文档视界 最新最全的文档下载
当前位置:文档视界 › 2.2 二项分布及其应用(2)

2.2 二项分布及其应用(2)

2.2   二项分布及其应用(2)
2.2   二项分布及其应用(2)

作业:

一.选择题

1.甲、乙两人独立地解同一问题,甲能解决这个问题的概率是1p ,乙能解决这个问题的概率是2p ,那么其中至少有1人能解决这个问题的概率是 ( D )

A .21p p +;

B .21p p ?;

C .211p p ?-;

D .121(1)(1)p p ---.

2.在一个盒子中有大小相同的10个球,其中6个红球,4个白球,两人无放回地各取一个球,则在第一个人摸出红球的条件下,第二个人也摸出红球的概率是 ( A )

A .13;

B .23;

C .49;

D .59

. 【解析】设“第一个人摸出红球”为事件A ,“第二个人摸出红球”为事件B ,则()11692105490

C C P A A ?==,()11652103090C C P AB A ?==,则()()()5|9

P AB P B A P A ==。 3.两个独立事件1A 和2A 发生的概率分别为1p 和2p ,则有且只有一个发生的概率为 .()()122111p p p p -+-

4. (04年重庆) 甲、乙、丙三人每次射击命中目标的概率分别为0.7、0.6和0.5,计算:

⑴三人各向目标射击一次,求恰有两人命中目标及至少有一人命中目标的概率;

⑵若甲连续射击三次,求他恰好一次命中的概率.

解:⑴设i A (3,2,1=i )表示事件“第i 人命中目标”,显然1A 、2A 、3A 相互独立,且7.0)(1=A P ,6.0)(2=A P ,5.0)(3=A P .

三人中恰有两人命中目标的概率为

44.0)(321321321=??+??+??A A A A A A A A A P .

三人中恰有至少有一人命中目标的概率为

94.0)(1321=??-A A A P .

⑵设k A 表示“甲在第k 次命中目标”,3,2,1=k .显然1A 、2A 、3A 相互独立,且7.0)()()(321===A P A P A P .

甲连续射击三次,恰好一次命中的概率为

203.0)(321321321=??+??+??A A A A A A A A A P .

5.已知在10只晶体管中有2只次品,从中连续抽取两件,且取出的产品不再放回,求下列事件的概率.

⑴两只都是正品; ⑵两只都是次品.

解:设事件i A (1,2i =)表示第i 次取到正品,则i A 表示第i 次取到次品.

依题意,()1810P A =,()217|9P A A =,()1210P A =,()

211|9P A A =. ⑴12A A 表示第1次,第2次都取到正品,即表示两只都是正品,根据乘法公式

()()()1212128|45P A A P A P A A ==

. ⑵()()()121211|45

P A A P A P A A ==. 另解:本题也可利用古典概型来解决.

点评:本题中由于是两个都是正(次)品,由于是连续抽取且抽后不放回,故与条件概率有关.

6.(04年福建·理)甲、乙两人参加一次英语口试,已知在备选的10道题中,甲能答对其中的6道,乙能答对其中的8道,规定每次考试都从备选题中随机地抽出3道,至少答对2道才算合格.

⑴求甲答对试题数X 的概率分布分布;

⑵求甲、乙两人至少有一人考试合格的概率.

解:⑴依题意,甲答对题数X 的概率分布如下:

⑵方法1:甲、乙两人至少有一人考试合格的概率为

()P P A B A B A B =?+?+?()()()P A B P A B P A B =?+?+?

211142144431531531545

=?+?+?=. 方法2:∵甲、乙两人考试均不合格的概率为1()()()45P A B P A P B ?=?=

, ∴甲、乙两人至少有一人考试合格的概率为441()45

P P A B =-?=. 7.(07年天津·文科)已知甲盒内有大小相同的3个红球和4个黑球,乙盒内有大小相同的5个红球和4个黑球,现从甲、乙两个盒内各任取2个球.

(Ⅰ)求取出的4个球均为红球的概率;

(Ⅱ)求取出的4个球中恰有1个红球的概率;

解:(Ⅰ)设“从甲盒内取出的2个球均为红球”为事件A ,“从乙盒内取出的2个球均为红球”为

事件B .由于事件A B ,相互独立,且

2327C 1()C 7P A ==,2329C 5()C 18

P B ==, 故取出的4个球均为红球的概率是

155()()()718126

P A B P A P B ==?= . (Ⅱ)设“从甲盒内取出的2个球中,1个是红球,1个是黑球;从乙盒内取出的2个红球为黑球”为事件C ,“从甲盒内取出的2个球均为黑球;从乙盒内取出的2个球中,1个是红球,1个是黑球”为事件D .由于事件C D ,互斥,且

1123442279C C C 2()C C 21P C == ,1125242275C C C 10()C C 63

P D == . 故取出的4个红球中恰有4个红球的概率为

21016()()()216363

P C D P C P D +=+=+=. 8.(01年天津)如图,用A 、B 、C 三个不同的元件联结成两个电子系统(Ⅰ)、(Ⅱ)。当元件A 、B 、C 都正常工作时,系统(Ⅰ)正常工作;当元件A 正常工作且B 、C 至少有一个正常工作时,系统(Ⅱ)正常工作。已知元件A 、B 、C 正常工件的概率依次为0.80、0.90、0.90,分别求系统(Ⅰ)、(Ⅱ)正常工作概率1P 、2P ,并说明哪个系统的稳定性好.

解:分别记元件A 、B 、C 正常工作为事件A 、B 、C ,由已知()0.80P A =,()()0.90P B P C ==,

则:

⑴因为事件A 、B 、C 是相互独立的,所以系统(Ⅰ)正常工作的概率为

1()()()()0.648P P A B C P A P B P C =??=??=。

⑵因为元件A 正常工作与元件B 、C 至少有一个正常工作是相互独立的,而B 、C 没有一个正常工作的概率为()P B C ?,于是B 、C 至少有一个人正常工作的概率为1()()0.99P B P C -?=, ∴系统(Ⅱ)正常工作概率2()[1()]0.792P P A P B C =?-?=。

(或()()()()0.99P B C P B P C P B C +=+-?=)

(Ⅰ)

二项分布及其应用教案定稿

2.2.3 独立重复试验与二项分布 一、教学目标 知识与技能:理解n次独立重复试验的模型及二项分布,并能解答一些简单的实际问题。 过程与方法:能进行一些与n次独立重复试验的模型及二项分布有关的概率的计算。 情感、态度与价值观:承前启后,感悟数学与生活的和谐之美,体现数学的文化功能与人文价值。 二、重难点 教学重点:理解n次独立重复试验的模型及二项分布,并能解答一些简单的实际问题 教学难点:能进行一些与n次独立重复试验的模型及二项分布有关的概率的计算 三、教学过程 复习引入: 1. 事件的定义: 随机事件:在一定条件下可能发生也可能不发生的事件; 必然事件:在一定条件下必然发生的事件; 不可能事件:在一定条件下不可能发生的事件。 2.随机事件的概率:一般地,在大量重复进行同一试验时,事件A发生的频率m n 总是接近某个常数,在它附近摆动,这时就把这个常数叫做事件A的概率,记

作()P A 。 3. 概率的确定方法:通过进行大量的重复试验,用这个事件发生的频率近似地作为它的概率。 4.概率的性质:必然事件的概率为1 ,不可能事件的概率为0 ,随机事件的概率为0()1P A ≤≤,必然事件和不可能事件看作随机事件的两个极端情形。 5 基本事件:一次试验连同其中可能出现的每一个结果称为一个基本事件。 讲授新课: 1 独立重复试验的定义: 指在同样条件下进行的,各次之间相互独立的一种试验。 2 独立重复试验的概率公式: 一般地,如果在1次试验中某事件发生的概率是P ,那么在n 次独立重复试验中 这个事件恰好发生k 次的概率k n k k n n P P C k P --=)1()(。 它是 [](1)n P P -+展开式的第1k +项。 3离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是 k n k k n n q p C k P -==)(ξ,(k =0,1,2,…,n ,p q -=1). 于是得到随机变量ξ的概率分布如下:

2021年高考数学专题复习 第47讲 二项分布及其应用练习 新人教A版

2021年高考数学专题复习第47讲二项分布及其应用练习新人教A版[考情展望] 1.考查条件概率的理解和应用.2.考查独立事件相互独立事件的概率求法.3.以解答题形式结合实际问题对独立重复试验与二项分布进行考查. 一、条件概率及其性质 条件概率的定义条件概率的性质 设A、B为两个事件,且P(A)>0,称P(B|A)= P AB P A 为在事件A发生的条件下,事件B发生的 条件概率 (1)0≤P(B|A)≤1 (2)若B、C是两个互斥事件, 则P(B∪C|A)=P(B|A)+ P(C|A) 设A、B为两个事件,如果P(AB)=P(A)P(B),则称事件A与事件B相互独立. 三、独立重复试验与二项分布 1.独立重复试验 在相同条件下重复做的n次试验称为n次独立重复试验,即若用A i(i=1,2,…,n)表示第i次试验结果,则 P(A1A2A3…A n)=P(A1)P(A2)P(A3)…P(A n). 2.二项分布 在n次独立重复试验中,设事件A发生的次数为X,在每次试验中事件A发生的概率为p,那么在n次独立重复试验中,事件A恰好发生k次的概率为P(X=k)=C k n p k·(1-p)n-k(k

=0,1,2,…,n ),此时称随机变量X 服从二项分布,记作X ~B (n ,p ),并称p 为成功概率. 1.判断某事件发生是否是独立重复试验,关键有两点 (1)在同样的条件下重复,相互独立进行. (2)试验结果要么发生,要么不发生. 2.判断一个随机变量是否服从二项分布,要看两点 (1)是否为n 次独立重复试验. (2)随机变量是否为在这n 次独立重复试验中某事件发生的次数. 1.设随机变量ξ~B ? ?? ??6,12,则P (ξ=3)的值是( ) A. 316 B.516 C.716 D.58 【解析】 P (ξ=3)=C 36? ????123? ????126-3 =516. 【答案】 B 2.小王通过英语听力测试的概率是1 3,他连续测试3次,那么其中恰有1次获得通过 的概率是( ) A.49 B.29 C.427 D.227 【解析】 所求概率P =C 1 3·? ????131·? ?? ??1-133-1=49. 【答案】 A 3.袋中有5个小球(3白2黑),现从袋中每次取一个球,不放回地抽取两次,则在第一次取到白球的条件下,第二次取到白球的概率是( ) A.35 B.34 C.12 D.3 10 【解析】 在第一次取到白球的条件下,在第二次取球时,袋中有2个白球和2个黑球共4个球,所以取到白球的概率P =24=1 2 ,故选C. 【答案】 C 4.某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续..正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立.

二项分布知识在日常生活中的应用分析

二项分布知识在日常生活中的应用分析 二项分布是在n 次独立重复试验中引入的一个概念,它是一种常见的、重要的离散型随机变量的概率分布,引入他们实际上是对独立重复试验从概率分布角度的进一步研究。然而我们在利用二项分布原理解决实际问题时只注意到两点,即解释为什么可以看成二项分布模型,其次是考虑到它的计算,却往往忽视对计算结果进行解释,造成初学者无法摆脱知识上的种种困惑。鉴于此,我们选取几个典型案例进行剖析,供参考。 例1. 将一枚均匀硬币随机掷100次,相当于重复做了100次试验,每次有两个可能的结果(出现正面,不出现正面),出现正面的概率为1/2。 分析:如果令X 为硬币正面出现的次数,则X 服从2 1,100==p n 的二项分布,那么100100100100)2 1(C )211()21(C )(k k k k k X =-==-P 。 由此可以得到:“随机掷100次硬币正好出现50次正面”的概率为 080)2 1(C )50(10050100?≈==X P 。 在学习概率时我们会有一种误解,认为既然出现正面的概率为1/2,那么掷100次硬币出现50次正面是必然的,或者这个事件发生的概率应该很大。但计算表明这概率只有8%左右。 它说的是,许多人都投100次均匀硬币,其中大约有8%的人恰投出50次正面。另外有些人投出的正面次数可能是47次、48次、51次、52次等。总起来看,正面出现的次数约占二分之一,这和均匀硬币出现正面的概率是二分之一是一致的。 例2. 设某保险公司有10000人参加人身意外保险。该公司规定:每人每年付公司120元,若逢意外死亡,公司将赔偿10000元。若每人每年死亡率为0.006,试讨论该公司是否会赔本,其利润状况如何。 分析:在这个问题中,公司的收入是完全确定的,10000个投保人每人付给公司120元,公司的年收入为120万元。公司的支出取决于投保人中意外死亡的人数(这里略去有关公司日常性开支的讨论,如公司职工工资,行政开支等等),而这是完全随机的,公司无法在事前知道其确切人数。但公司可以知道死亡人数的分布。设X 表示这10000人中意外死亡的人数,由于每个人的死亡率为0.006,则X 服从n=10000,p=0.006的二项分布: k k k C k X P --==1000010000)006.01(006.0)( 死亡X 人时,公司要赔偿X 万元,此时公司的利润为(120-X )万元。尽管我们无法

高中数学二项分布及其应用知识点+练习

3 2 5 --------------- \ 事件的独立性 “ ----------------- 厂 丿 r ] 厂 独立重复实验 二项分布 高考要求 二项分布及 其应用 要求层次 重难点 条件概率 A 了解条件概率和两个事件相互独立的概念, 理解n 次独立重复试验的模型及二项分布, 并能解决一些 简单的实际问题. 事件的独立性 A n 次独立重复试验与二项 分布 B 21山迄例题精讲 板块一:条件概率 (一) 知识内容 条件概率 对于任何两个事件 A 和B ,在已知事件 A 发生的条件下,事件 B 发生的概率叫做条件概率,用符号 P (B|A ) ”来表示.把由事件 A 与B 的交(或积),记做D=A“B (或D 二AB ). (二)典例分析: 【例1】 在10个球中有6个红球,4个白球(各不相同),不放回的依次摸出 2个球,在第1次摸出 红球的条件下,第2次也摸出红球的概率是( ) D . 知识框架 二项分布及其应用

【例2】某地区气象台统计,该地区下雨的概率是土 ,刮风的概率是2,既刮风又下雨的概率是丄, 15 15 10 设A=刮风”,8=下雨”,求P(B A , P(A B). 【例3】设某种动物活到20岁以上的概率为0.7,活到25岁以上的概率为0.4,求现龄为20岁的这种动物能活到25岁以上的概率. 【例4】把一枚硬币抛掷两次,事件A=第一次出现正面”,事件B=第二次出现反面”, 则P(B A)二_____ . 【例5】抛掷一颗骰子两次,在第一次掷得向上一面点数是偶数的条件下,则第二次掷得向上一面点数也是偶数的概率为_________________________ . 【例6】设某批产品有4%是废品,而合格品中的75%是一等品, 任取一件产品是一等品的概率是_________ . 【例7】掷两枚均匀的骰子,记A=点数不同”,8=至少有一个是6点”,求P(A|B)与P(B|A). 【例8】甲、乙两班共有70名同学,其中女同学40名?设甲班有30名同学,而女生15名,问在碰到甲班同学时,正好碰到一名女同学的概率 【例9】从1~100个整数中,任取一数,已知取出的一数是不大于50的数,求它是2或3的倍数的概率.

二项分布及其应用(同步练习)

高中数学系列2—3单元测试题(2.2) 一、选择题: 1、已知随机变量X 服从二项分布,1 (6,)3 X B ,则((2)P X =等于( ) A. 3 16 B. 4243 C. 13243 D. 80243 2设某批电子手表正品率为34,次品率为1 4 ,现对该批电子手表进行测试,设第 X 次首次测到正品,则(3)P X =等于( ) A. )43()41(223?C B. )41()43(223?C C. )43()4 1(2? D. )41 ()43(2? 3、设随机变量X 的概率分布列为2 ()()1,2,33 k p X k a k ===,则a 的值为( ) A 1927 B 1917 C 3827 D 38 17 4、10个球中有一个红球,有放回的抽取,每次取出一球,直到第n 次才取得 ()k k n ≤次红球的概率为( ) A .2 191010n k -???? ? ? ???? B .191010k n k -???? ? ? ???? C .11 191010k n k k n C ---???? ? ????? D .111191010k n k k n C ----?? ?? ? ??? ?? 5、甲、乙两名篮球队员轮流投篮直至某人投中为止,设甲每次投篮命中的概率为0.4,乙投中的概率为0.6,而且不受其他次投篮结果的影响,设投篮的轮数为X ,若甲先投,则()P X k =等于( ) A.4.06.01?-k B. 76.024.01?-k C. 6.04.01?-k D. 24.076.01?-k 6、某学生解选择题出错的概率为0.1,该生解三道选择题至少有一道出错的概率是( ) A. 20.10.9? B. 3220.10.10.90.10.9+?+? C. 30.1 D. 310.9-

二项分布应用举例说课讲解

二项分布应用举例

二项分布及其应用 知识归纳 1.条件概率及其性质 (1)对于任何两个事件A和B,在已知事件A发生的条件下,事件B发生的概率叫做,用符号来表 示,其公式为P(B|A)= . 在古典概型中,若用n(A)表示事件A中基本事件的个 数,则P(B|A)= . (2)条件概率具有性质: ①; ②如果B和C是两互斥事件,则P(B+C|A)=. 2.相互独立事件 (1)对于事件A、B,若A的发生与B的发生互不影响,则称A、B是相互独立事件. (2)若A与B相互独立,则P(B|A)=, P(AB)=P(B|A)·P(A)=. (3)若A与B相互独立,则,,也都相互独立. (4)若P(AB)=P(A)P(B),则. 3.二项分布 (1)独立重复试验是指在相同条件下可重复进行的,各次之间相互独立的一种试验,在这种试验中每一次试验只有两种相互对立的结果,即要么发生,要么不发生,且任何一次试验中发生的概率都是一样的.

(2)在n 次独立重复试验中,事件A 发生k 次的概率为 (p 为事件A 发生的概率),若一个随机变量X 的分布列如上所述,称X 服从参数为n ,p 的 二项分布,简记为 . 自我检测 1.(2011·辽宁高考,5)从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶 数”,事件B =“取到的2个数均为偶数”,则P (B |A )=( ) A.18 B.14 C.25 D.12 解析:条件概率P (B |A )=P AB P A P (A )=C 23+1C 25=410=25,P (AB )=1C 25=110,∴P (B |A )=11025=1 4. 2.一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直 到红球出现10次时停止,设停止时共取了ξ次球,则P (ξ=12)等于( ) A .C 1012? ????3810? ????582 B . C 911? ????389? ????58238 C .C 911? ????589? ????382 D .C 911? ????389? ?? ??582 解:事件{ξ=12}表示第12次取到红球,前11次取到9个红球,故P (ξ=12)=C 911? ????389·? ?? ??582·38. 3.(2011·广东高考)甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军, 乙队需要再赢两局才能得冠军,若两队胜每局的概率相同,则甲队获得冠军的概率为( ) A.12 B.35 C.23 D.34 解析:∵甲、乙两队决赛时每队赢的概率相等,∴每场比赛甲、乙赢的概率均为12. 记甲获冠军为事件A ,则P (A )=12+12×12=34 4.(2010·福建高考,13)某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连 续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率

二项分布应用举例

二项分布及其应用 知识归纳 1.条件概率及其性质 (1)对于任何两个事件A 和B ,在已知事件A 发生的条件下,事件B 发生的概率叫做 ,用符号 来表 示,其公式为P (B |A )= . 在古典概型中,若用n (A )表示事件A 中基本事件的个 数,则P (B |A )= . (2)条件概率具有性质: ① ; ②如果B 和C 是两互斥事件,则P (B +C |A )= . 2.相互独立事件 (1)对于事件A 、B ,若A 的发生与B 的发生互不影响,则称A 、B 是相互独立事件. (2)若A 与B 相互独立,则P (B |A )= , P (AB )=P (B |A )·P (A )= . (3)若A 与B 相互独立,则 , , 也都相互独立. (4)若P (AB )=P (A )P (B ),则 . 3.二项分布 (1)独立重复试验是指在相同条件下可重复进行的,各次之间相互独立的一种试验,在这种试验中每一次试验只有两种相互对立的结果,即要么发生,要么不发生,且任何一次试验中发生的概率都是一样的. (2)在n 次独立重复试验中,事件A 发生k 次的概率为 (p 为事件A 发生的概率),若一个随机变量X 的分布列如上所述,称X 服从参数为n ,p 的二项分布,简记为 . 自我检测 1.(2011·辽宁高考,5)从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则P (B |A )=( ) A.18 B.14 C.25 D.12 解析:条件概率P (B |A )= PAB PA P (A )=C 23+1 C 25=410=25,P (AB )=1C 25=110,∴P (B |A )=1 1025 =14 . 2.一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10 次时停止,设停止时共取了ξ次球,则P (ξ=12)等于( ) A .C 1012????3810????582 B . C 911????389????58238 C .C 911 ????589????382 D .C 911????389??? ?582 解:事件{ξ=12}表示第12次取到红球,前11次取到9个红球,故P (ξ=12)=C 911????389·????582·38 . 3.(2011·广东高考)甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢 两局才能得冠军,若两队胜每局的概率相同,则甲队获得冠军的概率为( )

第8讲二项分布及其应用教案理新人教版

第8讲 二项分布及其应用 【20XX 年高考会这样考】 1.考查条件概率和两个事件相互独立的概念. 2.考查n 次独立重复试验的模型及二项分布. 3.能解决一些简单的实际问题. 【复习指导】 复习时要把事件的独立性、事件的互斥性结合起来,会对随机事件进行分析,即把一个随机事件分拆成若干个互斥事件之和,再把其中的每个事件分拆成若干个相互独立事件之积,同时掌握好二项分布的实际意义及其概率分布和数学期望的计算方法. 基础梳理 1.条件概率及其性质 (1)对于任何两个事件A 和B ,在已知事件A 发生的条件下,事件B 发生的概率叫做条件概率,用符号P (B |A )来表示,其公式为P (B |A )= P AB P A . 在古典概型中,若用n (A )表示事件A 中基本事件的个数,则P (B |A )=n AB n A . (2)条件概率具有的性质: ①0≤P (B |A )≤1; ② 如果B 和C 是两互斥事件,则P (B ∪C |A )=P (B |A )+P (C |A ). 2.相互独立事件 (1)对于事件A 、B ,若A 的发生与B 的发生互不影响,则称A 、B 是相互独立事件. (2)若A 与B 相互独立,则P (B |A )=P (B ), P (AB )=P (B |A )·P (A )=P (A )·P (B ). (3)若A 与B 相互独立,则A 与B ,A 与B ,A 与B 也都相互独立. (4)若P (AB )=P (A )P (B ),则A 与B 相互独立. 3.独立重复试验与二项分布 (1)独立重复试验 独立重复试验是指在相同条件下可重复进行的,各次之间相互独立的一种试验,在这种试验中每一次试验只有两种结果,即要么发生,要么不发生,且任何一次试验中发生的概率都是一样的. (2)二项分布 在n 次独立重复试验中,设事件A 发生的次数为k ,在每次试验中事件A 发生的概率为p ,

高中数学二项分布及其应用知识点+练习

二项分布及其应用 要求层次 重难点 条件概率 A 了解条件概率和两个事件相互独立的概念,理解n 次独立重复试验的模型及二项分布,并能解决一些简单的实际问题. 事件的独立性 A n 次独立重复试验与二项 分布 B (一) 知识容 条件概率 对于任何两个事件A 和B ,在已知事件A 发生的条件下,事件B 发生的概率叫做条件概率,用符号“(|)P B A ”来表示.把由事件A 与B 的交(或积),记做D A B =(或D AB =). (二)典例分析: 【例1】 在10个球中有6个红球,4个白球(各不相同),不放回的依次摸出2个球,在第1次摸出 红球的条件下,第2次也摸出红球的概率是( ) 知识框架 例题精讲 高考要求 条件概率 事件的独立性 独立重复实验 二项分布 二项分布及其应用 板块一:条件概率

A.3 5 B. 2 3 C. 5 9 D. 1 3 【例2】某地区气象台统计,该地区下雨的概率是 4 15 ,刮风的概率是 2 15 ,既刮风又下雨的概率是 1 10 , 设A=“刮风”,B=“下雨”,求()() P B A P A B ,. 【例3】设某种动物活到20岁以上的概率为0.7,活到25岁以上的概率为0.4,求现龄为20岁的这种动物能活到25岁以上的概率. 【例4】把一枚硬币抛掷两次,事件A=“第一次出现正面”,事件B=“第二次出现反面”,则()_____ P B A=. 【例5】抛掷一颗骰子两次,在第一次掷得向上一面点数是偶数的条件下,则第二次掷得向上一面点数也是偶数的概率为. 【例6】设某批产品有4%是废品,而合格品中的75%是一等品, 任取一件产品是一等品的概率是_____. 【例7】掷两枚均匀的骰子,记A=“点数不同”,B=“至少有一个是6点”,求(|) P A B与(|) P B A. 【例8】甲、乙两班共有70名同学,其中女同学40名.设甲班有30名同学,而女生15名,问在碰到甲班同学时,正好碰到一名女同学的概率? 【例9】从1~100个整数中,任取一数,已知取出的—数是不大于50的数,求它是2或3的倍数的概率.

高考数学 二项分布及其应用

高考数学 二项分布及其应用 1.已知盒中装有3着,现需要一只卡口灯泡,电工师傅每次从中任取一只并不放回,则在他第1次抽到的是螺口灯泡的条件下,第2次抽到的是卡口灯泡的概率为 ( ) A.310 B.29 C.78 D.79 解析:设事件A 为“第1次抽到是螺口灯泡”,事件B 为“第2次抽到是卡口灯泡”,则P (A )=310,P (AB )=310×79=2190=7 30.在已知第1次抽到螺口灯泡的条件下,第2次抽 到卡口灯泡的概率为P (B |A )=P (AB )P (A )=7 30310=7 9 . 答案:D 2.设A 、B 为两个事件,若事件A 和B 同时发生的概率为3 10,在事件A 发生的条件下, 事件B 发生的概率为1 2,则事件A 发生的概率为________________. 解析:由题意知,P (AB )=310,P (B |A )=1 2, ∴P (A )=P (AB )P (B |A )=3 1012=3 5 . 答案:35 3.有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机抽取一粒,则这粒种子能成长为幼苗的概率为________. 解析:设种子发芽为事件A ,种子成长为幼苗为事件AB (发芽,又成活为幼苗),出芽后的幼苗成活率为: P (B |A )=0.8,P (A )=0.9. 根据条件概率公式P (AB )=P (B |A )·P (A )=0.9×0.8=0.72,即这粒种子能成长为幼苗的概率为0.72.

答案:0.72 题组二 相互独立事件 4.(2010·抚顺模拟)国庆节放假,甲去北京旅游的概率为1 3,乙、丙去北京旅游的概率分别 为14,1 5 .假定三人的行动相互之间没有影响,那么这段时间内至少有1人去北京旅游的概率为 ( ) A.5960 B.35 C.12 D.160 解析:因甲、乙、丙去北京旅游的概率分别为13,14,1 5.因此,他们不去北京旅游的概 率分别为23,34,45,所以,至少有1人去北京旅游的概率为P =1-23×34×45=3 5. 答案:B 5.如图所示的电路,有a ,b ,c 三个开关,每个开关开或关的概率 都是1 2 ,且是相互独立的,则灯泡甲亮的概率为 ( ) A.18 B.14 C.12 D.116 解析:理解事件之间的关系,设“a 闭合”为事件A ,“b 闭合”为事件B ,“c 闭合”为事件C ,则灯亮应为事件ACB - ,且A ,C ,B 之间彼此独立,且P (A )=P (B )=P (C ) =12,所以P (AB - C )=P (A )·P (B )·P (C )=18 . 答案:A 6.甲、乙两人参加一次英语口语考试,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题,规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才算合格. (1)分别求甲、乙两人考试合格的概率; (2)求甲、乙两人至少有一人考试合格的概率. 解:(1)设甲、乙两人考试合格的事件分别为A 、B ,则 P (A )=413428310C C C C +213 646 310C C C C +=23. P (B )=213 828310 C C C C +=14 15. (2)因为事件A 、B 相互独立,所以甲、乙两人考试均不合格的概率为

人教版高中数学选修2-3 第二章 二项分布及其应用 同步教案

学生姓名性别年级学科数学 授课教师上课时间年月日第()次课 共()次课 课时:2课时 教学课题人教版选修2-3 第二章二项分布及其应用同步教案 教学目标知识目标:理解n次独立重复试验的模型及二项分布,并能解答一些简单的实际问题。 能力目标:能进行一些与n次独立重复试验的模型及二项分布有关的概率的计算。 情感态度价值观:承前启后,感悟数学与生活的和谐之美,体现数学的文化功能与人文价值。 教学重点与难点理解n次独立重复试验的模型及二项分布,能进行一些与n次独立重复试验的模型及二项分布有关的概率的计算。 教学过程 知识梳理 离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P,那么在n次独立重复试验中这个事件恰好发生k次的概率是 错误!未找到引用源。,(k=0,1,2,…,n,错误!未找到引用源。). 于是得到随机变量ξ的概率分布如下: ξ0 1 …k …n P 错误!未找 到引用源。错误!未找 到引用源。 … 错误!未找 到引用源。 … 错误!未 找到引用 源。 由于错误!未找到引用源。恰好是二项展开式 错误!未找到引用源。 中的各项的值,所以称这样的随机变量ξ服从二项分布(binomial distribution ),记作ξ~B(n,p),其中n,p为参数,并记错误!未找到引用源。=b(k;n,p).

例题精讲 【例1】某射手每次射击击中目标的概率是0.8,求这名射手在 10 次射击中,(1)恰有 8 次击中目标的概率;(2)至少有 8 次击中目标的概率.(结果保留两个有效数字.) 【方法技巧】设ξ为击中目标的次数,则ξ~B (10, 0.8 ) . 如果在一次试验中某事件发生的概率是P,那么在n 次独立重复试验中这个事件恰好发生k次的概率是 k n k k n n q p C k P- = =) (ξ 错误!未找到引用源。,(k=0,1,2,…, n,错误!未找到引用源。). 【例2】某厂生产电子元件,其产品的次品率为5%.现从一批产品中任意地连续取出2件,写出其中次品数ξ的概率分布. 【方法技巧】由题意,随机变量ξ~B(2,5%).如果在一次试验中某事件发生的概率是P,那么在n次独立重复 试验中这个事件恰好发生k次的概率是 k n k k n n q p C k P- = =) (ξ 错误!未找到引用源。,(k=0,1,2,…,n,错误! 未找到引用源。). 【例3】重复抛掷一枚筛子5次得到点数为6的次数记为ξ,求P(ξ>3).

二项分布知识在日常生活中的应用分析

二项分布知识在日常生活中的应用分析 山东黄丽生 二项分布是在n次独立重复试验中引入的一个概念,它是一种常见的、重要的离散型随 机变量的概率分布,引入他们实际上是对独立重复试验从概率分布角度的进一步研究。然而我们在利用二项分布原理解决实际问题时只注意到两点,即解释为什么可以看成二项分布模 型,其次是考虑到它的计算,却往往忽视对计算结果进行解释,造成初学者无法摆脱知识上 的种种困惑。鉴于此,我们选取几个典型案例进行剖析,供参考。 例1.将一枚均匀硬币随机掷100次,相当于重复做了100次试验,每次有两个可能的结果 (出现正面,不出现正面),出现正面的概率为1/2。 1 分析:如果令X为硬币正面出现的次数,则X服从n 100 p -的二项分布,那么 2 P(X k) C k00(^k(1 1)100k Cw0(l)100。 由此可以得到:“随机掷100次硬币正好出现50次正面”的概率为 1 P(X 50) C;00(3)1000 08。 在学习概率时我们会有一种误解,认为既然出现正面的概率为1/2,那么掷100次硬 币出现50次正面是必然的,或者这个事件发生的概率应该很大。但计算表明这概率只有8% 左右。 它说的是,许多人都投100次均匀硬币,其中大约有8%的人恰投出50次正面。另外 有些人投出的正面次数可能是47次、48次、51次、52次等。总起来看,正面出现的次数 约占二分之一,这和均匀硬币出现正面的概率是二分之一是一致的。 例2.设某保险公司有10000人参加人身意外保险。该公司规定:每人每年付公司120元, 若逢意外死亡,公司将赔偿10000元。若每人每年死亡率为0.006,试讨论该公司是否会赔本,其利润状况如何。 分析:在这个问题中,公司的收入是完全确定的,10000个投保人每人付给公司120元,公司的年收入为120万元。公司的支出取决于投保人中意外死亡的人数(这里略去有关公司日 常性开支的讨论,如公司职工工资,行政开支等等) ,而这是完全随机的,公司无法在事前 知道其确切人数。但公司可以知道死亡人数的分布。设X表示这10000人中意外死亡的人数,由于每个人的死亡率为0.006,贝U X服从n=10000,p=0.006的二项分布:

二项分布及其应用-优质学案

n次独立重复试验与二项分布及其应用 班级: 【高考要求】 1.了解条件概率和两个事件相互独立的概念. 2.理解n 次独立重复试验的模型及二项分布. 3.能解决一些简单的实际问题. 【知识梳理】 1.条件概率 在已知B发生的条件下,事件 A发生的概率叫作B发生时A 发生的条件概率,用符号____________ 来表示,其公式为 P(A|B) =韻P(B)>0). 2.相互独立事件 (1)一般地,对两个事件 A, B,如果有称A、B相互独立. (2)如果A、B相互独立,则 A与~B、A与B、A与B也相互 独立. ⑶如果A1, A2,…,A n相互独立,则有:P (A1A2…A n)= P(A1)P(A2)…P(A n). 3.二项分布 进行n次试验,如果满足以下条件: (1)每次试验只有两个相互对立的结果,可以分别称为“成功” 和“失败”; (2)每次试验“成功”的概率均为 —P; (3)各次试验是___________的. 用X表示这n次试验中成功的次数,则 P(X= k) = __________________ (k= 0,1,2,…,n) 若一个随机变量X的分布列如上所述,称X服从参数为n, P 的二项分布,简记为X?B(n, p). 【回顾检测】 1.袋中有3红5黑8个大小形状相同的小球,从中依次摸出两个小球,则在第一次摸得红球的条件下,第二次仍是红球的概率为() A 3 厂2 肿 f 3 A- B- C- D 2.(2014课标全国n)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6, 已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( ) A . 0.8 B. 0.75 C. 0.6 D. 0.45 3.如图,用K, A , A2三类不同的元件连接成一个系统.当K 正常工作且A1,A2至少有一个正常工作时,系统 正常工作.已知K, A1, A2正常工作的概率依次 为090.8, 常工 作的概率为() D. 0.576 且在两 次罚OR则该队员每次罚球的命中率 小组: 姓名: 评价: ,则 P, “失败”的概率均为1 0.8,贝y系统正 ~0= -0-二—— A. 0.960 B. 0.864 C. 0.720 4.某篮球队员在比赛中每次罚球的命中率相同, 球中至多命中一次的概率为16

高考数学一轮总复习10.8二项分布及其应用练习

解析 设目标被击中为事件 B,目标被甲击中为事件 A,则由 + 0.6 X 0.5 = 0.8,又因为 A? B,所以 P(AB) = P(A) = 0.6,得 P(A|B) = ; AB =盟=0.75. 第八节二项分布及其应用(理) 时间:45分钟分值:100分 基 | _^| |必 | 做 、选择题 1. (2015 ?唐山市期末)如图,△ ABC 和厶DEF 都是圆内接正三角形,且 B C// EF.将一颗 豆子随机地扔到该圆内, 用A 表示事件“豆子落在△ ABC 内”,B 表示事件“豆子落在△ DEF 内”,贝U P(B|A)=( ) i C 3 2 D 3 解析 △ AB3A DEF 设边长为3,ABC M^ DEF 重叠部分是边长为 1的正六边形 P (B|A ) P B QA P A S 正六边形 3..3 S 圆 S E 六边形 2 2 = =~n 1 ------ = _选 D S ^ABC S ^ABC 弋伶 3' IT 匸? 答案 D 2. 甲、乙两人独立地对同一目标各射击一次, 命中率分别为 0.6和0.5,现已知目标 被击中, 则它是被甲击中的概率为 ( ) A. 0.45 B. 0.6 C . 0.65 D. 0.75 P(B) = 0.6 X 0.5 + 0.4 X 0.5

答案 D 答案 4. 一个均匀小正方体的六个面中,三个面上标注数 1,两个面上标注数2, 一个面上标 注数3,将这个小正方体抛掷 2次,则向上的数之和为 3的概率为( ) 则所求的概率为 P(A 1B 2) + P(A 2B 1)= P(A"P(B 2) + P(A 2)P(B 1) 11111 答案 C 5. —个口袋中有5个白色乒乓球和5个黄色乒乓球(乒乓球除颜色不同外其他均相同 从中任取5次,每次取出1个后又放回,则抽取的5次中恰有3次取到白球的概率是( 1 A 2 D. C 5 ? 0.5 5 解析 由题意知,任取一次取到白球和黄球的概率均为 0.5.任意取球5次,恰有 取到白球的概率为 民(3) = C 5 ? 0.5 3 ? (1 — 0.5) 5一3= C ? 0.5 5. 答案 D 6. 如图,用K , A i , A 三类不同的元件连接成一个系统.当 K 正常工作且A i , A 至少有 一个正常工作时,系统正常工作.已知 K , A i , A 正常工作的概率依次为 0.9、0.8、0.8 , 3?国庆节放假,甲去北京旅游的概率为 1,乙、丙去北京旅游的概率分别为 1 4, 1 5 -假定 三人的行动相互之间没有影响,那么这段时间内至少有 1人去北京旅游的概率为( 59 A 60 3 B 5 1 C 2 1 D 60 解析 因甲、乙、丙去北京旅游的概率分别为 1 1 1 3, -, 5-因此,他们不去北京旅游的概率 分别为2, 4, 4,至少有1人去北京旅游的概率为 4 5 1 A 6 1 B 4 1 C-3 1 D-2 解析 设第i 次向上的数是 1为事件A ,第i 次向上的数是2为B i , i = 1,2,贝U P (A i ) =P(A 2)= 2, P(B 1)= P(B 2)= 3, C C

专题11.8 二项分布及其应用(练)(解析版)

专题11.8 二项分布及其应用 1. (河北省邯郸一中2019届期末)打靶时,甲每打10次可中靶8次,乙每打10次可中靶7次,若两人同时射击一个目标,则他们同时中靶的概率是( ) A.1425 B.1225 C.34 D.35 【答案】A 【解析】因为甲每打10次可中靶8次,乙每打10次可中靶7次,所以P (甲)=45,P (乙)=7 10,所以他 们都中靶的概率是45×710=14 25 . 2. (辽宁省抚顺一中2019届期中)先后抛掷硬币三次,则至少一次正面朝上的概率是( ) A.18 B.38 C.58 D.78 【答案】D 【解析】三次均反面朝上的概率是????123 =18,所以至少一次正面朝上的概率是1-18=7 8 . 3. (湖南省邵阳一中2019届期末)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( ) A.0.8 B.0.75 C.0.6 D.0.45 【答案】A 【解析】记事件A 表示“一天的空气质量为优良”,事件B 表示“随后一天的空气质量为优良”,P (A )=0.75,P (AB )=0.6.由条件概率,得P (B |A )= P (AB )P (A )=0.6 0.75 =0.8. 4. (江苏省徐州一中2019届期中)已知某批零件的长度误差(单位:毫米)服从正态分布N (0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为 (附:若随机变量ξ服从正态分布N (μ,σ2),则P (μ-σ<ξ<μ+σ)=68.26%,P (μ-2σ<ξ<μ+2σ)=95.44%.)( ) A.4.56% B.13.59% C.27.18% D.31.74% 【答案】B 【解析】依题设,X ~N (0,32),其中μ=0,σ=3.

2.2 二项分布及其应用(2)

作业: 一.选择题 1.甲、乙两人独立地解同一问题,甲能解决这个问题的概率是1p ,乙能解决这个问题的概率是2p ,那么其中至少有1人能解决这个问题的概率是 ( D ) A .21p p +; B .21p p ?; C .211p p ?-; D .121(1)(1)p p ---. 2.在一个盒子中有大小相同的10个球,其中6个红球,4个白球,两人无放回地各取一个球,则在第一个人摸出红球的条件下,第二个人也摸出红球的概率是 ( A ) A .13; B .23; C .49; D .59 . 【解析】设“第一个人摸出红球”为事件A ,“第二个人摸出红球”为事件B ,则()11692105490 C C P A A ?==,()11652103090C C P AB A ?==,则()()()5|9 P AB P B A P A ==。 3.两个独立事件1A 和2A 发生的概率分别为1p 和2p ,则有且只有一个发生的概率为 .()()122111p p p p -+- 4. (04年重庆) 甲、乙、丙三人每次射击命中目标的概率分别为0.7、0.6和0.5,计算: ⑴三人各向目标射击一次,求恰有两人命中目标及至少有一人命中目标的概率; ⑵若甲连续射击三次,求他恰好一次命中的概率. 解:⑴设i A (3,2,1=i )表示事件“第i 人命中目标”,显然1A 、2A 、3A 相互独立,且7.0)(1=A P ,6.0)(2=A P ,5.0)(3=A P . 三人中恰有两人命中目标的概率为 44.0)(321321321=??+??+??A A A A A A A A A P . 三人中恰有至少有一人命中目标的概率为 94.0)(1321=??-A A A P . ⑵设k A 表示“甲在第k 次命中目标”,3,2,1=k .显然1A 、2A 、3A 相互独立,且7.0)()()(321===A P A P A P . 甲连续射击三次,恰好一次命中的概率为 203.0)(321321321=??+??+??A A A A A A A A A P .

二项分布及其应用题型总结

二项分布专题训练 一。选择题 1.甲、乙两人独立地解同一问题,甲能解决这个问题得概率就是,乙能解决这个问题得概率就是,那么其中至少有1人能解决这个问题得概率就是( D ) A.; B.; C.;D、. 2.在一个盒子中有大小相同得10个球,其中6个红球,4个白球,两人无放回地各取一个球,则在第一个人摸出红球得条件下,第二个人也摸出红球得概率就是( A) A.; B.; C.; D。。 【解析】设“第一个人摸出红球”为事件A,“第二个人摸出红球"为事件B,则,,则。 3.两个独立事件与发生得概率分别为与,则有且只有一个发生得概率为。 4.(04年重庆) 甲、乙、丙三人每次射击命中目标得概率分别为0、7、0.6与0.5,计算: ⑴三人各向目标射击一次,求恰有两人命中目标及至少有一人命中目标得概率; ⑵若甲连续射击三次,求她恰好一次命中得概率、 解:⑴设()表示事件“第人命中目标”,显然、、相互独立,且,,。 三人中恰有两人命中目标得概率为 。 三人中恰有至少有一人命中目标得概率为 . ⑵设表示“甲在第次命中目标",、显然、、相互独立,且. 甲连续射击三次,恰好一次命中得概率为 . 5、已知在10只晶体管中有2只次品,从中连续抽取两件,且取出得产品不再放回,求下列事件得概率。 ⑴两只都就是正品; ⑵两只都就是次品、 解:设事件()表示第次取到正品,则表示第次取到次品、 依题意,,,,. ⑴表示第1次,第2次都取到正品,即表示两只都就是正品,根据乘法公式 、 ⑵。 另解:本题也可利用古典概型来解决。

点评:本题中由于就是两个都就是正(次)品,由于就是连续抽取且抽后不放回,故与条件概率有关。 6、(04年福建·理)甲、乙两人参加一次英语口试,已知在备选得10道题中,甲能答对其中得6道,乙能答对其中得8道,规定每次考试都从备选题中随机地抽出3道,至少答对2道才算合格。 ⑴求甲答对试题数得概率分布分布; ⑵求甲、乙两人至少有一人考试合格得概率。 解:⑴依题意,甲答对题数得概率分布如下: ⑵方法1:甲、乙两人至少有一人考试合格得概率为 、 方法2:∵甲、乙两人考试均不合格得概率为, ∴甲、乙两人至少有一人考试合格得概率为、 7。(07年天津·文科)已知甲盒内有大小相同得3个红球与4个黑球,乙盒内有大小相同得5个红球与4个黑球,现从甲、乙两个盒内各任取2个球。 (Ⅰ)求取出得4个球均为红球得概率; (Ⅱ)求取出得4个球中恰有1个红球得概率; 解:(Ⅰ)设“从甲盒内取出得2个球均为红球”为事件,“从乙盒内取出得2个球均为红球”为事件.由于事件相互独立,且 ,, 故取出得4个球均为红球得概率就是 。 (Ⅱ)设“从甲盒内取出得2个球中,1个就是红球,1个就是黑球;从乙盒内取出得2个红球为黑球"为事件,“从甲盒内取出得2个球均为黑球;从乙盒内取出得2个球中,1个就是红球,1个就是黑球”为事件、由于事件互斥,且 ,。 故取出得4个红球中恰有4个红球得概率为 。 8.(01年天津)如图,用、、三个不同得元件联结成两个电子系统(Ⅰ)、(Ⅱ)。当元件、、都正常工作时,系统(Ⅰ)正常工作;当元件正常工作且、至少有一个正常工作时,系统(Ⅱ)正常工作。已知元件、、正常工件得概率依次为、、,分别求系统(Ⅰ)、(Ⅱ)正常工作概率、,并说明哪个系统得稳定性好.

二项分布及其应用教案(绝对经典)

§12.5二项分布及其应用 会这样考 1.考查条件概率和两个事件相互独立的概念;2.考查n次独立重复试验及二项分布的概念;3.考查利用二项分布解决一些简单的实际问题. 1.条件概率及其性质 (1)对于任何两个事件A和B,在已知事件A发生的条件下,事件B发生的概率叫作条件概率,用符号 P(B|A)来表示,其公式为P(B|A)=P(AB) P(A) (P(A)>0). 在古典概型中,若用n(A)表示事件A中基本事件的个数,则P(B|A)=n(AB) n(A) . (2)条件概率具有的性质: ①0≤P(B|A)≤1; ②如果B和C是两个互斥事件,则P(B∪C|A)=P(B|A)+P(C|A). 2.相互独立事件 (1)对于事件A、B,若A的发生与B的发生互不影响,则称A、B是相互独立事件. (2)若A与B相互独立,则P(B|A)=P(B), P(AB)=P(B|A)P(A)=P(A)P(B). (3)若A与B相互独立,则A与B,A与B,A与B也都相互独立. (4)若P(AB)=P(A)P(B),则A与B相互独立. 3.二项分布 (1)独立重复试验是指在相同条件下可重复进行的,各次之间相互独立的一种试验,在这种试验中每一 次试验只有__两__种相互对立的结果,即要么发生,要么不发生,且任何一次试验中发生的概率都是一样的. (2)在n次独立重复试验中,事件A发生k次的概率为C k n p k(1-p)n-k(k=0,1,2,…,n)(p为事件A发生的 概率),若一个随机变量X的分布列如上所述,称X服从参数为n,p的二项分布,简记为X~B(n,p).期望:EX=n p 方差:DX=n p(1-p) [难点正本疑点清源] 1.“互斥事件”与“相互独立事件”的区别与联系 (1)“互斥”与“相互独立”都是描述的两个事件间的关系. (2)“互斥”强调不可能同时发生,“相互独立”强调一个事件 的发生与否对另一个事件发生的概率没有影响. (3)“互斥”的两个事件可以独立,“独立”的两个事件也可以互斥. 2.计算条件概率有两种方法 (1)利用定义P(B|A)=P(AB) P(A) ;

相关文档