+2 π, (-1)n), n ∈Z (C )(n π+4π, 2)1(n -), n ∈Z (D )(n π, 1), n ∈Z 6、若sin α+cos α=2,则tan α+cot α的值是( )。 (A )1 (B )2 (C )-1 (D )-2

7、下列函数中,最小正周期是π的函数是( )。 (A )f (x)= 22tan 1tan x x ππ+ (B )f (x)=22tan 1tan x x - (C )f (x)=cos 22x -sin 22x (D )f (x)=2sin 2 (x -2 3π) 8、在△ABC 中,sinBsinC =cos22A ,则此三角形是( )。 (A )等边三角形 (B )三边不等的三角形 (C )等腰三角形 (D )以上答案都不对 9、下列各命题中,正确的是( )。 (A )若直线a, b 异面,b, c 异面,则a, c 异面 (B )若直线a, b 异面,a, c 异面,则b, c 异面 (C )若直线a//平面α,直线b ?平面α,则a//b (D )既不相交,又不平行的两条直线是异面直线 10、斜棱柱的矩形面(包括侧面与底面)最多共有( )。 (A )2个 (B )3个 (C )4个 (D )6个 11、夹在两平行平面之间的两条线段的长度相等的充要条件是( )。 (A )两条线段同时与平面垂直 (B )两条线段互相平行 (C )两条线段相交 (D )两条线段与平面所成的角相等 12、如果正三棱锥的侧面都是直角三角形,则侧棱与底面所成的角θ 应属于下列区间( )。 (A )(0, 6π) (B )(4π, 3π) (C )(6π, 4π) (D )(3π, 2π)

山东高考文科数学立体几何大题及答案汇编

2008年-2014年山东高考文科数学立体几何大题及答案 (08年)如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,AB DC ∥,PAD △是等边三角形,已知28BD AD ==,245AB DC == (Ⅰ)设M 是PC 上的一点,证明:平面MBD ⊥平面PAD ; (Ⅱ)求四棱锥P ABCD -的体积. (09年)如图,在直四棱柱ABCD-A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB 11111 (10年)(本小题满分12分) 在如图所示的几何体中,四边形ABCD 是正方形,MA ⊥平面ABCD ,//PD MA ,E 、G 、F 分别为MB 、PB 、PC 的中点,且2AD PD MA ==. (I )求证:平面EFG ⊥平面PDC ; (II )求三棱锥P MAB -与四棱锥P ABCD -的体积之比. (11年)(本小题满分12分) 如图,在四棱台 1111 ABCD A B C D -中, 1D D ABCD ⊥平面,底面 ABCD 是平行四边形, 112,,60AB AD AD A B BAD ==∠= (Ⅰ)证明:1AA BD ⊥; (Ⅱ)证明:11//CC A BD 平面. A B C M P D E A B C F E1 A1 B1 C1 D1 D D B1 D1 C1 C B A A1

(12年) (本小题满分12分) 如图,几何体E ABCD -是四棱锥,△ABD 为正三角形, ,CB CD EC BD =⊥. (Ⅰ)求证:BE DE =; (Ⅱ)若∠120BCD =?,M 为线段AE 的中点, 求证:DM ∥平面BEC . (13年)(本小题满分12分) 如图,四棱锥P —ABCD 中,AB ⊥AC , AB ⊥PA ,AB ∥CD ,AB=2CD ,E ,F ,G , M ,N 分别为PB ,AB ,BC ,PD ,PC 的中点。 (Ⅰ)求证,CE ∥平面PAD; (Ⅱ)求证,平面EFG ⊥平面EMN 。 (14年)(本小题满分12分) 如图,四棱锥P ABCD -中,,//,BC AD PCD AP 平面⊥AD BC AB 2 1 = =,F E ,分别为线段PC AD ,的中点。 (Ⅰ)求证:BEF AP 平面// (Ⅱ)求证:PAC BE 平面⊥ P A C D E

高考文科数学专题训练 专题二 第2讲

第2讲 三角恒等变换与解三角形 高考定位 1.三角函数的化简与求值是高考的命题热点,其中同角三角函数的基本关系、诱导公式是解决计算问题的工具,三角恒等变换是利用三角恒等式(两角和与差、二倍角的正弦、余弦、正切公式)进行变换,“角”的变换是三角恒等变换的核心;2.正弦定理与余弦定理以及解三角形问题是高考的必考内容,主要考查边、角、面积的计算及有关的范围问题. 真 题 感 悟 1.(2017·全国Ⅲ卷)已知sin α-cos α=43,则sin 2α=( ) A.-79 B.-29 C.29 D.79 解析 sin 2α=2sin αcos α=(sin α-cos α)2-1-1=-7 9. 答案 A 2.(2016·山东卷)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知b =c ,a 2=2b 2(1-sin A ),则A =( ) A.34π B.π 3 C.π4 D.π6 解析 因为b =c ,a 2=2b 2(1-sin A ), 所以cos A =b 2+c 2-a 22bc =2b 2-2b 2(1-sin A ) 2b 2 ,则cos A =sin A . 在△ABC 中,A =π 4. 答案 C 3.(2017·全国Ⅰ卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin B + sin A (sin C -cos C )=0,a =2,c =2,则C =( )

A.π12 B.π6 C.π4 D.π3 解析 由题意得sin(A +C )+sin A (sin C -cos C )=0, ∴sin A cos C +cos A sin C +sin A sin C -sin A cos C =0, 则sin C (sin A +cos A )=2sin C sin ? ? ???A +π4=0, 因为sin C ≠0,所以sin ? ? ? ??A +π4=0, 又因为A ∈(0,π),所以A +π4=π,所以A =3π 4. 由正弦定理a sin A =c sin C ,得2sin 3π4 =2 sin C , 则sin C =12,得C =π 6. 答案 B 4.(2017·全国Ⅰ卷)已知α∈? ????0,π2,tan α=2,则cos ? ? ???α-π4=________. 解析 由tan α=2得sin α=2 cos α, 又sin 2α+cos 2α=1,所以cos 2α=1 5. 因为α∈? ? ? ??0,π2,所以cos α=55,sin α=255. 因为cos ? ? ???α-π4=cos αcos π4+sin αsin π4 =55×22+255×22=31010. 答案 31010 考 点 整 合 1.三角函数公式 (1)同角关系:sin 2α+cos 2α=1,sin α cos α=tan α. (2)诱导公式:对于“k π 2±α,k ∈Z 的三角函数值”与“α角的三角函数值”的关系可按下面口诀记忆:奇变偶不变,符号看象限. (3)两角和与差的正弦、余弦、正切公式: sin(α±β)=sin αcos β±cos αsin β;

相关文档
相关文档 最新文档