文档视界 最新最全的文档下载
当前位置:文档视界 › 材料合成与制备方法

材料合成与制备方法

材料合成与制备方法
材料合成与制备方法

第一章

1、1 溶胶凝胶

1、什么是溶胶——凝胶?

答:就是用含高化学活性组分的化合物作前驱体,在液相下将这些原料均匀混合,并进行水解、缩合化学反应,在溶液中形成稳定的透明溶胶体系,溶胶经陈化胶粒间缓慢聚合,形成三维空间网络结构的凝胶,凝胶网络间充满了失去流动性的溶剂,形成凝胶。

2、基本原理(了解)

3、设备:磁力搅拌器、电力搅拌器

4、优点:该方法制备块体材料具有纯度高、材料成分易控制、成分多元化、均匀性好、材料形状多样化、且可在较低的温度下进性合成并致密化等

5、工艺过程:自己看

6、工艺参数:自己看

2、1水热与溶剂热合成

1、水热法:是指在特制的密闭反应器(高压釜)中,采用水溶液作为反应体系,通过对反应体系加热、加压(或自生蒸气压),创造一个相对高温、高压的反应环境。

2、溶剂热法:将水热法中的水换成有机溶剂或非水溶媒(例如:有机胺、醇、氨、四氯化碳或苯等),采用类似于水热法的原理,以制备在水溶液中无法长成,易氧化、易水解或对水敏感的材料。

3、优点:a、在有机溶剂中进行的反应能够有效地抑制产物的氧

化过程或水中氧的污染;

b、非水溶剂的采用使得溶剂热法可选择原料范围大大扩大;

c、由于有机溶剂的低沸点,在同样的条件下,它们可以达到比水热合成更高的气压,从而有利于产物的结晶;

d、由于较低的反应温度,反应物中结构单元可以保留到产物中,且不受破坏。同时,有机溶剂官能团和反应物或产物作用,生成某些新型在催化和储能方面有潜在应用的材料

4、生产设备:

高压釜是进行高温高压水热与溶剂热合成的基本设备;(分类自己看),高压容器一般用特种不锈钢制成,

5、合成工艺:选择反应物核反应介质——确定物料配方——优化配料顺序——装釜、封釜——确定反应温度、压力、时间等试验条件——冷却、开釜——液、固分离——物相分析

6、水热与溶剂热合成存在的问题:1、无法观察晶体生长和材料合成的过程,不直观。2、设备要求高耐高温高压的钢材,耐腐蚀的内衬、技术难度大温压控制严格、成本高。3、安全性差,加热时密闭反应釜中流体体积膨胀,能够产生极大的压强,存在极大的安全隐患。

7、水热生长体系中的晶粒形成可分为三种类型:

a、“均匀溶液饱和析出”机制

b、“溶解-结晶”机制

c、“原位结晶”机制

8、水热与溶剂热合成方法的适用范围:低温生长单体、制备薄膜、制备超细(纳米)粉末

1、3化学气相沉积

1、化学气相沉积乃是通过化学反应的方式,利用加热、等离子激励或光辐射等各种能源,在反应器内使气态或蒸汽状态的化学物质在气相或气固界面上经化学反应形成固态沉积物的技术。

2、气相中析出的固体的形态主要有:在固体表面上生成薄膜、晶须和晶粒、在气体中生成粒子

3、常用三种CVD技术优缺点:

APCVD (常压化学气相沉积)

优点:反应器结构简单、沉积速率快、低温沉积

缺点:阶梯覆盖能差、粒子污染

LPCVD (低压化学气相沉积)

优点:高纯度、阶梯覆盖能力极佳、产量高、适合于大规模生产缺点:高温沉积、低沉积速率

PECVD(等离子体增强化学气相沉积)

优点:低温制程、高沉积速率、阶梯覆盖性好

缺点:化学污染、粒子污染

4、切削工具的应用(自己看)、模具(自己看)

5、气相化学沉积的生产装置:气相反应室、加热系统、气体控制系统、排气系统

1、4 自蔓延高温合成(SHS)又称燃烧合成(CS)

1、自蔓延高温合成是:利用反应物之间高的化学反应热的自加热和自传导做用来合成材料的一种技术,当反应物一旦被引燃,便会自动向尚未反应的区域传播,直至反应完全,是制备无机化合物高温材料的一种新方法。

2、SHS技术同其它常规工艺方法相比,具有的优点:

答:(1)节省时间,能源利用充分;

(2)设备、工艺简单;

(3)产品纯度高(因为SHS能产生高温,某些不纯物质蒸发掉了),反应转化率接近100%;

(4)不仅能生产粉末,如果同时施加压力,还可以得到高密度的燃烧产品;

(5)产量高(因为反应速度快)

3、目前SHS研究中仍存在着一些问题:难以获得致密度非常高的产品、理论研究明显滞后于技术开发、这项技术并不能适用于所有体系、由于体系的多样化,迫切需要对各种体系进行试验和总结、国际间交流和合作还不广泛

1、5等离子体烧结技术

1、SPS:放电等离子烧结技术

PAS(Plasma Activated Sinteriny):等离子活化烧结

PAS(Plasma Assister Sinteriny):等离子体辅助烧结

2、等离子体烧结技术的适用范围:SPS技术具有升温速度快、烧结温度低、烧结时间短、节能环保等特点,SPS已广泛应用于纳米材

料、梯度功能材料、金属材料、电磁材料、复合材料、陶瓷材料等的制备。

3、等离子体是宇宙中物质的一种形态,是除固、液、气三态外物质的第四种形态。等离子体是指电力程度较高、电离电荷相反、数量相等的气体,通常是有电子、离子、原子或自由基等粒子组成的集合体。

4、等离子体烧结技术的工艺流程:选择适当模具——选择适当模具——填充模具——施加压力——放入等离子体烧结——静压成型——电脑调节烧结参数等离子体快速烧结——试样成品——性能检测与研究

第二章

2、1特种陶瓷制备原理

1、特种陶瓷产品的发展趋势、研究与开发的重点(自己看)

2、2特种陶瓷粉体的制备

1、粉体颗粒:指在物质的结构不发生改变的情况下,分散或细化得到的固态基本颗粒。

2、一次颗粒:指没有堆积、絮联等结构的最小单元的颗粒。

3、二次颗粒:指存在有在一定程度上团聚了的颗粒。

4、团聚:一次颗粒之间由于各种力的作用而聚集在一起成为二次颗粒的现象。

5、粒度分布:分为频率分布和累积分布,常见的表达形式有粒度分布曲线、平均粒径、标准偏差、分布宽度等。

6、频率分布:表示与各个粒径相对应的粒子占全部颗粒的百分含量。

7、累积分布:表示小于(或大于)某一粒径的粒子占全部颗粒的百分含量,累积分布是频率分布的积分形式。

8、粒度分布曲线:包括累积分布曲线和频率分布曲线。

9、比表面:单位体积粉料所具有的表面积

10、空隙量的表示方法有:

表观密度:即单位体积粉体层的质量。

气孔率:即粉体层中空隙部分所占的容积率。

11、粉体的制备方法一般来说有两种:粉碎法、合成法

12、固液气相反应的特点(了解)

13、机器粉碎设备:

1、机械冲击式粉碎(破碎):鄂式破碎机、圆锥破碎机、锤式破碎机、反击式破碎机、轮碾机

2、球磨粉碎

14、影响粉碎效率因素:

答:1、球磨机的转速;

2、研磨体的比重、大小及形状;

3、球磨方式(球磨方式有湿法和干法两种);

4、装料方式;

5、球磨机直径;

6、球磨机内衬的材质。

2、3

1、粉料的造粒为什么?

答:对于特陶的粉料,一般希望越细越好,但对于成型,尤其是干压成型,粉料的假颗粒度越细,流动性反而不好,不能充满模子,成形后气孔较多,致密度不高。所以成型前要进行造粒。

2、造粒:在很细的粉料中加入一定的塑化剂(如水),制成粒度较粗,具有一定颗粒级配、流动性好的粒子(约20目~80目)。

3、造粒的方法:一般造粒法、加压造粒法、喷雾造粒法、冻结干燥法

4、陶瓷成型的方法:注浆成型、热压铸成型、可塑法成型、干压成型、等静压成型、带式成型法

5、高温排蜡为什么?

答:因为如果烧成前不先经过排蜡处理,则烧成时石蜡在高温下熔化流失、挥发、燃烧,坯体将失去粘结而解体,不能保持其形状。

6、排蜡温度通常为900~1100 ℃。若温度太低,粉料之间无一定的烧结出现,不具有一定的机械强度,坯体松散,无法进行后续的工序;若温度偏高,直至完全烧结,则会出现严重的粘结,难以清理坯体的表面。排蜡后的坯体要清理表面的吸附剂,然后再进行烧结。

7、干压与等静压成型的特点(了解)

2、4 特种陶瓷的烧结

1、烧结:是指多孔状陶瓷坯体在高温条件下,表面积减小、孔隙率降低、机械性能提高的致密化过程。

2、陶瓷的烧结,可以分为固相烧结和液相烧结。

高纯物质在烧结温度下通常无液相出现,属固相烧结,如高纯氧化物等结构陶瓷,而有些在烧结时常有液相出现,属液相烧结,如滑石瓷。

3、实现低温烧结的方法:采用先进的烧结技术、补加添加剂、粉料细化

4、哪些情况采用气氛烧结?

答:1、制备透光性陶瓷的气氛烧结2、防止氧化的气氛烧结3、引入气氛片的烧结

5、微波烧结是利用微波具有的特殊波段与材料的基本细微结构耦合而产生热量,材料在电磁场中的介质损耗使材料整体加热至烧结温度而实现致密化的方法。

6、微波烧结优点:

答:①整体加热②能实现空间选择性烧结。③升温速度快,烧结时间短,且降低烧结温度。④易控制性和无污染

第三章

3、1

1、氧化铝陶瓷是一种以α-Al2O3为主晶相的陶瓷材料。常见的有三种,即α-Al2O3、β-Al2O3和γ-Al2O3。已有α、β、γ、δ、ε、δ、ε、ζ、κ、λ、ρ及无定型氧化铝等12种

2、Al2O3预烧的目的:①使γ-Al2O3 全部转变为α-Al2O3,减少烧成收缩。②排除Al2O3原料中的Na2O ,提高原料的纯度。

3、Al2O3预烧质量的检查:染色法、光学显微镜法、密度法

4、Al2O3陶瓷的生产工艺:原料的燃烧——磨细——配方——加粘结剂——成型——素烧——修坯——烧结——表面处理

5、影响Al2O3陶瓷烧结的因素:(需要展开所以最好自己看)答:成形方法的影响、烧结制度的影响、烧结气氛的影响、添加剂的影响、烧结方法的影响

3、2 ZrO2陶瓷

1、ZrO2的性质:斜锆石(ZrO2)和锆英石(ZrO2?SiO2)。

2、ZrO2的结晶形态:单斜晶系(m- ZrO2)、四方晶系(t- ZrO2)、立方晶系(c- ZrO2)。

3、稳定剂:Y2O3、MgO、CaO、CeO等,可使ZrO2变成无异常膨胀、收缩的稳定ZrO2

4、ZrO2 增韧陶瓷:ZrO2 颗粒弥散在其它陶瓷基体中,当基体对ZrO2颗粒有足够的正应力,而ZrO2的颗粒度又足够小,则其相变温度可降至室温以下,这样在室温时ZrO2 仍可以保持四方相。当材料受到外应力时,基体对ZrO2 的压抑作用得到松弛,ZrO2 颗粒即发生四方相到单斜相的转变,并在基体中引起微裂纹,从而吸收了主裂纹扩展的能量,达到增加断裂韧性的效果,这就是ZrO2 的相变增韧。(自己在适当的总结一下)

5、ZrO2 增韧陶瓷研究发展趋势:高温增韧、中低温时效性、抗热震性、抗热震性、纳米颗粒增韧

3、3MgO、BeO陶瓷

BeO作业题分数不多

3、4碳化物陶瓷

1、典型碳化物陶瓷材料有碳化硅(SiC)、碳化硼(B4C)、碳化钛(TiC)、碳化锆(ZrC)、碳化钒(VC)、碳化钽(TaC)、碳化钨(WC)和碳化钼(Mo2C)等。

2、非氧化物陶瓷:是包括金属的碳化物、氮化物、硫化物、硅化物和硼化物等陶瓷的总称。

3、非氧化物陶瓷在以下三方面不同于氧化物陶瓷:

1)非氧化物在自然界很少存在,需要人工来合成原料。

2)在原料的合成和陶瓷烧结时,易生成氧化物,因此必须在保护性气体(如N2、Ar等)中进行;

3)氧化物原子间的化学键主要是离子键,而非氧化物一般是键性很强的共价键,因此,非氧化物陶瓷一般比氧化物难熔和难烧结。

4、碳化物在非常高的温度下均会发生氧化,但许多碳化物的抗氧化能力都比W、Mo等高熔点金属好,这是因为在许多情况下碳化物氧化后所形成的氧化膜具有提高抗氧化性能的作用。

5、B4C的硬度仅次于金刚石和立方氮化硼,但碳化物的脆性一般较大。

6、SiC陶瓷基本特性:硬度高、,强度好,热导率高,抗氧化性好。SiC有多种晶型,低温型为立方相b-SiC,2100℃向高温型a-SiC 转变。

7、SiC的合成方法主要有化合法、碳热还原法、气相沉积法、有机硅先驱体裂解法、自蔓延(SHS)法、溶胶-凝胶法等。

8、碳化硅陶瓷制造工艺:热压烧结、常压烧结、反应烧结、浸渍法、浸渍法

3.5 氮化物陶瓷

1、氮化物陶瓷主要有氮化硅(Si3N4)、氮化铝(AlN)、氮化硼(BN)、氮化钛(TiN)和赛隆陶瓷。

2、氮化硅陶瓷基本特性:A-Si3N4:低温型,是针状结晶体。β-Si3N4:高温型,是颗粒状结晶体。

3、BN有两种晶型:立方BN和六方BN,在高温高压下六方BN可转变为立方BN。立方氮化硼(CBN)硬度仅次于金刚石。六方氮化硼(HBN)又称之为白石墨。

4、氮化铝陶瓷基本特性:最大的特点是导热率高,热膨胀系数小,强度高,电绝缘性能好

5、赛隆陶瓷:是Si3N4与尖晶石AlN.Al2O3的固溶体

第四章

4、1磁性陶瓷

1、按铁氧体的晶体结构分:尖晶石型(MFe2O4);石榴石型(R3Fe5O12);磁铅石型(MFe12O19)(M为铁族元素,R为稀土元素)。

4、2电介质陶瓷

1、性质分别称为压电陶瓷、热释电陶瓷和铁电陶瓷。

2、一般特性:电绝缘与极化、介电损耗

4.3 压电陶瓷

1、极化:是指电介质陶瓷中的分子正负电荷移动,造成正负电荷中心不重合,在电介质陶瓷内部形成偶极矩。

2、压电效应:在没有对称中心的晶体上施加一个机械力(压力、张力或切向力)时,则发生与应力成比例的介质极化,在晶体表面的两电极上会出现等量的正、负电荷,电荷多少与力的大小成正比,当机械力撤去后,电荷会消失,这种现象称为正压电效应。当在晶体上施加一个外电场引起极化时,晶体会发生形变,且形变大小与电场成正比,若撤除电场,则晶体又恢复原状,这一现象称为逆压电效应。正、逆效应统称为压电效应。

3、压电陶瓷:经过人工极化处理具有压电效应的陶瓷制品。

4、压电陶瓷的性能参数:(自己看好多)

5、典型的压敏陶瓷;碳酸钡、钛酸铅、钛锆酸铅

4.4 敏感陶瓷

1、热敏陶瓷分为负温度系数NTC、正温度系数PTC热敏陶瓷、临界温度热敏电阻C.T.R及线性阻温特性热敏陶瓷

2、典型的气敏陶瓷:SnO2系气敏陶瓷、ZnO系气敏陶瓷、Fe2O3系气敏陶瓷

4.4 超导陶瓷

1、超导体,是指当某种物质冷却到低温时电阻突然变为零,同时物质内部失去磁通成为完全抗磁性的物质。

2、判断材料是否具有超导性,有两个基本的特征:超导电性、完全

抗磁性

3、从材料来分,可分为三大类,即元素超导体、合金或化合物超导体、氧化物超导体(即陶瓷超导体)。

从低温处理方法来分,可分为液氦温区超导体(4.2K以下),液氢温区超导体(20K以下),液氮温区超导体(77K以下)和常温超导体。

4、表征超导材料的基本参量有:临界温度TC 、临界磁场HC 、临界电流IC和磁化强度M。

5、测量临界温度有不同的方法,主要有:1)电阻测量法。2)磁测量法。

4.5 抗菌材料

1、目前所应用的无机抗菌材料主要有:

1)载银、铜、锌等抗菌离子的离子型抗菌材料。

2)利用二氧化钛光催化活性的无机抗菌材料。

2、银离子的抗菌机理只是停留在假说阶段,目前有接触反应说和催化反应说。

3、光催化抗菌材料的抗菌机理:

当含有紫外线的光照射到抗菌剂时,产生电子(e-)和空穴(h+),产生的电子和空气中的组分反应,生成过氧化氢(还原反应):e- + O2+ H2→H2O2

空穴和抗菌剂表面的微量水分反应生成氢氧根(氧化反应):h+ + H2O →OH- + H+

过氧化氢和氢氧团具有杀菌作用,可将有机物分解成二氧化碳和水,因此可将细菌慢慢分解,并具有防污、除臭功能。

4、银系抗菌材料的抗菌性能评价:

答; ①抗菌能力:主要通过最低抗菌质量浓度(MIC)、最小杀菌质量浓度(MBC)和杀菌率三个指标来评价。

②安全性:③细菌的耐药性:④耐光性⑤耐热性⑥缓释性能

4、6的课件打不开题目没搞:

1、生物陶瓷应具备的性能

2、生物陶瓷的优点

3、生物陶瓷的种类

4、生物惰性陶瓷的种类

5、活性陶瓷的种类

《材料合成与制备方法》教学大纲

《无机材料合成》实验教学大纲 课程名称:无机材料合成 课程编号:0 总学时:36 适用对象:材料化学本科专业 一、教学目的和任务: 《无机材料合成》是材料化学专业的一门必修课。本课程的任务是通过各种教学环节,使学生掌握单晶材料的制备、薄膜的制备、非晶态材料制备、复合材料的制备、功能陶瓷的合成与制备、结构陶瓷的制备、功能高分子的制备、催化材料制备、低维材料制备等,使学生获得先进材料合成与制备的基础知识,毕业后可适应化工材料的科学研究与技术开发工作。 二、教学基本要求: 在全部教学过程中,应始终坚持对学生进行实验室安全和爱护公物的教育;简单介绍有效数字和误差理论;介绍正确书写实验记录和实验报告的方法以及基本操作和常规仪器的使用方法。无机材料的制备方法、薄膜制备的溶胶-凝胶法、纳米晶的水热合成法、纳米管的气相沉积法的原理和基本操作方法,材料结构表征和性能测试的结果的正确分析,并在此基础上研究材料结构和性能的关系。培养学生的实际动手操作能力;深刻领会课本所学的理论知识,具有将理论知识应用于实践中的能力。 三、教学内容及要求 实验一无机材料合成(制备)方法与途径 实验仪器:计算机 实验内容:认识无机材料合成中的各种元素、化学反应;相关中外文摘、期刊的查阅方法。 实验要求:了解无机材料合成的基本方法、途径与制约条件 实验二晶体合成 实验仪器:磁力搅拌器、烧杯 实验内容:晶体的生长 实验要求:了解晶体的基本分类与应用;熟悉晶体生长的基本原理;重点掌握晶体合成的技术与方法。 实验三薄膜制备 实验仪器:压电驱动器、磁力搅拌器、烧杯 实验内容:薄膜材料的制备 实验要求:掌握薄膜材料的分类与应用;薄膜与基材的复合方法、途径以及制约条件; 实验四胶凝材料的制备

材料合成与制备教学大纲

《材料合成与制备》课程教学大纲 一、课程基本信息 课程编号:10050280 课程中文名称:材料合成与制备 课程英文名称:Synthesis and Preparation of Materials 课程性质:专业主干课 考核方式:考试 开课专业:材料科学与工程、材料物理、材料化学 开课学期:5 总学时:40+16 其中40学时理论授课,16学时实验课 总学分:2.5+1 二、课程目的和任务 《材料合成与制备》课程针对目前21世纪新材料的发展趋势,总结和概括了几种目前热点形态材料和高新材料的常用合成和制备方法。通过本课程的学习,能够使学生对目前几种常见新材料制备方法的发展概况、制备原理、操作设备以及制备工艺方法等有一定的了解和掌握;通过理论课与实验课的结合,学生能够熟悉几种常见形态新材料的制备工艺流程和工艺方法控制手段,这不仅能够锻炼学生操作实验的动手能力,而且在操作过程中,能够理论和实践相结合,对材料的形成机理进行深入的分析和了解,培养了学生发现问题、分析问题和解决相关材料合成和制备方面问题的基本能力,培养学生创新意识,为今后的生产实践和科学研究打下坚实的基础。 三、教学基本要求 要求根据目前新材料的发展趋势,重点结合21世纪高性能材料、低维材料、功能材料、绿色材料以及复合材料的发展方向,将材料学、化学、物理学等学科内容融入材料合成与制备技术中,使学生熟练掌握材料合成与制备的基本原理、工艺方法和技术流程,通过对材料合成机理及实验设备的了解,能够针对具体要求制定材料的合成与制备工艺,并能够完成新材料合成与制备某技术的专题研究任务。 四、教学内容与学时分配

第0章绪论(2学时) 第一章溶胶-凝胶法(4学时) 第二章水热与溶剂热合成(4学时) 第三章电解合成(4学时) 第四章化学气相沉积(4学时) 第五章定向凝固技术(4学时) 第六章低温固相合成(4学时) 第七章热压烧结(4学时) 第八章自蔓延高温合成(4学时) 第九章等离子体烧结合成技术(4学时) 课程总结(2学时) 五、教学方法及手段 教师讲授、研讨式教学、多媒体教学 六、上机实验内容 七、前修课程、后续课程 前修课程:大学物理、大学化学、材料科学基础、物理化学、材料物理八、教材及主要参考资料 教材: [1]乔英杰. 材料合成与制备[M]. 北京:化学工业出版社,2009年

材料合成化学-题

判断题(对填“ T”,错填“ F”) 1. 高温超导体是指能在室温以上温度工作的超导材料。() 2. 制备多元金属氧化物粉体的甘氨酸法比柠檬酸盐燃烧法的化学反应更加剧烈。( ) 3. 火焰辅助的超声喷雾热解工艺(FAUSP也是制备细粉的方法,需要人工点火。( ) 4. 陶瓷粉体的二次粒子尺寸总是大于一次粒子尺寸。() 5. 溶胶-凝胶法制备气凝胶,必须在真空条件下进行。() 6. 透明有机玻璃可以用甲基丙烯酸甲酯为原料通过沉淀聚合反应制备。() 7. 利用乙酰丙酮配位高价金属的醇盐,可以提高醇盐的水解能力。() 8?微波CVD就是利用微波加热衬底的化学气相沉积() 9. 静电喷雾沉积(ESD技术可以被用来生长致密的外延薄膜() 10. 人们可以通过原子操纵技术来大量制备超晶格材料() 11. 高分子聚合反应是一个熵增过程() 12.Schetman获得诺贝尔主要原因是他发现了宏观材料可以有10次对称轴() 13. 溶胶-凝胶法制备气凝胶,必须在真空条件下() 14. 透明有机玻璃可以用甲基丙烯酸甲酯为原料通过沉淀聚合反应制备() 15. 利用乙酰丙酮配位高价金属醇盐,可以提高醇盐的水解能力() 16. MOF就是金属氟氧化物的简称() 17. 乳液聚合的乳化剂通常是表面活性剂() 18. 使用模板试剂(硬模板,软模板,牺牲模板)是制备无机空心球的必要条件()19科学理论是无可争辩的() 20. 制备多元金属氧化物粉体的柠檬酸盐燃烧法需要人工点火引发反应() 21. 人们可以通过原子操纵技术来精细控制反应() 22. 高分子聚合反应是吸热反应() 23. 对于面心立方(fee)晶体,因为晶体形状以立方体能量最低,所以最易生长出立方形状 的单晶体() 24. 透明有机玻璃可以用甲基丙烯酸甲酯为原料通过均相聚合反应制备() 25. 利用螯合剂配位高价金属的醇盐,可以提高醇盐的反应活性() 26. 固相反应常用来制备陶瓷块材,但是不能用来制备陶瓷粉体() 27. 高分子聚合反应总是放热的() 28. 微弧氧化技术主要被用来制备金属氧化物纳米粉体() 29. 制备薄膜材料的溅射技术属于物理制备工艺()

(完整word版)材料合成与制备_复习资料(有答案)

第一章溶胶-凝胶法 名词解释 1. 胶体(Colloid):胶体是一种分散相粒径很小的分散体系,分散相粒子的质量可以忽略不计,粒子之间的相互作用主要是短程作用力。 2. 溶胶:溶胶是具有液体特征的胶体体系,是指微小的固体颗粒悬浮分散在液相中,不停地进行布朗运动的体系。分散粒子是固体或者大分子颗粒,分散粒子的尺寸为1nm-100nm,这些固体颗粒一般由10^3个-10^9个原子组成。 3. 凝胶(Gel):凝胶是具有固体特征的胶体体系,被分散的物质形成连续的网络骨架,骨架孔隙中充满液体或气体,凝胶中分散相含量很低,一般为1%-3%。 4. 多孔材料:是由形成材料本身基本构架的连续固相和形成孔隙的流体所组成。 一、填空题 1.溶胶通常分为亲液型和憎液型型两类。 2.材料制备方法主要有物理方法和化学方法。 3.化学方法制备材料的优点是可以从分子尺度控制材料的合成。 4.由于界面原子的自由能比内部原子高,因此溶胶是热力学不稳定 体系,若无其它条件限制,胶粒倾向于自发凝聚,达到低比表面状 态。 5.溶胶稳定机制中增加粒子间能垒通常用的三个基本途径是使胶粒带表面电荷、利用空间位阻效应、利用溶剂化效应。

6.溶胶的凝胶化过程包括脱水凝胶化和碱性凝胶化两类。 7.溶胶-凝胶制备材料工艺的机制大体可分为三种类型传统胶体型、无机聚合物型、络合物型。 8.搅拌器的种类有电力搅拌器和磁力搅拌器。 9.溶胶凝胶法中固化处理分为干燥和热处理。 10.对于金属无机盐的水溶液,前驱体的水解行为还会受到金属离子半径的大小、电负性和配位数等多种因素的影响。 二、简答题 溶胶-凝胶制备陶瓷粉体材料的优点? 制备工艺简单,无需昂贵的设备;对多元组分体系,溶胶-凝胶法可大大增加其化学均匀性;反应过程易控制,可以调控凝胶的微观结构;材料可掺杂的范围较宽(包括掺杂量及种类),化学计量准确,易于改性;产物纯度高,烧结温度低等。 第二章水热溶剂热法 名词解释 1、水热法:是指在特制的密闭反应器(高压釜)中,采用水溶液作为反应体系,通过将反应体系加热至临界温度(或接近临界温度),在反应体系中产生高压环境而进行无机合成与材料制备的一种有效方法。 2、溶剂热法:将水热法中的水换成有机溶剂或非水溶媒(如有机胺、醇、氨、四氯化碳或苯等),采用类似于水热法的原理,以制备在水溶液中无法长成、易氧化、易水解或对水敏感的材料。 3、超临界流体:是指温度及压力都处于临界温度或临界压力之上的流

无机材料合成与制备复习纲要

材料合成与制备复习纲要 我们不是抄答案,我们只做知识的搬运工。 ——无机复习提纲编辑协会宣言试卷构成:填空:15 分 选择:7*2=14 分(共7 题,一题2 分) 名词解释:5*3=15 分(共5 题,一题3分) 问答题:8+12*4=56(第一题8 分,其余四道题每题12 分)注:划线知识点为李老师审阅后所加,疑为重点,望各位复习时多加注意第1 章:经典合成方法 1实验室常用的加热炉为:高温电阻炉 2电炉分为:电阻炉,感应炉,电弧炉,电子束炉 3电阻发热材料的最高工作温度:硅碳棒1400C、硅化钼棒1700C、钨丝1700C 真空、 5氧化物发热体:在氧化气氛中,氧化物发热体是最为理想的加热材料。 6影响固相反应的因素: (1)反应物化学组成与结构,反应物结构状态(2)反应物颗粒尺寸及分布影响。 7化学转移反应:把所需要的沉积物质作为反应源物质,用适当的气体介质与之反应,形成一种气态化合物,这种气态化合物通过载气输运到与源区温度不同的沉积区,再发生逆反应,使反应源物质重新沉积出来,这样的反应过程称为化学转移反应。 8化学转移反应条件源区温度为T2,沉积区温度为T1:如果反应是吸热反应,则 r H m为正,当T2>T1时,温度越高,平衡常数越大,即从左往右反应的平衡常数增大,反应容易进行,物质由热端向冷端转移,即源区温度应大于沉积区温度,物质由源区转移至沉积区。如果反应为放热反应,r H m为负,则应控制源区温度T2 小于沉积区温度T1,这样才能实现物质由源区向沉积区得转移。如果r H m近似为0, 则不能用改变温度的方法来进行化学转移。 9低温合成中,低温的控制主要有两种方法:①恒温冷浴②低温恒温器 10高压合成:就是利用外加的高压力,使物质产生多型相转变或发生不同物质间的化合,从而得到新相,新化合物或新材料。 种类:①静态高温高压合成方法②动态高温高压合成方法 第2 章:软化学合成方法 1软化学合成方法: 通过化学反应克服固相反应过程中的反应势垒,在温和的反应条件下和缓慢的反应进程中,以可控制的步骤逐步地进行化学反应,实现制备新材料的方法。2软化学法分类:溶胶——凝胶法,前驱物法,水热/ 非水溶剂热合成法,沉淀法,支撑接枝工艺法,微乳液法,微波辐射法,超声波法,淬火法,自组装技术,电化 3绿色化学:主要特点是“原子经济性” ,即在获取新物质的转换过程中充分利用原料中的每个原子,实现化学反应中废物的“零排放” 。因此,既可充分利用资源又不污染环境。 4软化学与绿色化学的关系:两者关系密切,但又有区别。软化学强调的是反应条件的温

材料合成化学 题

一、判断题(对填“T”,错填“F”) 1. 高温超导体是指能在室温以上温度工作的超导材料。() 2. 制备多元金属氧化物粉体的甘氨酸法比柠檬酸盐燃烧法的化学反应更加剧烈。() 3. 火焰辅助的超声喷雾热解工艺(FAUSP)也是制备细粉的方法,需要人工点火。() 4. 陶瓷粉体的二次粒子尺寸总是大于一次粒子尺寸。() 5. 溶胶-凝胶法制备气凝胶,必须在真空条件下进行。() 6. 透明有机玻璃可以用甲基丙烯酸甲酯为原料通过沉淀聚合反应制备。() 7. 利用乙酰丙酮配位高价金属的醇盐,可以提高醇盐的水解能力。() 8. 微波CVD就是利用微波加热衬底的化学气相沉积() 9. 静电喷雾沉积(ESD)技术可以被用来生长致密的外延薄膜() 10.人们可以通过原子操纵技术来大量制备超晶格材料() 11.高分子聚合反应是一个熵增过程() 12.Schetman获得诺贝尔主要原因是他发现了宏观材料可以有10次对称轴() 13.溶胶-凝胶法制备气凝胶,必须在真空条件下() 14.透明有机玻璃可以用甲基丙烯酸甲酯为原料通过沉淀聚合反应制备() 15.利用乙酰丙酮配位高价金属醇盐,可以提高醇盐的水解能力() 16.MOF就是金属氟氧化物的简称() 17.乳液聚合的乳化剂通常是表面活性剂() 18.使用模板试剂(硬模板,软模板,牺牲模板)是制备无机空心球的必要条件()19科学理论是无可争辩的() 20.制备多元金属氧化物粉体的柠檬酸盐燃烧法需要人工点火引发反应() 21.人们可以通过原子操纵技术来精细控制反应() 22.高分子聚合反应是吸热反应() 23.对于面心立方(fcc)晶体,因为晶体形状以立方体能量最低,所以最易生长出立方形状的单晶体() 24.透明有机玻璃可以用甲基丙烯酸甲酯为原料通过均相聚合反应制备() 25.利用螯合剂配位高价金属的醇盐,可以提高醇盐的反应活性() 26.固相反应常用来制备陶瓷块材,但是不能用来制备陶瓷粉体() 27.高分子聚合反应总是放热的() 28.微弧氧化技术主要被用来制备金属氧化物纳米粉体() 29.制备薄膜材料的溅射技术属于物理制备工艺() 30.悬浮聚合法的悬浮剂通常都是表面活性剂() 31.伟大的科学理论都是复杂而奥妙无穷的() 32.制备多元金属氧化物粉体的甘氨酸法本质上是一种放热氧化还原反应,其中甘氨酸是氧化剂,硝酸盐是还原剂()

材料合成与制备期末复习题

材料合成与制备期末复习题 第零章绪论 1.材料合成:材料合成是指促使原子或分子构成材料的化学或物理过 程; 2.材料制备:材料制备是指研究如何控制原子与分子使其构成有用的 材料,但材料制备还包括在更为宏观的尺度上控制材料的 结构,使其具备所需的性能和使用效能。 3.材料合成与制备的最终目标是:制造高性能、高质量的新材料以满 足各种构件、物品或仪器等物件的日益发展的需求。 4.材料合成与制备的发展方向:材料的高性能化、复合化、功能化、 低维化、低成本化、绿色化; 5.影响热力学过程自发进行方向的因素:(1)能量因素;(2)系统的 混乱度因素; 6.隔离系统总是自发的向着熵值增加的方向进行。 7.论述反应速率的影响因素: (1)浓度对反应速率的影响: 对于可逆反应,增加反应物浓度可以使平衡向产物方向移动,因此,提高反应物浓度是提高产率的一个办法,但如果反应物成本很高,将反应物之一在生成后立即分离出去或转移到另一相中去,也是提高反应产率的一个很好的办法。对于有气相的反应,如果反应前后气体物质的反应计量数不等,则增加压力会有利于反应向气体计量数小的方向进行。另外,对于多个反应同时进行的反应,则应按主反应的情况来控制反应物的配比; (2)温度对反应速率的影响:

对于一个可逆反应,正反应吸热,则逆反应就放热;如果正反应放热,则逆反应就吸热,升高温度有利于反应向吸热方向进行,不利于放热 反应;对于放热反应,用冷水浴或冰浴使其降温的办法有利于反应的进行,但影响反应速率。实际生产中,要综合考虑单位实际内的产量和转化率同时进行; (3)溶剂等对反应速率的影响:溶剂在反应中的作用:一是提供反应的场所,二是发生溶剂化效应。溶剂最重要的物理效应即溶剂化作用,化学效应主要有溶剂分子的催化作用和容积分子作为反应物或产物参与了化学反应。若溶剂分子与反应物生成不稳定的溶剂化物,可使反应的活化能降低,加快反应速率;若生成稳定的溶剂化物,则使反应活化能升高,降低反应速率;若生成物与溶剂分子生成溶剂化物,不论它是否稳定,都会使反应速率加快。 第一章溶胶-凝胶法 1.溶胶(Sol)是具有液体特征的胶体体系,是指微小的固体颗粒悬浮分散在液相中,不停地进行布朗运动的体系。 2.凝胶(Gel)是具有固体特征的胶体体系,被分散的物质形成连续的网状骨架,骨架空隙中充有液体或气体。 3.溶胶,凝胶法:就是用含高化学活性组分的化合物作前驱体,在液相下将这些原料均匀混合,并进行水解、缩合化学反应,通过抑制各种化学反应条件,在溶液中形成稳定的透明溶胶体系,溶胶经陈化,胶粒间缓慢聚合,形成三维空间网络结构的凝胶,凝胶网络间充满了失去流动性的溶剂,形成凝胶。凝胶经过干燥、烧结固化制备出分子乃至纳米亚结构的材料。 4.粒子间的两个力:(1)颗粒间的范德华力;(2)双电层静电排斥能 5.增加粒子间能垒通常有三个基本途径:(1)使胶粒带表面电荷;(2) 利用空间位阻效应;(3)利用溶剂化效应。 6.由溶胶制备凝胶的具体方法:

材料合成与制备

材料合成与制备 《材料合成与制备》课程教学大纲一、课程说明 (一)课程名称、所属专业、课程性质、学分; 课程名称:材料的合成与制备 所属专业:材料化学 课程性质:专业必修课 学分:2学分(36学时) (二)课程简介、目标与任务、先修课与后续相关课程; 课程简介: 材料的合成与制备课程是介绍现代材料制备技术的原理、方法与技能的课程,是材料化学专业一门重要的专业必修课程。 目标与任务:通过本课程的学习,使学生掌握材料制备过程中涉及的材料显微组织演化的基本概念和基本规律;掌握材料合成与制备的基本途径、方法和技能;掌握目前几种常见新材料制备方法的发展、原理、及制备工艺;培养学生树立以获取特定材料组成与结构为目的材料科学研究核心思想,培养学生发现、分析和解决问题的基本能力,培养创新意识,为今后的材料科学相关生产实践和科学研究打下坚实的基础。 先修相关课程: 无机化学、有机化学、物理化学、材料科学基础 (三)教材与主要参考书 教材:自编讲义 主要参考书: 1. 朱世富,材料制备科学与技术,高等教育出版社,2006

2. 许春香,材料制备新技术,化学工业出版社,2010 3. 李爱东,先进材料合成与制备技术,科学出版社,2013 1 二、课程内容与安排 第一章引言 1.1 材料科学的内涵 1.2 材料科学各组元的关系 (一)教学方法与学时分配 讲授,2学时。 (二)内容及基本要求 主要内容:材料科学学科的产生、发展、内涵;材料科学与工程学科的四个基本组元:材料的合成与制备、材料的组成与结构、材料的性质与性能、材料的使用效能;材料科学四组元的相互关系。 【掌握】:材料科学学科的内涵、材料科学学科的四组元、四组元间的相互关系。 【了解】:几个材料合成与制备导致不同组成与结构并最终决定性质与性能的科研实例。 【难点】:树立以获取特定材料组成与结构为核心的学科思想。第二章材料合成与制备主要途径概述 2.1 基于液相-固相转变的材料制备 2.3 基于固相-固相转变的材料制备 2.4 基于气相-固相转变的材料制备 (一)教学方法与学时分配 讲授,2学时。

2015无机材料合成与制备试卷A

中南林业科技大学课程考试试卷 课程名称:无机材料合成与制备;试卷编号:A 卷;考试时间:100分钟 一、是非题(1分×23=23分,选全对或全错,计零分) 1 生长驱动力在数值上等于生长单位体积的晶体所引起的吉布斯自由能的降低。( √ ) 2 微波有很强的穿透力,微波加热时能深入到样品内部,其燃烧波首先从样品的表面向内部传播,最终完成微波烧结。( × ) 3 提拉法中旋转籽晶的目的是获得更好的温度和浓度的均匀性。( √ ) 4 热电偶是接触式温度传感器,可直接与被测物质接触,不受环境介质如烟雾、尘埃、CO 2、水蒸气等影响,准确度较高。( √ ) 5 等离子体在CVD 中的作用是将反应气体激活成活性离子,提高低沉积温度;加速反应物表面的扩散作用,降低成膜速率。( × ) (提高) 6 降低到-150 ℃(123K)称为普通制冷或普冷,降低到-150 ℃至4.2K 之间称为深度冷冻或深冷,降低到4.2K 以下称为极冷。( √ ) 7 相比溅射成膜,蒸发法时,沉积原子的能量很低,一般不易形成形态3型的薄膜组织。( × )(T ) 8 在形态2和形态3型低温薄膜沉积组织的形成过程中,原子的扩散能力不足,因而这两类生长又称为低温抑制型生长。( × )(1和T ) 9 磁控溅射的缺点是靶材的利用率不高,一般低于40%。( √ ) 10 过冷度越大,越容易非均匀成核;凸面杂质形核效率最高,平面次之,凹面最差。( × ) 11直接凝固成型是依靠有机单体交联形成高聚物,温度诱导絮凝成型是依靠分散剂的分散特性。( × ) 12 不具挥发性FeO 和WO 3在HCl 存在时,生成FeCl 2 、WOCl 4、水蒸气,就可以通过相转移反应制得完美的钨酸铁晶体。( ) 13气体的低温分级冷凝就是气体混合物通过不同低温的冷阱而分离,气体通过冷阱后其蒸汽压小于13.33 Pa —冷凝彻底;大于13.33 Pa —认为不能冷凝,穿过了冷阱。 ( × ) 14 流动法比降温法有利于生长大尺寸单晶,蒸发法适合溶解度较大而温度系数很小的物质,凝胶法可在室温下生长一些难溶的或对热敏感而不便使用其他方法的晶体。( √ ) 15用单相共沉淀法制备出单一尺寸的球形氢氧化铝颗粒的关键是通过尿素,在水溶液中缓慢分解释放出OH-,使溶液中碱性均匀地、缓慢地上升,从而使氢氧化物沉淀在整个溶液中同时生成。( × ) 16 大块非晶合金的制备思路是非均匀形核的推迟和均匀形核的避免。( √ ) 17 非晶态材料衍射花样是由较宽的晕和弥散的环组成,没有表征结晶态的任何斑点和条纹,用电镜看不到 学院 专业班 年 姓名 学 装订线(答题不得超过此线)

材料合成与制备期末复习题

第零章绪论 1.材料合成:材料合成是指促使原子或分子构成材料的化学或物理过 程; 2.材料制备:材料制备是指研究如何控制原子与分子使其构成有用的 材料,但材料制备还包括在更为宏观的尺度上控制材料的 结构,使其具备所需的性能和使用效能。 3.材料合成与制备的最终目标是:制造高性能、高质量的新材料以满 足各种构件、物品或仪器等物件的日益发展的需求。 4.材料合成与制备的发展方向:材料的高性能化、复合化、功能化、 低维化、低成本化、绿色化; 5.影响热力学过程自发进行方向的因素:(1)能量因素;(2)系统的 混乱度因素; 6.隔离系统总是自发的向着熵值增加的方向进行。 7.论述反应速率的影响因素: (1)浓度对反应速率的影响: 对于可逆反应,增加反应物浓度可以使平衡向产物方向移动,因此,提高反应物浓度是提高产率的一个办法,但如果反应物成本很高,将反应物之一在生成后立即分离出去或转移到另一相中去,也是提高反应产率的一个很好的办法。对于有气相的反应,如果反应前后气体物质的反应计量数不等,则增加压力会有利于反应向气体计量数小的方向进行。另外,对于多个反应同时进行的反应,则应按主反应的情况来控制反应物的配比; (2)温度对反应速率的影响: 对于一个可逆反应,正反应吸热,则逆反应就放热;如果正反应放热,则逆反应就吸热,升高温度有利于反应向吸热方向进行,不利于放热

反应;对于放热反应,用冷水浴或冰浴使其降温的办法有利于反应的进行,但影响反应速率。实际生产中,要综合考虑单位实际内的产量和转化率同时进行; (3)溶剂等对反应速率的影响:溶剂在反应中的作用:一是提供反应的场所,二是发生溶剂化效应。溶剂最重要的物理效应即溶剂化作用,化学效应主要有溶剂分子的催化作用和容积分子作为反应物或产物参与了化学反应。若溶剂分子与反应物生成不稳定的溶剂化物,可使反应的活化能降低,加快反应速率;若生成稳定的溶剂化物,则使反应活化能升高,降低反应速率;若生成物与溶剂分子生成溶剂化物,不论它是否稳定,都会使反应速率加快。 第一章溶胶-凝胶法 1.溶胶(Sol)是具有液体特征的胶体体系,是指微小的固体颗粒悬浮分散在液相中,不停地进行布朗运动的体系。 2.凝胶(Gel)是具有固体特征的胶体体系,被分散的物质形成连续的网状骨架,骨架空隙中充有液体或气体。 3.溶胶-凝胶法:就是用含高化学活性组分的化合物作前驱体,在液相下将这些原料均匀混合,并进行水解、缩合化学反应,通过抑制各种化学反应条件,在溶液中形成稳定的透明溶胶体系,溶胶经陈化,胶粒间缓慢聚合,形成三维空间网络结构的凝胶,凝胶网络间充满了失去流动性的溶剂,形成凝胶。凝胶经过干燥、烧结固化制备出分子乃至纳米亚结构的材料。 4.粒子间的两个力:(1)颗粒间的范德华力;(2)双电层静电排斥能 5.增加粒子间能垒通常有三个基本途径:(1)使胶粒带表面电荷;(2) 利用空间位阻效应;(3)利用溶剂化效应。 6.由溶胶制备凝胶的具体方法:

材料合成制备与加工资料总结纯手打

缩聚实施方法:1、熔融缩聚:在反应中不加溶剂,使反应温度在原料单体和缩聚物熔化温度以上进行的缩聚反应。缩聚物大品种聚酯、聚酰胺,聚碳酸酯等都是用熔融缩聚法进行工业生产,反应温度须高于单体和所得缩聚物的熔融温度,一般为150~350℃工艺简单,不使用溶剂,省去了回收工序,降低成本,反应物浓度高,降低了成环倾向。工艺操作可间歇,也可连续(不必分离聚合物, 熔体直接用于纺丝)。聚合反应为可逆反应,须高温高真空除去生成的低分子。如涤纶2、溶液缩聚:当单体或缩聚产物在熔融温度下不够稳定而易分解变质,为了降低反应温度,在溶剂中进行的缩聚反应称为溶液缩聚。广泛应用于涂料、胶粘剂等的制备,特别适于分子量高且难熔的耐热聚合物,如聚酰亚胺、聚砜等。3、界面缩聚:两种单体分别溶于两种不互溶的溶剂中,将这两种溶液倒在一起,在两液相界面上发生缩聚反应,聚合产物不溶于溶剂,在界面析出。(1)为不可逆反应,小分子副产物不需真空抽出;(2)单体分子配比,纯度要求不严;(3)单体为高反应性,聚合物在界面迅速生成,其分子量与总的反应程度无关;(4)反应温度低,室温即可进行,可避免因高温而导致的副产物,有利用高熔点耐热聚合物的合成;(5)常用二酰氯单体,合成复杂,有毒,小分子副产物NaCl难以洗净,过程消耗溶剂。如动态法制备粉末状芳香聚酰胺4、固相缩聚:在缩聚起始原料和生成的聚合物熔点以下温度进行的缩聚反应称为固相缩聚(1)反应温度低,反应缓和,适合于稳定性不好的单体及聚合物,产物分解杂质少,热稳定性、耐光降解性好;(2)适用于熔点高的结晶性单体,缩聚过程中产生的小分子副产物应及时脱除;(3)低分子预聚物在固体状态下进一步缩聚成高分子量的粒状物,解决了高分子量物料进行成粒加工困难的问题。如尼龙。涤纶的三种工业合成工艺:(1)酯交换法(要制备DMT,消耗甲醇,流程长,成本高,但成熟)(2)直接缩聚法(TPA法)特点:省去DMT的合成工艺,用料省,设备能力高,但对苯二甲酸不易熔融,易升华,不易溶于乙二醇,高温易变色。(3)环氧乙烷法(EO法)省去制备乙二醇,不用甲醇,原料节约;不用高纯度对苯二甲酸,生成BHET易于提纯;EO与对苯二甲酸反应速度快,设备利用率高,但EO易爆,反应速度过快。体型高分子材料:经进一步缩聚反应或加聚反应形成的最终产物为体型结构聚合物,其单体一部分含有的反应性官能团数目大于2,尚含有潜在的可发生加聚反应的双键以及发生逐步聚 合反应的官能团。如酚醛树脂 聚氨酯的原料单体、官能团:二(多)元异氰酸酯+二 (多)元羟基化合物/端羟基聚醚/端羟基聚酯共聚物 的类型:1、无序共聚物:两种单元A、B在高分子链上 的排列是无规的。丁苯橡胶、氯乙烯-醋酸乙烯共聚物。 2、交替共聚物:A、B单元轮番交替排列,即严格相间例:苯乙烯-马来酸酐。 3、嵌段共聚物:共聚物分子链是由较长的A链段和另一较长的B链段构成。苯乙烯-丁二烯嵌段共聚物。 4、接枝共聚物:共聚物主链由单元A组成,而支链则由单元B组成。丁二烯-苯乙烯接枝共聚物。ABS树脂:丙烯腈、丁二烯、苯乙烯的三种成分组成的一类耐冲击性热塑性树脂的总称。聚合方法:乳液接枝共聚-悬浮法聚合。共聚混合物区别共聚物:化学结构不同的均聚物或共聚物的物理混合物叫做共混聚合物,又叫做聚合物合金。区别:聚合物组分子间的作用力。共混聚合物:分子间力相结合。共聚物:共价键。增韧塑料:用弹性体作为分散相填充塑料,橡胶作为应力集中体能诱发塑料基体产生银纹或剪切带,使基体屈服,吸收大量能量,达到增韧效果。增塑剂作用:增加塑料的柔韧性,耐寒性;使塑料的Tg、Tm、Tf 降低;降低粘度,增加流动性,改善加工性。TCP - 磷酸三甲酚脂;DOP - 邻苯二甲酸二辛脂;DOA - 己二酸二辛脂增塑剂。塑料一次成型方法及常用设备:挤出成型、注射成型、模压成型、压延成型、铸塑成型、传递模塑、模压烧结、泡沫塑料。单双螺杆挤出机、注射机、压延机。生胶?乳液聚合制橡胶后期生胶如何获得:没有经过塑炼或混炼的分子量很高的线型聚合物橡胶叫生胶。乳液聚合橡胶后处理:胶乳-絮凝-水洗-干燥-生胶。为何进行塑炼?硫化?将橡胶生胶在机械力、热、氧等作用下,从强韧的弹性状态转变为柔软而具有可塑性的状态,即增加其可塑性(流动性)的工艺过程称为塑炼。降低生胶弹性,增加可塑性,获得适当流动性,以满足混炼、压延、压出、成型、硫化以及胶浆制造、海绵胶制造等各种加工工艺过程的要求。通过硫化使具有塑性的半成品又变成弹性高、物理机械性能好的橡胶制品。合成纤维纺丝成型方式:1、溶液纺丝工艺:将高聚物溶解于溶剂中,制得粘稠的纺丝液,由喷丝头喷成细流,通过凝固介质使之凝固成为纤维2、熔融纺丝工艺:将熔体在一定的压力下定量的压出喷丝孔,冷却后形成纤维,再经过拉伸、卷曲、切断等工序成为一定规格的可纺短纤维,或在拉伸后进行加捻,定型等工序,使之成为符合指标的长纤维。干法、湿法纺丝有何不同:湿法纺丝的纺丝速度慢(20米/分)在凝固浴中完成纺丝,干法纺丝的纺丝速度较快(100-500米/分)在热空气流中完成纺丝。

材料合成与制备方法

第一章 1、1 溶胶凝胶 1、什么是溶胶——凝胶? 答:就是用含高化学活性组分的化合物作前驱体,在液相下将这些原料均匀混合,并进行水解、缩合化学反应,在溶液中形成稳定的透明溶胶体系,溶胶经陈化胶粒间缓慢聚合,形成三维空间网络结构的凝胶,凝胶网络间充满了失去流动性的溶剂,形成凝胶。 2、基本原理(了解) 3、设备:磁力搅拌器、电力搅拌器 4、优点:该方法制备块体材料具有纯度高、材料成分易控制、成分多元化、均匀性好、材料形状多样化、且可在较低的温度下进性合成并致密化等 5、工艺过程:自己看 6、工艺参数:自己看 2、1水热与溶剂热合成 1、水热法:是指在特制的密闭反应器(高压釜)中,采用水溶液作为反应体系,通过对反应体系加热、加压(或自生蒸气压),创造一个相对高温、高压的反应环境。 2、溶剂热法:将水热法中的水换成有机溶剂或非水溶媒(例如:有机胺、醇、氨、四氯化碳或苯等),采用类似于水热法的原理,以制备在水溶液中无法长成,易氧化、易水解或对水敏感的材料。 3、优点:a、在有机溶剂中进行的反应能够有效地抑制产物的氧

化过程或水中氧的污染; b、非水溶剂的采用使得溶剂热法可选择原料范围大大扩大; c、由于有机溶剂的低沸点,在同样的条件下,它们可以达到比水热合成更高的气压,从而有利于产物的结晶; d、由于较低的反应温度,反应物中结构单元可以保留到产物中,且不受破坏。同时,有机溶剂官能团和反应物或产物作用,生成某些新型在催化和储能方面有潜在应用的材料 4、生产设备: 高压釜是进行高温高压水热与溶剂热合成的基本设备;(分类自己看),高压容器一般用特种不锈钢制成, 5、合成工艺:选择反应物核反应介质——确定物料配方——优化配料顺序——装釜、封釜——确定反应温度、压力、时间等试验条件——冷却、开釜——液、固分离——物相分析 6、水热与溶剂热合成存在的问题:1、无法观察晶体生长和材料合成的过程,不直观。2、设备要求高耐高温高压的钢材,耐腐蚀的内衬、技术难度大温压控制严格、成本高。3、安全性差,加热时密闭反应釜中流体体积膨胀,能够产生极大的压强,存在极大的安全隐患。 7、水热生长体系中的晶粒形成可分为三种类型: a、“均匀溶液饱和析出”机制 b、“溶解-结晶”机制 c、“原位结晶”机制

材料化学合成与制备复习题

材料化学合成与制备复习题 1.名词解释 a.沉淀法: 液相沉淀法是向水溶液中投加某种化学物质,使它与水中的溶解物质发生化学反应,生成难溶于水的沉淀物。 b.直接沉淀法:在金属盐溶液中直接加入沉淀剂,在一定条件下生成沉淀析出,沉淀经洗涤、热分解等处理工艺后得到超细产物。 c.共沉淀法:在含有多种阳离子的溶液中加入沉淀剂,在各成分均一混合后,使金属离子完全沉淀,得到沉淀物再经热分解而制得微小粉体的方法。 d.均匀沉淀:一般沉淀过程是不平衡的,但如果控制溶液中沉淀剂的浓度,使之缓慢增加,则使溶液中的沉淀处于平衡状态,且沉淀能在整个溶液中均匀出现,这种方法称为均相沉淀。 e.水热法:水热法又称热液法,属液相化学法的范畴。是指在密封的压力容器中,以水为溶剂,在高温高压的条件下进行的化学反应。水热反应依据反应类型的不同可分为水热氧化、水热还原、水热沉淀、水热合成、水热水解、水热结晶等。其中水热结晶用得最多。 f.均匀形核:均匀形核就是不在杂质或者器壁结晶,而是直接通过液体本身的相起伏产生临街晶核从而生长晶体的结晶过程。 g.非均匀形核:非均匀形核就是依靠液体中的固体杂质或器壁的表面能进行的结晶。通常,非均匀晶核比均匀形核容易进行。

h.溶度积原则:即在一定条件下,在含有难溶盐MnNn(固体)的饱和溶液中,各种离子浓度的乘积为一常数,称为溶度积常数,记为LMnNn MmNn == mM n+ + nNm- 溶度积常数 LMmNn=[Mn+]m?[Nm-]n i.软团聚:软团聚主要是由颗粒间的范德华力和库仑力所致,所以通过一些化学的作用或施加机械能的方式,就可以使其大部分消除. j.硬团聚:一般是指颗粒之间通过化学键力或氢键作用力等强作用力连接形成的团聚体。 k.水热; l.溶剂热:将水热法中的水换成有机溶剂或非水溶媒(例如:有机胺、醇、氨、四氯化碳或苯等),采用类似于水热法的原理,以制备在水溶液中无法长成,易氧化、易水解或对水敏感的材料。m.胶体:胶体是一种分散系统 n.溶胶:分散相不溶于分散介质,有很大的相界面,很高的界面能,因此是热力学不稳定系统; o.亲液溶胶:半径落在胶体粒子范围内的大分子溶解在合适的溶剂中,一旦将溶剂蒸发,大分子化合物凝聚,再加入溶剂,又可形成溶胶,亲液溶胶是热力学上稳定、可逆的体系。 p.憎液溶胶:半径在1 nm~100 nm之间的难溶物固体粒子分散在液体介质中,有很大的相界面,易聚沉,是热力学上的不稳定体系。

材料合成与制备

第1章溶胶-凝胶法(Sol-gel method) ?胶体:分散相粒径很小的胶体体系,分散相质量忽略不计, 分子间作用力主要为短程作用力. ?溶胶(Sol)是具有液体特征的胶体体系,分散的粒子 是固体或者大分子,分散的粒子大小在1~100nm之间。 ?凝胶(Gel)是具有固体特征的胶体体系,被分散的物 质形成连续的网状骨架,骨架空隙中充有液体或气体,凝胶中分散相的含量很低,一般在1%~3%之间。 ?溶胶-凝胶法:就是用含高化学活性组分的化合物作前 驱体,在液相下将这些原料均匀混合,并进行水解、缩合化学反应,在溶液中形成稳定的透明溶胶体系,溶胶经陈化胶粒间缓慢聚合,形成三维空间网络结构的凝胶,凝胶网络间充满了失去流动性的溶剂。凝胶经过干燥、烧结固化制备出分子乃至纳米亚结构的材料。 ?水解度:是水和金属醇盐的物质的量之比。 ?老化时间:从凝胶开始到凝胶干燥前的时间称为老化时 间 ?利用溶胶凝胶法制备陶瓷粉体材料所具有的优点? 1.工艺简单,无需昂贵设备; 2.对于多组元系统,该法可以大大增加化学均匀性; 3.易于控制,凝胶微观结构可调控; 4.掺

杂范围广,化学计量准确,易于改性;5产物纯度高,烧结温度低. 第二章水热与溶剂热合成 ?水热法(Hydrothermal Synthesis),是指在特制的密闭反 应器(高压釜)中,采用水溶液作为反应体系,通过对反应体系加热至临界温度(或接近临界温度),在反应体系中产生高压环境而进行无机合成与材料制备的一种有效方法。 ?溶剂热法(Solvothermal Synthesis):将水热法中的水 换成有机溶剂或非水溶媒(例如:有机胺、醇、氨、四氯化碳或苯等),采用类似于水热法的原理,以制备在水溶液中无法长成,易氧化、易水解或对水敏感的材料。 ?原为结晶:当选用常温常压下不可溶的固体粉末、凝胶 或沉淀为前驱物时,如果前驱物和晶相的溶解度相差不是很大时,或者“溶解-结晶”的动力学速度过慢,则前驱物可以经过脱去羟基(或脱水),原子原位重排而转变为结晶态。 ? 一。溶剂热合成的优点: 1.在有机溶剂中进行的反应能够有效地抑制产物的氧化过程或水中氧的污染; 2.非水溶剂的采用使得溶剂热法可选择原料范围大大扩

材料合成与制备期末复习题.doc

第零章绪论 1 ?材料合成:材料合成是指促使原子或分子构成材料的化学或物理过 程; 2.材料制备:材料制备是指研究如何控制原子与分子使其构成有用的 材料,但材料制备还包括在更为宏观的尺度上控制材料的结构,使其具备所需的性能和使用效能。 3.材料合成与制备的最终目标是:制造高性能、高质量的新材料以满 足各种构件、物品或仪器等物件的H益发展的需求。 4.材料合成与制备的发展方向:材料的高性能化、复合化、功能化、 低维化、低成本化、绿色化; 5?影响热力学过程自发进行方向的因素:(1)能量因素;(2)系统的 混乱度因素; 6 ?隔离系统总是自发的向着炳侑增加的方向进行。 7 ?论述反应速率的影响因素: (1)浓度对反应速率的影响: 对于可逆反应,增加反应物浓度可以使平衡向产物方向移动,因此,提高反应物浓度是提高产率的一个办法,但如果反应物成本很高,将反应物之一在生成后立即分离出去或转移到另一相中去,也是提高反应产率的一个很好的办法。对于有气相的反应,如果反应前后气体物质的反应计量数不等,则增加压力会有利于反应向气体计量数小的方向进行。另外,对于多个反应同时进行的反应,则应按主反应的情况来控制反应物的配比; (2)温度对反应速率的影响: 对于一个可逆反应,正反应吸热,则逆反应就放热;如果正反应放热, 则逆反应就吸热,升高温度有利于反应向吸热方向进行,不利于放热反应;对

于放热反应,用冷水浴或冰浴使其降温的办法有利于反应的进行,但影响反应速率。实际生产屮,要综合考虑单位实际内的产量和转化率同时进行; (3)溶剂等对反应速率的影响:溶剂在反应中的作用:一是提供反应的场所,二是发生溶剂化效应。溶剂最重耍的物理效应即溶剂化作用,化学效应主要有溶剂分子的催化作用和容积分子作为反应物或产物参与了化学反应。若溶剂分子与反应物生成不稳定的溶剂化物,可使反应的活化能降低,加快反应速率;若生成稳定的溶剂化物,则使反应活化能升高,降低反应速率;若生成物与溶剂分子生成溶剂化物, 不论它是否稳定,都会使反应速率加快。 第一章溶胶■凝胶法 1 ?溶胶(Sol)是具有液体特征的胶体体系,是指微小的固体颗粒悬浮分散在液相中,不停地进行布朗运动的体系。 2.凝胶(Gel)是具有固体特征的胶体体系,被分散的物质形成连续的网状骨架,骨架空隙中充有液体或气体。 3.溶胶一凝胶法:就是用含高化学活性组分的化合物作前驱体,在液相下将这些原料均匀混合,并进行水解、缩合化学反应,通过抑制各种化学反应条件,在溶液中形成稳定的透明溶胶体系,溶胶经陈化,胶粒间缓慢聚合,形成三维空间网络结构的凝胶,凝胶网络间充满了失去流动性的溶剂,形成凝胶。凝胶经过干燥、烧结固化制备出分子乃至纳米亚结构的材料。 4?粒子间的两个力:(1)颗粒间的范德华力;(2)双电层静电排斥能

材料制备与合成

《材料制备与合成[料]》课程简介 课程编号:02034916 课程名称:材料制备与合成/Preparation and Synthesis of Materials 学分: 2.5 学时:40 (课内实验(践):0 上机:0 课外实践:0 ) 适用专业:材料科学与工程 建议修读学期:6 开课单位:材料科学与工程学院材料物理与化学系 课程负责人:方道来 先修课程:材料化学基础、物理化学、材料科学基础、金属材料学 考核方式与成绩评定标准:期末开卷考试成绩(占80%)与平时考核成绩(占20%)相结合。 教材与主要参考书目: 教材:《材料合成与制备》. 乔英杰主编.国防工业出版社,2010年. 主要参考书目:1. 《新型功能材料制备工艺》, 李垚主编. 化学工业出版社,2011年. 2. 《新型功能复合材料制备新技术》.童忠良主编. 化学工业出版社,2010年. 3. 《无机合成与制备化学》. 徐如人编著. 高等教育出版社, 2009年. 4. 《材料合成与制备方法》. 曹茂盛主编. 哈尔滨工业大学出版社,2008年. 内容概述: 本课程是材料科学与工程专业本科生最重要的专业选修课之一。其主要内容包括:溶胶-凝胶合成法、水热与溶剂热合成法、化学气相沉积法、定向凝固技术、低热固相合成法、热压烧结技术、自蔓延高温合成法和等离子体烧结技术等。其目的是使学生掌握材料制备与合成的基本原理与方法,熟悉材料制备的新技术、新工艺和新设备,理解材料的合成、结构与性能、材料应用之间的相互关系,为将来研发新材料以及材料制备新工艺奠定坚实的理论基础。 The course of preparation and synthesis of materials is one of the most important specialized elective courses for the undergraduate students majoring in materials science and engineering. It includes the following parts: sol-gel method, hydrothermal/solvothermal reaction method, CVD method, directional solidification technique, low-heating solid-state reaction method, hot-pressing sintering technique, self-propagating high-temperature synthesis, and SPS technique. Its purpose is to enable students to master the basic principles and methods of preparation and synthesis of materials, and grasp the new techniques, new processes and new equipments, and further understand the relationship among the synthesis, structure, properties and the applications of materials. The course can lay a firm theoretical foundation for the research and development of new materials and new processes in the future for students.

相关文档
相关文档 最新文档