文档视界 最新最全的文档下载
当前位置:文档视界 › 数值分析试题及答案.

数值分析试题及答案.

数值分析试题及答案.
数值分析试题及答案.

一、单项选择题(每小题3分,共15分) 1. 3.142和3.141分别作为π

的近似数具有( )和( )位有效数字.

A .4和3

B .3和2

C .3和4

D .4和4

2. 已知求积公式

()()2

1

121

1()(2)636f x dx f Af f ≈

++?

,则A =( )

A . 16

B .13

C .12

D .2

3

3. 通过点

()()0011,,,x y x y 的拉格朗日插值基函数()()01,l x l x 满足( )

A .

()00l x =0,

()110l x = B .

()00l x =0,

()111

l x =

C .()

00l x =1,()111

l x = D . ()

00l x =1,

()111

l x =

4. 设求方程

()0

f x =的根的牛顿法收敛,则它具有( )敛速。

A .超线性

B .平方

C .线性

D .三次

5. 用列主元消元法解线性方程组

1231231

220223332

x x x x x x x x ++=??

++=??--=? 作第一次消元后得到的第3个方程( ).

A .

232x x -+= B .232 1.5 3.5x x -+= C .

2323x x -+= D .230.5 1.5x x -=-

单项选择题答案

1.A

2.D

3.D

4.C

5.B

分 评卷人

二、填空题(每小题3分,共15分)

1. 设T

X )4,3,2(-=, 则=1||||X ,2||||X = .

2. 一阶均差

()01,f x x =

3. 已知3n =时,科茨系数()()()

33301213,88C C C ===,那么

()

33C = 4. 因为方程()420

x f x x =-+=在区间

[]1,2上满足 ,所以()0f x =在区间

内有根。

5. 取步长0.1h =,用欧拉法解初值问题

()211y

y y

x y ?'=+??

?=?

的计算公式 .

填空题答案

1. 9和29

2.

()()

0101

f x f x x x --

3. 1

8 4. ()()120

f f < 5. ()12

00.1

1.1,0,1,210.11k k y y k k y +???? ?=+? ?=+????

=??L

得 分 评卷人

三、计算题(每题15分,共60分)

1. 已知函数

21

1y x =

+的一组数据:

求分

段线性插值函数,并计算

()

1.5f 的近似值.

计算题1.答案

1. 解 []0,1x ∈, ()1010.510.50110x x L x x --=?+?=---%

[]1,2x ∈,()210.50.20.30.81221x x L x x --=?+?=-+--%

所以分段线性插值函数为

()[][]10.50,10.80.31,2x x L x x x ?-∈?=?-∈??%

()1.50.80.3 1.50.35

L =-?=%

2. 已知线性方程组123123123

1027.21028.35 4.2

x x x x x x x x x --=??

-+-=??--+=?

(1) 写出雅可比迭代公式、高斯-塞德尔迭代公式;

(2) 对于初始值

()()

0,0,0X =,应用雅可比迭代公式、高斯-塞德尔迭代公

式分别计算()

1X

(保留小数点后五位数字).

计算题2.答案

1.解 原方程组同解变形为 1232133

120.10.20.720.10.20.830.20.20.84

x x x x x x x x x =++??

=-+??=++?

雅可比迭代公式为

()()()()()()

()()()1123121313120.10.20.72

0.10.20.830.20.20.84m m m m m m m m m x x x x x x x x x +++?=++??=-+??=++??(0,1...)m = 高斯-塞德尔迭代法公式

()()()()()()

()()()11231121

31113120.10.20.72

0.10.20.830.20.20.84m m m m m m m m m x x x x x x x x x ++++++?=++??=-+??=++?? (0,1...)m =

用雅可比迭代公式得

()()

10.72000,0.83000,0.84000X =

用高斯-塞德尔迭代公式得

()()

10.72000,0.90200,1.16440X =

3. 用牛顿法求方程3310x x --=在

[]1,2之间的近似根 (1)请指出为什么初值应取2?

(2)请用牛顿法求出近似根,精确到0.0001.计算题3.答案

3. 解

()331

f x x x

=--,()130

f=-<,()210

f=>

()233

f x x

'=-

()12

f x x

''=

()2240

f=>,故取2

x=作初始值迭代公式为

()

()

3

111

112

11

31

33

n n n

n n n

n n

f x x x

x x x

f x x

---

--

--

--

=-=-

'-()

3

1

2

1

21

()

31

n

n

x

x

-

-

+

-

,1,2,...

n= 0

2

x=,()

3

12

231

1.88889

321

x

?+

==

?-

()

3

22

2 1.888891

1.87945

3 1.888891

x

?+

==

?-21

0.009440.0001

x x

-=>

()

3

32

2 1.879451

1.87939

3 1.879451

x

?+

==

?-

,32

0.000060.0001

x x

-=<

方程的根 1.87939

x*≈

4. 写出梯形公式和辛卜生公式,并用来分别计算积分

1

1

1

dx

x

+

?

.

计算题4.答案

4 解梯形公式

()()()

2

b

a

b a

f x dx f a f b

-

≈?+?

???

应用梯形公式得

1

1111

[]0.75 121011

dx

x

≈+=

+++

?

辛卜生公式为

()()()

[4()]

62

b

a

b a a b

f x dx f a f f b

-+

≈++

?

应用辛卜生公式得

()() 1

11010

[04()1] 162

dx f f f

x

-+

≈++ +

?

1111

[4]

1

61011

1

2

=+?+

++

+

25 36 =

得 分 评卷人

四、证明题(本题10分)

确定下列求积公式中的待定系数,并证明确定后的求积公式具有3次代数精确度

()()()()

1010h

h

f x dx A f h A f A f h --=-++?

证明题答案

证明:求积公式中含有三个待定系数,即101,,A A A -,将()21,,f x x x =分别代入求积公式,

并令其左右相等,得

1011123

112()02()3A A A h h A A h A A h ---?

?++=?

--=???+=?

得1113A A h -==,043h

A =

。所求公式至少有两次代数精确度。 又由于

()()()()3

3344433

33h

h

h h h h x dx h h h h x dx h h --=

-+≠-+??

()()()()40333h

h

h h

f x dx f h f f h -=

-++?

具有三次代数精确度。

一、 填空(共20分,每题2分)

1. 设

2.3149541...x *

=,取5位有效数字,则所得的近似值x= .

2.设一阶差商

()()()21122114

,321f x f x f x x x x --=

=

=---,

()()()322332

615

,422f x f x f x x x x --=

=

=--

则二阶差商

()123,,______

f x x x =

3. 设(2,3,1)T

X =--, 则2||||X = ,=∞||||X 。

4.求方程 2 1.250x x --= 的近似根,用迭代公式 1.25x x =+,取初始值 01x =,

那么

1______x =。

5.解初始值问题 00'(,)

()y f x y y x y =??

=?近似解的梯形公式是 1______k y +≈。 6、

1151A ??

= ?

-??,则A 的谱半径

= 。

7、设

2()35, , 0,1,2,... ,k f x x x kh k =+== ,则 []12,,n n n f x x x ++= 和

[]123,,,n n n n f x x x x +++=

8、若线性代数方程组AX=b 的系数矩阵A 为严格对角占优阵,则雅可比迭代和高斯-塞德尔迭代都 。

9、解常微分方程初值问题的欧拉(Euler )方法的局部截断误差为 。

10、为了使计算

23123

101(1)(1)y x x x =+

+-

---的乘除法运算次数尽量的少,应将表达

式改写成 。

填空题答案

1、2.3150

2、

()()()()2312123315

3,,11

2,,416f x x f x x f x x x x x ---===

-- 3、6 和 14 4、1.5

5、()()11,,2k k k k k h

y f x y f x y +++?+???

6、()6A ρ=

7、

[][]12123,,3,,,,0n n n n n n n f x x x f x x x x +++++== 8、 收敛 9、

()

h O

10、11310121(1)(1)y x x x ??

??=+

+- ? ?---????

二、计算题 (共75 分,每题15分)

1.设

32

01219(), , 1, 44f x x x x x ====

(1)试求

()

f x 在

19,4

4??

???

?上的三次Hermite 插值多项式()x H 使满足 ''11()(), 0,1,2,... ()()j j H x f x j H x f x ===

()

x H 以升幂形式给出。

(2)写出余项 ()()()R x f x H x =-的表达式

计算题1.答案

1、(1)

()32142632331

22545045025x x x x H =-

++-

(2)

()522191919

()(1)(),()(,)

4!164444R x x x x x ξξξ-=---=∈

2.已知 的 满足

,试问如何利用 构造一个收敛的

简单迭代函数

,使

0,1…收敛?

计算题2.答案

2、由 ()x x ?=,可得 3()3x x x x ?-=-,1(()3)()2x x x x ?ψ=--=

1 ()(()3) 2x x ψψ=--’’因,故11

()1

22x x ψ?=<<’’()-3

[]11

()()3 , k=0,1,.... 2k k k k x x x x ψ?+==-

-故收敛。

3. 试确定常数A ,B ,C 和 a ,使得数值积分公式

有尽可能高的代数精度。试问所得的数值积分公式代数精度是多少?它是否为Gauss 型的?

计算题3.答案

3、

101612,,995A C B a ==

==±,该数值

求积公式具有5次代数精确度,它是Gauss 型的

4. 推导常微分方程的初值问题 00

'(,)

()y f x y y x y =??

=?的数值解公式:

'''1111(4)

3n n n n n h y y y y y +-+-=+++

(提示: 利用Simpson 求积公式。)

计算题4.答案

4、 数值积分方法构造该数值解公式:对方程 ()y f x =’

在区间 []11,n n x x -+上积分,

1

1

11()()(,())n n x n n x y x y x f x y x dx

+-+-=+

?

,记步长为h,

对积分

1

1

(,())n n x x f x y x dx

+-?

用Simpson 求积公式得

[]1

1

11112(,())()4()()(4)63

n n x n n n n n n x h h f x y x dx f x f x f x y y y +--++-≈

++≈++?

’’’

所以得数值解公式: 1111(4)

3n n n n n h y y y y y +-+-=+++’’’

5. 利用矩阵的LU 分解法解方程 组

12312312

32314

252183520

x x x x x x x x x ++=??

++=??++=?

计算题5.答案

5、解:

1123211435124A LU ????

????==-????

????--????

(14,10,72), (1,2,3) .T T Ly b y Ux y x ==--==令得得

三、证明题 (5分)

1.设

,证明解 的Newton 迭代公式是线性收敛的。

证明题答案

1、

32231321232323333 ()(), ()6(),:

()

,0,1,... ()

()5,0,1,...

6()6655 (), (),6663551 , ()()636n n n n n n n n n n n

f x x a f x x x a Newton f x x x n f x x a x a

x x n x x a x a a

x x x x x a x a a a ???++--=-=-=-=-=-=+--=

+=-==-=-’’’’’证明:因故由迭达公式得

因迭达函数而又则1

0,

32

=≠故此迭达公式是线性收敛的。

一、填空题(20分)

(1).设*

2.40315x =是真值 2.40194x =的近似值,则*

x 有 位有

效数字。

(2). 对1)(3

++=x x x f , 差商=]3,2,1,0[f ( )。

(3). 设(2,3,7)T

X =-, 则||||X ∞= 。

(4).牛顿—柯特斯求积公式的系数和()

n

n k

k C

==

∑ 。

填空题答案

(1)3 (2)1 (3)7 (4)1

二、计算题

1).(15分)用二次拉格朗日插值多项式2()sin0.34L x 计算的值。 插值节点和相应的函数值是(0,0),(0.30,0.2955),(0.40,0.3894)。

计算题1.答案

1)020*******

010*********()()()()()()

()()()()()()()

=0.333336x x x x x x x x x x x x L x f f f x x x x x x x x x x x x ------=

++------

2).(15分)用二分法求方程3

()10[1.0,1.5]f x x x =--=在 区间内的一个根,误差限2

10ε-=。

计算题2.答案

2) 1234566

1.25 1.375 1.31251.34375 1.328125 1.3203125N x x x x x x =======

3).(15分)用高斯-塞德尔方法解方程组 ???

??=++=++=++22

5218241124321321321x x x x x x x x x ,取T )0,0,0()0(=x ,迭代三次(要求按五位有效数字计算).。

计算题3.答案

3)迭代公式

???

???

???--=--=--=++++++)222(51)218(41)211(41)1(2)1(1)1(3)

(3)1(1)1(2

)(3)(2)1(1k k k k k k k k k x x x x x x x x x

4).(15分)求系数123,,A A A 和使求积公式

1

1231

11

()(1)()()233f x dx A f A f A f -≈-+-+≤?对于次数的一切多项式都精确成立。

计算题4.答案

4)

12312312312311

112

20

33

993

130

22A A A A A A A A A A A A ++=--+=+

+====

5). (10分)对方程组 ???

??=-+=--=++8

4102541015

1023321321321x x x x x x x x x

试建立一种收敛的Seidel 迭代公式,说明理由

计算题5.答案

5) 解:调整方程组的位置,使系数矩阵严格对角占优

1231231

231045

21048321015

x x x x x x x x x --=??

+-=??++=?

故对应的高斯—塞德尔迭代法收敛.迭代格式为

(1)()()

123(1)(1)()

213(1)(1)(1)

3121( 4 5)101(2 48)

101(32 15)10k k k k k k k k k x x x x x x x x x ++++++?=++??

?=-++??

?=--+??

取T )0,0,0()

0(=x

,经7步迭代可得:

T )010000.1,326950999.0,459991999.0()7(*=≈x x .

三、简答题

1)(5分)在你学过的线性方程组的解法中, 你最喜欢那一种方法,为什么?

2)(5分)先叙述Gauss 求积公式, 再阐述为什么要引入它。

一、填空题(20分)

1. 若a =

2.42315是2.42247的近似值,则a 有( )位有效数字.

2. )(,),(),(10x l x l x l n 是以n ,,1,0 为插值节点的Lagrange 插值基函数,则

=

∑=n

i i x il 0

)(( ).

3. 设f (x )可微,则求方程)(x f x =的牛顿迭代格式是( ).

4. 迭代公式

f BX X k k +=+)

()1(收敛的充要条件是 。 5. 解线性方程组A x =b (其中A 非奇异,b 不为0) 的迭代格式f

x x

+=+)()

1(k k B 中的B 称为( ). 给定方程组??

?-=-=-458

92121x x x x ,解此方程组的雅可比迭代格式为(

)。

填空题答案

1.3 2.x

3.

1()1()

n n n n n x f x x x f x +-=-

-’

4. ()1B ρ<

5.迭代矩阵, 1()121()21

1(8)91(4)5k k k k x x x x ++?=+???

?=+??

分 评卷人

二、判断题(共10分)

1. 若0)()(

2. 区间[a,b ]上的三次样条函数是一个次数不超过三次的多项式。 ( )

3. 若方阵A 的谱半径1)(

4. 若f (x )与g (x ) 都是n 次多项式,且在n +1个互异点

n i i x 0}{=上)()(i i x g x f =,则 )()(x g x f ≡。 ( )

5. 用

2

211x

x +

+近似表示x e 产生舍入误差。 ( )

判断题答案

1.×

2.×

3.×

4.√

5.×

得 分 评卷人

三、计算题(70分)

1. (10分)已知f (0)=1,f (3)=

2.4,f (4)=5.2,求过这三点的

二次插值基函数l 1(x )=( ),]4,3,0[f =( ), 插值多项式P 2(x )=( ), 用三点式求得=')4(f ( ).

计算题1.答案

1.1777203(4),,1(3),3

1215126x x x x x --++-由插值公式可求得它们分别为:

2. (15分) 已知一元方程02.133

=--x x 。

1)求方程的一个含正根的区间;

2)给出在有根区间收敛的简单迭代法公式(判断收敛性); 3)给出在有根区间的Newton 迭代法公式。

计算题2.答案

2.(1)(0) 1.20 , (2) 1.80 ()(0,2)f f f x =-<=>又连续故在内有一个正根, (2)

收敛

313

2)

2,0(3

23

2.13,12

.11)(max ,)2.13()(,2.13+=∴<≤

''+=''+=+∈-

n n x x x x x x x x φφ

(3)

32

12

3 1.2

'()33,33n n n n x x f x x x x x +--=-=-- 3. (15分)确定求积公式 )

5.0()()5.0()(11

1Cf x Bf Af dx x f ++-≈?- 的待定参数,使其代数精度尽量高,并确定其代数精度.

计算题3.答案

2312

1311

41()1,,,20.50.50

20.250.2530.1250.1250

42

,33

1

()[4(0.5)2(0)4(0.5)],(),

321

56f x x x x A B C A Bx C A Bx C A Bx C A C B f x dx f f f f x x -=++=?

?-++=??

?++=??-++=??===-

≈--+==

=?3.假设公式对精确成立则有解此方程组得 求积公式为

当时 左边 右边 左3≠∴边右边 代数精度为。

4. (15分)设初值问题 1

01

)0(23<

?=+='x y y

x y .

(1) 写出用Euler 方法、步长h =0.1解上述初值问题数值解的公式; (2) 写出用改进的Euler 法(梯形法)、步长h =0.2解上述初值问题数值解

的公式,并求解21,y y ,保留两位小数。

计算题4.答案

4.1(1) 0.1(32)0.3 1.2n n n n n n y y x y x y +=++=+ 1111120.20.2

(2) (32)3(0.2)22

=0.1(6220.6)

3332440

3336333

1.575,

2.585

240240440n n n n n n n n n n n n n y y x y x y y x y y y y x y y ++++??+=+

++++++++∴=

++=+==+=迭达得

5. (15分)取节点1,5.0,0210===x x x ,求函数x

e y -=在区间]1,0[上的二次插

值多项式)(2x P ,并估计误差。

计算题5.答案

5.

)

5.0)(0(0

10

5.01

5.01)0(0

5.01)(5.05

.015.002------

--+

---+

=----x x e e e x e e x p

=1+2()5.0()12(2)15.015

.0-+-+----x x e e x e

[]

)1)(5.0(!3)

()(,1max ,21,0''3''--'''=

-==-=∈-x x x f x p e y M e y x x x ξ

时10≤≤∴x ,

)1)(5.0(!31

)(2--≤

-x x x x p e x

一、填空题( 每题4分,共20分)

1、数值计算中主要研究的误差有 和 。

2、设

()(0,1,2

)

j l x j n =是n 次拉格朗日插值多项式的插值基函数,则

()j i l x =

(,0,1,2

)i j n =;

()n

j j l x ==

∑ 。

3、设

()(0,1,2

)

j l x j n =是区间[,]a b 上的一组n 次插值基函数。则插值型求积公

式的代数精度为 ;插值型求积公式中求积系数j A =

;且

n

j

j A

==

∑ 。

4、辛普生求积公式具有 次代数精度,其余项表达式为 。

5、

2

()1,f x x =+则[1,2,3]_________,[1,2,3,4]_________f f ==。 填空题答案

1.相对误差 绝对误差

2.1,,0,i j i j =??

≠?

1

3. 至少是n

()b

k

a l x dx

?

b-a

4. 3

4(4)

()(),(,)1802b a b a f a b ζζ---

5. 1 0

二、计算题

1、已知函数()y f x =的相关数据

由牛顿插值公式求三次插值多项式3()P x ,并计算

1

3()

2P =的近似值。 计算题1.答案

解:差商表

由牛顿插值公式:

323332348

()()21,33

141181

3()()2()()12

232232p x N x x x x p ==

-++≈=-++=

2、(10分)利用尤拉公式求解初值问题,其中步长0.1h =,

1,

(0,0.6)

(0) 1.

y y x x y '=-++?∈?

=?。

计算题2.答案

解:010(,)1,1,0.1,0.1(1),(0,1,2,3,)1,

1.000000;1.000000;1.010000;1.029000;

1.056100;1.090490;1.131441.

n n n n k f x y y x y h y y x y n y y η+=-++====++-===

3、(15分)确定求积公式

012()()(0)()

h

h

f x dx A f h A f A f h -≈-++?

中待定参数i A 的值(0,1,2)i =,使求积公式的代数精度尽量高;并指出此时求积公式的代数精度。

计算题3.答案

解:分别将2

()1,,f x x x

=,代入求积公式,可得

02114

,33A A h A h

===。 令3()f x x =时求积公式成立,而4

()f x x =时公式不成立,从而精度为3。

4、(15分)已知一组试验数据如下 :

求它的拟合曲线(直线)。

计算题4.答案

解:设y a bx =+则可得

515311555105.5

a b a b +=??

+=?

于是 2.45, 1.25a b ==,即 2.45 1.25y x =+。

5、(15分)用二分法求方程

3

()1f x x x =--在区间[1,1.5]内的根时,若要求精确到小数点后二位,(1) 需要二分几次;(2)给出满足要求的近似根。

计算题5.答案

解:6次;*

1.32x ≈。

6、(15分)用列主元消去法解线性方程组

123

123

123 2346, 3525, 433032.

x x x

x x x

x x x

++=

?

?

++=

?

?++=

?

计算题6.答案

解:

2346433032433032

352535253525

43303223462346 433032433032

011/441/219011/441/219

03/21110002/114/11 433032

0118238

0012

?????? ? ? ?

→→

? ? ? ? ? ???????

???? ? ?→--→-- ? ? ? ?

--

????

??

?

→--

?

?

??

1231

232

3

3

433032,13, 118238,8,

2.

2.

x x x x

x x x

x

x

++==

??

??

-=-?=??

??=

=?

?

李庆扬数值分析第五版习题复习资料清华大学出版社

第一章 绪论 1.设0x >,x 的相对误差为δ,求ln x 的误差。 解:近似值* x 的相对误差为* **** r e x x e x x δ-= = = 而ln x 的误差为()1 ln *ln *ln ** e x x x e x =-≈ 进而有(ln *)x εδ≈ 2.设x 的相对误差为2%,求n x 的相对误差。 解:设()n f x x =,则函数的条件数为'() | |() p xf x C f x = 又1 '()n f x nx -=Q , 1 ||n p x nx C n n -?∴== 又((*))(*)r p r x n C x εε≈?Q 且(*)r e x 为2 ((*))0.02n r x n ε∴≈ 3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字:*1 1.1021x =,*20.031x =, *3385.6x =, *456.430x =,* 57 1.0.x =? 解:* 1 1.1021x =是五位有效数字; *20.031x =是二位有效数字; *3385.6x =是四位有效数字; *456.430x =是五位有效数字; *57 1.0.x =?是二位有效数字。 4.利用公式(2.3)求下列各近似值的误差限:(1) ***124x x x ++,(2) ***123x x x ,(3) **24/x x . 其中**** 1234,,,x x x x 均为第3题所给的数。 解:

*4 1* 3 2* 13* 3 4* 1 51()1021()1021()1021()1021()102 x x x x x εεεεε-----=?=?=?=?=? *** 124***1244333 (1)()()()() 1111010102221.0510x x x x x x εεεε----++=++=?+?+?=? *** 123*********123231132143 (2)() ()()() 111 1.10210.031100.031385.610 1.1021385.610222 0.215 x x x x x x x x x x x x εεεε---=++=???+???+???≈ ** 24**** 24422 *4 33 5 (3)(/) ()() 11 0.0311056.430102256.43056.430 10x x x x x x x εεε---+≈ ??+??= ?= 5计算球体积要使相对误差限为1,问度量半径R 时允许的相对误差限是多少? 解:球体体积为343 V R π= 则何种函数的条件数为 2 3'4343 p R V R R C V R ππ===g g (*)(*)3(*)r p r r V C R R εεε∴≈=g 又(*)1r V ε=Q

数值分析课后题答案

数值分析 第二章 2.当1,1,2x =-时,()0,3,4f x =-,求()f x 的二次插值多项式。 解: 0120121200102021101201220211,1,2, ()0,()3,()4;()()1 ()(1)(2)()()2()()1 ()(1)(2) ()()6 ()()1 ()(1)(1) ()()3 x x x f x f x f x x x x x l x x x x x x x x x x x l x x x x x x x x x x x l x x x x x x x ==-===-=--==-+-----==------= =-+-- 则二次拉格朗日插值多项式为 2 20 ()()k k k L x y l x ==∑ 0223()4() 14 (1)(2)(1)(1)23 537623 l x l x x x x x x x =-+=---+ -+= +- 6.设,0,1,,j x j n =L 为互异节点,求证: (1) 0()n k k j j j x l x x =≡∑ (0,1,,);k n =L (2)0 ()()0n k j j j x x l x =-≡∑ (0,1,,);k n =L 证明 (1) 令()k f x x = 若插值节点为,0,1,,j x j n =L ,则函数()f x 的n 次插值多项式为0 ()()n k n j j j L x x l x == ∑。 插值余项为(1)1() ()()()()(1)! n n n n f R x f x L x x n ξω++=-= + 又,k n ≤Q

(1)()0 ()0 n n f R x ξ+∴=∴= 0()n k k j j j x l x x =∴=∑ (0,1,,);k n =L 0 000 (2)()() (())()()(()) n k j j j n n j i k i k j j j i n n i k i i k j j i j x x l x C x x l x C x x l x =-==-==-=-=-∑∑∑∑∑ 0i n ≤≤Q 又 由上题结论可知 ()n k i j j j x l x x ==∑ ()()0 n i k i i k i k C x x x x -=∴=-=-=∑原式 ∴得证。 7设[]2 (),f x C a b ∈且()()0,f a f b ==求证: 21 max ()()max ().8 a x b a x b f x b a f x ≤≤≤≤''≤- 解:令01,x a x b ==,以此为插值节点,则线性插值多项式为 10 101010 ()() ()x x x x L x f x f x x x x x --=+-- =() () x b x a f a f b a b x a --=+-- 1()()0()0 f a f b L x ==∴=Q 又 插值余项为1011 ()()()()()()2 R x f x L x f x x x x x ''=-= -- 011 ()()()()2 f x f x x x x x ''∴= --

北师大网络教育 数值分析 期末试卷含答案

注:1、教师命题时题目之间不留空白; 2、考生不得在试题纸上答题,教师只批阅答题册正面部分,若考北师大网络教育——数值分析——期末考试卷与答案 一.填空题(本大题共4小题,每小题4分,共16分) 1.设有节点012,,x x x ,其对应的函数()y f x =的值分别为012,,y y y ,则二次拉格朗日插值基函数0()l x 为 。 2.设()2f x x =,则()f x 关于节点0120,1,3x x x ===的二阶向前差分为 。 3.设110111011A -????=--????-??,233x ?? ??=?? ???? ,则1A = ,1x = 。 4. 1n +个节点的高斯求积公式的代数精确度为 。 二.简答题(本大题共3小题,每小题8分,共24分) 1. 哪种线性方程组可用平方根法求解?为什么说平方根法计算稳定? 2. 什么是不动点迭代法?()x ?满足什么条件才能保证不动点存在和不动点迭代序列收敛于()x ?的不动点? 3. 设n 阶矩阵A 具有n 个特征值且满足123n λλλλ>≥≥≥ ,请简单说明求解矩阵A 的主特征值和特征向量的算法及流程。 三.求一个次数不高于3的多项式()3P x ,满足下列插值条件: i x 1 2 3 i y 2 4 12 i y ' 3 并估计误差。(10分) 四.试用1,2,4n =的牛顿-科特斯求积公式计算定积分1 01 1I dx x =+? 。(10分) 五.用Newton 法求()cos 0f x x x =-=的近似解。(10分) 六.试用Doolittle 分解法求解方程组:

注:1、教师命题时题目之间不留空白; 2、考生不得在试题纸上答题,教师只批阅答题册正面部分,若考 12325610413191963630 x x x -?????? ??????-=?????? ??????----?????? (10分) 七.请写出雅可比迭代法求解线性方程组1231231 23202324 812231530 x x x x x x x x x ++=?? ++=??-+=? 的迭代格式,并 判断其是否收敛?(10分) 八.就初值问题0(0)y y y y λ'=??=?考察欧拉显式格式的收敛性。(10分)

清华大学高等数值计算(李津)实践题目一(共轭梯度CG法,Lanczos算法与MINRES算法)

高等数值计算实践题目一 1. 实践目的 本次计算实践主要是在掌握共轭梯度法,Lanczos 算法与MINRES 算法的基础上,进一步探讨这3种算法的数值性质,主要研究特征值特征向量对算法收敛性的影响。 2. 实践过程 (一)生成矩阵 (1)作5个100阶对角阵i D 如下: 1D 对角元:1,1,...,20,1+0.1(-20),21,...,100j j d j d j j ==== 2D 对角元:1,1,...,20,1+(-20),21,...,100j j d j d j j ==== 3D 对角元:,1,...,80,81,81,...,100j j d j j d j ==== 4D 对角元:,1,...,40,41,41,...,60,41+(60),61,...,100j j j d j j d j d j j =====-= 5D 对角元:,1,...,100j d j j == 记i D 的最大模特征值和最小模特征值分别为1i λ和i n λ,则i D 特征值分布有如下特点: 1D 的特征值有较多接近于i n λ,并且1/i i n λλ较小, 2D 的特征值有较多接近于i n λ,并且1/i i n λλ较大, 3D 的特征值有较多接近于1i λ,并且1/i i n λλ较大, 4D 的特征值有较多接近于中间模特征值,并且1/i i n λλ较大, 5D 的特征值均匀分布,并且1/i i n λλ较大 (2)随机生成10个100阶矩阵j M : (100(100))j M fix rand = 并作它们的QR 分解,得j Q 和j R ,这样可得50个对称的矩阵T ij j i j A Q DQ =,其中i D 的对角元就是ij A 的特征值,若它们都大于0,则ij A 正定,j Q 的列就是相应的特征向量。结合(1)可知,ij A 都是对称正定阵。

数值分析学期期末考试试题与答案(A)

期末考试试卷(A 卷) 2007学年第二学期 考试科目: 数值分析 考试时间:120 分钟 学号 姓名 年级专业 一、判断题(每小题2分,共10分) 1. 用计算机求 1000 1000 1 1 n n =∑时,应按照n 从小到大的顺序相加。 ( ) 2. 为了减少误差,进行计算。 ( ) 3. 用数值微分公式中求导数值时,步长越小计算就越精确。 ( ) 4. 采用龙格-库塔法求解常微分方程的初值问题时,公式阶数越高,数值解越精确。( ) 5. 用迭代法解线性方程组时,迭代能否收敛与初始向量的选择、系数矩阵及其演变方式有 关,与常数项无关。 ( ) 二、填空题(每空2分,共36分) 1. 已知数a 的有效数为0.01,则它的绝对误差限为________,相对误差限为_________. 2. 设1010021,5,1301A x -????????=-=-????????-???? 则1A =_____,2x =______,Ax ∞ =_____. 3. 已知5 3 ()245,f x x x x =+-则[1,1,0]f -= ,[3,2,1,1,2,3]f ---= . 4. 为使求积公式 1 1231 ()()(0)33 f x dx A f A f A f -≈- ++? 的代数精度尽量高,应使1A = ,2A = ,3A = ,此时公式具有 次的代数精度。 5. n 阶方阵A 的谱半径()A ρ与它的任意一种范数A 的关系是 . 6. 用迭代法解线性方程组AX B =时,使迭代公式(1) ()(0,1,2,)k k X MX N k +=+=产 生的向量序列{ }() k X 收敛的充分必要条件是 . 7. 使用消元法解线性方程组AX B =时,系数矩阵A 可以分解为下三角矩阵L 和上三角矩

数值分析习题集及答案

(适合课程《数值方法A 》和《数值方法B 》) 第一章 绪 论 1. 设x >0,x 的相对误差为δ,求ln x 的误差. 2. 设x 的相对误差为2%,求n x 的相对误差. 3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位 有效数字: ***** 123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====? 4. 利用公式(3.3)求下列各近似值的误差限: * * * * * * * * 12412324(),(),()/,i x x x ii x x x iii x x ++其中* * * * 1234,,,x x x x 均为第3题所给的数. 5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少? 6. 设028,Y =按递推公式 11783 100 n n Y Y -=- ( n=1,2,…) 计算到100Y .若取783≈27.982(五位有效数字),试问计算100Y 将有多大误差? 7. 求方程2 5610x x -+=的两个根,使它至少具有四位有效数字(783≈27.982). 8. 当N 充分大时,怎样求 2 11N dx x +∞+?? 9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2 ? 10. 设2 12S gt = 假定g 是准确的,而对t 的测量有±0.1秒的误差,证明当t 增加时S 的绝对误差增加, 而相对误差却减小. 11. 序列{}n y 满足递推关系1101 n n y y -=-(n=1,2,…),若02 1.41y =≈(三位有效数字),计算到10 y 时误差有多大?这个计算过程稳定吗? 12. 计算6 (21)f =-,取 2 1.4≈,利用下列等式计算,哪一个得到的结果最好? 3 6 3 11,(322), ,9970 2. (21) (322) --++ 13. 2 ()ln(1)f x x x =- -,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等 价公式 2 2 ln(1)ln(1)x x x x - -=-+ + 计算,求对数时误差有多大? 14. 试用消元法解方程组{ 10 10 12121010; 2. x x x x +=+=假定只用三位数计算,问结果是否可靠? 15. 已知三角形面积 1sin , 2 s ab c = 其中c 为弧度, 02c π << ,且测量a ,b ,c 的误差分别为,,.a b c ???证 明面积的误差s ?满足 . s a b c s a b c ????≤ ++ 第二章 插值法 1. 根据( 2.2)定义的范德蒙行列式,令

数值分析试卷及其答案2

1、(本题5分)试确定7 22作为π的近似值具有几位有效数字,并确定其相对误差限。 解 因为 7 22=3.142857…=1103142857.0-? π=3.141592… 所以 3 12 10 2 110 21005.0001264.07 22--?= ?= <=- π (2分) 这里,3,21,0=-=+-=n n m m 由有效数字的定义可知7 22作为π的近似值具有3位有效数字。 (1分) 而相对误差限 3 10 2 10005.00004138.0001264.07 22-?= <≈= -= π π πε r (2分) 2、(本题6分)用改进平方根法解方程组:???? ? ??=????? ??????? ??--654131321 112321x x x ; 解 设???? ? ? ?????? ? ?????? ??===????? ? ?--11 1 11113 1321 11232312132 1 32 31 21 l l l d d d l l l LDL A T 由矩阵乘法得: 5 7,21,21527,25,2323121321- == - == -==l l l d d d (3分) 由y D x L b Ly T 1 ,-==解得 T T x y )9 23,97,910( ,)5 63, 7,4(== (3分) 3、(本题6分)给定线性方程组??? ? ? ??=++-=+-+=-+-=-+17722238231138751043214321 321431x x x x x x x x x x x x x x 1)写出Jacoib 迭代格式和Gauss-Seidel 迭代格式; 2)考查Jacoib 迭代格式和Gauss-Seidel 迭代格式的敛散性; 解 1)Jacoib 迭代格式为

数值分析课后题答案

数值分析 2?当x=1,—1,2时,f(x)=O, 一3,4,求f(x)的二次插值多项式。解: X 0 =1,x j = — 1,x 2 = 2, f(X。)= 0, f (xj = -3, f (x2)= 4; l o(x)=(x-xi^~x2\=-1(x 1)(x-2) (x o -X/X o _x2) 2 (x -x0)(x -x2) 1 l i(x) 0 2(x-1)(x-2) (x i ~x0)(x i ~x2) 6 (x—x0)(x—x,) 1 l2(x) 0 1(x-1)(x 1) (X2 -X°)(X2 - X i) 3 则二次拉格朗日插值多项式为 2 L 2(X)= ' y k 1 k ( x) kz0 = -3l°(x) 4l2(x) 1 4 =(x_1)(x—2) 4 (x-1)(x 1) 2 3 5 2 3 7 x x - 6 2 3 6?设Xj, j =0,1,||(,n 为互异节点,求证: n (1 )7 x:l j(x) =x k(k =0,1川,n); j=0 n (2 )7 (X j -x)k l j(x)三0 (k =0,1川,n); j £ 证明 (1)令f(x)=x k

n 若插值节点为X j, j =0,1,|l(, n,则函数f (x)的n次插值多项式为L n(x)八x k l j(x)。 j=0 f (n 十)(?) 插值余项为R n(X)二f(X)-L n(X) n1(X) (n +1)!

.f(n1)( ^0 R n(X)=O n 二瓦x k l j(x) =x k(k =0,1川,n); j :o n ⑵、(X j -x)k l j(x) j卫 n n =為(' C?x j(—x)k_L)l j(x) j =0 i =0 n n i k i i =為C k( -x) (、X j l j(x)) i =0 j=0 又70 _i _n 由上题结论可知 n .原式二''C k(-x)k_L x' i=0 =(X -X)k =0 -得证。 7设f (x) c2 la,b 1且f (a) =f (b)二0,求证: max f(x)兰一(b-a) max a $至小一*丘f (x). 解:令x^a,x^b,以此为插值节点,则线性插值多项式为 L i(x^ f(x o) x x f (xj X o —人x -X o X —X o x-b x-a ==f(a) f(b)- a - b x -a 又T f (a) = f (b)二0 L i(x) = 0 1 插值余项为R(x)二f (x) - L,(x) f (x)(x - X Q)(X - xj 1 f(x) = 2 f (x)(x -X g)(X -xj

清华大学贾仲孝老师高等数值分析报告第二次实验

高等数值分析第二次实验作业

T1.构造例子特征值全部在右半平面时, 观察基本的Arnoldi 方法和GMRES 方法的数值性态, 和相应重新启动算法的收敛性. Answer: (1) 构造特征值均在右半平面的矩阵A : 根据实Schur 分解,构造对角矩阵D 由n 个块形成,每个对角块具有如下形式,对应一对特 征值i i i αβ± i i i i i S αββα-?? = ??? 这样D=diag(S 1,S 2,S 3……S n )矩阵的特征值均分布在右半平面。生成矩阵A=U T AU ,其中U 为 正交阵,则A 矩阵的特征值也均在右半平面。不妨构造A 如下所示: 2211112222 /2/2/2/2N N A n n n n ?-?? ? ? ?- ? = ? ? ? - ? ?? ? 由于选择初值与右端项:x0=zeros(2*N,1);b=ones(2*N,1); 则生成矩阵A 的过程代码如下所示: N=500 %生成A 为2N 阶 A=zeros(2*N); for a=1:N A(2*a-1,2*a-1)=a; A(2*a-1,2*a)=-a; A(2*a,2*a-1)=a; A(2*a,2*a)=a; end U = orth(rand(2*N,2*N)); A1 = U'*A*U; (2) 观察基本的Arnoldi 和GMRES 方法 编写基本的Arnoldi 函数与基本GMRES 函数,具体代码见附录。 function [x,rm,flag]=Arnoldi(A,b,x0,tol,m) function [x,rm,flag]=GMRES(A,b,x0,tol,m) 输入:A 为方程组系数矩阵,b 为右端项,x0为初值,tol 为停机准则,m 为人为限制的最大步数。 输出:x 为方程的解,rm 为残差向量,flag 为解是否收敛的标志。 外程序如下所示: e=1e-6; m=700;

数值分析第四版习题及答案

第四版 数值分析习题 第一章绪论 1.设x>0,x得相对误差为δ,求得误差、 2.设x得相对误差为2%,求得相对误差、 3.下列各数都就是经过四舍五入得到得近似数,即误差限不超过最后一位得半个单位,试指 出它们就是几位有效数字: 4.利用公式(3、3)求下列各近似值得误差限: 其中均为第3题所给得数、 5.计算球体积要使相对误差限为1%,问度量半径R时允许得相对误差限就是多少? 6.设按递推公式 ( n=1,2,…) 计算到、若取≈27、982(五位有效数字),试问计算将有多大误差? 7.求方程得两个根,使它至少具有四位有效数字(≈27、982)、 8.当N充分大时,怎样求? 9.正方形得边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝? 10.设假定g就是准确得,而对t得测量有±0、1秒得误差,证明当t增加时S得绝对误差增 加,而相对误差却减小、 11.序列满足递推关系(n=1,2,…),若(三位有效数字),计算到时误差有多大?这个计算过程 稳定吗? 12.计算,取,利用下列等式计算,哪一个得到得结果最好? 13.,求f(30)得值、若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式 计算,求对数时误差有多大? 14.试用消元法解方程组假定只用三位数计算,问结果就是否可靠? 15.已知三角形面积其中c为弧度,,且测量a ,b ,c得误差分别为证明面积得误差满足 第二章插值法 1.根据(2、2)定义得范德蒙行列式,令 证明就是n次多项式,它得根就是,且 、 2.当x= 1 , -1 , 2 时, f(x)= 0 , -3 , 4 ,求f(x)得二次插值多项式、 3. 4., 研究用线性插值求cos x 近似值时得总误差界、

数值分析试题A卷10.1

中国石油大学(北京)2009--2010学年第一学期 研究生期末考试试题A (闭卷考试) 课程名称:数值分析 注:计算题取小数点后四位 一、填空题(共30分,每空3分) 1、 已知x =是由准确数a 经四舍五入得到的近似值,则x 的绝对误差 界为_______________。 2、数值微分公式()() '()i i i f x h f x f x h +-≈ 的截断误差为 。 3、已知向量T x =,求Householder 变换阵H ,使(2,0)T Hx =-。 H = 。 4、利用三点高斯求积公式 1 1 ()0.5556(0.7746)0.8889(0)0.5556(0.7746)f x dx f f f -≈-++? 导出求积分 4 0()f x dx ?的三点高斯求积公式 。 5、4 2 ()523,[0.1,0.2,0.3,0.4,0.5]_____.f x x x f =+-= 若则 6、以n + 1个互异节点x k ( k =0,1,…,n ),(n >1)为插值节点的 Lagrange 插值基函数为l k (x)( k =0,1,…,n ),则 (0)(1)__________.n k k k l x =+=∑ 7、已知3()P x 是用极小化插值法得到的cos x 在[0,4]上的三次插值多项式,则3()P x 的 截断误差上界为3()cos ()R x x P x =-≤_________.

8、已知向量(3,2,5)T x =-,求Gauss 变换阵L ,使(3,0,0)T Lx =。L =_________. 9、设3 2 ()(7)f x x =-, 给出求方程()0f x =根的二阶收敛的迭代格式_________。 10、下面M 文件是用来求解什么数学问题的________________________. function [x,k]=dd (x0) for k=1:1000 x=cos (x0); if abs(x-x0)<, break end x0=x; end 二、(15分)已知矛盾方程组Ax=b ,其中11120,1211A b ???? ????==???????????? , (1)用施密特正交化方法求矩阵A 的正交分解,即A=QR 。 (2)用此正交分解求矛盾方程组Ax=b 的最小二乘解。 三、(10分)已知求解线性方程组Ax=b 的分量迭代格式 1 (1) (1) ()1 +1 /, 121,,i n k k k i i ij j ij j ii j j i x b a x a x a i n n -++===-- =-∑∑(),, (1)试导出其矩阵迭代格式及迭代矩阵; (2)若11a A a ?? = ??? ,推导上述迭代格式收敛的充分必要条件。 四、(15分)(1)证明对任何初值0x R ∈,由迭代公式11 1sin ,0,1,2, (2) k k x x k +=+ = 所产生的序列{}0k k x ∞ =都收敛于方程1 1sin 2 x x =+ 的根。 (2)迭代公式11 21sin ,0,1,2, (2) k k k x x x k +=-- =是否收敛。 五、(15分)用最小二乘法确定一条经过原点(0,0)的二次曲线,使之拟合下列数据

数值分析期末试题

数值分析期末试题 一、填空题(20102=?分) (1)设??? ? ? ??? ??---=28 3 012 251A ,则=∞ A ______13_______。 (2)对于方程组?? ?=-=-3 4101522121x x x x ,Jacobi 迭代法的迭代矩阵是=J B ?? ? ? ??05.25.20。 (3)3*x 的相对误差约是*x 的相对误差的 3 1倍。 (4)求方程)(x f x =根的牛顿迭代公式是) ('1)(1n n n n n x f x f x x x +-- =+。 (5)设1)(3 -+=x x x f ,则差商=]3,2,1,0[f 1 。 (6)设n n ?矩阵G 的特征值是n λλλ,,,21 ,则矩阵G 的谱半径=)(G ρi n i λ≤≤1max 。 (7)已知?? ? ? ??=1021 A ,则条件数=∞ )(A Cond 9 (8)为了提高数值计算精度,当正数x 充分大时,应将)1ln(2 -- x x 改写为 )1ln(2 ++ -x x 。 (9)n 个求积节点的插值型求积公式的代数精确度至少为1-n 次。 (10)拟合三点))(,(11x f x ,))(,(22x f x ,))(,(33x f x 的水平直线是)(3 1 3 1 ∑== i i x f y 。 二、(10分)证明:方程组? ?? ??=-+=++=+-1 211 2321321321x x x x x x x x x 使用Jacobi 迭代法求解不收敛性。 证明:Jacobi 迭代法的迭代矩阵为 ???? ? ?????---=05 .05 .01015.05.00J B J B 的特征多项式为

数值分析期末试题

一、(8分)用列主元素消去法解下列方程组: ??? ??=++-=+--=+-11 2123454 321321321x x x x x x x x x 二、(10分)依据下列数据构造插值多项式:y(0)=1,y(1)= —2,y '(0)=1, y '(1)=—4 三、(12分)分别用梯形公式和辛普生公式构造 复化的梯形公式、复化的辛普生公式并利用复化的梯形公式、复化的辛普生公式计算下列积分: ? 9 1dx x n=4 四、(10分)证明对任意参数t ,下列龙格-库塔方法是二阶的。 五、(14分)用牛顿法构造求c 公式,并利用牛顿法求115。保留有效数字五位。 六、(10分)方程组AX=B 其中A=????????? ?10101a a a a 试就AX=B 建立雅可比迭代法和高斯-赛德尔迭代法,并讨论a 取何值时 迭代收斂。 七、(10分)试确定常数A,B,C,a,使得数值积分公式?-++-≈2 2 ) (}0{)()(a Cf Bf a Af dx x f 有尽可能多的 代数精确度。并求该公式的代数精确度。 八、{6分} 证明: A ≤ 其中A 为矩阵,V 为向量. 第二套 一、(8分)用列主元素消去法解下列方程组: ??? ??=++=+-=+3 2221 43321 32132x x x x x x x x 二、(12分)依据下列数据构造插值多项式:y(0)=y '(0)=0, y(1)=y '(1)= 1,y(2)=1 三、(14分)分别用梯形公式和辛普生公式构造 复化的梯形公式、复化的辛普生公式,并利用复化的梯形公式、 复化的辛普生公式及其下表计算下列积分: ?2 /0 sin πxdx ????? ? ? -+-+=++==++=+1 3121231)1(,)1(() ,(),()(2 hk t y h t x f k thk y th x f k y x f k k k h y y n n n n n n n n

数值分析整理版试题及复习资料

例1、 已知函数表 求()f x 的Lagrange 二次插值多项式和Newton 二次插值多项式。 解: (1) 插值基函数分别为 ()()()()()()()()()() 1200102121()1211126 x x x x x x l x x x x x x x ----= ==-------- ()()()()()()()() ()()021******* ()1211122x x x x x x l x x x x x x x --+-= ==-+---+- ()()()()()()()()()()0122021111 ()1121213 x x x x x x l x x x x x x x --+-= ==-+--+- 故所求二次拉格朗日插值多项式为 () ()()()()()()()()()()2 20 2()11131201241162314 121123537623k k k L x y l x x x x x x x x x x x x x ==?? =-? --+?-+-+?+-????=---++-=+-∑ (2)一阶均差、二阶均差分别为

[]()()[]()()[][][]010********* 011201202303 ,11204 ,412 3 4,,5 2,,126 f x f x f x x x x f x f x f x x x x f x x f x x f x x x x x ---===-----= = =----=== --- 故所求Newton 二次插值多项式为 ()()[]()[]()() ()()()20010012012,,,35 311126537623P x f x f x x x x f x x x x x x x x x x x x =+-+--=-+ +++-=+- 例2、 设2 ()32f x x x =++,[0,1]x ∈,试求()f x 在[0, 1]上关于()1x ρ=,{} span 1,x Φ=的最佳平方逼近多项式。 解: 若{}span 1,x Φ=,则0()1x ?=,1()x x ?=,且()1x ρ=,这样,有 ()()()()()()()()1 1 200110 1 1 2011000 1 210 1 ,11, ,3 1 23 ,,, ,3226 9,324 dx x dx xdx f x x dx f x x x dx ??????????==== ====++= =++= ????? 所以,法方程为 011231261192 34a a ??????????=?????????? ?????????? ,经过消元得012311 62110123a a ??? ???????=???????????????????? 再回代解该方程,得到14a =,011 6a =

数值分析试题及答案

数值分析试题 一、 填空题(2 0×2′) 1. ?? ????-=? ?????-=32,1223X A 设x =是精确值x *=的近似值,则x 有 2 位有效数字。 2. 若f (x )=x 7-x 3+1,则f [20,21,22,23,24,25,26,27]= 1 , f [20,21,22,23,24,25,26,27,28]= 0 。 3. 设,‖A ‖∞=___5 ____,‖X ‖∞=__ 3_____, ‖AX ‖∞≤_15_ __。 4. 非线性方程f (x )=0的迭代函数x =?(x )在有解区间满足 |?’(x )| <1 ,则使用该迭代 函数的迭代解法一定是局部收敛的。 5. 区间[a ,b ]上的三次样条插值函数S (x )在[a ,b ]上具有直到 2 阶的连续导数。 6. 当插值节点为等距分布时,若所求节点靠近首节点,应该选用等距节点下牛顿差 商公式的 前插公式 ,若所求节点靠近尾节点,应该选用等距节点下牛顿差商公式的 后插公式 ;如果要估计结果的舍入误差,应该选用插值公式中的 拉格朗日插值公式 。 7. 拉格朗日插值公式中f (x i )的系数a i (x )的特点是:=∑=n i i x a 0)( 1 ;所以 当系数a i (x )满足 a i (x )>1 ,计算时不会放大f (x i )的误差。 8. 要使 20的近似值的相对误差小于%,至少要取 4 位有效数字。 9. 对任意初始向量X (0)及任意向量g ,线性方程组的迭代公式x (k +1)=Bx (k )+g (k =0,1,…) 收敛于方程组的精确解x *的充分必要条件是 ?(B)<1 。 10. 由下列数据所确定的插值多项式的次数最高是 5 。 11. 牛顿下山法的下山条件为 |f(xn+1)|<|f(xn)| 。

清华大学高等数值计算(李津)实践题目二(SVD计算及图像压缩)(包含matlab代码)

第1部分 方法介绍 奇异值分解(SVD )定理: 设m n A R ?∈,则存在正交矩阵m m V R ?∈和n n U R ?∈,使得 T O A V U O O ∑??=?? ?? 其中12(,, ,)r diag σσσ∑=,而且120r σσσ≥≥≥>,(1,2, ,)i i r σ=称为A 的 奇异值,V 的第i 列称为A 的左奇异向量,U 的第i 列称为A 的右奇异向量。 注:不失一般性,可以假设m n ≥,(对于m n <的情况,可以先对A 转置,然后进行SVD 分解,最后对所得的SVD 分解式进行转置,就可以得到原来的SVD 分解式) 方法1:传统的SVD 算法 主要思想: 设()m n A R m n ?∈≥,先将A 二对角化,即构造正交矩阵1U 和1V 使得 110T B n U AV m n ?? =?? -?? 其中1200n n B δγγδ??? ???=?????? 然后,对三角矩阵T T B B =进行带Wilkinson 位移的对称QR 迭代得到:T B P BQ =。 当某个0i γ=时,B 具有形状12B O B O B ?? =? ??? ,此时可以将B 的奇异值问题分解为两个低阶二对角阵的奇异值分解问题;而当某个0i δ=时,可以适当选取'Given s 变换,使得第i 行元素全为零的二对角阵,因此,此时也可以将B 约化为两个低 阶二对角阵的奇异值分解问题。 在实际计算时,当i B δε∞≤或者() 1j j j γεδδ-≤+(这里ε是一个略大于机器精度的正数)时,就将i δ或者i γ视作零,就可以将B 分解为两个低阶二对角阵的奇异值分解问题。

数值分析课后习题答案

第一章 题12 给定节点01x =-,11x =,23x =,34x =,试分别对下列函数导出拉格朗日插值余项: (1) (1) 3 ()432f x x x =-+ (2) (2) 4 3 ()2f x x x =- 解 (1)(4) ()0f x =, 由拉格朗日插值余项得(4)0123() ()()()()()()0 4!f f x p x x x x x x x x x ξ-=----=; (2)(4) ()4!f x = 由拉格朗日插值余项得 01234! ()()()()()() 4! f x p x x x x x x x x x -= ----(1)(1)(3)(4)x x x x =+---. 题15 证明:对于()f x 以0x ,1x 为节点的一次插值多项式()p x ,插值误差 012 10()()()max () 8x x x x x f x p x f x ≤≤-''-≤. 证 由拉格朗日插值余项得 01() ()()()()2!f f x p x x x x x ξ''-= --,其中01x x ξ≤≤, 01 0101max ()()()()()()()() 2!2!x x x f x f f x p x x x x x x x x x ξ≤≤''''-=--≤-- 01210()max () 8x x x x x f x ≤≤-''≤. 题22 采用下列方法构造满足条件(0)(0)0p p '==,(1)(1)1p p '==的插值多项式 ()p x : (1) (1) 用待定系数法; (2) (2) 利用承袭性,先考察插值条件(0)(0)0p p '==,(1)1p =的插值多项式 ()p x . 解 (1)有四个插值条件,故设230123()p x a a x a x a x =+++,2 123()23p x a a x a x '=++, 代入得方程组001231123010231 a a a a a a a a a =? ?+++=?? =? ?++=? 解之,得01230 021 a a a a =??=?? =??=-?

2019年数值分析第二学期期末考试试题与答案A

卷)期末考试试卷(A2007学年第二学期考试科目:数值分析分钟考试时间:120 年级专业学号姓 名 题号一2二三0四总分 分)分,共10一、判断题(每小题210001?n)( 1. 用计算机求时,应按照从小到大的顺序相加。1000n1n?219992001?为了减少误差2. ,应将表达式进行计算。(改写为)19992001?) ( 3. 用数值微分公式中求导数值时,步长越小计算就越精确。) 4. 采用龙格-库塔法求解常微分方程的初值问题时,公式阶数越高,数值解越精确。(系数矩阵及其演变方式有用迭代法解线性方程组时,5. 迭代能否收敛与初始向量的选择、) (关,与常数项无关。 分)二、填空题(每空2分,共36_________. ________,相对误差限为已知数a的有效数为0.01,则它的绝对误差限为1. 0?110??????????xA?Ax,0?21,x??5A?_____. 则设______,_____,2. ????21?????1?130????53f(x)?2x?4x?5x,f[?1,1,0]?f[?3,?2,?1,1,2,3]? 3. 已知则, . 331?)?Af(0)?Af(f(x)dx?Af(?)的代数精度尽量高,应使4. 为使求积公式321331?A?A?A?,此时公式具有,,次的代数精度。312 ?nA)(A的关系是 5. A阶方阵的谱半径与它的任意一种范数. (k?1)(k)BAX??N(k?XMX?0,1,2,)产时,使迭代公式用迭代法解线性方程组6. ??)k(X . 生的向量序列收敛的充分必要条件是

AX?BAL和上三角矩7. 使用消元法解线性方程组系数矩阵时,可以分解为下三角矩阵1 4?2??BAX?.A?LUU?A,则阵若采用高斯消元法解的乘积,即,其中??21??L?U?AX?B,则,______________;若使用克劳特消元法解_______________u?lu BAX?的大小关系为_____(选填:则____;若使用平方根方法解>与,,111111<,=,不一定)。 ??x?yy?8. 以步长为1的二阶泰勒级数法求解初值问题的数值解,其迭代公式为 ?y(0)?1?___________________________. 三、计算题(第1~3、6小题每题8分,第4、5小题每题7分,共46分) 32?x01??3x?xf(x)?2)(1, 1.在区间为初值用牛顿迭代法求方程内的根,要求以0证明用牛顿法解此方程是收敛的;(1),xx,计算结果(2)给出用牛顿法解此方程的迭代公式,并求出这个根(只需计算21位)。取到小数点后4 2 2.给定线性方程组 x?0.4x?0.4x?1?312?0.4x?x?0.8x?2?321?0.4x?0.8x?x?3?312(1)分别写出用Jacobi和 Gauss-Seidel迭代法求解上述方程组的迭代公式; (2)试分析以上两种迭代方法的敛散性。

数值分析试题及答案汇总

数值分析试题及答案汇 总 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

数值分析试题 一、填空题(2 0×2′) 1. ?? ????-=? ?????-=32,1223X A 设x =是精确值x *=的近似值,则x 有 2 位有效数字。 2. 若f (x )=x 7-x 3+1,则f [20,21,22,23,24,25,26,27]= 1 , f [20,21,22,23,24,25,26,27,28]= 0 。 3. 设,‖A ‖∞=___5 ____,‖X ‖∞=__ 3_____, ‖AX ‖∞≤_15_ __。 4. 非线性方程f (x )=0的迭代函数x =(x )在有解区间满足 |’(x )| <1 ,则使用该迭代函数 的迭代解法一定是局部收敛的。 5. 区间[a ,b ]上的三次样条插值函数S (x )在[a ,b ]上具有直到 2 阶的连续导数。 6. 当插值节点为等距分布时,若所求节点靠近首节点,应该选用等距节点下牛顿差 商公式的 前插公式 ,若所求节点靠近尾节点,应该选用等距节点下牛顿差商公式的 后插公式 ;如果要估计结果的舍入误差,应该选用插值公式中的 拉格朗日插值公式 。 7. 拉格朗日插值公式中f (x i )的系数a i (x )的特点是:=∑=n i i x a 0)( 1 ;所以当系数 a i (x )满足 a i (x )>1 ,计算时不会放大f (x i )的误差。 8. 要使 20的近似值的相对误差小于%,至少要取 4 位有效数字。 9. 对任意初始向量X (0)及任意向量g ,线性方程组的迭代公式x (k +1)=Bx (k )+g (k =0,1,…) 收敛于方程组的精确解x *的充分必要条件是 (B)<1 。 10. 由下列数据所确定的插值多项式的次数最高是 5 。

相关文档