文档视界 最新最全的文档下载
当前位置:文档视界 › 电生理实验

电生理实验

电生理实验
电生理实验

电生理实验

(一)神经干动作电位的测定

一.实验目的

(1)观察神经干动作电位的特点

(2)观察记录动作电位的幅度与刺激强度的关系、动作电位的潜伏期及演变过程。二.实验对象

蛙的坐骨神经-腓神经标本。

三.实验器材

蛙板、蛙钉、剪刀、镊子、玻璃分针、瓷盘、滴管、任氏液。神经标本屏蔽盒、生物信号采集处理系统、打印机等。

四.实验原理

细胞兴奋时,产生动作电位的部位的除极化过程,使该处细胞膜外的电位下降。因此,发生兴奋的部位相对于静止部位而言呈负电(细胞膜除外),即兴奋部位与邻近未兴奋部位之间存在电位差。这种电位差可以用电极以及生物信号采集系统进行记录和显示。

五.实验过程

(1)制备蛙的坐骨神经-腓神经标本。

(2)连接测试系统。

(3)调节生物信号采集处理系统的参数至合适的工作状态。

(4)进行动作电位观察。刺激强度由1V起逐步增大,直至观察到产生动作电位。记录此时的刺激强度。

(5)继续逐步增加刺激强度,观察记录动作电位的幅度与刺激强度之间的关系。

六.实验结果记录、分析

(1)刺激强度从1V起逐渐变大。

1V:

1.5V:

1.8V:

2V:

由于担心过大电压对神经干产生损伤,在增加到2V以后就没有再加大。

(2)随着刺激的增大,动作电位的幅值没有变化,一直稳定在1.810mV。这反映了动作电位的“全或无”特性。

七.注意事项

(1)神经标本分离出来以后,应在任氏液中浸泡片刻,以恢复并稳定其兴奋性。

(2)神经标本放入标本盒中后,应保持标本与电极之间的良好接触,并保持标本的湿润(否则标本将失去活性)。

(3)刺激应从低强度开始逐渐增加至适当强度,且不宜使用过强的刺激以及连续刺激标本,否则将会对标本产生不可逆转的损伤。

八.思考题

(1)用动作电位的“全或无”理论,解释实验中观察到的动作电位的幅度与刺激强度之间的关系。

实验中增大刺激强度时,动作电位的幅度并没有变化。因为动作电位存在“全或无”的特性;当动作电位传导到另一位置时,动作电位幅度因刺激强度的增大有所增大,这是因为实验所用的不是单一神经,而是多个神经组成的神经干,这与“全或无”是不矛盾的。(2)解释双相动作电位和单相动作电位的产生机制。

在神经干上放置一对记录电极a、b,静息时记录不到电位差。当在神经干一段进行刺激时,表现为负电位变化的动作电位由此极端向另一端传导。当其传导到a电极时,a、b 之间出现电位差,a负b正。此时可记录到上相波。当动作电位传至两电极之间是时,a、b 又处于等电位状态。动作电位进一步传导当到达b电极时,a、b之间又出现电位差,a正b 负,此时可记录到下相波。然后记录又回到零位。如此获得的呈双相变化的记录就称为双相动作电位。

但是,当a、b之间的或b处的神经干被阻断或损伤时,由于损伤电位的存在,在进

行刺激之前就能记录到电位。当在神经干另一端进行刺激时,a极的电位变化实际上是负电

位抵消 了损伤电位所致。动作电位传至阻断或损伤处,不能再引起电位的变化,故整个记录呈现为单相动作电位。

(二)神经兴奋传导速度的测定

一.实验目的

用电生理的方法记录神经纤维动作电位,并由此计算兴奋在神经纤维上的传导速度。

二.实验对象及器材与上相同。

三.实验原理

坐骨神经-腓神经受电刺激后所产生的动作电位为多根神经纤维动作电位的组合,即复合动作电位。测量两对记录电极之间的距离,测量并计算动作电位通过两记录电极的时间差,根据公式t d V /=即可计算出动作电位在该复合神经干上的大致传导速度。

四.操作步骤

(1)制备标本。

(2)连接系统。

(3)将记录电极1和记录电极2分别接于生物信号采集处理系统4个输入端中的任意两个,并选择该两通道进行显示。

(4)逐渐增大刺激强度直至在两对记录电极上均记录最大幅度的动作电位。

(5)用尺量出记录电极1和记录电极2之间的距离d 。

(6)用生物信号采集系统显示屏上的标尺分别测量记录电极1和记录电极2上记录下的刺激伪迹与动作电位起始点之间的时间差t1和t2,t1-t1=t 即为动作电位通过距离d 所用的时间。

(7)根据公式计算出动作电位在该神经干标本上的传导速度。

五.实验结果记录、分析

实验测得两处距离为1.2cm ,时间间隔为0.0004s ,由公式得:

s m t d v /300004.0/102.1/2=?==-

传导速度为30m/s 。

六.思考题

如果本实验只允许使用一对记录电极,用刺激电极与记录电极之间的距离除以从发出刺激信号到记录下动作电位所需的时间来计算神经纤维的传导速度,那么与本实验所采用的这种方法有何不同。

刺激开始的部位和动作电位开始的部位并不完全重合,它们之间的距离很难测定。如果只用一对测量电极,记录结果可能并不准确;用两对记录电极时,是利用它们间的相对距离来计算,结果较为准确。

(三)神经干兴奋不应期的测定

一.实验目的

(1)明确细胞兴奋性的周期性变化,在电生理特别是心脏电生理的研究中具有重要意义。(2)通过本实验了解不应期测量的基本方法,并巩固不应期的概念。

二.实验对象、实验器材与上相同。

三.实验原理

不应期是细胞电活动的主要特点之一。可兴奋细胞在受到一次刺激而产生动作电位之后,其兴奋性要经历一个周期性的变化:绝对不应期、相对不应期、超常期、低常期。不同的可兴奋细胞在不同的生理条件下的不应期可能存在着差异。测定坐骨神经-腓神经的不应期可通过逐步提高刺激频率(保持最大刺激强度不变),同时观察所记录下的动作电位幅度的变化情况来实现。由于所使用的实验对象是复合神经干,其中所包含的各神经纤维的不应期可能不同。所以,当记录到的动作电位的幅度开始减小,表明此时的刺激脉冲间隔(其倒数为刺激频率)已小于或等于神经干中某些神经纤维的不应期。

如继续减小刺激脉冲间隔,可观察到动作电位的幅度逐渐减小,直至记录不到动作电位,说明此时刺激脉冲的间隔已不大于该神经干所包含的所有神经纤维的不应期。

四.操作步骤

(1)制备标本,连接系统。

(2)用单刺激确定最大刺激强度。

(3)保持刺激强度不变,调整两个刺激脉冲之间的时间间隔,以使记录到的两个动作电位的幅度均保持单次刺激时所记录到的最大复合电位。

(4)在上一步骤基础上,逐步减小两个刺激脉冲之间的时间间隔,同时观察记录到的两个动作电位的幅度。当第二个动作电位的幅度开始减小时,记录此时两个刺激脉冲之间的时间间隔。该时间间隔表示的是复合神经干中神经纤维的最长的不应期。

(5)继续减小两个刺激脉冲之间的时间间隔,则第二个动作电位逐渐向第一个动作电位靠拢,且幅度也逐渐减小。当第二个动作电位消失时,记录此时两个刺激脉冲之间的时间间隔。该时间间隔表示的是复合神经干中神经纤维的最短的不应期。

五.实验结果记录、分析

第二图可显示第二个波形幅度减小时的时间间隔为3.8ms,此即为神经干的最长不应期;当第二个波形完全消失时的时间间隔是神经干的最短不应期,大约为零点几毫秒,不过数据没有被记录下来。

六.思考题

以本实验的方法能否准确测定绝对不应期?或者需要增加哪些步骤才能测定绝对不应期?第二个波形完全消失时即为刺激落在了神经干的绝对不应期内。并不能准确测出绝对不应期,这只是最短的绝对不应期;

要测得较长的绝对不应期,要在时间间隔长时,加大电刺激,如果幅度不增大即为在绝对不

应期内。

电生理基本技术

电生理基本技术 一电刺激。 二生物放大器正确选择,植物性神经冲动幅度多为50-100μV。不同组织,应采用不同的参数。如 ECG:振幅0.1-2mV,灵敏度0.5-1mV,时间常数0.1-1.0s,高频滤波1KHz 植物性神经冲动:振幅50-150μV,灵敏度25-100μV,时间常数0.01-0.1s,高频滤波3- 5KHz 中枢神经元单位放电振幅100-300μV, 灵敏度50-100μV,时间常数0.01-0.1s,高频滤波5-10KHz 三玻璃微电极 常用尖端0.5-5μm,向细胞内插入时,需小于0.5μm(细胞直径的1/10~1/100),且尖端的倾斜度应相当缓和,一般微电极可分为金属微电极和玻璃微电极两类。 金属微电极,现多用镀铂钨丝电极(platinum-plated tungsten electrode),在钨丝上镀铂,可极大改善电极的电学特性,噪声可大大降低,加之机械强度大,适合长期体外记录(paré D, Gaudreau H. Projection cells and interneurons of the lateral and basolateral amygdala: distinct firing patterns and differential relation to the thera and delta rhythms in conscious cats. J Neursci, 1996,16(10):3334-3350 现要也常用镀银碳纤维电极。玻璃微电极记录易受机械位移的影响,加之尖端的电解质会漏出或堵塞,不适合半小时以上的长时间记录,玻璃微电极可分单管和多管微电极。 毛坯管在国外多用Pyrex管,国内多用GG-17和95料玻管。细胞外记录多采用外径1.5-2mm 玻璃,细胞内记录则采用外径1mm细玻管,内外径之比约为2:3或5:6,长6-8cm。拉制前必须经过清洁处理。 清洁液:用等量的(250ml)王水(可反复应用)。一般毛坯管捆成把放入清洁液中1-2h,取出自来水冲洗20-30min,再放入无水酒精中洗涤,再放入盛满蒸馏水烧杯中加热煮沸10min,倒去蒸馏水,再换新蒸馏水反复3次,再放入烤箱中烤干,备用,切不可用市售的洗涤剂,以防降低电极充灌液的表面张力而影响冲灌。 充灌液常用3mol/L KCl,为避免Cl-扩散,也可用2mol/L醋酸钾或柠檬酸钾充灌,也有人用0.5-1mol/L NaCl(低浓度)充灌可降低噪音。细胞外记录时,最后再用3-4mol/L NaCl +2%旁胺天蓝溶液定位。在膜片钳中还常加钙螯合剂,如EGTA。 阻抗与不同组织相关。 四电生理实验中噪声和干扰的形成和排除。 (一)来源。 1干扰信号与生物电生理信号的鉴别。准确区分生物电信号与干扰的伪迹是电生理实验的先决条件。 2来源。主要有三个方面 其一。物理性干扰。1)静电和电磁的干扰实验室附近高压电,室内日光灯可产生50Hz的静电干扰,尤其是交流电,尤其是50Hz频率干扰最大(电子设备为50Hz)。其特点是幅度大,波形规则。 2)噪声干扰电子元件本身产生杂乱无章电压和电流称噪声,一般与放大器内部元件的质量与性能有关。 其二。接地不良。1)地线电阻应小。2)仪器故障。产生漏电电流,在地线上形成电位差,产生干扰。3)地线行走过程中打圈,形成线圈,易接受电场和磁场的干扰。4)各仪器设备应采

多通道电生理记录系统

多通道电生理记录系统功能和特点如下所示: 功能:电生理信号采集器,同时支持动作电信和场电位信号采集。 特点主要有: 1、全新数模转换芯片,大大减低环境噪音。 2、支持实验动物最多4*32通道的数据记录。 3、放大、滤波和虚地功能自行调节,采集通道自行定义,操作更简单。 4、同时支持动作电位和场电位信号采集,噪音更低,信号更稳定。 5、支持最大32通道数字/模拟信号输入,拓展性更强。 6、独特设计Headstage,体积大大缩小,支持小鼠自由运动实验。 7、体积小巧,携带方便,适合更多实验场合。 Multichannel electrophysiological recording system function and features: Function:It is a electrophysiological signal collector,which supports both action potential and resting potential signal acquisition. Features: 1.New digital-to-analog conversion chip greatly reduces environmental noise. 2.It supports data records of up to4*32channels of experimental animals. 3.The function of amplification,filtering can be self-adjusted.The acquisition channel is self-defined.And the operation is simpler. 4.It supports action potential and resting potential signal acquisition at the same time.It has lower noise and the signal is more stable. 5.It supports up to32channels of digital/analog signal input and more expandable. 6.Unique design of Headstage is greatly reduced in size,which supports mouse free movement experiment. 7.zIt is small size,easy to carry and suitable for more experiments.

细胞生物学未来情况

浅谈细胞生物学未来情况 11生科111003015 康明辉 摘要:著名生物学家威尔逊早在20世纪20年代就提出“一切生物学关键问题必须在细胞中找寻”。细胞是一切生命活动结构与功能的基本单位,细胞生物学是研究细胞生命活动基本规律的科学。细胞生物学的研究范围广泛,其核心可归结为遗传和发育问题。遗传是在发育中实现的,而发育又要以遗传为基础。当前细胞生物学的主要发展趋势是用分子生物学及物理、化学方法,深入研究真核细胞基因组的结构及其表达的调节和控制,以期从根本上揭示遗传和发育的关系,以及细胞衰老、死亡和癌变的原因等基本生物问题,并为把遗传工程技术应用到高等生物,改变其遗传性提供理论依据。20世纪90年代以来,分子生物学取得很大进展,这些进展促进了细胞结构和功能调控在分子水平上的研究 关键词:细胞遗传生物学发育 细胞生物学的研究范围广泛,其核心可归结为遗传和发育问题。遗传是在发育中实现的,而发育又要以遗传为基础。当前细胞生物学的主要发展趋势是用分子生物学及物理、化学方法,深入研究真核细胞基因组的结构及其表达的调节和控制,以期从根本上揭示遗传和发育的关系,以及细胞衰老、死亡和癌变的原

因等基本生物问题,并为把遗传工程技术应用到高等生物,改变其遗传性提供理论依据。20世纪90年代以来,分子生物学取得很大进展,这些进展促进了细胞结构和功能调控在分子水平上的研究。 目前对细胞研究在方法学上的特点是高度综合性,使用分子遗传学手段,对新的结构成分、信号或调节因子的基因分离、克隆和测序,经改造和重组后,将基因(或蛋白质产物)导入细胞内,再用细胞生物学方法,如激光共聚焦显微镜、电镜、免疫细胞化学和原位杂交等,研究这些基因表达情况或蛋白质在活细胞或离体系统内的作用。分子遗传学方法和细胞生物学的形态定位方法紧密结合,已成为当代细胞生物学研究方法学上的特点。另一方面,用分子遗传学和基因工程方法,如重组技术、、同源重组和转基因动植物等,对高等生物发育的研究也取得出乎意料的惊人进展。对高等动物发育过程,从卵子发生、成熟、模式形成和形态发生等方面,在基因水平的研究正全面展开并取得巨大进展。自从“人类基因组计划”实施以来,取得了出乎意料的迅速进展。2000年6月,国际人类基因组计划发布了“人类基因组工作框架图”,可称之为“人类基因草图”,这个草图实际上涵盖了人类基因组97%以上的信息。从“人类基因组工作框架图”中我们可以知道这部“天书”是怎样写的和用什么符号写的。2001年2月,包括中国在内的六国科学家发布人类基因组图谱的“基本信息”,这说明人类现在不仅知道这部“天书”是用什么

实验室常用菌株及特性

一、实验室常见菌株简介 Xl1-Blue菌株 基因型:endA1 gyrA96(nalR) thi-1 recA1 relA1 lac glnV44 F?[Tn10 proAB+ lacIq Δ(lacZ)M15] hsdR17(rK- mK+)。 特点:具有卡那抗性、四环素抗性和氯霉素抗性。 用途:分子克隆和质粒提取。 BL21(DE3)菌株 基因型:F– ompT gal dcm lon hsdSB(rB- mB-) λ(DE3 [lacI lacUV5-T7 gene 1 ind1 sam7 nin5])。 特点:该菌株用于以T7 RNA聚合酶为表达系统的高效外源基因的蛋白表达宿主。T7噬菌体RNA聚合酶基因的表达受控于λ噬菌体DE3区的lacUV5启动子,该区整合于BL21的染色体上。该菌适合于非毒性蛋白的表达。 用途:蛋白质表达。 BL21(DE3)ply菌株 基因型:F- ompT gal dcm lon hsdSB(rB- mB-) λ(DE3) pLysS(cm R)。 特点:该菌株带有pLysS,具有氯霉素抗性。此质粒还有表达T7溶菌酶的基因,T7溶菌酶能够降低目的基因的背景表达水平,但不干扰IPTG诱导的表达。适合于毒性蛋白和非毒性蛋白的表达。 用途:蛋白质表达 DH5α菌株 基因型:F- endA1 glnV44 thi-1 recA1 relA1 gyrA96 deoR nupG Φ80dlacZΔM15 Δ(lacZYA-argF)U169, hsdR17(rK-, λ– 特点:一种常用于质粒克隆的菌株。其Φ80dlacZΔM15基因的表达产物与pUC 载体编码的β-半乳糖苷酶氨基端实现α互补,可用于蓝白斑筛选。recA1和endA1的突变有利于克隆DNA的稳定和高纯度质粒DNA的提取。 用途:分子克隆、质粒提取和蛋白质表达。 JM109菌株 基因型:endA1 glnV44 thi-1 relA1 gyrA96 recA1 mcrB+ Δ(lac-proAB) e14- [F? traD36 proAB+ lacIq lacZΔM15]hsdR17(rK-mK+)。 特点:部分抗性缺陷,适合重复基因表达, 可用于M13克隆序列测定和蓝白斑 筛选。 用途:分子克隆、质粒提取和蛋白质表达。 DH10B菌株 基因型: F- mcrA Δ(mrr-hsdRMS-mcrBC) Φ80dlacZΔM15 ΔlacX74 endA1 recA1 deoR Δ(ara,leu)7697 araD139 galU galK nupG rpsL λ- The most widely used E. coli strain for BAC cloning is DH10B 。 host for pUC and other α-complementation vectors; pBR322

电生理学发展简史

电生理学发展简史(一) 生物电活动是机体一种基本的生命现象,它产生的基础是细胞膜上离子通道活动的总和效应。从生物电现象的发现到如今对离子通道功能与结构如此深入的了解,电生理学走过了200 多年的历程。 一、生物电现象的发现 最初的实验研究是从18 世纪后叶开始的。当时没有任何测量电流的仪器,只是发现利用电容器(如雷顿瓶)的放电,或雷电发生时竖起一根长导线,引导大气中的电,都可以刺激蛙的神经肌肉标本,引起肌肉收缩,所以当时就用蛙的神经肌肉标本作为电流存在的标志。1791 年意大利解剖学教授Galvani L 发现,如果将蛙腿的肌肉置于铁板上,再用铜钩钩住蛙的脊髓,当铜钩与铁板接触时肌肉就会发生收缩。他把这个现象的发生归因于机体的“动物电”(animal electricity )。他认为神经与肌肉带有相反的电荷,肌肉带正电,神经带负电,金属导体的作用是把神经与肌肉之间的电路接通。同时代的意大利物理学家Volta A 不同意Galvani 的见解,他认为实验中发现的电现象,不是动物机体产生的动物电,而是由于实验中连接肌肉和神经的金属不同所致,是不同金属接触时产生的电流刺激了肌肉标本,如果用同一种金属作导体,收缩就不会发生。事实上,Volta 和Galvani 的观点都有其正确的一面。Volta 后来因此而发明了伏特电池;Galvani 则继续进行了一个出色的实验。在无金属参与的情况下,他将一个肌肉标本横断,又将另一个神经肌肉标本的神经干搭在横断肌肉上,并使之跨越肌肉的完好面和损伤面,结果该神经支配的肌肉产生收缩,证实了动物电的存在。这成为第一次观察到生物电存在的电生理实验。但是直接测量到生物电的实验是在电流计发明之后。 1825 年意大利物理学家Nobili 发明电流计。 1837 年意大利物理学教授Matteucci C 用电流计在肌肉的横断面与未损伤部位之间,测量到电流流动,电流是从未损伤部位流向横断面的,所以横断面呈负电位。这是第一次直接测量到生物体内存在生物电的实验。 1843 年瑞士生理学家Du Bios-Reymond 用电流计观察到神经的损伤电位,也是损伤部位呈负性。1849 年,他又发现神经在活动期间出现负波动,即使用电流计从细胞外记录到的动作电位。 1850 年von Helmholtz H 测定了神经传导速度,证明蛙神经的传导速度仅20 ~ 30m/s 。此前人们认为既然电的传导速度等于光速,因而神经的传导速度可能也是光速。 二、早期对生物电发生机制的认识 1. Bernstein 的膜学说对于这种生物电现象的解释,当时提出了不同的学说。Du Bios-Reymond 认为,组织内带负电,外表带正电,是正常状态下存在的,即所谓“现存学说”(preexistence theory );而他的学生Hermann (Du Bios-Reymond )则认为,组织内的负电是被切割时组织损伤变质造成的,即所谓“变质学说”(alteration theory )。1890 年,著名的化学家Ostwald W 提出了膜的通透性理论,即如果在电解质弥散的途径上有一层半透膜,它只允许一种离子通过,而带有相反电荷的另一种离子不能通过,就会通过静电作用限制透过膜的离子不能进一步弥散,如此,在膜两侧就会形成电位差,它的大小可按Nernst 公式计算。1902 年Du Bios-Reymond 的另一名学生Bernstein J 接受了Ostwald 通透性理论,在现存学说的基础上提出了“膜学说”(membrane theory )。他根据细胞内液比细胞外液含较多的K +,而细胞损伤处电位较完好处为低的事实,推测静息时细胞内电位低于细胞外,并假定静息时细胞膜只对K +有通透性,由于胞内带正电荷的K +顺浓度差扩散到膜外,相应的负电荷仍留在膜内,使细胞膜呈现外正内负的极化状态,形成静息电位。按照Bernstein 的设想,细胞的静息电位就等于K +的平衡电位。动作电位则是由于膜在一瞬间失去了对K +的选择性通透,变得对所有离子通透性一过性地升高,导致膜两侧电位差瞬间消失。1904 年,他又设计了一个精巧的实验,证实肌肉切断后断面的负电位在0.3 s 后即出现,并持续缓慢地减小而不是

细胞生物学实验

实验室规则和要求 一般规定 1.上课第一天请先熟悉环境,牢记“安全”是进行任何实验最重要的事项。 2.在实验室内请穿著实验衣(最好长及膝盖下),避免穿著凉鞋、拖鞋(脚 趾不要裸露)。留有长发者,需以橡皮圈束于后,以防止引火危险或污染实验。 3.在实验室内禁止吸烟、吃东西、饮食、化妆、嚼口香糖、嬉戏奔跑,食 物饮料勿存放于实验室的冰箱中,实验桌上勿堆放书包、书籍、衣服外 套及杂物等。 4.所有实验仪器、耗材、药品等均属实验室所有,不得携出实验室外。每 组分配之仪器、耗材请在课程开始前确定清点与保管,课程结束后如数 清点缴回。公用仪器请善加爱惜使用。实验前后,请把工作区域清理擦 拭,并随时保持环境清洁。 5.实验前详阅实验内容,了解实验细节的原理及操作,注意上课所告知的 注意事项。实验进行中有任何状况或疑问,随时发问,切勿私自变更实 验程序。打翻任何药品试剂及器皿时,请随即清理。实验后,适切记下 自己的结果,严禁抄袭,确实关闭不用之电源、水、酒精灯及瓦斯等。 6.身体不适、睡眠不足、精神不济或注意力无法集中,请立即停止实验。 实验时间若延长,请注意时间的管制及自身的安全,不可自行逗留实验 室。 7.实验完毕,请清理实验室、倒垃圾、灭菌、关闭灯光及冷气,离开实验 室前记得洗手。 8.任何意外事件应立即报告教师或实验室管理人员,并应熟知相关之应变 措施。

药品 1.使用任何药品,请先看清楚标示说明、注意事项,翻阅物质安全资料, 查明是否对人体造成伤害,使用完毕请放回原位。 2.新配制的试剂请清楚注明内容物、浓度、注意事项及配制日期,为避免 污染,勿将未用完的药剂倒回容器内。 3.挥发性、腐蚀性、有毒溶剂(如甲醇、丙酮、醋酸、氯仿、盐酸、硫酸、 -巯基乙醇、甲醛、酚等)要在排烟柜中戴手套量取配制,取用完应随即盖好盖子,若不小心打翻试剂,马上处理。 4.有毒、致癌药剂例如丙稀酰胺(神经毒)、溴化乙啶(突变剂)、SDS(粉 尘)请戴手套及口罩取用,并勿到处污染,脱下手套后,养成洗手的好 习惯。 5.使用后的实验试剂和材料,应放在专用的收集桶内。固体培养基、琼脂 糖或有毒物品不得倒入水槽或下水道中。 6.使用刻度吸管取物时,切勿用嘴吸取,请用自动吸管或吸耳球。 仪器 1.使用仪器前先了解其性能、配备及正确操作方法,零件及附件严禁拆卸, 勿私自调整,并注意插座电压(110V或220V)之类别。 2.使用离心机时,离心管要两两对称、重量平衡,离心机未停下不得打开 盖子。冷冻离心机于开机状态时,务必盖紧盖子,以保持离心槽之低温并避免结霜。 3.电源供应器有高电压,切勿触摸电极或电泳槽内溶液,手湿切勿开启电 源。

电生理实验常见问题解答

电生理实验常见问题解答(1)『』 2010-10-09 14:53 请问目前分析细胞外放电的信号处理软件较好的是什么? 价格昂贵的有国外的PCLAMP系列软件和POWERLAB;价格便宜的较好用的有国产的PCLAB 和MEDLAB。如果感兴趣输入GOOGLE,一搜即知。axon guide是很经典的哦,大家可以到公司主页上下载本书主要针对PATCH,是AXON公司的产品配套广告说明书,但是也包含了不少基本电生理知识,集中阅读一下第1、2章节有帮助。可以下载看看,如下,.axon.请教:干扰的大小如何检测? 检测干扰大小和你记录电信号一样,可以从相关软件读出来,也可以从示波器上读出。建议丁香妹妹找一些基础电生理书籍熟悉一下,不要着急,先入门为重。 请问微电极的电阻如何测量?怎样才能保证电极尖端已被电极液完全充满? 给予电极一个电流/电压,可以从示波器上读出来,也可以从相应的放大器上显示出来。建议购买带有芯的玻璃电极,这样可以简单地从尾部灌入液后,轻轻用手指敲打电极即可;如果是无芯电极,就需要先用注射器将电极尖端充满,而后在从尾部灌入液。 问题是有时尖端太细,从尾部注入液后,很难保证尖端全被充满. 注射器接皮管——皮管接电极尾部——电极尖端深入电极液中——抽吸注射器——电极尖端充满液体——再从电极尾部管电极液——解决问题了。 我在记录细胞外放电时,干扰太大,诸如50hz的交流电干扰,请问如何尽可能地排除这些干扰信号? 交流电干扰应该不难处理,只需要中间接一个直流电转换器即可。 我想用Patch做平滑肌的BK通道,请教Pleace前辈,在酶解法分离细胞时,使用DMEM会因为含钙高而影响结果吗?文献多数都用无钙液,如果使用前我用PBS洗三次是否可以? 你最好用无钙液,即使后来用PBS洗三次也不可以。因为之前的无钙液操作不仅可以保护细胞,而且可以使之处于低兴奋状态。 屏蔽和接地是电生理基本要求。如果你记录的信号足够大的话,可以不用屏蔽。但生物电信号一般都很弱,这就是为什么要屏蔽和接地。也是为什么很多时候晚上做实验干涉小——因为晚上用大功率电器的人相对少些,空间的电磁干扰相对小些,地线相对也干净一些。屏蔽笼即法拉第笼,一般是一层铜网,一层铁网。铜网屏蔽电,铁网屏蔽磁。屏蔽笼和系统的信号共地。关于地线,根据你的系统所记录的信号的强弱要求可以不同,信号越弱,要求越高。一般细胞外记录甚至更粗的记录要求相对不高。要是做到单通道水平,就不是凑合能解决问题的。就是这样,电生理的地线也应该和公共地线区分开来。一般比较正规的电生理实验室的地线应该单独埋设。地线埋设的要求其实很简单,尽量减小对地电阻。但实施起来就有很多方法了。我听说的一个方法是:从实验室下到地的主线用大概10cm 的铜缆。地上要挖个深1.5—1.8m、1.5*1.5m宽的坑。铜缆用铜铆钉(尽量减少材质造成的电阻差异)焊在一块1.5m*1.5m*4cm的铜板上。铜板放入坑中。板上埋2.5kg食盐、2.5kg 木炭。再将坑添上。主线到各个信号地分支点用铜棒焊接。铜棒上钻孔接地线。仪器电源不直接接到公共电源上,而是通过稳压隔离电源后接到另设的电源上。仪器电源的地线和系统的信号地分开接地。信号地接到单独埋设的地线上。仪器电源的地线也就是三相插头的顶端那个插头很多时候不接。 震动太大:可能原因有防震台防震效果不好,充气不足,或是实验室附近有什么强振动源;记录槽设计是否合理;液体流速是否太快? 记录系统是否稳定:微电极放大器电容补偿是否调好,是否需要校正?记录系统干扰和噪声情况如何?

电生理实验室电极植入手术基本流程

动物头部电极植入手术操作流程 一、大鼠麻醉选择与使用: 1、麻醉剂选择:戊巴比妥钠 40~60mg/kg,体重小于300g时,可考虑55mg/kg或酌 情减少用量(2-3%浓度);或乌拉坦1~1.5g/kg(20-25%浓度) 2、根据体重换算出麻药用量,注意所配药品浓度,根据需要的mg数,决定注射的ml. 3、给药途径:腹腔注射 4、操作流程:右手轻轻捉住大鼠尾巴,将大鼠放置在鼠笼上方或操作台上,待其安静后,可用左手的姆指和食指捏住耳后枕颈部皮肤即可提起,掌心向上将鼠体置于掌心中,用无名指和小指将鼠尾压住。腹腔注射位置:两大腿根部水平线,中线旁1-2cm.腹腔平面向上倾斜45°,插入时有落空感,回抽无血,匀速注入。 5、电极植入中麻醉维持:如手术时间过长,动物麻醉效果减轻时,可用乙醚适当吸入麻醉。 二、电极制作 实验中所用电极应预先准备,根据实验目的和要求,选择不同电极。 1、皮层电极,可选用小不锈钢螺钉(眼镜/手表用螺钉) 2、深部电极,采用绝缘金属丝制作 三、手术流程 1、术前准备: (1)手术器件准备: 大、小手术剪各1把,弯头止血钳4-6把(用于暴露手术视野),手术刀柄及刀片,直止血钳1-2把(用于手术中夹持止血),持针器1把(用于皮肤缝合),手术针(弯针),缝线若干,小螺丝刀1把(用于固定螺钉电极),有齿镊1把,小手术镊1-2把,钻头1-2个(大小根据实验需要确定),手术盘(手术中放置手术器件)1个,器件盒1个(用于手术器件消毒保存) 上述手术器件需要进行消毒灭菌处理(高温高压消毒或75%酒精浸泡30分钟。(2)其它实验所需物品 玻璃器皿(盛水,用于丢弃毛发),消毒棉棒,明胶海绵(止血用,需要事先剪成小

数字神经电生理系统配置及功能

数字神经电生理系统配置及功能 硬件部分: 功能模块及配件 模块功能: ,NET平台、多语言界面(中/英/俄/法/德)、自定个性化操作/回放界面、支持网络数据库、即时查看报告设定条件查找数据、灵活设置多样的采集模板、分析模板(可达到自动采集和自动分析) 基于MS Word的专业报告输出、可设置个性化报告模板适于各种应用 基本EEG采集、存储(支持网络数据库)、检索、分析、回放;多种参数2维(可实时)和3维地形图 实时棘尖波/癫痫活动监测、回放棘尖波/癫痫活动搜索及分析、频谱/趋势图/aEEG及分析; 相关分析/相干分析/小波分析/独立成分分析 导联设置可满足“10-20”和“10-10”系统可包含非EEG导联; 模块功能: 支持实时视频图像与EEG同步采集,可轻松实现双视频

睡眠采集/分析功能 具有EEG、眼动、下颌肌电、心电、腿动、血氧、二氧化碳浓度等采集功能 可完成睡眠分期、心率分析、腿部运动分析、血氧分析、睡眠现象搜索等 各种参数趋势图 模块功能: 闪光视觉诱发电位(FVEP)、模式翻转视觉诱发电位(PVEP) 脑干听觉诱发电位(ABR)、中/长潜伏期听觉诱发电位(MLAEP/LLAEP)、前庭诱发肌源性电位(VEMP) 体感诱发电位(SSEP)、脊髓诱发(TSEP)、三叉体感诱发(SCEP) 认知电位(P300)、失匹配阴性波(MMN)、伴随负反应(CNV);

模块功能: 神经传导 运动神经传导;感觉神经传导;微移;复合传导;F波;H反射、H反射(成对刺激);重复电刺激;瞬目反射 交感皮肤反应;运动单位数目估算(MUNE);震颤分析;骶骨反射;球海绵体反射; T反射(*);经颅磁刺激(*);*项需另外购买相应的刺激器 定量肌电图 自发肌电:静息、纤颤、束颤、正锐波、肌强直放电、椎体束外刚性、震颤 干扰相分析(IPA):翻转幅度-翻转频率图/表、频谱分析图/表 运动单位分析(MUP):自动MUP采集和手动MUP采集、幅度分布/时限分布/相位分布/时限-幅度分布图表单纤维肌电图(SFEMG)、 巨肌电图 模块功能: 治疗多动症、矫正成瘾等 多用于科研 模块功能: R-R interval; R-R Valsalva; cardio-vascular refiex test 模块功能(此模块必须与脑电图模块和常规诱发电位模块同时配置): 多达21通道的(与脑电图同步)P300、CNV、MMN以及和 长潜伏期听觉诱发电位 视觉诱发电位 诱发电位地形图

电生理实验常见问题解答

电生理实验常见问题解答(1)『转载』 2010-10-09 14:53 请问目前分析细胞外放电的信号处理软件较好的是什么? 价格昂贵的有国外的PCLAMP系列软件和POWERLAB;价格便宜的较好用的有国产的PCLAB 和MEDLAB。如果感兴趣输入GOOGLE,一搜即知。axon guide是很经典的哦,大家可以到公司主页上下载本书主要针对PATCH,是AXON公司的产品配套广告说明书,但是也包含了不少基本电生理知识,集中阅读一下第1、2章节有帮助。可以下载看看,网站如下,https://www.docsj.com/doc/6b17876239.html, 请教:干扰的大小如何检测? 检测干扰大小和你记录电信号一样,可以从相关软件读出来,也可以从示波器上读出。建议丁香妹妹找一些基础电生理书籍熟悉一下,不要着急,先入门为重。 请问微电极的电阻如何测量?怎样才能保证电极尖端已被电极内液完全充满? 给予电极一个电流/电压,可以从示波器上读出来,也可以从相应的放大器上显示出来。建议购买带有芯的玻璃电极,这样可以简单地从尾部灌入内液后,轻轻用手指敲打电极即可;如果是无芯电极,就需要先用注射器将电极尖端充满,而后在从尾部灌入内液。 问题是有时尖端太细,从尾部注入内液后,很难保证尖端全被充满. 注射器接皮管——皮管接电极尾部——电极尖端深入电极液中——抽吸注射器——电极尖端充满液体——再从电极尾部管电极内液——解决问题了。 我在记录细胞外放电时,干扰太大,诸如50hz的交流电干扰,请问如何尽可能地排除这些干扰信号? 交流电干扰应该不难处理,只需要中间接一个直流电转换器即可。 我想用Patch做平滑肌的BK通道,请教Pleace前辈,在酶解法分离细胞时,使用DMEM会因为含钙高而影响结果吗?文献多数都用无钙液,如果使用前我用PBS洗三次是否可以? 你最好用无钙液,即使后来用PBS洗三次也不可以。因为之前的无钙液操作不仅可以保护细胞,而且可以使之处于低兴奋状态。 屏蔽和接地是电生理基本要求。如果你记录的信号足够大的话,可以不用屏蔽。但生物电信号一般都很弱,这就是为什么要屏蔽和接地。也是为什么很多时候晚上做实验干涉小——因为晚上用大功率电器的人相对少些,空间的电磁干扰相对小些,地线相对也干净一些。屏蔽笼即法拉第笼,一般是一层铜网,一层铁网。铜网屏蔽电,铁网屏蔽磁。屏蔽笼和系统的信号共地。关于地线,根据你的系统所记录的信号的强弱要求可以不同,信号越弱,要求越高。一般细胞外记录甚至更粗的记录要求相对不高。要是做到单通道水平,就不是凑合能解决问题的。就是这样,电生理的地线也应该和公共地线区分开来。一般比较正规的电生理实验室的地线应该单独埋设。地线埋设的要求其实很简单,尽量减小对地电阻。但实施起来就有很多方法了。我听说的一个方法是:从实验室下到地的主线用大概10cm 的铜缆。地上要挖个深1.5—1.8m、1.5*1.5m宽的坑。铜缆用铜铆钉(尽量减少材质造成的电阻差异)焊在一块1.5m*1.5m*4cm的铜板上。铜板放入坑中。板上埋2.5kg食盐、2.5kg 木炭。再将坑添上。主线到各个信号地分支点用铜棒焊接。铜棒上钻孔接地线。仪器电源不直接接到公共电源上,而是通过稳压隔离电源后接到另设的电源上。仪器电源的地线和系统的信号地分开接地。信号地接到单独埋设的地线上。仪器电源的地线也就是三相插头的顶端那个插头很多时候不接。 震动太大:可能原因有防震台防震效果不好,充气不足,或是实验室附近有什么强振动源;记录槽设计是否合理;液体流速是否太快? 记录系统是否稳定:微电极放大器电容补偿是否调好,是否需要校正?记录系统干扰和噪

心电电生理网络管理系统解决方案

心电电生理信息管理系统解决方案(院内、院外) 沈阳市威灵医用电子有限公司

目录 一、公司简介---------------------------------------------------------------3 二、项目背景---------------------------------------------------------------5 三、建设心电信息管理系统的意义------------------------------------5 四、院内解决方案 1、院方需求---------------------------------------------------------7 2、解决方案---------------------------------------------------------9 3、实施步骤--------------------------------------------------------30 五、区域电生理联网系统 1、概述--------------------------------------------------------------32 2、解决方案--------------------------------------------------------33 3、实施步骤--------------------------------------------------------38 六、整体项目实施周期表----------------------------------------------39 七、售后服务及承诺-----------------------------------------------------40

电生理基础知识

病人需常规穿刺锁骨下静脉,股静脉,必要时穿动脉,常规放置心内电生理电极导管,最长的为高位右房(HR),HIS束,冠状窦CS,和右室心尖(RV)和射频导管熟称“大头”常规投照体位位左前斜位(LAO)右前斜位(RAO)前后位(AP)和后前位(PA)

LAO 下两个瓣环的大概位置注意CS 电极的形状

RAO下4个电极的位置 正位AP 注意一下脊柱的位置和电极弧度的变化 上两图为RAO、下为LAO 分别显示了环肺标测电极分别进入左上LSPV、右上RSPV、左下LIPV、右下RIPV肺静脉的情况

心律失常的射频消融已经从原来的二维观察过度到现在的三维重建,目前三维的的操作界面有两种,一种为圣犹达的Ensite 3000系统分NavX和Array ,NavX 系统为接触式标测,Array 为非接触式标测,就是熟称的“球囊”再有一种就是强生的“CARTO" 介绍一下Ensite 3000指导下的常见消融 这是该系统的电极贴片 Ensite系统采用的是贴片定位技术,分六块贴片,前后、左右、头颈后部,和左大腿内侧 中间的是一个计时模块,一旦激活计时模块,系统便倒计时18小时。 这是ensite系统的组成,想有些同道在导管室已经见过了,但还是给大家看一下

以房颤消融AF为例简要说明一下,第一步,导管进入心腔后由于AF需要穿房间隔,待穿刺后激活系统,系统可以显示导管在心腔内的位置,注意,图中一个长的是放在CS的冠状窦电极,一个是在心房4极电极 这是用导管在建立左心房模型,导管到过的位置就可以被记录下来,这样可以用导管在心腔内勾画一个模型,而且是立体的,图中是建的左房,因为房颤要打左房和肺静脉

常用分子生物学和细胞生物学实验技术介绍

常用分子生物学和细胞生物学实验技术介绍 (2011-04-23 11:01:29)转载▼ 标签:分子生物学细胞生物学常用实用技术基本实验室技术生物学实验教育 常用的分子生物学基本技术 核酸分子杂交技术 由于核酸分子杂交的高度特异性及检测方法的灵敏性,它已成为分子生物学中最常用的基本技术,被广泛应用于基因克隆的筛选,酶切图谱的制作,基因序列的定量和定性分析及基因突变的检测等。其基本原理是具有一定同源性的原条核酸单链在一定的条件下(适宜的温室度及离子强度等)可按碱基互补原成双链。杂交的双方是待测核酸序列及探针(probe),待测核酸序列可以是克隆的基因征段,也可以是未克隆化的基因组DNA和细胞总RNA。核酸探针是指用放射性核素、生物素或其他活性物质标记的,能与特定的核酸序列发生特异性互补的已知DNA或RNA片段。根据其来源和性质可分为cDNA探针、基因组探针、寡核苷酸探针、RNA探针等。 固相杂交 固相杂交(solid-phase hybridization)是将变性的DNA固定于固体基质(硝酸纤维素膜或尼龙滤膜)上,再与探针进行杂交,故也称为膜上印迹杂交。 斑步杂交(dot hybridization) 是道先将被测的DNA或RNA变性后固定在滤膜上然后加入过量的标记好的DNA或RNA探针进行杂交。该法的特点是操作简单,事先不用限制性内切酶消化或凝胶电永分离核酸样品,可在同一张膜上同时进行多个样品的检测;根据斑点杂并的结果,可以推算出杂交阳性的拷贝数。该法的缺点是不能鉴定所测基因的相对分子质量,而且特异性较差,有一定比例的假阳性。 印迹杂交(blotting hybridization) Southern印迹杂交:凝胶电离经限制性内切酶消化的DNA片段,将凝胶上的DNA 变性并在原位将单链DNA片段转移至硝基纤维素膜或其他固相支持物上,经干烤固定,再与相对应结构的已标记的探针进行那时交反应,用放射性自显影或酶反应显

电生理实验

电生理实验 (一)神经干动作电位的测定 一.实验目的 (1)观察神经干动作电位的特点 (2)观察记录动作电位的幅度与刺激强度的关系、动作电位的潜伏期及演变过程。二.实验对象 蛙的坐骨神经-腓神经标本。 三.实验器材 蛙板、蛙钉、剪刀、镊子、玻璃分针、瓷盘、滴管、任氏液。神经标本屏蔽盒、生物信号采集处理系统、打印机等。 四.实验原理 细胞兴奋时,产生动作电位的部位的除极化过程,使该处细胞膜外的电位下降。因此,发生兴奋的部位相对于静止部位而言呈负电(细胞膜除外),即兴奋部位与邻近未兴奋部位之间存在电位差。这种电位差可以用电极以及生物信号采集系统进行记录和显示。 五.实验过程 (1)制备蛙的坐骨神经-腓神经标本。 (2)连接测试系统。 (3)调节生物信号采集处理系统的参数至合适的工作状态。 (4)进行动作电位观察。刺激强度由1V起逐步增大,直至观察到产生动作电位。记录此时的刺激强度。 (5)继续逐步增加刺激强度,观察记录动作电位的幅度与刺激强度之间的关系。 六.实验结果记录、分析 (1)刺激强度从1V起逐渐变大。 1V: 1.5V:

1.8V: 2V:

由于担心过大电压对神经干产生损伤,在增加到2V以后就没有再加大。 (2)随着刺激的增大,动作电位的幅值没有变化,一直稳定在1.810mV。这反映了动作电位的“全或无”特性。 七.注意事项 (1)神经标本分离出来以后,应在任氏液中浸泡片刻,以恢复并稳定其兴奋性。 (2)神经标本放入标本盒中后,应保持标本与电极之间的良好接触,并保持标本的湿润(否则标本将失去活性)。 (3)刺激应从低强度开始逐渐增加至适当强度,且不宜使用过强的刺激以及连续刺激标本,否则将会对标本产生不可逆转的损伤。 八.思考题 (1)用动作电位的“全或无”理论,解释实验中观察到的动作电位的幅度与刺激强度之间的关系。 实验中增大刺激强度时,动作电位的幅度并没有变化。因为动作电位存在“全或无”的特性;当动作电位传导到另一位置时,动作电位幅度因刺激强度的增大有所增大,这是因为实验所用的不是单一神经,而是多个神经组成的神经干,这与“全或无”是不矛盾的。(2)解释双相动作电位和单相动作电位的产生机制。 在神经干上放置一对记录电极a、b,静息时记录不到电位差。当在神经干一段进行刺激时,表现为负电位变化的动作电位由此极端向另一端传导。当其传导到a电极时,a、b 之间出现电位差,a负b正。此时可记录到上相波。当动作电位传至两电极之间是时,a、b 又处于等电位状态。动作电位进一步传导当到达b电极时,a、b之间又出现电位差,a正b 负,此时可记录到下相波。然后记录又回到零位。如此获得的呈双相变化的记录就称为双相动作电位。 但是,当a、b之间的或b处的神经干被阻断或损伤时,由于损伤电位的存在,在进 行刺激之前就能记录到电位。当在神经干另一端进行刺激时,a极的电位变化实际上是负电

VOLAB细胞生物学实验室规划设计

VOLAB细胞生物学实验室规划设计 一、细胞生物学实验的定位与实验内容 细胞生物学是当今生命科学中的重要基础学科和前沿学科,对于学生们一个入 学考试的基本要求,通过综合考虑, VOLAB对于生物细胞实验室规划设计更胜 一筹,实现了实验室规划设计时的创新和科研能力。实现了现代化实验室设计 的一些基本原理。 细胞生物学教学内容量大面广,对学生的知识、能力和素质具有直接和长远的 影响。教学内容要反映当前国际生命科学的发展,细胞生物学发展日新月异, 新内容层出不穷。因此,要求学生牢固掌握细胞的基本结构和功能及各细胞器 间的关系的基本知识,并且能够了解细胞生物学的热点领域中的研究进展和未 来的发展趋势,包括细胞增殖、分化、衰老与凋亡、细胞信号传递、基因表达 与调控等内容。 细胞生物学实验室设计应根据理论教学大纲,让通过显微镜了解各种细胞器的 的结构和功能,通过基础训练使学生掌握细胞化学显示技术、染色体技术、细 胞培养技术以及细胞器分离技术。通过综合设计实验培养学生对细胞生物学的 研究兴趣和勇于探索科学真理精神,使学生能够从生命现象中发现细胞生命活 动的内在本质和规律,能够运用已学到的细胞生物学知识去研究和探索生命科 学中与细胞生物学有关的课题,最终达到提高学生分析问题与解决问题的能力 和创新能力的目的,为本科生今后从事生命科学的研究与深造打下坚实的基础。 本科细胞生物学实验根据不同专业方向的要求,实验学时一般在24~48学时之间,细胞生物学实验内容的选择既要考虑对细胞生物学理论知识进行验证,巩 固和加强基础理论知识的理解,又要熟悉细胞生物学研究的一些基本方法,培 养细胞生物学实验设计和科研能力;更重要的是使学生能够通过综合设计实验 加强学生的创新思维能力。因此,必须强调实验室设计内容的先进性,综合性 实验内容的典型性,设计性实验内容的创新性。 细胞生物学实验主要包括三个部分,第一部分主要是显微镜技术和细胞形态学 观察以及部分细胞化学技术,第二部分为细胞生物学基本实验技术,第三部分 为综合设计实验,特别是设计内容可以让学生自由选题,开展与细胞生物学相 关的课题研究,鼓励学生进入教师的科研课题,为学生提供更好的实验环境。

实验室常用细胞株

ATCC? Number: CRL-2865? Price: $329.00 Designations: T47D-KBluc Depositors: VS Wilson Biosafety Level: 1 Shipped: frozen Medium & Serum: See Propagation Growth Properties: adherent Organism: Hom o sapi ens (human) Morpholog y: epithelial Source: Organ: mammar y gland; breas t Tissue: duct Disease: ductal carcinoma Derived from metastatic site: pleural effusion Cell T y p e: epithelialtransfected with reporter plas mid Permits/F orms: In addition to the MTA menti oned above, other ATCC and/or regulatory per mits may be required for the transfer of this ATCC material. Any one purchasing ATCC material is ultimatel y r esponsible for obtaining the permits. Please click here for information regarding the s pecific requirements for shipment to your loc ation. Reverse Transcript: N Age: 54 years adult HeLa Mar kers: N

心电及电生理系统项目

心电及电生理系统项目 招 标 书

一、项目名称:心电及电生理网络系统项目 项目概述 心电电生理管理系统是医院电子病历系统的重要组成部分,该系统可以把全医院的动态心电图数据,运动心电图、肌电图、脑电图、TCD、肺功能、骨密度等心电电生理数据整合在同一平台。在医院的信息管理平台上,心电电生理检查完全实现在网上申请、收费、预约和登记,实时在线诊断,网上传输报告及远程会诊等,使全医院的各种电生理数据、报告实现数字化,网络化,无纸化集中管理。 根据信息化建设规划,结合临床应用,需要建设心电电生理网络系统,实现医院的心电电生理检查数据联网,实现数据共享,并且和医院电子病历和体检信息管理系统整合。在数字化平台下实现以下功能: 1、心电电生理报告的管理及整合 实现心电电生理检查的数字化,心电电生理检查报告和电子病历系统整合,实现在电子病历信息平台下能够调阅病人历次检查报告。 2、优化检查流程 对接医院内部现有的设备,包括心脏电生理科、呼吸内科、耳鼻喉科等的检查流程进行优化。系统能实现报告的集中管理、WEB共享,并且完善和医院现有信息系统的接口,使得数据融入到医院的整个系统中。 二、投标人资格要求: 1.具有独立法人资格和合法的经营资格,提供营业执照副本。 2.必须由法定代表人或其委托代理人参加投标,提供法定代表人或其委托代理 人的身份证,委托代理人参加投标的须提供法定代表人授权书. 3.提供具有履行合同所必需的设备和专业技术能力。 4.没有被列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违 法失信行为记录名单及其他不符合规定条件的供应商。 5.本项目不接受联合投标; 注:上述条款要求文档应须同时提供原件备查、复印件加盖公章。 三、评标方法:竞价采购 四、招标内容:

相关文档