文档视界 最新最全的文档下载
当前位置:文档视界 › 纳米材料的热学性质

纳米材料的热学性质

纳米材料的热学性质
纳米材料的热学性质

纳米材料与团簇物理结课论文

纳米材料的热学性质

纳米材料是一种既不同于晶态,又不同于非晶态的第三类固体材料,通常指三维空间尺寸至少有一维处于纳米量级( 1 n m~1 0 0 n m)的固体材料。由于纳米材料粒径小,比表面积大,处于粒子表面无序排列的原子百分比高达l5~5 0%。纳米粒子的这种特殊结构导致其具有不同于传统材料的物理化学特性。

纳米材料的高浓度界面及原子能级的特殊结构使其具有不同于常规块体材料和单个分子的性质,纳米材料具有表面效应,体积效应,量子尺寸效应宏观量子隧道效应等,从而使得纳米材料热力学性质具有特殊性,纳米材料的各种热力学性质如晶格参数,结合能,熔点,熔解焓,熔解熵,热容等均显示出尺寸效应和形状效应。可见,纳米材料热力学性质在各方面均显现出与块体材料的差异性,研究纳米材料的热力学性质具有极其重要的科学意义和应用价值。

纳米材料的热学性质概述

一、纳米材料的熔点及内能

材料热性能与材料中分子、原子运动行为有着不可分割的联系。当热载子(电子、声子及光子)的各种特征尺寸与材料的特征尺寸(晶粒尺寸、颗粒尺寸或薄膜厚度)相当时,反应物质热性能的物性参数如熔化温度、热容等会体现出鲜明的尺寸依赖性。特别是,低温下热载子的平均自由程将变长,使材料热学性质的尺寸效应更为明显。

图1 几种纳米金属粒子的熔点降低现象

上图(图1)为几种纳米金属粒子的熔点降低现象。随粒子尺寸的减小,熔点降低。当金属粒子尺寸小于10nm后熔点急剧下降,其中3nm左右的金微粒子的熔点只有其块体材料熔点的一半,用高倍率电子显微镜观察尺寸2nm的纳米金粒子结构可以发现,纳米金颗粒形态可以在单晶、多晶与孪晶间连续转变。这种行为与传统材料在固定熔点熔化的行为完全不同,伴随着纳米材料的熔点降低,单位质量粒子熔化时的潜热吸收(焓变)也随尺寸的减小而减少。人们在具有自由表面的共价半导体的纳米晶体、惰性气体和分子晶体也发现了熔化的尺寸效应现象。

根据固体物理的基本原理,可以说明材料热学性质出现尺寸效应的根本原因,一般情况下,晶体材料的内能U可依据其晶格振动的波特性在德拜假设下估计出,即:

(1) 式中,Θ为德拜温度;k为波矢;T为热力学温度;h为普朗克常数;k B为玻尔兹曼常数。求和是对于所有可能的k值进行的。k的允许值由其分量表示为:

(2)

式中,L为晶格长度;N为状态度;△k x为特定方向上连续波矢的差。在其他方向的k分量也存在类似关系。

在块体材料内,式(1)通常简化为:

(3) 式中,u bulk是块体材料单位容积的U值;n为原子数密度;x D为与德拜温度对应的积分限。上述关于u的表述只给出了来自块体材料声子模式的贡献,而表面声子的贡献则被忽略了。在块体材料中,表面声子的贡献确实可以忽略;但当材料至少一维尺寸大幅减少至纳米量级时,这

种简化并不正确,即对于纳米材料有必要考虑尺寸效应。

随材料尺度的降低,用式(3)计算内能U及热容的方法不再有效,此时应直接采用最初的求和表达式(1)。若材料至少一个方向的原子数显著降低时,则此方向k的改变量与所有容许k值相比不再小到可以忽略,于是该方向上的k将会在2π/L范围内以相当大的离散步长增加,使得式(3)采用积分近似式代替离散步长的方法不能应用,从而导致两种效应:①k空间内点的精确数目不同于固体材料的值;②k间体积Ω必须通过离散求和来计算。于是,k空间一定区域内点的精确数目必须通过离散求和确定。由此可以得出微小体积晶格的内能:

(4)

其中:

(5)这里u micro表示由加和求得的内能,即微小晶格体积的内能。可见,由于品格内能存在尺寸效应,将不可避免地导致材料基本热学性质对晶体尺寸的依赖性。

2.纳米晶体的热容及特征温度

热容是指材料分子或原子热运动的能量Q随温度T的变化率,在温度T时材料的热容量C 的表达式为:

(6)

若加热过程中材料的体积不变,则测得的热容量为定容热容过程中材料的压强不变,则测得的为定压热容(C p)。即

(7)

(8) 将式(4)代人式(7)和式(8)中,即可计算得出纳米晶体的热容。

图2为计算得出的几种纳米薄膜材料定容热容C nano与相应块体热容C bulk比值与原子层数N

的关系。可见,纳米薄膜热容小于块体热容,而对厚一些的薄膜,二者等价。值得指出的是,上述计算时假定纳米晶体尺寸极小时仍然保持完整的晶格结构,忽略了表面声子软化效应,计算得到的热容值会较实际值小。

图2 C nano和C bulk的比值

表1列出了非晶晶化、高能球磨和惰性气体冷凝方法制备的几种纳米晶体材料定压热容C p nc 相对其粗晶材料定压热容C p c的变化△C p nc(△C p nc=(C p nc-C p c)/ C p c)。从测量结果可以看出,惰性气体冷凝法和高能球磨法制备的纳米晶体材料的过剩热容△C p nc很大,如惰性气体冷凝法制备的纳米晶体Pd的△C p nc高达48%;而非晶晶化和电解沉积法制备的纳米晶体材料的△C p nc却很小,通常小于5%。

表1 不同方法制备纳米晶体材料的过剩热熔

造成这种差异的原因在于不同制备方法在材料中引入的缺陷密度不同所致。对于惰性气体冷凝和高能球磨方法制备的纳米材料,材料中存在大量的微孔、杂质和结构缺陷,使材料具有很大△C p nc,这种极大的差异不能代表纳米材料的本征热容差别。对于非晶晶化和电解沉积方法制备的纳米晶体,材料是在接近平衡态的条件下形成,所以其内部结构缺陷较少,且很少有微孔和杂质,其热容与粗晶相比增加不大。特别是非晶晶化法还相当于对材料进行了一次退火处理,纳米晶中的界面和晶粒都处于一种弛豫状态,纳米晶内部的显微应变极小(要比其他方法所获得的纳米晶内部的应力小一个数量级),使非晶晶化纳米材料的过剩热容最小,从而也可以得出晶界组元的过剩热容是很小的。

材料的热容与该材料的结构,或者说与振动熵及组态熵密切相关,而其振动熵和组态熵受到最近邻原子构型的强烈影响。在纳米材料中很大一部分原子处于晶界上,界面原子的最近邻

原子构型与晶粒原子的最近邻原子构型显著不同,或者说晶界相对于完整晶格来说存在一定的过剩体积。热力学计算表明纳米晶的热容随着晶界过剩体积的增加而增加,因而亦随着晶界能的增加而增加。晶界组元的过剩热容值越低,其所对应的晶界过剩体积和界面能都将越低。由于高比例晶界组元的贡献,纳米材料的比热容会比其对应的粗晶材料的高。

根据固体物理理论,德拜特征温度的定义为:

(9) 式中,ωm表征了晶格振动的最高频率;k B为玻尔兹曼常数。因此,德拜特征温度与材料的晶格振动有关,同时还反映原子间结合力的强弱。

表2列出了不同方法制备的纳米晶体材料特征温度Θ相对于粗晶值的变化率,表中△Θ=(Θnc-Θc)/Θc,其中Θnc、Θc分别为纳米晶体和粗晶体的特征温度。可见,各方法制备的纳米晶体的特征温度都要小于其粗晶体的值,减小的范围为5%—71%。另外,超细粉Ni和Pd的特征温度也表现出减小趋势:通常认为,纳米晶体材料的特征温度减小是其结构缺陷(如点阵静畸变、晶界等)使原子振动的非谐效应减弱所致,但目前还无定量解释。

表2 纳米晶体材料的特征温度和热膨胀系数的变化率

二、纳米材料的熔化

1.纳米材料的融化的概述

熔点显著降低的原因就是应为,与常规粉体相比,纳米粒子的表面能高,比表面原子数多,这些表面原子近邻配位不全,活性大,以及体积远小于块体材料,因此,其熔化时所需增加的内能小得多,这就使得纳米粒子熔点急剧下降。

?银的熔点:960.5oC;银纳米粒子在低于100oC开始熔化。

?铅的熔点:327.4oC;20nm 球形铅粒子的熔点降低至39oC。

?铜的熔点:1053oC;平均粒径为40nm的铜粒子,750oC。

?金的熔点:1064oC;2nm的金粒子的熔点为327oC。

熔化是最基本的自然现象之一,也是材料科学研究的一个重要相变过程。熔化是指晶体从固态长程有序结构到液态无序结构的相转变。除了常见的升温过程中晶体转变成液体的熔化外,晶体低温退火时的非晶化过程也是熔化的一种表现。

在近平衡状态下,晶体转变成液体时温度不变,并伴随潜热的吸收和体积变化。这时,热力学平衡的固相和液相具有相同的吉布斯自由能:

(10)

熔化时体积变化△V f和熵变△S f可分别表示为:

(11)

(12)

常压下,固液相自由能相互独立,可以表示为图1所示的固液吉布斯(Gibbs)自由能曲线(其中T f是两相平衡温度,也是平衡熔化温度)。两条曲线的交点就是两相的平衡点,式(11)、式(12)表示的是吉布斯自由能曲线的斜率差。图示曲线隐含着固液转变时熵(或体积)变化的不连续性,这是一级相变的典型特征。

图3 固液相吉布斯自由能曲线

理论上讲,如果能阻止另一相的产生,就可以研究固相在高于熔点的温度区间或液相低于熔点温度区间的吉布斯自由能变化。实际上,过冷液态容易获得,对其已有很多的研究,但使固体过热非常困难,其研究还处于初始阶段。

实际上,晶体不能以无缺陷的理想状态存在,晶体中会有不溶于固液相的杂质,固体自身也存在如晶界、位错等缺陷。因异质相界面(固/气或固/固)和同质相界面(晶界)的存在,改变了固相或液相局部的热力学状态,使熔化过程发生变化而呈现多样性。由于晶体的自由表面和

内界面(如晶界、相界等)处原子的排布与晶体内部的完整晶格有很大差异,且界面原子具有较高的自由能,因此熔化通常源于具有较高能量的晶体表面或同质异质界面。当晶体的界面增多如颗粒尺寸减小使表面积增大、或多晶体晶粒减小使内晶界增多时,熔化的非均匀形核位置增多,从而导致熔化在较低温度下开始,即熔点降低。这就是发生在纳米材料中的熔点降低现。

2.纳米材料的熔点降低

早在20世纪初人们就从热力学上预言了小尺寸粒子的熔点降低,但真正从实验上观察到熔化的尺寸效应还是在1954年。人们首先在Pb、Sn、Bi膜中观察到熔点的降低,后来相继采用许多方法研究了不同技术制备的小颗粒金属的熔化。大量的实验表明,随着粒子尺寸的减小,熔点呈现单调下降趋势,而且在小尺寸区比大尺寸区熔点降低得更明显。

当粒子尺寸大于10nm时熔点下降幅度较小,而小于10nm后熔点急剧下降。图4为原位x 射线衍射测定的冷轧Pb/A1多层膜及轧制的自由铅薄膜样品的熔化行为,图中虚线为块体Pb 平衡熔点。可以看出,自由铅薄膜的四个特征衍射的强度到大约326℃开始急剧降低,并在329℃之前均下降为零。Pb/A1多层膜样品中铅膜的四个特征衍射的强度在326~329℃也会降低,但并未降到零,而是在高于329℃不同的温度降低到零,其中的(111)衍射直到340℃才完全消失。这说明,Pb/A1多层膜样品中部分铅膜在达到334℃时依然存在,其熔化温度超过了自由铅薄膜的熔化温度,夹在铝中的部分铅薄膜出现了过热现象。

根据经典热力学理论,我们可以近似得出纳米材料熔点与晶粒尺寸的关系。将固体金属表面的金属蒸气作为理想气体,则金属体系吉布斯自由能可以表示为:

(13)式中,G0为积分常数;p为温度T时金属的蒸气压;R为气体常数。

图4 铅的特征X-射线衍射强度随温度的变化情况

a)受约束铅纳米薄膜b)自由铅薄膜

根据小粒子表面的Gibbs-Thompson方程:

( 14) 式中,σ为粒子的表面张力;V为摩尔体积;D1和D2分别为粒子晶粒表面的两个主曲率半径。得出小粒子较平面粒子的吉布斯自由能升高为:

(15) 由于

(16) 式中,T m(D)为尺寸依赖的熔化温度;D是纳米晶体的等效直径;T m(∞)表示块体的熔化温度;

H m为T m(D)温度时的熔化焓。因此得出:

(17)

对于球形颗粒,D1=D2,则可以得到:

(18) 从式(18)中可见,小粒子的熔化温度变化T m(D)/T m(∞)与粒子尺寸的倒数是线性关系。这一关系式可以近似描述纳米材料的熔化规律。

考虑到实际熔化过程,人们提出了几种熔化机制来描术纳米粒子的熔化过程:

1)根据熔化一级相变的两相平衡理论可以得到,熔点变化与表界面熔化前后的能量差有关,也就是与小粒子所处的环境相关。对同质粒子,自由态和镶嵌于不同基体中时,粒子熔点降低的规律将会不同。

2)如果把粒子的熔化分为两个阶段,如图5所示,粒子的表面或与异质相接触的界面区域首先发生预熔化,完成表面的熔体形核,继而心部发生熔化,则粒子的熔化发生在一个温度区间内。该理论是建立在忽略环境条件的基础上,所以小粒子的实际熔点降低与所处环境无关。

3)随粒子尺寸的减小,表界面的体积分数较大,而且表界面处的原子振幅比心部原子的更大,均方根位移的增加引起界面过剩吉布斯自由能的增大,会使小粒子的熔点降低。此外,也有研究者从小粒子曲率引起的压力变化讨论熔点的降低,但这一模型通常应用于两相均为液相

的体系,而不能应用于其中之一是固相的体系。

图5 小粒子融化过程示意图

无论是自由态还是被基体束缚的状态,处于表界面原子的组态与组成块体材料原子的组态不同,焓也因此不同。伴随着粒子熔点降低,熔化热随之减少。如纳米In粒子(5.6nm)的熔化热比块体材料减少了2/3,Sn在Ge/Sn纳米材料中的熔化焓消失。根据经典热力学计算熔化焓的变化量△L m=(1- T m(D)/T m(∞))/L0,比实验值小得多。因此,有人认为纳米晶体的界面熔化与心部不同。纳米晶体界面为非晶态(或熔化层),熔化时界面层原子不吸收或很少吸收熔化热。尺寸的降低使表界面原子的特性变得突出。目前,人们正在仔细研究液相层的结构、厚度、形成过程中的熔化焓变,进一步探讨纳米粒子真实的熔化机制。初步结果表明,表界面熔化并非严格意义上的一级相变(二级相变无潜热的变化),表界面层预熔化的焓变也会随距表界面距离的不同呈梯度变化。

二、纳米晶体的晶粒成长

纳米晶体材料的结构失稳包括晶粒长大、相分离、第二相析出等过程。由于这些变化过程导致微观结构的改变,尤其足晶界形态和数量的变化必然会影响到纳米晶体材料的性能,从而可能使纳米晶体材料失去其优异的力学或理化性能。因此,研究纳米晶体材料的热稳定性具有重要的实际意义。

1.纳米晶体的热稳定性

晶粒尺寸的热稳定性是纳米晶体材料热稳定性研究的重要内容之一。由于纳米晶体材料中很高的界面体积分数使之处于较高的能量状态,而晶粒长大会减少界面体积分数,从而降低其能量状态,因此晶粒长大的驱动力很高。从传统的晶粒长大理论中可知,晶粒长大驱动力Δμ与晶粒尺寸d的关系可由Gibbs-Thonlson方程描述:

(19)式中,Ω为原子体积;γ为界面能。

由此可见,当晶粒尺寸d细化到纳米量级时,晶粒长大的驱动力很高,甚至在室温下即可长大。实验中已发现,纳米晶Cu、此、Pd在室温或略高于室温时的异常长大现象。

表4 部分纳米材料的晶粒长大起始温度T g

然而,大量实验观察表明,通过各种方法制备的纳米晶体材料,无论是纯金属、合金还是化合物,在一定程度上都具有很高的晶粒尺寸稳定性,表现为其晶粒长大的起始温度较高,有时高达0.6T m(T m为材料的熔点)。表4列出了部分单质和合金纳米晶体样品在恒速升温过程中晶粒长大的温度,可以看出大多数纳米晶体尺寸具有很好的热稳定性。

对于单质纳米晶体样品,熔点越高的物质晶粒长大起始温度越高,且晶粒长大温度约在(0.2—0.4) T m之间,比普通多晶体材料再结晶温度(约为0.5 T m)低。合金纳米晶体的晶粒长大温度往往较高,通常接近或高于0.5 T m。对纳米晶体材料晶粒尺寸热稳定性的研究,对深入理解晶粒长大动力学本质机理具有重要价值。

2.纳米晶体的长大动力学表征

虽然纳米晶体材料处于一种热力学亚稳状态,但在室温常压下它又常常是动力学稳定的,其结构转变过程往往需要克服一定的激活能,因此从动力学的角度来研究纳米晶体材料的热稳定性是很必要的。

动力学研究通常分为两个方面:一是利用动力学公式来表示晶粒尺寸与退火温度或时间的关系;二是通过监测纳米晶体材料物理性能的变化得到失稳过程中的一些特征参数,从而研究其动力学过程。

传统多晶体材料中的晶粒长大过程通常可表示为:

(20)

式中,d0为初始晶粒尺寸;d为经t时间段退火后的晶粒尺寸;N为晶粒长大指数;K T为动力学常数。该式较准确地反映了较低温度下金属材料中的晶粒长大规律。根据经典晶粒长大机制,不同的N值代表着不同的晶粒长大机制,N值通常是在2~4之间。动力学常数K T同温

度厂有如下关系:

(21)

式中,k T0为指前因子;R为气体常数;Q为晶粒长大激活能。在晶粒长大过程中激活能是晶粒尺寸稳定性的另一个重要参数,它代表晶粒长大对应的扩散过程所需克眼的能量势垒。在研究晶粒长大的过程中,通常是通过计算晶粒长大指数N和晶粒长大激活能Q,然后对比实验值与理论预测值来判断纳米晶晶粒长大的机制。

纳米晶体材料热稳定性的一些动力学参数还可以通过监测其他物理参量的变化而得到,例如,利用差热分析或电阻分析,通过测量晶粒长大过程随升温速率的变化来推断此过程的激活能,即常用的Kissinger方程:

(22) 式中,B为升温速率;C为常数;Q为激活能;T为某一过程的特征温度。

表4 纳米晶粒生长激活能

表4收集了一些有关纳米晶粒长大激活能的数据,一般来说,晶粒长大过程激活能越大,晶粒尺寸稳定性越好。实验结果表明,合金及化合物的晶粒长大激活能往往较高,接近相应元素的体扩散激活能。而单质纳米晶长大激活能较低,与晶界扩散激活能相近,这说明纳米晶粒

长大过程不能简单地沿用经典晶粒长大理论来描述,其中存在一些纳米晶体结构的本质影响因素,而这些因素并未被人们所充分认识。

纳米晶体材料的热稳定性及内在晶粒长大机制不仅与动力学有关,同时与晶粒的微观结构、化学成分及晶粒形态有密切关系,目前,许多有关纳米晶体材料热稳定性的研究是用超细粉冷压样品进行的,样品中一般都含有大量的孔隙、污染、微观应变,缺陷。另外,纳米晶体材料中的微孔隙,也同样也会因为阻止晶界运动而使其热稳定性增加。

3.晶粒长大的界面能

纳米晶粒的长大过程往往伴随有一定的过剩能释放。假设:①晶粒长大过程中对应的热效应都是由于界面减少而导致的界面能释放;②晶界的结构在晶粒长大前后保持不变;③晶粒的能量状态不随晶粒尺寸而变化。由于通常纳米晶体材料的晶界分数与其晶粒尺寸成反比,对一个体积为矿的样品,可以得到储存于界面的过剩焓为:

(23) 式中,γH为界面过剩能;g为数值因子,依赖于晶粒形状及其尺寸分布;H0和r0分别代表初始态过剩焓和晶粒半径。当晶粒半径增加到r(t)时,总界面过剩能变为:

(24)

在这段时间内,系统的能量变化则为:

(25) 式中W和D分别为所讨论样品的质量和密度。

通常可用示差扫描量热法(DSC)方法测量出其热效应。Chen及其合作者曾发展了一套较完整的理论来论述DSC测量方法在晶粒长大研究上的应用。根据式(16),在δt时间内,DSC信号的平均强度可表示为δH=ΔH/δt。

图7 大角度晶界纳米晶Cu对应不同起始晶粒尺寸时

晶粒长大过程中的热效应

a--5nm b—10nm c—15nm d—20nm e—30nm

以纯Cu样品为例,简单地认为晶粒形状因子为常数,D=8.91g/cm3,并取W=5mg,δt=50s,γH=0.1J/m2,可以得到不同初始晶粒尺寸晶粒长大过程中的热效应,如图7所示。图中水平虚线为目前DSC的能量精度极限。可以看出,随着晶粒不断长大,DSC信号的强度总是不断变化的,对于较小的晶粒尺寸,δH随d的增大较快,对于较大的晶粒尺寸,曲线则变的乎缓。就目前DSC设备的灵敏度而言,测量精度能达到0.01mJ/s。根据这一精度,当初始晶粒尺寸很小时(d0<10nm),晶粒长大过程可以很容易被检测到;而对于初始晶粒尺寸较大的样品,如do=30nm时,只有当晶粒尺寸长大约37nm时,DSC才可检测到其热效应。因此,DSC测量往往具有一定的滞后效应。

图8所示为具有小角晶界的纳米晶Cu样品的晶粒长大过程的热效应,γD=0.01J/m2,将样品质量增加到30mg,其他参数与图7相同;,水平虚线为目前DSC的能量精度极限。对于此实验所用纳米晶Cu,在125-175℃范围内是晶粒长大最快的温度区间,因此该温度区间的热效应最集中。当晶粒尺寸从37nm(125℃)长大到70nm(175℃)时,单位时间内其放热量大约为0.0143mW。因此,这种纳米晶Cu的晶粒长大热效应太弱,目前的DSC测试设备难以准确检测。

另外,样品中大量生长孪晶及层错等的存在也会在一定程度上影响晶粒长大过程的热效应。

图8 小角度晶界纳米晶Cu对应不同起始晶粒尺寸时

晶粒长大过程中的热效应

a--5nm b—10nm c—15nm d—20nm e—30nm

可见,根据DSC测量方法的精度及设备技术条件,并不是所有纳米晶体材料的晶粒长大过程都可以用DSC检测出来。

总的来讲,人们尚无单一测量方法可反映纳米材料晶粒长大中所有的结构和能量变化过程。某些变化过程难以通过常规分析手段确定其参数,有时只能通过监测样品物理性能的变化来推测相应的结构变化过程,因此,建立物理性能与微观结构的对应关系是很关键的。在研究纳米晶体材料热稳定性时,除了要考虑样品的微观缺陷外,还需要利用多种测量方法并在不同的测量方法之间进行比较,以揭示纳米晶体材料热稳定性的本质。

三、差热分析(DTA)和热重法(TG)

热分析是测量物质的物理、化学性质随温度变化的重要实验方法。由于温度变化几乎影响物质的所有物理常数和化学常数,所以热分析方法有多种。在化学实验中常用的有:测量吸热/放热引起温度变化的差热分析法(Differential Thermal Analysis,简称DTA)、测量质量变化的热重法(Thermo Gravimetry,简称TG)。

1.差热分析(DTA)

1)差热分析仪及差热分析的基本概念

进行DTA测定的仪器种类多,但内部装置结构大致相同,如图9所示。DTA仪的组成包括:炉子(其中有试样和参比物坩埚,温度敏感元件等)、炉温控制器、微伏放大器、气氛控制、记录仪(或微机)等部分。

图9 DTA 装置示意图

(1)炉温控制器炉温控制系统由程序信号发生器、PID 调节器和可控硅执行元件等几部分组成。程序信号发生器按给定的程序方式(升温、降温、恒温、循环)给出毫伏信号。若温控热电偶的热电势与程序信号发生器给出的毫伏值有差别时,说明炉温偏离给定值,此偏差值经微伏放大器放大,送入PID 调节器,再经可控硅触发器导通可控硅执行元件调整电炉的加热电流,从而使偏差消除,达到使炉温按一定的速度上升、下降或恒定的目的。

(2)差热放大单元用以放大温差电势,由于记录仪量程为毫伏级。差热分析中温差信号很小,一般只有几微伏到几十微伏,因此差热信号须经放大后再送入记录仪或微机中记录。

(3)信号记录单元由双笔自动记录仪(或微机)将测温信号和温差信号同时记录下来。

在DTA 测量过程中,如果升温时试样没有热效应,则温差电势应为常数,DTA 曲线为一直线,称为基线。但是由于两个热电偶的热电势和热容量以及坩埚形态、位置等不可能完全对称,在温度变化时仍有不对称电势产生。此电势随温度的变化而变化,造成基线不直,这时需要用斜率调整线路加以调整。

差热分析:是指在程序控制温度下测量物质和参比物的温度差与温度关系的技术。

差热曲线:描述样品与参比物之间的温度差(ΔT )随温度(T )或时间(t )变化的曲线。 程序控制温度:指按一定的速率升温(或降温)。

参比物:指在分析温度范围内不产生热效应(既不吸热,也不放热)的物质。 图10差热分析仪的结构及工作原理

炉温程序

控制器 气氛控

制器 样品支撑测量系统 差热放大系统 电炉

自动记录系统 U T U △T R S kU △T

2)差热分析仪的工作原理

把试样(S )和参比物(R )分别装入两个坩埚,放在电炉中按一定的速率加热。在此过程中,如果试样发生物理变化或化学变化,并伴随有热效应,即发生吸热或放热现象,试样的温度(TS )将低于或高于参比物的温度(TR ),从而产生一定的温度差(ΔT= TS - TR )。 用同极串联的一对相同的热电偶构成的差热电偶可将试样与参比物的温度差转变为温差电动势U △T 。将这个温差电动势放大,并用来调节记录仪的记录笔或显象管亮点的纵坐标,就可以将试样与参比物的温度差随温度(T )或时间(t )的变化曲线( ΔT - T 曲线)记录下来。

差热曲线提供的信息

峰的个数:吸热和放热过程的个数。

峰的位置:吸热和放热过程发生的温度。

峰的性质:向上,放热;向下,吸热。

峰的形状:热反应的速率。

峰的面积:吸收或释放的热量的多少。

基线的位置:样品与参比物的比热关系。

基线的长度:物质稳定存在的温度区间。

峰的面积与吸收或释放的热量的关系

峰的面积与吸收或释放的热量成正比。

(26) 式中, A 是吸热峰或放热峰的面积;ma 是试样中反应物的质量;ΔH 是单位反应物吸收或释

放的热量,即单位反应物的焓变;g 是与仪器有关的系数;λs 是试样热导率。

利用Speil 公式,可以根据峰的面积求得反应过程中的焓变和反应物质的量。 基线的位置与样品和参比物的比热关系

(27) CR —参比物的比热

CS —试样的比热

V —升温速率

k —比例常数

脱水作用—吸热

? 自由水:存在于物质颗粒表面或微型裂隙中的水,110℃以下脱出。

? 结晶水:以中性水分子的形式存在于结晶物质晶格中的水,200~500℃脱出。

? 结构水:以(OH)-或(H3O)+离子形式存在于结晶物质晶格中的水,500~900 ℃脱出。 试样粒度的影响

? 粒度变化不仅会引起反应速率的变化,而且会引起装填密度的变化。后者会引起热导率和扩散速率的变化。这些变化都会影响到吸热或放热反应的速率,从而影响差热曲线的特征。

? 试样粒度细化,会使结晶度下降和缺陷增多,导致内能增加,反应温度下降,吸热量减少,造成差热曲线峰位向低温方向漂移和峰面积减小。

一般差热分析试样的粒度以0.1~0.25mm(60目~150目)为宜。 3)影响因素

试样结晶度的影响

无定形或非晶质试样的内能较高,反应温度偏低,峰位一般向低温方向飘移。 升温速率的影响

S a t t a g H m dt T T A λ?=?-?=?

21])([V k C C T S R a -=?)(

升温速率会影响峰的形状、位置和相邻峰的分辨率。

升温速率大,峰的形状陡,峰顶温度高。

升温速率大,相邻峰分辨率下降,但对小峰的检测灵敏度提高。

升温速率大,峰的形状陡,峰顶温度高。

升温速率的选择

? 无机物试样,升温速率一般为8~12℃/min ,也有人用20℃/min ;

? 制作相图时升温速率一般为5℃/min 以下;

? 液态试样,升温速率一般5℃/min 。

? 聚合物,有人用1~10℃/min ,也有人用0.5~3℃/min 。

? 纤维试样,大多采用10℃/min 。

? 有机物试样,一般采用0.5~3℃/min 。

气氛的影响:炉内气氛对有气体参与或有气体放出的反应有明显影响。

压力的影响:压力对有气体参与或有气体放出的反应和气化升华等过程的温度有较大影响。压力降低,峰顶温度向低温方向飘移。

△T 的放大倍数和走纸速率的影响

增加△T 的放大倍数,峰高将增大,仪器能够感知更小的温度差,即提高了仪器的灵敏度。 对于快速反应,尤其是紧邻的快速反应,提高走纸速率能更明显地反映热反应的变化过程。 试样用量的影响

? 试样用量少,峰的面积小,反应温度偏低。 ? 试样用量少,基线漂移小。

? 试样用量少,分辨率高。

? 试样用量应根据仪器的灵敏度而定。仪器灵敏度越高,试样用量越少。

稀释剂的影响

? 添加稀释剂与减少试样用量有类似的作用效果。

? 添加稀释剂的目的:

减小基线漂移

防止试样烧结

增加试样的透气性

防止试样喷溅

? 常用的稀释剂有:参比物和其它惰性材料

参比物的影响 ? 参比物的性质会影响基线的形状和位置。

? 为了获得尽可能与零线接近的基线,应选择与试样的比热和热导率最接近的材料做参比

物。

仪器方面的因素

炉子的形状和大小、加热方式、样品支持器的材料与形状、热电偶及测温方法、电子仪器的工作状态

差热分析送样要求

? 样品要有明显的热效应;

? 样品要有代表性;

? 样品粒度:0.1~0.25mm(100目~60目);

? 样品重量:0.5~1g ;

? 写明分析目的和要求;

? 附上其它有关资料,以便对曲线进行解释。

S a g H m A λ?=V K C C T R S a -=?)(

4)差热分析在材料研究中的应用

1.判断是否有气体放出

2.判断一些含水化合物

3.非晶物质的重结晶(放热过程)

4.晶体类型的转变

5.物质的鉴定

6.相变点、居里点的测定:测定熔点、测定沸点、测定同质多象转变点、测定居里点

7.相图的制作

8.工艺参数的确定

9.热稳定性研究

10.反应动力学研究

2.热重法(TG)

热重法是在程序控制温度下,测量物质质量与温度变化的关系。许多物质在加热过程中常伴随质量的变化,此这种变化过程有助于研究物质性质的变化,如熔化、蒸发、升华和吸附等物理现象,也有助于研究物质的脱水、解离、氧化、还原等化学现象。

1).热重分析仪

热重分析的基本仪器为热天平(图14),包括天平、炉子、程序控温系统、记录系统等组成部分。热天平通常配有通人气氛或真空装置。

图11 热天平原理图

1--机械减码;2--吊挂系统;3--密封口;4--出气口;5--加热丝;6--样品盘;7--热电偶;8--光学读数;9--进气口;10--样品;11--管状电阻炉;12--温度读数表头;13--温控加热单元热重法大致分为两类:静态法和动态法。静态法是等压质量变化的测定,是指一物质的挥发性产物在恒定分压下,物质平衡与温度T的函数关系。以失重为纵坐标,温度T为横坐标作等压质量变化曲线图。等温质量变化的测定是指一物质在恒温下,物质质量变化与时间t的依赖关系,以质量变化为纵坐标,以时间为横坐标,获得等温质量变化曲线图。动态法是在程序

升温的情况下,测量物质质量的变化对时间的函数关系。

当升温时,试样受热后重量减轻,天平(或弹簧秤)向上移动改变质量信号;另一方面加热电炉温度缓慢升高时热电偶所产生的电位差输入温度控制器,经放大后由信号接收系统绘出TG 热分析图谱。

热重法实验得到的曲线称为热重曲线(TG曲线),如图15(a)所示。TG曲线以质量作纵坐标,从上到下表示质量减少;以温度(或时间)作横坐标,自左至右表示温度(或时间)增加。

图12 TG-DTG曲线

a—TG曲线;b—DTG曲线

TG曲线的优点是样品质量变化直观,其阶梯特征必然带来分辨率比较低。为此又发展出来了微分热重法(Differential ThermoGravimetry,简称DTG),它以样品质量变化速率dm/dt对温度r(或时间t)作图,如图15(b)所示。DTG曲线上的峰代替TG曲线上的阶梯,峰面积正比于样品质量变化。

DTG曲线既可以通过仪器直接测得,也可数值微分TG曲线得到。DTG曲线的特点提高了TG曲线的分辨能力。

2).热重法的影响因素

热重分析的实验结果受许多因素的影响,主要有:升温速率、炉内气氛、炉子的几何形状、坩埚的材料等仪器因素;样品的质量、粒度、装样紧密程度、导热性等样品因素。

在TG测定中,升温速率增大会使试样分解温度明显升高。如升温太快,试样来不及达到平衡,会使反应各阶段分不开。合适的升温速率为5~10℃·min-1。

试样在升温过程中常有吸热或放热现象,这样使温度偏离线性程序升温,从而改变了TG 曲线位置。试样量越大则影响越大。若受热产生气体,则试样量越大气体越不易扩散。再则,试样量大时,试样内温度梯度也大,将影响TG曲线位置。总之实验时应根据热天平的灵敏度,尽量减小试样量。试样的粒度也不能太大,否则将影响热量的传递;但粒度也不能太小,否则开始分解温度和完全分解温度都会降低。

3). 应用

TG法的主要特点是定量性强,能准确测量物质的质量变化及变化的速率,所以只要物质受热时质量发生变化,就可以用热重法来研究其变化过程。如:①热分解反应;②固态反应;③升华过程;④液体的蒸馏和汽化;⑤脱水和吸湿;⑥吸附和解吸;⑦金属在高温下受各种气体的腐蚀过程;⑧矿物的煅烧和冶炼;⑨煤、石油和木材的热解过程;⑩含湿量、挥发物及灰分含量的测定。

参考文献

[1] 陈昌国,曹渊. 实验化学导. 重庆市: 重庆大学出版社. 2010(11)

[2] 佟鹏,高建强,曹文亮. 纳米材料的研究及其在电力行业中的应用前景[J]. 汽轮机技术. 2003(05)

[3] 何彦达. 纳米材料的应用及展望[J]. 科技风. 2010(01)

[4] 丁秉钧. 纳米材料. 北京市: 机械工业出版社. 2004(06)

[5] 高新,李稳宏,王锋,杨清翠. 纳米材料的性能及其应用领域[J]. 石化技术与应用. 2002(03)

[6] 周小菊,刘东,李永康,吴莉莉. 纳米材料的性质及应用[J]. 西南民族学院学报(自然科学版). 2002(04)

[7] 李瑶. 纳米材料的特性、应用及制备[J]. 山西科技. 2001(04)

[8] 梅鑫东,章明. 纳米材料的性质、制备以及在化工生产中的应用[J]. 江西化工. 2006(02)

[9] 李玉娥,黄顺利,陈永森,杨峰. 纳米材料的性质及其在卷烟工业上的应用[J]. 河南化工. 2007(10)

[10] 杨光义,陈东,林化春. 纳米材料及其前景展望[J]. 青岛建筑工程学院学报. 2001(04)

[11]胡庆芳. 纳米材料简介[J]. 科学咨询(决策管理). 2009(01)

[12]何燕,高月,封文江. 纳米科技的发展与应用[J]. 沈阳师范大学学报(自然科学版). 2010(02)

[13]Song Qingwen, Li Yi, Xing Jianwei, et al.Thermal stability of composit phase material

纳米材料物理热学性质

纳米材料的热学性质 纳米材料是一种既不同于晶态,又不同于非晶态的第三类固体材料,通常指三维空间尺寸至少有一维处于纳米量级 ( 1 n m~1 0 0 n m)的固体材料。由于纳米材料粒径小,比表面积大,处于粒子表面无序排列的原子百分比高达 l 5 ~5 0 %。纳米粒子的这种特殊结构导致其具有不同于传统材料的物理化学特性。纳米材料的高浓度界面及原子能级的特殊结构使其具有不同于常规块体材料和单个分子的性质,纳米材料具有表面效应,体积效应,量子尺寸效应宏观量子隧道效应等,从而使得纳米材料热力学性质具有特殊性,纳米材料的各种热力学性质如晶格参数,结合能,熔点,熔解焓,熔解熵,热容等均显示出尺寸效应和形状效应。可见,纳米材料热力学性质在各方面均显现出与块体材料的差异性,研究纳米材料的热力学性质具有极其重要的科学意义和应用价值。 一热容 1996年,在低温下测定了纳米铁随粒度变化的比热,发现与正常的多晶铁相比,纳米铁出现了反常的比热行为,低温下的电子比热系数减50 %。 1998年,通过研究了粒度和温度对纳米粒子热容的影响,建立了一个预测热容的理论模型,结果表明:过剩的热容并不正比于纳米粒子的比表面,当比表面远小于其物质的特征表面积时,过剩的热容可以认为与粒度无关。 2002年,又把多相纳米体系的热容定义为体相和表面相的热容之和,因为表面热容为负值,所以随着粒径的减小和界面面积的扩大,将导致多相纳米体系总的热容的减小, 二.晶格参数,结合能,内聚能 纳米微粒的晶格畸变具有尺寸效应,利用惰性气体蒸发的方法在高分子基体上制备了1. 45nm 的pd纳米微粒,通过电子微衍射方法测试了其晶格参数,发现 Pd 纳米微粒的晶格参数随着微粒尺寸的减小而降低。结合能的确比相应块体材料的结合能要低。通过分子动力学方法,模拟 Pd 纳米微粒在热力学平衡时的稳定结构,并计算微粒尺寸和形状对 晶格参数和结合能的影响,定量给出形状对晶格参数和结合能变化量的贡献研究表明:在一定的形状下,纳米微粒的晶格参数和结合能随着微粒尺寸的减小而降低,在一定尺寸时,球形纳米微粒的晶格参数和结合能要高于立方体形纳米微粒的相应量。 三纳米粒子的熔解热力学 熔解温度是材料最基本的性能,几乎所有材料的性能如力学性能,物理性能以及化学性能都是工作温度比熔解温度( T /Tm )的函数,除了熔解温度外,熔解焓和熔解熵也是描述材料熔解热力学的重要参量;熔解焓表示体系在熔解的过程中,吸收热量的多少,而熔解熵则是体系熔解过程中熵值的变化。几乎整个熔解热力学理论就是围绕着熔解温度,熔解熵和熔解焓建立的块体材料的熔解温度(有时称熔点) 熔解焓(或称熔解热)和熔解熵一般是常数,但对于纳米材料则非如此实验表明:纳米微粒的熔解温度依赖于微粒的尺寸。 四反应体系的化学平衡 利用纳米氧化铜和纳米氧化锌分别与硫酸氢钠溶液的反应,测定出不同粒径,不同温度时每个组分反应的平衡浓度,从而计算出平衡常数,进而得到化学反应的标准摩尔吉布斯函数;通过不同温度的标准摩尔吉布斯函数,可得化学反

纳米材料的化学性质

纳米材料的化学性质 摘要:本文主要阐述了纳米材料比表面积的特征结构,及由其结构而导致的独特的化学性能, 并讲述了纳米材料化学性能在催化剂方面的实际应用。 关键字:纳米材料纳米纳米化学纳米材料的应用纳米催化剂 Summary:This text mainly elaborated the Na rice's material accumulates than the surface of characteristic structure, and from its structure but cause of special chemistry function, and related the Na rice material chemistry function's actual application in catalyst. Key word:The applied Na rice of the Na rice material Na rice Na rice chemistry Na rice material catalyst 纳米微粒独特的比表面积 人们通常把粒径分布在1~100nm 的细微粒子称为纳米粒子,纳米粒子 的集合体称为纳米粉末。纳米粒子的 尺寸与化学中胶体粒子大致相当,介 于原子、分子与块状物体之间,用肉 眼或性能最优良的光学显微镜均无法 辩认,但可借助电子显微镜观察。纳 米粒子的比表面积是纳米微粒一个非 常重要的参数。 球体颗粒的表面积与直径的平方成正 比,其体积与直径的立方成正比,故 其表面积与直径成反比。随着颗粒直径变小,比表面积将会显著增大,说明表面原子所占的 百分数将会显著增加。对直径大于0.1um的颗粒的表面效应可忽略不计,当尺寸小于0.1um 时,其表面原子百分数急剧增加,甚至1g超微颗粒表面积的总和可高达100平方米. ③ 纳米微粒的团聚 由于纳米微粒的比表面积大,表面能升高。如铜粉,粒度为100um时,每克的比表面 积为4.2×10∧3平方厘米,当它的粒度为1um时,4.2×10∧5平方厘米,大了100倍,表 面的原子数所占的比例也大大增加了,因而其表面活性增强,粒子之间的吸引力增加④。 团聚颗粒结构图⑤ 纳米微粒在团聚前后表面自由能的变化<0,可 见,团聚使系统自由能减少,根据热力学定律,纳 米微粒从分散向团聚变化是不可逆的、自发的过程。 在纳米微粒形成过程中,表面往往带有静电,这种 粒子极不稳定,在微粒的相互碰撞过程中,它们很 容易团聚在一起形成表面能较低的、带有弱连接界 面的、尺寸较大的团聚体。纳米微粒制备时,颗粒 间的范德华力远大于微粒本身的重力,他们的化学 键造成的粘附,对纳米微粒的制备造成了困难。

(完整版)纳米材料四大效应及相关解释

纳米材料四大效应及相关解释 四大效应基本释义及内容: 量子尺寸效应:是指当粒子尺寸下降到某一数值时,费米能级附近的电子能级由准连续变为离散能级或者能隙变宽的现象。当能级的变化程度大于热能、光能、电磁能的变化时,导致了纳米微粒磁、光、声、热、电及超导特性与常规材料有显著的不同。 小尺寸效应:当颗粒的尺寸与光波波长、德布罗意波长以及超导态的相干长度或透射深度等物理特征尺寸相当或更小时,晶体周期性的边界条件将被破坏,非晶态纳米粒子的颗粒表面层附近的原子密度减少,导致声、光、电、磁、热、力学等特性呈现新的物理性质的变化称为小尺寸效应。对超微颗粒而言,尺寸变小,同时其比表面积亦显著增加,从而产生如下一系列新奇的性质。 表面效应:球形颗粒的表面积与直径的平方成正比,其体积与直径的立方成正比,故其比表面积(表面积/体积)与直径成反比。随着颗粒直径的变小,比表面积将会显著地增加,颗粒表面原子数相对增多,从而使这些表面原子具有很高的活性且极不稳定,致使颗粒表现出不一样的特性,这就是表面效应。 宏观量子隧道效应:当微观粒子的总能量小于势垒高度时,该粒子仍能穿越这一势垒。近年来,人们发现一些宏观量,例如微颗粒的磁化强度,量子相干器件中的磁通量等亦有隧道效应,称为宏观的量子隧道效应。 四大效应相关解释及应用: 表面效应 球形颗粒的表面积与直径的平方成正比,其体积与直径的立方成正比,故其比表面积(表面积/体积)与直径成反比。随着颗粒直径的变小比表面积将会显著地增加。例如粒径为10nm时,比表面积为90m2/g;粒径为5nm时,比表面积为180m2/g;粒径下降到2nm时,比表面积猛增到450m2/g。粒子直径减小到纳米级,不仅引起表面原子数的迅速增加,而且纳米粒子的表面积、表面能都会迅速增加。这主要是因为处于表面的原子数较多,表面原子的晶场环境和结合能与内部原子不同所引起的。表面原子周围缺少相邻的原子,有许多悬空键,具有不饱

材料热学力学性能

第一章 脆性材料的断裂强度等于甚至低于弹性极限,因而断裂前不发生塑性形变。脆性材料的抗拉断裂强度低,但抗压断裂强度高。 强度:材料对塑性变形和断裂的抗力 塑性:材料在断裂前发生的不可逆的变形量的多少 韧性:断裂前单位体积材料所吸收的变形和断裂能。即外力所做的功。 泊松比 比例极限(16)弹性极限(17表征材料对极微量塑性变形的抗力)屈服强度抗拉强度延伸率断面收缩率P7 真应力S——真应变?曲线P8 单位体积材料在断裂前所吸收的能量,也就是外力使材料断裂所做的功,称为金属的韧度或断裂应变能密度Ut,它可能包含三部分能量,即弹性变形能、塑性变形能和断裂能。 第二章 零构建的刚度取决于两个因素:构件的几何和材料的刚度。表征材料刚度的力学性能指标是弹性模量。在加工过程中,应当提高材料的塑性,降低塑性变形抗力——弹性极限和屈服强度。 金属变形的微观解释P12 弹性模量表明了材料对弹性变形的抗力,代表了材料的刚度。 影响弹性模量的内部因素有纯金属的弹性模量、合金元素与第二相的影响,外部因素有温度、加载速率和冷变形影响p14 总之,弹性模量是最稳定的力学性能参数,对合金成分和组织的变化不敏感。 单晶体金属的弹性模量,其值在不同的结晶学方向上是不同的,也表现出各向异性。在原子间距较小的结晶学方向上,弹性模量的数值较高,反之较小。 弹性比功:弹性应变能密度,指金属材料吸收变形功而又不发生永久变形的能力,是在开始塑性变形前单位体积金属所能吸收的最大弹性变形功,韧度指标。P17 金属塑性变形方式为滑移和孪生,临界切分应力p21 滑移面和滑移方向常常是金属晶体中原子排列最密的晶面和晶向。金属浸提中的滑移系越多,其塑性可能越好。 实用金属材料的塑性变形特点择优取向形变织构(p22): 1 各晶粒塑性变形的非同时性和不均一性 2 各晶粒塑性变形的相互制约性与协调性 屈服效应、时效效应p23 提高屈服强度的途径: 1 纯金属

纳米材料的制备技术及其特点

纳米材料的制备技术及其特点 一纳米材料的性能 广义地说,纳米材料是指其中任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料。当小粒子尺寸加入纳米量级时,其本身具有体积效应、表面效应、量子尺寸效应和宏观量子隧道效应等。从而使其具有奇异的力学、电学、光学、热学、化学活性、催化和超导特性,使纳米材料在各种领域具有重要的应用价值。通常材料的性能与其颗粒尺寸的关系极为密切。当晶粒尺寸减小时, 晶界相的相对体积将增加,其占整个晶体的体积比例增大,这时,晶界相对晶体整体性能的影响作用就非常显著。此外,由于界面原子排列的无序状态,界面原子键合的不饱和性能都将引起材料物理性能上的变化。研究证实,当材料晶粒尺寸小到纳米级时,表现出许多与一般材料截然不同的性能,如高硬度、高强度和陶瓷超塑性以及特殊的比热、扩散、光学、电学、磁学、力学、烧结等性能。而这些特性主要是由其表面效应、体积效应、久保效应等引起的。由于纳米粒子有极高的表面能和扩散率,粒子间能充分接近,从而范德华力得以充分发挥,使得纳米粒子之间、纳米粒子与其他粒子之间的相互作用异常激烈,这种作用提供了一系列特殊的吸附、催化、螯合、烧结等性能。 二纳米材料的制备方法

纳米材料从制备手段来分,一般可归纳为物理方法和化学方法。 1 物理制备方法 物理制备纳米材料的方法有: 粉碎法、高能球磨法[4]、惰性气体蒸发法、溅射法、等离子体法等。 粉碎法是通过机械粉碎或电火花爆炸而得到纳米级颗粒。 高能球磨法是利用球磨机的转动或振动,使硬球对原料进行强烈的撞击,研磨和搅拌,将金属或合金粉碎为纳米级颗粒。高能球磨法可以将相图上几乎不互溶的几种元素制成纳米固溶体,为发展新材料开辟了新途径。 惰性气体凝聚- 蒸发法是在一充满惰性气体的超高真空室中,将蒸发源加热蒸发,产生原子雾,原子雾再与惰性气体原子碰撞失去能量,骤冷后形成纳米颗粒。由于颗粒的形成是在很高的温度下完成的,因此可以得到的颗粒很细(可以小于10nm) ,而且颗粒的团、凝聚等形态特征可以得到良好的控制。 溅射技术是采用高能粒子撞击靶材料表面的原子或分子交换能量或动量,使得靶材表面的原子或分子从靶材表面飞出后沉积到基片上形成纳米材料。常用的有阴极溅射、直流磁控溅射、射频磁控溅射、离子束溅射以及电子回旋共振辅助反应磁控溅射等技术。 等离子体法的基本原理是利用在惰性气氛或反应性气氛中

纳米材料的背景意义

纳米知识介绍 1990年7月,第一届国际纳米科学技术会议在美国巴尔的摩举办,标志着纳米科学技术的正式诞生。 纳米 纳米是一种长度单位,1纳米=1×10-9米,即1米的十亿分之一,单位符号为 nm。 纳米技术 纳米技术是在单个原子、分子层次上对物质的种类、数量和结构形态进行精确的观测、识别和控制的技术,是在纳米尺度范围内研究物质的特性和相互作用,并利用这些特性制造具有特定功能产品的多学科交叉的高新技术。其最终目标是人类按照自己的意志直接操纵单个原子、分子,制造出具有特定功能的产品。 纳米技术的发展大致可以划分为3个阶段: 第一阶段(1990年即在召开“Nano 1”以前)主要是在实验室探索各种纳米粉体的制备手段,合成纳米块体(包括薄膜),研究评估表征的方法,探索纳米材料的特殊性能。研究对象一般局限于纳米晶或纳米相材料。 第二阶段 (1990年~1994年)人们关注的热点是设计纳米复合材料: ?纳米微粒与纳米微粒复合(0-0复合), ?纳米微粒与常规块体复合(0-3复合), ?纳米复合薄膜(0-2复合)。 第三阶段(从1994年至今)纳米组装体系研究。它的基本内涵是以纳米颗粒以及纳米丝、管等为基本单元在一维、二维和三维空间组装排列成具有纳米结构的体系的研究。 纳米材料 材料基本构成单元的尺寸在纳米范围即1~100纳米或者由他们形成的材料就称为纳米材料。纳米材料和宏观材料迥然不同,它具有奇特的光学、电学、磁学、热学和力学等方面的性质。 图1 纳米颗粒材料SEM图 一、纳米材料的基本特性 由于纳米材料是由相当于分子尺寸甚至是原子尺寸的微小单元组成,也正因为这样,纳米材料具有了一些区别于相同化学元素形成的其他物质材料特殊的物理或是化学特性例如:其力学特性、电学特性、磁学特性、热学特性等,这些特性在当前飞速发展的各个科技领域内得到了应用。科学家们和工程技术人员利用纳米材料的特殊性质解决了很多技术难题,可以说纳米材料特性促进了科技进步和发展。 1、力学性质 高韧、高硬、高强是结构材料开发应用的经典主题。具有纳米结构的材料强度与粒径成反比。纳米材料的位错密度很低,位错滑移和 增殖符合Frank-Reed模型,其临界位错圈的直径比纳米晶粒粒径还 要大,增殖后位错塞积的平均间距一般比晶粒大,所以纳米材料中位 错滑移和增殖不会发生,这就是纳米晶强化效应。金属陶瓷作为刀具 材料已有50多年历史,由于金属陶瓷的混合烧结和晶粒粗大的原因其

纳米材料论文

纳米材料的特性与应用 摘要:纳米材料在结构、光电和化学性质等方面的诱人特征,引起物理学家、材料学家和化学家的浓厚爱好。80年代初期纳米材料这一概念形成以后,世界各国对这种材料给予极大关注。它所具有的独特的物理和化学特性,使人们意识到它的发展可能给物理、化学、材料、生物、医药等学科的研究带来新的机遇。纳米材料的应用前景十分广阔。近年来,它在化工、催化、涂料等领域也得到了一定的应用,并显示出它的独特魅力。 关键词:纳米材料特性应用 1. 纳米发展简史 1959年,着名物理学家、诺贝尔奖获得者理查德。费曼预言,人类可以用小的机器制作更小的机器,最后实现根据人类意愿逐个排列原子、制造产品,这是关于纳米科技最早的梦想。 1991年,美国科学家成功地合成了碳纳米管,并发现其质量仅为同体积钢的1/6,强度却是钢的10倍,因此称之为超级纤维.这一纳米材料的发现标志人类对材料性能的发掘达到了新的高度。1999年,纳米产品的年营业额达到500亿美元。 2.什么是纳米材料 纳米(nm)是长度单位,1纳米是10-9米(十亿分之一米),对宏观物质来说,纳米是一个很小的单位,不如,人的头发丝的直径一般为7000-8000nm,人体红细胞的直径一般为3000-5000nm,一般病毒的直径也在几十至几百纳米大小,金属的晶粒尺寸一般在微米量级;对于微观物质如原子、分子等以前用埃来表示,1埃相当于1个氢原子的直径,1纳米是10埃。 一般认为纳米材料应该包括两个基本条件:一是材料的特征尺寸在1-100nm之间,二是材料此时具有区别常规尺寸材料的一些特殊物理化学特性。 3. 纳米材料的特性 广义地说,纳米材料是指在三维空间中至少有一维处在纳米尺度范围(1-100nm)或由他们作为基本单元构成的材料。 3.1表面与界面效应 这是指纳米晶体粒表面原子数与总原子数之比随粒径变小而急剧增大后所引起的性质上的变化。例如粒子直径为10纳米时,微粒包含4000个原子,表面原子占40%;粒子直径为1纳米时,微粒包含有30个原子,表面原子占99%。主要原因就在于直径减少,表面原子数量增多。再例如,粒子直径为10纳米和5纳米时,比表面积分别为90米2/克和180米2/克。如此高的比表面积会出现一些极为奇特的现象,如金属纳米粒子在空中会燃烧,无机纳米粒子会吸附气体等等。 3.2小尺寸效应

耐火材料的热学性质

耐火材料的热学性质 耐火材料的热学性质有热膨胀、热导率、热容、温度传导性,此外还有热辐射性。 3.1 耐火材料的热膨胀 耐火材料的热膨胀是其体积或长度随温度升高而增大的物理性质。原因是材料中的原子受热激发的非谐性振动使原子的间距增大而产生的长度或体积膨胀。衡量耐火材料的热膨胀性能的技术指标有热膨胀率、热膨胀系数。 3.1.1 热膨胀率 热膨胀率也称线膨胀率,物理意义:是试样在一定的温度区间的长度相对变化率。测定出热膨胀率,才能计算出热膨胀系数。 线膨胀率=[(L T-L0)/L0]×100% 式中:L T、L0—分别为试样在温度T、T0时的长度,(mm)。 3.1.2 热膨胀系数 热膨胀系数有平均线膨胀系数α、真实线膨胀系数αT,体膨胀系数β。以后除特别说明外,热膨胀系数一般指的是平均线膨胀系数。线膨胀系数物理意义:在一定温度区间,温度升高1℃,试样长度的相对变化率。 热膨胀系数α=(L T-L0)/ L0(T-T0)=ΔL/ L0ΔT 式中:T、T0—分别为测试终了温度、测试初始温度,(℃)。 体热膨胀系数β=ΔV/V0ΔT 式中:V0—为试样在初始温度T0时的体积,(mm3)。 真实热膨胀系数αT=dL/LdT 式中;L—为试样在某温度时的长度,(mm)。 如线膨胀系数数值很小,则体膨胀系数约等于线膨胀系数的3倍。对于各向同性晶体,体膨胀系数β≈3α;对于各向异性晶体,体膨胀系数等于各晶轴方向的线膨胀系数只和,即β≌αa+αb+αc。 影响材料热膨胀系数的因素有:化学矿物组成、晶体结构类型和键强等。 ①化学矿物组成的影响:含有多晶转变的制品,热膨胀系数的变化不均匀,在相变点会发生突变,例如硅质制品和氧化锆制品;材料中含有较多低熔液相或挥发性成分时,热膨胀系数α在相应的温度区域也发生较大的变化。 ②晶体结构类型的影响:结构紧密的晶体热膨胀系数较大、无定型的玻璃热膨胀系数较

举例说明纳米材料的结构与其性质的关系

代鹏程无机化学2009级硕博连读学号:200911461 题目:举例说明纳米材料的结构与其性质的关系 答: 目录 1、纳米材料定义 2、纳米材料的结构 3、纳米材料的性能 4、以量子点为例说明纳米材料结构与其性质的关系 5、以纳米线为例说明纳米材料结构与其性质的关系 1、纳米材料定义 纳米材料是纳米级结构材料的简称。狭指由纳米颗粒构成的固体材料,其中纳米颗粒的尺寸最多不超过100纳米,在通常情况下不超过10纳米;从广义上说,纳米材料,是指微观结构至少在一维方向上受纳米尺度(1~100nm)限制的各种固体超细材料,它包括零维的原子团簇(几十个原子的聚集体)和纳米微粒;一维纳米纤维;二维纳米微粒膜(涂层)及三维纳米材料。 2、纳米材料的结构 材料学研究认为:材料的结构决定材料的性能,同时材料的性能反映材料的结构。纳米材料也同样如此。对于纳米材料,其特性既不同于原子,又不同于结晶体,可以说它是一种不同于本体材料的新材料,其物理化学性质与块体材料有明显的差异。 纳米材料的结构特点是:纳米尺度结构单元,大量的界面或自由表面,以及结构单元与大量界面单元之间存在的交互作用。在结构上,大多数纳米粒子呈现为理想单晶,也有呈现非晶态或亚稳态的纳米粒子。纳米材料的结构上存在两种结构单元;即晶体单元和界面单元。晶体单元由所有晶粒中的原子组成,这些原子严格地位于晶格位置;界面单元由处于各晶粒之间的界面原子组成,这些原子由超微晶粒的表面原子转化而来。 纳米材料由于非常小,使纳米材料的几何特点之一是比表面积(单位质量材料的表面积)很大,一般在102~104m2/g。它的另一个特点是组成纳米材料的单元表面上的原子个数与单元中所有原子个数相差不大。例如:一个由5个原子组成的正方体纳米颗粒,总共有原子个数53=125个,而表面上就有约89个原子,占了纳米颗粒材料整体原子个数的71%以上。这些特点完全不同于普通的材料。例如,普通材料的比表面积在10m2/g以下,其表面原子的个数与组成单元的整体原子个数相比较完全可以忽略不计。 由于以上纳米材料的两上显著不同于普通材料的几何特点,从物理学的观点来看,就使得纳米材料有两个不同于普通材料的物理效应表现出来,这是一个由量变到质变的过程。一个效应我们称之为量子尺寸效应,另一个被称之为表面效应。量子尺寸效应是由于材料的维度不断缩小时,描述它的物理规律完全不同

纳米材料的物理化学性能

第四章纳米材料的物理化学性能 纳米微粒的物理性能 第一节热学性能 ※1.1. 纳米颗粒的熔点下降 由于颗粒小,纳米颗粒的表面能高、比表面原子多,这些表面原子近邻配位不全,活性大以及体积远小于大块材料的纳米粒子熔化时所需要增加的内能小得多,这就使纳米微粒熔点急剧下降。 金的熔点:1064o C;2nm的金粒子的熔点为327o C。 银的熔点:960.5o C;银纳米粒子在低于100o C开始熔化。 铅的熔点:327.4o C;20nm球形铅粒子的熔点降低至39o C。 铜的熔点:1053o C;平均粒径为40nm的铜粒子,750o C。 ※1.2. 开始烧结温度下降 所谓烧结温度是指把粉末先用高压压制成形,然后在低于熔点的温度下使这些粉末结合成块,密度接近常规材料的最低加热温度。 纳米颗粒尺寸小,表面能高,压制成块材后的界面具有高能量,在烧结中高的界面能成为原子运动的驱动力,有利于界面中的孔洞收缩,空位团的湮灭,因此,在较低的温度下烧结就能达到致密化的目的,即烧结温度降低。 ※1.3. NPs 晶化温度降低 非晶纳米颗粒的晶化温度低于常规粉末,且纳米颗粒开始长大温度随粒径的减小而降低。 ※熔点降低、烧结温度降低、晶化温度降低等热学性质的显著变化来源于纳米材料的表(界)面效应。 第二节电学性能 2.1 纳米金属与合金的电阻特性 1. 与常规材料相比,Pd纳米相固体的比电阻增大; 2. 比电阻随粒径的减小而逐渐增加; 3. 比电阻随温度的升高而上升 4. 随粒子尺寸的减小,电阻温度系数逐渐下降。电阻的温度变化规律与常规粗晶基本相似,差别在于温度系数强烈依赖于晶粒尺寸。 随着尺寸的不断减小,温度依赖关系发生根本性变化。当粒径为11nm时,电阻随温度的升高而下降。 5. 当颗粒小于某一临界尺寸时(电子平均自由程),电阻的温度系数可能会由正变负,即随着温度的升高,电阻反而下降(与半导体性质类似). 电子在晶体中传播由于散射使其运动受阻,而产生电阻。 ※纳米材料的电阻来源可以分为两部分: 颗粒组元(晶内):当晶粒大于电子平均自由程时主要来自晶内散射 界面组元(晶界):晶粒尺寸与电子平均自由程相当时,主要来自界面电子散射?纳米材料中大量的晶界存在,几乎使大量电子运动局限在小颗粒范围。 ?晶界原子排列越混乱,晶界厚度越大,对电子散射能力就越强。 ?界面的这种高能垒是使电阻升高的主要原因。 总之:纳米材料体系的大量界面使得界面散射对电阻的贡献非常大,当纳米材料尺寸非常小时,这种贡献对总电阻占支配地位。当粒径低于临界尺寸时,量子尺寸效应造成的能级离散性不可忽视,最后温升造成的热激发电子对电导的贡献增大,即温度系数变负。 ※金属纳米颗粒材料的电阻增大的现象主要归因于小尺寸效应。 第三节磁学性能 许多生物体内就有天然的纳米磁性粒子,如向磁性细菌,蜜蜂,螃蟹,海龟等。

纳米材料的制备与性质

纳米材料的制备与性质 杨旭 应化一班 学号05 1摘要 今天,世界各国的科学家都不约而同地把目光投向一种完全新型的材料——纳米材料,并且预言,纳米材料的应用标志着人类的科学技术已经进入了一个新时代。那么究竟是什么让小小的纳米材料进入世界上众多科学家的眼中呢?我想纳米材料的性质无疑起了重大的作用,首先它们十分细小,也因此拥有了巨大的比表面积,这点是任何催化剂材料所不能比拟的;其次它的性质也较其他材料更加的特殊,因为上述的两项原因,纳米材料更加让世界的科学家为止倾倒。 对于纳米材料,首先顾名思义是因为其尺寸的原因称之为纳米材料,然而它在各个方面的表现让我们不能忽视着小小的纳米材料,正如人不可貌相,海水不可斗量一样,一切的原因还是要从其不同于别的材料的性质开始讲起。 2正文 2.1纳米材料的性质 纳米结构是以纳米尺度的物质单元为基础按一定规律构筑或营造的一种新体系。它包括纳米阵列体系、介孔组装体系、薄膜嵌镶体系。目前对纳米阵列体系的研究集中在由金属纳米微粒或半导体纳米微粒在一个绝缘的衬底上整齐排列所形成的二位体系上。而纳米微粒与介孔固体组装体系由于微粒本身的特性,以及与界面的基体耦合所产生的一些新的效应,也使其成为了研究热点,按照其中支撑体的种类可将它划分为无机介孔复合体和高分子介孔复合体两大类,按支撑体的状态又可将它划分为有序介孔复合体和无序介孔复合体。在薄膜嵌镶体系中,对纳米颗粒膜的主要研究是基于体系的电学特性和磁学特性而展开的。美国科学家利用自组装技术将几百只单壁纳米碳管组成晶体索“Ropes”,这种索具

有金属特性,室温下电阻率小于0.0001Ω/m;将纳米三碘化铅组装到尼龙-11上,在X射线照射下具有光电导性能, 利用这种性能为发展数字射线照相奠定了基础。 复合氧化物一维和零维单晶纳米材料稀土纳米材料 2.1.1 体积效应 体积效应又称小尺寸效应,当纳米粒子的尺寸与传导电子的de Broglle波长以及超导态的相干波长等物理尺寸相当或更小时,周期性的边界将被破坏,熔点、磁性、光吸收、热阻、化学性质、催化性等于普通粒子相比都有很大变化,这就是纳米粒子的体积效应,该效应大大扩充了纳米材料的物理、化学特性范围,为纳米粒子的应用开拓了广阔的新领域。 2.1.2表面效应 表面效应是指纳米粒子表面原子数与总原子数之比随粒长变小而急剧增大后所引起的性质上的变化。也就是随着粒径的变小,纳米粒子表面原子所占的比例急剧增大。纳米晶粒减小的结果,导致其表面积、表面能及表面结合能都迅速增大,具有不饱和性质、致使它表现出很高的活性。 2.1.3量子尺寸效应 量子尺寸效应指的是微粒尺寸下降到一定值时,费米能级附近的电子能级由准连续能级变为分立能级,吸收光谱闭值向短波方向移动的现象。纳米材料中处于分立的量子化能级中的电子的波动性带来了纳米材料的一系列特殊性质,如强氧化性和还原性、特异性催化和光催化性质等。

纳米材料的热学性质

纳米材料与团簇物理结课论文 纳米材料的热学性质 纳米材料是一种既不同于晶态,又不同于非晶态的第三类固体材料,通常指三维空间尺寸至少有一维处于纳米量级( 1 n m~1 0 0 n m)的固体材料。由于纳米材料粒径小,比表面积大,处于粒子表面无序排列的原子百分比高达l5~5 0%。纳米粒子的这种特殊结构导致其具有不同于传统材料的物理化学特性。 纳米材料的高浓度界面及原子能级的特殊结构使其具有不同于常规块体材料和单个分子的性质,纳米材料具有表面效应,体积效应,量子尺寸效应宏观量子隧道效应等,从而使得纳米材料热力学性质具有特殊性,纳米材料的各种热力学性质如晶格参数,结合能,熔点,熔解焓,熔解熵,热容等均显示出尺寸效应和形状效应。可见,纳米材料热力学性质在各方面均显现出与块体材料的差异性,研究纳米材料的热力学性质具有极其重要的科学意义和应用价值。 纳米材料的热学性质概述 一、纳米材料的熔点及内能 材料热性能与材料中分子、原子运动行为有着不可分割的联系。当热载子(电子、声子及光子)的各种特征尺寸与材料的特征尺寸(晶粒尺寸、颗粒尺寸或薄膜厚度)相当时,反应物质热性能的物性参数如熔化温度、热容等会体现出鲜明的尺寸依赖性。特别是,低温下热载子的平均自由程将变长,使材料热学性质的尺寸效应更为明显。

图1 几种纳米金属粒子的熔点降低现象 上图(图1)为几种纳米金属粒子的熔点降低现象。随粒子尺寸的减小,熔点降低。当金属粒子尺寸小于10nm后熔点急剧下降,其中3nm左右的金微粒子的熔点只有其块体材料熔点的一半,用高倍率电子显微镜观察尺寸2nm的纳米金粒子结构可以发现,纳米金颗粒形态可以在单晶、多晶与孪晶间连续转变。这种行为与传统材料在固定熔点熔化的行为完全不同,伴随着纳米材料的熔点降低,单位质量粒子熔化时的潜热吸收(焓变)也随尺寸的减小而减少。人们在具有自由表面的共价半导体的纳米晶体、惰性气体和分子晶体也发现了熔化的尺寸效应现象。 根据固体物理的基本原理,可以说明材料热学性质出现尺寸效应的根本原因,一般情况下,晶体材料的内能U可依据其晶格振动的波特性在德拜假设下估计出,即: (1) 式中,Θ为德拜温度;k为波矢;T为热力学温度;h为普朗克常数;k B为玻尔兹曼常数。求和是对于所有可能的k值进行的。k的允许值由其分量表示为: (2) 式中,L为晶格长度;N为状态度;△k x为特定方向上连续波矢的差。在其他方向的k分量也存在类似关系。 在块体材料内,式(1)通常简化为: (3) 式中,u bulk是块体材料单位容积的U值;n为原子数密度;x D为与德拜温度对应的积分限。上述关于u的表述只给出了来自块体材料声子模式的贡献,而表面声子的贡献则被忽略了。在块体材料中,表面声子的贡献确实可以忽略;但当材料至少一维尺寸大幅减少至纳米量级时,这

材料热力学练习三:各种热力学性质的计算

新型材料设计及其热力学与动力学 The excess Gibbs energies of bcc solid solution of (Fe,Cr) and fcc solid solution of (Fe,Cr) is represented by the following expressions: G ex(bcc)/J=x Cr x Fe (25104-11.7152T); G ex(fcc)/J=x Cr x Fe (13108-31.823T+2.748T log e T) For the bcc phase, please do the following calculations using one calculator. (a) Calculate the partial Gibbs energy expressions for Fe and Cr (b) Plot the integral and partial Gibbs energies as a function of composition at 873 K (c) Plot the activities (a Cr and a Fe) as a function of composition at 873K (d) What are the Henry’s law constants for Fe and Cr? For the fcc phase, please do the calculations (a) to (b) by using your own code 翻译: BCC(Fe,Cr)固溶体的过剩吉布斯自由能和fcc固溶体(Fe,Cr)的吉布斯自由能表达式如下: G ex(bcc)/J=x Cr x Fe (25104-11.7152T); G ex(fcc)/J=x Cr x Fe (13108-31.823T+2.748T ln T) G ex/J 对于体心立方相,请使用计算器做下面的计算。 (a)计算Fe和Cr的局部吉布斯能量表达式; (b)画出873K时局部吉布斯自由能和整体吉布斯自由能的复合函数图。 (c)画出873K时Fe和Cr反应的活度图。 (d)F e和Cr亨利定律常数是什么? 对于fcc,请用你自己的符号计算a和b。

纳米材料的特性

目录 1 引言............................................. 错误!未定义书签。 2 纳米材料的概述 (2) 2.1相关概念的介绍 (2) 2.2纳米材料的分类 (3) 3 纳米材料的基本性质 (3) 3.1表面效应 (3) 3.2小尺寸效应 (4) 3.3量子尺寸效应 (4) 3.4宏观隧道效应效应 (5) 4 纳米材料的特殊性能 (5) 4.1力学性能 (5) 4.2 电磁学性能 (6) 4.3 热学性能 (6) 4.4 光学性能 (7) 4.5 分散体系动力学性能 (8) 4.6 化学特性和催化性能 (10) 4.7 生物学性能 (10) 5 纳米材料的应用 (11) 6 我国纳米材料研究的现状和产业化 (12) 参考文献: (13) 致谢 (14)

纳米材料的特性 摘要:本文简述了纳米、纳米材料的基本概念,纳米材料所具有的力学、电磁学、热学、光学、分散体系动力学、化学性和催化性、生物学的特性及其在我们的衣、食、住、行各个领域的应用,同时介绍我国纳米材料的研究现状和产业化。 关键词:纳米;纳米材料;纳米材料的特性; The characteristics of nano materials Abstract:This paper briefly describes the basic concept of nano and nanometer materials. Nano material has the mechanics, electromagnetism, heat, light, decentralized system dynamics, chemical and catalytic, biology characteristic and in our food, clothing, shelter and transportation all application fields. Meanwhile introducing nanometer material research situation and industrialization in our country.. Key words:Nano ;Nano materials;The characteristics of nano materials

纳米材料的特点和用途

纳米是一种很小的单位,纳米技术则是一种非常具有市场潜力的新兴科学技术。关于纳米技术的研究,是很多国家研究的一个重要方向,2011年,欧盟通过了纳米材料的定义,纳米材料,即一种由基本颗粒组成的粉状或团块状天然或人工材料,这一基本颗粒的一个或多个三维尺寸在1纳米至100纳米之间,并且这一基本颗粒的总数量在整个材料的所有颗粒总数中占50%以上。这标志着科学史上又一个里程碑。那么,纳米材料的特点和用途有哪些呢? 一、纳米材料的特点 当粒子的尺寸减小到纳米量级,将导致声、光、电、磁、热性能呈现新的特性。比方说:被广泛研究的II-VI族半导体硫化镉,其吸收带边界和发光光谱的峰的位置会随着晶粒尺寸减小而显著蓝移。按照这一原理,可以通过控制晶粒尺寸来获得不同能隙的硫化镉,这将大大丰富材料的研究内容和可望获得新的用途。我们知道物质的种类是有限的,微米和纳米的硫化镉都是由硫和镉元素组成的,但通过控制制备条件,可以获得带隙和发光性质不同的材料。也就是说,通过纳米技术获得了全新的材料。纳米颗粒往往具有很大的比表面积,每克这种固体的比表面积能达到几百甚至上千㎡,这使得它们可作为高活性的吸附剂和催化剂,在氢气贮存、有机合成和环境保护等领域有着重要的应用前景。对纳米体材料,我们可以用“更轻、更高、更强”这六个字来概括。“更轻”是指借助于纳米材料和技术,我们可以制备体积更小性能不变甚至更好的器件,减小器件的体积,使其更轻盈。如现在小型化了的计算机。“更高”

是指纳米材料可望有着更高的光、电、磁、热性能。“更强”是指纳米材料有着更强的力学性能(如强度和韧性等),对纳米陶瓷来说,纳米化可望解决陶瓷的脆性问题,并可能表现出与金属等材料类似的塑性。 二、纳米材料的用途 纳米材料应用在信息产业、环境产业、能源环保、生物医药等领域,帮助着产品的进步与发展,为人们的社会发展、科研进步、医药发展带去了很好的辅助。 1、纳米磁性材料 在实际中应用的纳米材料大多数都是人工制造的。纳米磁性材料具有十分特别的磁学性质,纳米粒子尺寸小,具有单磁畴结构和矫顽力很高的特性,用它制成的磁记录材料不仅音质、图像和信噪比好,而且记录密度比γ-Fe2O3高几十倍。超顺磁的强磁性纳米颗粒还可制成磁性液体,用于电声器件、阻尼器件、旋转密封及润滑和选矿等领域。 2、纳米陶瓷材料 传统的陶瓷材料中晶粒不易滑动,材料质脆,烧结温度高。纳米陶瓷的晶粒尺寸小,晶粒容易在其他晶粒上运动,因此,纳米陶瓷材料具有极高的强度和高韧性以及良好的延展性,这些特性使纳米陶瓷材料可在常温或次高温下进行冷加工。如果在次高温下将纳米陶瓷颗粒加工成形,然后做表面退火处理,就可以使纳米材料成为一种表面保持常规陶瓷材料的硬度和化学稳定性,而内部仍具有纳米材料的延展性的高性能陶瓷。 3、纳米传感器 纳米二氧化锆、氧化镍、二氧化钛等陶瓷对温度变化、红外线以及汽车尾气都十分敏感。因此,可以用它们制作温度传感器、红外线检测仪和汽车尾气检测仪,检测灵敏度比普通的同类陶瓷传感器高得多。 4、纳米倾斜功能材料 在航天用的氢氧发动机中,燃烧室的内表面需要耐高温,其外表面要与冷却剂接触。因此,内表面要用陶瓷制作,外表面则要用导热性良好的金属制作。但块状陶瓷和金属很难结合在一起。如果制作时在金属和陶瓷之间使其成分逐渐地连续变化,让金属和陶瓷“你中有我、我中有你”,便能结合在一起形成倾斜功能材料,它的意思是其中的成分变化像一个倾斜的梯子。当用金属和陶瓷纳米颗

纳米材料四大效应及相关解释

纳米材料四大效应及相关解释

纳米材料四大效应及相关解释 四大效应基本释义及内容: 量子尺寸效应:是指当粒子尺寸下降到某一数值时,费米能级附近的电子能级由准连续变为离散能级或者能隙变宽的现象。当能级的变化程度大于热能、光能、电磁能的变化时,导致了纳米微粒磁、光、声、热、电及超导特性与常规材料有显著的不同。 小尺寸效应:当颗粒的尺寸与光波波长、德布罗意波长以及超导态的相干长度或透射深度等物理特征尺寸相当或更小时,晶体周期性的边界条件将被破坏,非晶态纳米粒子的颗粒表面层附近的原子密度减少,导致声、光、电、磁、热、力学等特性呈现新的物理性质的变化称为小尺寸效应。对超微颗粒而言,尺寸变小,同时其比表面积亦显著增加,从而产生如下一系列新奇的性质。 表面效应:球形颗粒的表面积与直径的平方成正比,其体积与直径的立方成正比,故其比表面积(表面积/体积)与直径成反比。随着颗粒直径的变小,比表面积将会显著地增加,颗粒表面原子数相对增多,从而使这些表面原子具有很高的活性且极不稳定,致使颗粒表现出不一样的特性,这就是表面效应。 宏观量子隧道效应:当微观粒子的总能量小于势垒高度时,该粒子仍能穿越这一势垒。近年来,人们发现一些宏观量,例如微颗粒的磁化强度,量子相干器件中的磁通量等亦有隧道效应,称为宏观的量子隧道效应。 四大效应相关解释及应用: 表面效应 球形颗粒的表面积与直径的平方成正比,其体积与直径的立方成正比,故其比表面积(表面积/体积)与直径成反比。随着颗粒直径的变小比表面积将会显著地增加。例如粒径为10nm时,比表面积为90m2/g;粒径为5nm时,比表面积为180m2/g;粒径下降到2nm时,比表面积猛增到450m2/g。粒子直径减小到纳米级,不仅引起表面原子数的迅速增加,而且纳米粒子的表面积、表面能都会迅速增加。这主要是因为处于表面的原子数较多,表面原子的晶场环境和结合能与内部原子不同所引起的。表面原子周围缺少相邻的原子,有许多悬空键,

纳米材料的特性和种类

纳米材料的特性和种类 纳米材料是指粒子平均粒径在l00 nm以下的材料。其中平均粒径为20~100nm的称为超细粉,平均粒径小于20nm的称为超微粉。纳米材料具有相当大的相界面面积,它具有许多宏观物体所不具备的新异的物理、化学特性,既是一种多组分物质的分散体系,又是一种新型的材料。纳米材料的研究是从金属粉末、陶瓷等领域开始的,现已在微电子、冶金、化工、电子、国防、核技术、航天、医学和生物工程等领域得到了广泛的应用。 近年来将纳米材料分散于聚合物中以提高高分子材料性能的研究也日益活跃,并取得了许多可观的成果。 ——纳米材料的特性 由于纳米材料晶粒极小,表面积特大,在晶粒表面无序排列的原子分数远远大于晶态材料表面原子所占的百分数,导致了纳米材料具有传统固体所不具备的许多特殊基本性质,如体积效应、表面效应、量子尺寸效应、宏观量子隧道效应和介电限域效应等,从而使纳米材料具有微波吸收性能、高表面活性、强氧化性、超顺磁性及吸收光谱表现明显的蓝移或红移现象等。除上述的基本特性,纳米材料还具有特殊的光学性质、催化性质、光催化性质、光电化学性质、化学反应性质、化学反应动力学性质和特殊的物理机械性质。 ——纳米材料的种类 1、纳米二氧化硅。纳米二氧化硅的团聚体是无定型白色粉末,表面分子状态呈 三维网状结构。这种结构赋予涂料优良的触变性能和分散稳定性。纳米二氧化硅具有极强的紫外线吸收、红外线反射特性,能提高涂料的抗老化性能。对纳米二氧化硅表面进行处理,可使二氧化硅纳米粒子表面同时具有亲水基团和亲油基团,纳米材料的

这种两亲性大大扩大了其应用领域。针对不同类型的涂料,纳米二氧化硅的添加量一般为0.1%一1.0%,最多不超过5%。 2、纳米二氧化钛。纳米二氧化钛是20世纪80年代末发展起来的主要纳米材料之一。纳米二氧化钛的光学效应随粒径而变,尤其是纳米金红石二氧化钛具有随角度变色效应。纳米二氧化钛的粒度一般为10~50 nm,添加量控制在1.0%以下。 3、纳米氧化锌。纳米氧化锌具有一般氧化锌无法比拟的新性能和新用途,具有屏蔽紫外线、吸收红外线及杀菌防霉作用。纳米氧化锌还具有增稠作用,有助于颜料分散的稳定性。 4、其他纳米材料。常用的其他纳米材料还有超细炭黑、气相二氧化硅、纳米级碳酸钙等,均属于纳米材料范畴。但炭黑的分散问题、气相二氧化硅的添加问题及碳酸钙合理使用仍需进一步研究。

纳米材料的结构及其热力学特性的研究与应用

纳米材料的结构及其热力学特性的研究与应用 张成12721617 (上海大学材料科学与工程学院,上海200072) 摘要:文章简要地概述了纳米材料的结构和基本效应,分别从纳米材料的热容、晶格参数、及纳米材料参与反应时反应体系的化学平衡吸附能等方面对纳米材料热力学的研究进展进行了阐述,并对热力学在纳米材料中的应用做了介绍,同时对其应用前景进行了展望。 关键字:纳米材料;热力学;效应;结构 Development and Application forTheStructure and ThermodynamicFunctions of TheNanomaterials ZhangCheng 12721617 (School of Materials Science and Engineering,Shanghai University,Shanghai 200072,china)Abstract: The structure of the nanometer materials and the characterristics of nano material are briefly introduced in this paper. The thermodynamics properties of nanomaterials are usually different from the status of bulk materials. Thus,it is very important to stuty the thermodynamics of nanomatericals. The review focuses the status of research on thermodynamics of nanomaterials including heat capacity, lattice parameters and other thermodynamic functions. In addition, the development of thermodynamics in this field is introduced with the prospection for its application. Keywords:nanomaterials; thermodynamics; structure; functions 1.前言 纳米材料已成为材料科学和凝聚态物理领域中一个研究热点。这是由于它不仅具有独特的结构特征( 含有大量的内界面),能为深入研究固体内界面结构与性能提供良好的条件,而且它还表现出一系列优异的物理、化学及力学性能,能为提高材料的综合性能发展新一代高性能材料创造优异的条件。 纳米热力学(nanothermodynamics)这个名词最早正式出现在2000年,美国亚利桑那州立大学的Chamberlin在研究铁磁体的临界行为时使用了这一名词[1],Giebultowicz在nature上撰文认为纳米尺度热力学为热力学这一传统理论提供了新的发展契机[2]。美国加利福尼亚大学的Hill是最早真正涉足纳米热力学这一领域的科学家,他的一系列工作为纳米热力学理论的应用奠定了基础[3-5]。事实上,近年来已经有科研工作者利用这一理论得出了一些传统热力学理论难以

相关文档