文档视界 最新最全的文档下载
当前位置:文档视界 › 纳米材料与纳米催化

纳米材料与纳米催化

纳米材料与纳米催化
纳米材料与纳米催化

纳米材料与纳米催化

1.什么是纳米材料? 基本构成单元内容? 判断的标准什么?

答:纳米材料(nanometer material)是指其结构单元的尺寸介于1纳米~100纳米范围之间。由于它的尺寸已经接近电子的相干长度,它的性质因为强相干所带来的自组织使得性质发生很大变化。并且,其尺度已接近光的波长,加上其具有大表面的特殊效应,因此其所表现的特性,例如熔点、磁性、光学、导热、导电特性等等,往往不同于该物质在整体状态时所表现的性质。纳米材料是在三维空间中至少有一维处于纳米尺度范围。

纳米材料的基本结构单元分为四类:

零维:三维均为纳米尺度,如纳米颗粒、原子团簇等。

一维:空间两维在纳米尺度,如纳米管、纳米棒等。

二维:空间一维在纳米尺度,如超薄膜、多层膜等。

三维:宏观固体,但由纳米基本单元构成,如纳米固体等。

纳米材料的判断标准:

微粒尺寸和晶粒尺寸是否小于100nm;

是否具有不同于常规材料(bulk)的性能。

2.纳米微粒的基本理论的内容是什么(7条)? 并简要说明量子尺寸

效应、小尺寸效应、表面效应?

答:纳米微粒的基本理论的内容包括久保理论(电子能级的不连续性)、量子尺寸效应、小尺寸效应、表面效应、宏观量子隧道

效应、库仑堵塞与量子隧穿效应、介电限域效应。

量子尺寸效应:

当粒子尺寸下降到某一值时,金属费米能级附近的电子能级由准连续变为离散能级和纳米半导体微粒能隙变宽现象均称为量子尺寸效应。

小尺寸效应:

当超细微粒的尺寸与光波波长、德布罗意波长以及超导态的相干长度或透射深度等物理特征尺寸相当或更小时,晶体周期性的边界条件将被破坏;同时超细微粒的颗粒表面层附近原子密度减小,导致声、光、电、磁、热、力学等特性呈现新的小尺寸效应。

表面效应:

表面效应又称界面效应,是指纳米微粒的表面原子数与总原子数之比随粒径减小而急剧增大后所引起的性质上的变化。随着纳米微粒的粒径逐渐减小达到纳米尺寸,除了造成表面积迅速增加之外,表面能量也会大幅递增。

3.简要说明纳米微粒的化学特征有哪些?防止团聚的方法。

答:纳米微粒的化学特征有吸附、分散和团聚。

吸附是相接触的不同相之间产生的结合现象。吸附可以分成两类,一是物理吸附,吸附剂与吸附相之间是以范德瓦耳斯力之类较弱的物理力结合;二是化学吸附,吸附剂与吸附相之间是以

化学键结合。纳米微粒由于有大的比表面积和表面原子配位不足,与相同材质的大块材料比较,有较强的吸附性。

纳米微粒表面的活性使它们很容易团聚在一起从而形成带有若干弱连接界面的尺寸较大的团聚体

防止团聚的方法:

加入反絮凝剂(Anti-flocculating agent)形成双电层

加表(界)面活性剂(surfactant)包裹微粒

4.简要说明气相法制备纳米微粒的方法?

答:气相法主要有物理气相沉积(PVD)法和化学气相沉积(CVD)法两大类。

物理气相沉积法是利用电弧、高频电场或等离子体等高温热源将原料加热使之气化,然后降温冷却,将蒸汽凝聚成纳米微粒。

化学气相沉积法是以金属蒸气、挥发性金属卤化物或氢化物、有机金属化合物等蒸气为原料,发生化学反应,然后经过凝聚得到纳米微粒。是一种常用的制备纳米微粒的方法。

5.简要说明液相法制备纳米微粒的方法?

答:液相法是指在溶液中制备纳米微粒,是目前实验室和工业上经常采用的制备纳米粉体材料的方法。

液相法主要的方法有沉淀法、水热法、溶胶-凝胶法等。另外,

模板法、自组装法通常也在水溶液中进行反应,也可以归纳到液相法中。

6.简要说明纳米微粒的表面修饰方法?

答:纳米微粒的表面修饰分为物理修饰和化学修饰。

纳米微粒表面物理修饰分为两类。一类通过范德瓦尔斯力等将异质材料吸附在纳米微粒的表面,可以防止纳米微粒的团聚。通常采用表面活性剂对无机纳米微粒表面的修饰就属于这类方法。另一类表面物理修饰法,即表面沉积法,它是将一种物质沉积到纳米微粒表面,形成与颗粒表面无化学结合的异质包敷层。

纳米微粒表面化学修饰指通过纳米微粒表面与处理剂之间进行化学反应,改变纳米微粒表面结构和状态,达到表面改性的目的。纳米微粒表面化学修饰有偶联剂法、酯化法、表面接枝改性法三种。

7.纳米微粒尺寸的评估方法有哪些?简要说明比表面积法?

答:纳米微粒尺寸的评估方法有透射电镜观察法,X射线衍射线线宽法,比表面积法,X射线小角散射法,拉曼散射法,激光衍射法,激光散射法,沉降(sedimentation)法。

比表面积法:

通过测定粉体单位重量的比表面积S w,可由下式计算纳米

粉中粒子的直径(设颗粒呈球形):d=6/ρS w

式中,ρ为密度,d 为颗粒直径;S w 为比表面积,它的一般测量方法为BET 多层气体吸附法。BET 方程为式中,V 为被吸附气体的体积;V m 为单分子层吸附气体的体积;p 为气体压力;p 0为饱和蒸汽压;k 为y/x.

将上式两式相加,取倒数得到V m ,即 将A ,B 代入式6-5,可得到 把V m 换算成吸附质的分子数(V m /V 0?N A )乘以一个吸附质分子的截面积A m ,即可用下式计算出吸附剂的表面积S :

8. 简要说明纳米薄膜的制备方法有哪些?

答:纳米薄膜的制备方法分为液相法和气相法。液相法包括溶胶-

凝胶法和电沉积法两种方法;气相法包括高速超微粒子沉积法(气体沉积法)和直接沉积法两种方法。

9. 纳米尺度催化材料有哪些?举例说明。 答:纳米尺度催化材料一般是指纳米超细金属催化剂,如贵金属类()()]/11[00p p k p p p k V V m -+-?=0011)(p p k V k k V P P V p m m -+=-k V k A m 1-=k

V B m 1=B

A V m +=1

00)(P p A B p p V p +=-m A m A N V V S 0

=

Pt,Rh,Ag,Au,Pd等,过渡金属类Ni,Fe,Co,Cu等,金属氧化物催化剂,如g-Fe2O3,TiO2,ZrO2,MgO等,以及超细分子筛催化剂,如nano-Y,nano-ZSM-5,nano-SAPO-11等。

10.纳米超细分子筛性能特点以及应用?

答:纳米超细分子筛性能特点:

更大的外表面积;

更多暴露的晶胞;

短而规整的孔道;

更多易接近的活性位;

骨架借光更规整;

更均匀分布的活性位;

易于改进的活性位

纳米超细分子筛在催化裂化、加氢裂化、汽油加氢异构化、轻质烃转化制芳烃、合成气催化转化等方面有着广泛的应用。

影响纳米材料光催化性能的因素

二、影响纳米材料光催化活性的因素。 1、半导体的能带位置 半导体的带隙宽度决定了催化剂的光学吸收性能。半导体的光学吸收阈值λg与Eg有关,其关系式为:λg=1240/Eg。半导体的能带位置和被吸附物质的氧化还原电势,从本质上决定了半导体光催化反应的能力。热力学允许的光催化氧化还原反应要求受体电势比半导体导带电势低(更正);而给体电势比半导体价带电势高(更负)。导带与价带的氧化还原电位对光催化活性具有更重要的影响。通常价带顶VBT越正,空穴的氧化能力越强,导带底CBB越负,电子的还原能力越强。价带或导带的离域性越好,光生电子或空穴的迁移能力越强,越有利于发生氧化还原反应。对于用于光解水的光催化剂,导带底位置必须比H+/H 2O(—0。41eV)的氧化还原势负,才能产生H2,价带顶必须比O2/H2O(+0。82eV)的氧化还原势正,才能产生O2,。因此发生光解水必须具有合适的导带和价带位置,而且考虑到超电压的存在,半导体禁带宽度Eg应至少大于1.8eV。目前常被用作催化剂的半导体大多数具有较大的禁带宽度,这使得电子-空穴具有较强的氧化还原能力。 2、光生电子和空穴的分离和捕获 光激发产生的电子和空穴可经历多种变化途径,其中最主要的是分离和复合两个相互竞争的过程。对于光催化反应来说,光生电子和空穴的分离与给体或受体发生作用才是有效的。如果没有适当的电子或空穴的捕获剂,分离的电子和空穴可能在半导体粒子内部或表面复合并放出荧光或热量。空穴捕获剂通常是光催化剂表面吸附的OH—基团或水分子,可能生成活性物种·OH,它无论是在吸附相还是在溶液相都易引发物质的氧化还原反应,是强氧化剂。光生电子的捕获剂主要是吸附于光催化剂表面上的氧,它既能够抑制电子与空穴的复合,同时也是氧化剂,可以氧化已经羟基化的反应产物。 3、晶体结构 除了对晶胞单元的主要金属氧化物的四面体或八面体单元的偶极矩的影响,晶体结构(晶系、晶胞参数等)也影响半导体的光催化活性.TiO2是目前认为最好的光催化剂之一。TiO2主要有两种晶型-锐钛矿和金红石,两种晶型结构均可由相互连接的TiO6八面体表示,两者的差别在于八面体的畸变程度和八面体间相互连接的方式不同。结构上的差异导致了两种晶型有不同的质量密度及电子能带结构。锐钛矿的质量密度略小于金红石,且带间隙(3.2eV)略大于金红石(3。1eV),这是其光催化活性比金红石的高。 4、晶格缺陷 根据热力学第三定律,除了在绝对零度,所有的物理系统都存在不同程度的不规则分布,实际晶体都是近似的空间点阵式结构,总有一种或几种结构上的缺陷。当有微量杂质元素掺入晶体时,也可能形成杂质置换缺陷。这些缺陷的存在对光催化活性可能起着非常重要的影响。有的缺陷可能会成为电子或空穴的捕获

纳米材料参考答案

纳米材料与纳米结构复习题 1. 简单论述纳米材料的定义与分类。答:广义上讲:纳米材料是指在三维空间中至少有一维处于纳米尺度围,或由他们作为基本单元构成的材料。 按维数,纳米材料可分为三类:零维:指在空间三维尺度均在纳米尺度,如纳米颗粒,原子团簇等。一维:指在空间有两处处于纳米尺度,如纳米丝,纳米棒,纳米管等。 二维:指在三维空间中有一维处在纳米尺度,如超薄膜,多层膜等。因为这些单元最具有量子的性质,所以对零维,一维,二维的基本单元又分别具有量子点,量子线和量子阱之称 2. 什么是原子团簇? 谈谈它的分类。 答:原子团簇: 指几个至几百个原子的聚集体(粒径一般等于或小于1nm) 例如:C n H m (n与m都是整数);碳簇(C60、C70和富勒烯等) 原子团簇的分类: a 一元原子团簇:即同一种原子形成的团簇,如金属团簇,非金属团簇,碳簇等。 b二元原子团簇:即有两种原子构成的团簇,例如Zn n P m, Ag n S m等。 c多元原子团簇:有多种原子构成的团簇,例如V n(C6H6)m等 d原子簇化合物:原子团簇与其它分子以配位键形成的化合物。例如(Ag) n(NH 3)m等。 3. 通过Raman 光谱中如何鉴别单壁和多臂碳纳米管? 如何计算单壁碳纳米管直径? 答:利用微束拉曼光谱仪能有效观察到单壁纳米管特有谱线,这是鉴定单壁纳米管非常 灵敏的方法。100-400cm -1围出现单壁纳米管特征峰,单壁纳米管特有的呼吸振动模式; 1609cm-1是定向多壁纳米管的拉曼特征峰。 单臂管的直径 d 与特征拉曼峰波数成反比,即:d=224/w 。式中的 d 单壁管的直径,nm;w 为特征拉曼峰的波数cm-1 4. 论述碳纳米管的生长机理。 答:采用化学气相沉积( CVD) 在衬底上控制生长多壁碳纳米管。原理:首先,过镀金 属(Fe,Co,Ni)催化剂颗粒吸收和分解碳化合物,碳与金属形成碳-金属体;随后,碳原子 从过饱和的催化剂颗粒中析出;最后,为了便于碳纳米管的合成,金属纳米催化剂通常由具有较大的表面积的材料承载。 各种生长模型 1 、五元环-七元环缺陷沉积生长2、层-层相互作用生长3、层流生长 4、顶端生长 5、根部生长 6、喷塑模式生长 7、守善院士:13C同位素标记,多壁碳纳米管的所有层数同时从催化剂中生长出来的,证明了“帽”式生长(yarmulke) 的合理性 生长机理表面扩散生长机理:不是生长一单壁管,然后生长外单壁管;而是在从固熔体相处时,开始就形成多层管

纳米催化剂

纳米催化剂的制备及应用 学院:化工学院专业:化学工程与技术 学生姓名:学号: 摘要:纳米催化剂具有大比表面积、高表面能、高度的光学非线性、特异催化性和光催化性等特性,在一些反应中表现出优良的催化性能。本文简要介绍了纳米催化剂的基本性质,综述了纳米催化剂的制备方法和特性,讨论了纳米催化在化工中的应用,对今后纳米催化材料研究方向进行了展望。 关键词:纳米催化剂制备在化工中的应用发展 近年来,纳米催化剂(Nanometer catalyst--NCs)的相关研究蓬勃发展。NCs 具有比表面积大、表面活性高等特点,显示出许多传统催化剂无法比拟的优异特性;此外,NCs还表现出优良的电催化、磁催化等性能,已被广泛地应用于石油、化工、能源、涂料、生物以及环境保护等许多领域。目前,纳米技术的研究主要向两个方向进行:一是通过新技术减少目前使用的材料如金属氧化物的用量;二是进行新材料的开发,如复合氧化物纳米晶。由于纳米粒子表面积大、表面活性中心多,所以是一种极好的催化材料。将普通的铁、钴、镍、钯、铂等金属催化剂制成纳米微粒,可大大改善催化效果。在石油化工工业采用纳米催化材料,可提高反应器的效率,改善产品结构,提高产品附加值、产率和质量。目前已经将纳米粉材如铂黑、银、氧化铝和氧化铁等直接用于高分子聚合物氧化、还原和合成反应的催化剂。纳米铂黑催化剂可使乙烯的反应温度从600e降至常温。随着世界对环境和能源问题认识的深入,纳米材料在处理污染、降解有毒物质方面有良好光解效果[1]。在润滑油中添加纳米材料可显著提高其润滑性能和承载能力,减少添加剂的用量,提高产品的质量。对纳米催化剂的研究无论理论上还是实际应用上都具有深远的意义。 1纳米催化剂的制备方法 纳米催化剂的制备方法直接影响到其结构、粒径分布和形态,从而影响其催化性能。文献中报道的制备方法多达数10种,本文主要介绍其中常用的几种。1.1溶胶-凝胶法 溶胶-凝胶法是指金属有机或无机化合物经过溶胶-凝胶化和热处理形成氧化物或其他固体化合物的方法。其过程是:用液体化学试剂(或粉状试剂溶于溶剂中)或溶胶为原料,而不是传统的粉状物为反应物,在液体中混合均匀并进行反

异质结纳米材料光催化性能

密级★保密期限:(涉密论文须标注) Z S T U Zhejiang Sci-Tech University 硕士学位论文 Master’s Thesis 中文论文题目: p-n型Cu2O/TiO2异质结纳米材料的结构及其光催化性能研究 英文论文题目:Structure and photocatalytic performance of p-n heterojunction Cu2O/TiO2 nanomaterals 学科专业:应用化学 作者姓名:周冬妹 指导教师:王惠钢 完成日期:2015年1月

浙江理工大学学位论文独创性声明 本人声明所呈交的学位论文是本人在导师指导下进行的研究工作及取得的研究成果。除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写过的研究成果,也不包含为获得浙江理工大学或其他教育机构的学位或证书而使用过的材料。与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示谢意。 学位论文作者签名: 签字日期:年月日

目录 中文摘要 ..................................................................................................................................... I Abstract .......................................................................................................................................... II 第一章前言. (1) 1.1背景 (1) 1.2文献综述 1.2.1纳米TiO2概述 (1) 1.2.2纳米Cu2O概述 (2) 1.2.3 p-n异质结用于光催化的基本原理 (2) 1.2.4p-n型Cu2O/TiO2异质结纳米材料光催化反应的研究进展 (4) 1.3本课题的选题思路及研究内容 (6) 参考文献 (7) 第二章还原法制备的Cu2O/TiO2异质结纳米颗粒及其光催化性能 (11) 2.1引言 (11) 2.2实验 (11) 2.2.1主要试剂和仪器 (11) 2.2.2实验方法和步骤 (12) 2.3实验结果与讨论 (13) 2.3.1Cu2O/TiO2颗粒的表征 (13) 2.3.1.1XRD表征 (13) 2.3.1.2XPS表征 (14) 2.3.1.3SEM与TEM表征 (15) 2.3.1.4PL表征 (17) 2.3.1.5DRS表征 (18) 2.3.2光催化性能实验 (19) 2.3.2.1光催化降解装置 (19) 2.3.2.2对亚甲基蓝的光催化降解性能 (19) 2.3.3Cu2O/TiO2复合材料中Cu2O颗粒的粒径调控 (20) 本章小结 (23)

影响纳米材料光催化性能的因素

1、半导体的能带位置 半导体的带隙宽度决定了催化剂的光学吸收性能。半导体的光学吸收阈值λg与Eg有关,其关系式为:λg=1240/Eg。半导体的能带位置和被吸附物质的氧化还原电势,从本质上决定了半导体光催化反应的能力。热力学允许的光催化氧化还原反应要求受体电势比半导体导带电势低(更正);而给体电势比半导体价带电势高(更负)。导带与价带的氧化还原电位对光催化活性具有更重要的影响。通常价带顶VBT越正,空穴的氧化能力越强,导带底CBB越负,电子的还原能力越强。价带或导带的离域性越好,光生电子或空穴的迁移能力越强,越有利于发生氧化还原反应。对于用于光解水的光催化剂,导带底位置必须比H+/H 2 O的氧化 还原势负,才能产生H 2,价带顶必须比O 2 /H 2 O(+的氧化还原势正,才能产生O 2 ,。 因此发生光解水必须具有合适的导带和价带位置,而且考虑到超电压的存在,半 导体禁带宽度Eg应至少大于。目前常被用作催化剂的半导体大多数具有较大的禁带宽度,这使得电子-空穴具有较强的氧化还原能力。 2、光生电子和空穴的分离和捕获 光激发产生的电子和空穴可经历多种变化途径,其中最主要的是分离和复合两个相互竞争的过程。对于光催化反应来说,光生电子和空穴的分离与给体或受体发生作用才是有效的。如果没有适当的电子或空穴的捕获剂,分离的电子和空穴可能在半导体粒子内部或表面复合并放出荧光或热量。空穴捕获剂通常是光催化剂表面吸附的OH-基团或水分子,可能生成活性物种·OH,它无论是在吸附相还是在溶液相都易引发物质的氧化还原反应,是强氧化剂。光生电子的捕获剂主要是吸附于光催化剂表面上的氧,它既能够抑制电子与空穴的复合,同时也是氧化剂,可以氧化已经羟基化的反应产物。 3、晶体结构 除了对晶胞单元的主要金属氧化物的四面体或八面体单元的偶极矩的影响,晶体结构(晶系、晶胞参数等)也影响半导体的光催化活性。TiO 2 是目前认为最 好的光催化剂之一。TiO 2 主要有两种晶型—锐钛矿和金红石,两种晶型结构均可 由相互连接的TiO 6 八面体表示,两者的差别在于八面体的畸变程度和八面体间相互连接的方式不同。结构上的差异导致了两种晶型有不同的质量密度及电子能带结构。锐钛矿的质量密度略小于金红石,且带间隙()略大于金红石(),这是其光催化活性比金红石的高。 4、晶格缺陷 根据热力学第三定律,除了在绝对零度,所有的物理系统都存在不同程度的不规则分布,实际晶体都是近似的空间点阵式结构,总有一种或几种结构上的缺陷。当有微量杂质元素掺入晶体时,也可能形成杂质置换缺陷。这些缺陷的存在

金属纳米晶体的表面与其催化效应

金属纳米晶体的表面与其催化效应 沈正阳 (浙大材料系1104 3110103281) 摘要:概括纳米材料的表面与界面特性,从金属纳米晶体表面活性与结构介绍其的催化性能,简要概述金属纳米晶体形状与晶面的关系以及金属纳米晶体的成核与生长。 关键词:纳米金属;表面活性;催化;高指数晶面 1.纳米材料的表面与界面 纳米微粒尺寸小,表面能高,位于表面的原子占相当大的比例。由于表面原子数增多,原子配位不足及高的表面能,使这些表面原子具有高的活性,极不稳定,很容易与其他原子结合。强烈的表面效应,使超微粒子具有高度的活性。如将刚制成的金属超微粒子暴露在大气中,瞬时就会氧化,若在非超高真空环境,则不断吸附气体并发生反应。[1] 纳米晶体是至少有一个维度介于1到100纳米之间的晶体。纳米材料主要由晶粒和晶粒界面2部分组成,二者对纳米材料的性能有重要影响。纳米材料微观结构与传统晶体结构基本一致,但因每个晶粒仅包含着有限个晶胞,晶格点阵必然会发生一定程度的弹性畸变,其内部同样会存在各种缺陷,如点缺陷、位错、孪晶界等。纳米金属粒子的形状、粒径、颗粒间界、晶面间界、杂质原子、结构缺陷等是影响其催化性能的重要因素。纳米材料中,晶界原子质量分数达15%~50%,晶界上的原子排列极为复杂,尤其三相或更多相交叉区,原子几乎是自由的、孤立的,其量子力学状态和原子、电子结构已非传统固体物理、晶体理论所能解释。金属纳米晶体研究中,发现面心立方结构纳米金属如 Al、Ni、Cu 和密排六方结构Co都存在孪晶和层错缺陷,Cu纳米金属中存在晶界滑移。 2.金属纳米晶体的催化性能 近年来,关于纳米微粒催化剂的大量研究表明,纳米粒子作为催化剂,表现出非常高的催化活性和选择性。这是因为纳米微粒尺寸小,位于表面的原子或分子所占的比例非常大,并随纳米粒子尺寸的减小而急剧增大,同时微粒的比表面积及表面结合能迅速增大。纳米颗粒表面原子数的增加、原子配位的不足必然导致了纳米结构表面存在许多缺陷。从化学角度看,表面原子所处的键合状态或键

纳米碳材料和高性能催化_齐伟

第29卷第5期 化学反应工程与工艺 V ol 29, No 5 2013年10月 Chemical Reaction Engineering and Technology Oct. 2013 收稿日期:2013-09-03;修订日期:2013-10-14。 作者简介:齐 伟(1982—),男,博士后;苏党生(1961—),男,博士,研究员,通讯联系人。E-mail :dssu@https://www.docsj.com/doc/5415498858.html, 。 基金项目:国家自然科学基金(51221264,21133010,21303226);国家重大基础研究发展(973)计划(2011CBA00504);中共中央组织部 海外高层次人才引进项目;中国科学院沈阳金属研究所葛庭燧奖研金。 文章编号:1001—7631 ( 2013 ) 05—0423—07 纳米碳材料和高性能催化 齐 伟,苏党生 (中国科学院金属研究所沈阳材料科学国家(联合)实验室, 催化材料研究部, 辽宁 沈阳 110016) 摘要:对纳米碳材料在催化领域中应用方面的最新研究成果作了简要的综述,主要从纳米碳材料作为催化剂 载体和催化剂在高性能催化反应体系中的应用两方面展开,包括:纳米碳材料表面物理化学性质对所负载催 化剂化学结构和催化活性的影响;纳米碳材料直接作为催化剂在气相,液相或者电化学催化体系中的应用; 纳米碳催化反应的机理和本质规律。通过对该领域内研究成果的系统总结,发现短期内纳米碳催化领域研究 应该集中在对催化反应过程的本质理解以及对反应机理的量化描述,如分子或原子尺度上反应动力学研究等 方面。在相关研究成果的基础上,结合纳米碳材料可控和规模化制备技术的发展,纳米碳催化的工业化应用 具有巨大的发展前景。 关键词:纳米碳材料 均相催化 异相催化 高性能催化剂 催化剂载体 中图分类号:O643 文献标识码:A 碳元素是自然界中存在的与人类最密切相关、最重要的元素之一,它具有sp ,sp 2和sp 3杂化等多样的电子轨道特性。近年来,伴随纳米技术的发展,具有纳米结构的功能碳材料研究相当活跃,新型碳基材料层出不穷。所谓纳米结构碳材料是指具有特定结构、分散相尺度至少有1维小于100 nm 的以碳元素为主体的材料,主要包括碳纳米管(单壁、双壁和多壁等),碳纳米纤维,石墨烯(纳米石墨),纳米金刚石,富勒烯,纳米有序孔碳等(如图1所示)。这些纳米碳材料主要通过化学气相沉积,石墨电弧,激光蒸发石墨,电解和水热等物理化学过 程制得。与传统的无定形炭或活性炭相比,纳米碳材 料表现出机械强度高,热稳定性好,导电和导热能力 强,化学结构和酸碱性易于调控等特点[1-4]。鉴于纳 米碳材料的诸多优点以及是一类可再生的环境友好 材料,能够满足绿色化学和可持续性发展的需求,其 在催化反应中的应用已经成为相关领域的研究热点 [5,6]。考虑到该领域仍处于起步阶段,许多关键科学 问题尚未解决,所以综述了纳米碳材料在催化领域内 的应用研究,旨在总结纳米碳催化研究发展的现状, 归纳相关领域内已经获得的研究成果,分析指出尚未 解决的问题,并尝试展望该领域短期内可能的发展方 向以及纳米碳催化实现工业化的可能性。 图1典型纳米碳材料结构 Fig.1 Typical structure of nano-carbon materials

纳米材料与纳米结构21个题目完整答案

1.简单论述纳米材料的定义与分类。 2.什么是原子团簇? 谈谈它的分类. 3.通过Raman 光谱中任何鉴别单壁和多臂碳纳米管? 如何计算单壁碳纳米管直径? 4.论述碳纳米管的生长机理。 5.论述气相和溶液法生长纳米线的生长机理。 6.解释纳米颗粒红外吸收宽化和蓝移的原因。 7.论述光催化的基本原理以及提高光催化活性的途径。 8.什么是库仑堵塞效应以及观察到的条件? 9.写出公式讨论半导体纳米颗粒的量子限域效应和介电限域效应对其吸收边,发光峰的影响。 10.纳米材料中的声子限域和压应力如何影响其Raman 光谱。 11.论述制备纳米材料的气相法和湿化学法。 12.什么是纳米结构,并举例说明它们是如何分类的,其中自组装纳米结构形成的条件是什么。 13.简单讨论纳米颗粒的组装方法 14.论述一维纳米结构的组装,并介绍2种纳米器件的结构。 15.论述一维纳米结构的组装,并介绍2种纳米器件的结构。 16.简单讨论纳米材料的磁学性能。 17.简述“尺寸选择沉淀法”制备单分散银纳米颗粒的基本原理 18.简述光子晶体的概念及其结构 19.目前人们已经制备了哪些纳米结构单元、复杂的纳米结构和纳米器件。并说明那些纳米结构应该具有增强物理和化学性 能。 20.简单论述单电子晶体管的原理。 21.简述纳米结构组装的工作原理。 1.简单论述纳米材料的定义与分类。 答:最初纳米材料是指纳米颗粒和由它们构成的纳米薄膜和固体。 现在广义: 纳米材料是指在三维空间中至少有一维处在纳米尺度范围,或由他们作为基本单元构成的材料。 如果按维数,纳米材料可分为三大类: 零维:指在空间三维尺度均在纳米尺度,如:纳米颗粒,原子团簇等。 一维:指在空间有两处处于纳米尺度,如:纳米丝,纳米棒,纳米管等。 二维:指在三维空间中有一维处在纳米尺度,如:超薄膜,多层膜等。 因为这些单元最具有量子的性质,所以对零维,一维,二维的基本单元,分别又具有量子点,量子线和量子阱之称。

纳米材料在光催化中的应用

纳米材料在光催化中的应用 姓名:杨明学号:5400209157 班级:工管093班 摘要: 纳米技术是当今世界最有前途的决定性技术。以半导体材料为催化剂光催化氧化水中有机污染物在近年来受到广泛关注,许多研究工作者在有机物光催化氧化方面进行了大量研究工作,发现卤代芳香烃、卤代脂肪烃、有机酸类、染料、硝基芳烃、取代苯胺、多环芳烃、杂环化合物、烃类、酚类、表面活性剂、农药等都能有效地进行光催化反应,除毒、脱色、生成无机小分子物质,最终消除对环境的污染。纳米材料是晶粒尺寸小于100 nm的单晶体或多晶体,由于晶粒细小,使其晶界上的原子数多于晶粒内部的,即产生高浓度晶界,因而使纳米材料有许多不同于一般粗晶材料的性能,如强度硬度增大、低密度、低弹性模量、高电阻低热导率等(1)。正是因为纳米材料具有这些优良性能,因此纳米材料在今后一定有着广泛的应用。 引言: 此法能处理多种污染物,适用范围广,特别是对难降解有机物具有很好的氧化分解作用;还具有反应条件温和,设备简单,二次污染小,易于操作控制,对低浓度污染物及气相污染物也有很好的去除效果;催化材料易得,运行成本低;可望用太阳光为反应光源等优点,是一种非常有前途的污染治理技术。 关键字:纳米纳米材料纳米材料光催化纳米TiO2 水热合成法 纳米(nm)是长度单位,1纳米是10-9米(十亿分之一米),对宏观物质来说,纳米是一个很小的单位,不如,人的头发丝的直径一般为7000—8000nm,人体红细胞的直径一般为3000—5000nm,一般病毒的直径也在几十至几百纳米大小,金属的晶粒尺寸一般在微米量级;对于微观物质如原子、分子等以前用埃来表示,1埃相当于1个氢原子的直径,1纳米是10埃(2)。一般认为纳米材料应该包括两个基本条件:一是材料的特征尺寸在1—100nm之间,二是材料此时具有区别常规尺寸材料的一些特殊物理化学特性。 纳米TiO2在光催化领域已经显示出广阔的应用前景.但是,由于TiO2仅仅能吸收5%紫外区附近的太阳光而限制了它的广泛应用,许多研究试图通过表面改性与掺杂来扩大它的光谱响应范围和提高它的催化活性。有选择性的进行掺杂已被证明是一种提高半导体氧化物光催化活性的极其有效的方法,掺入一定的金属阳离子能极大的提高TiO2的光催化效率,最近有大量的关于通过掺杂来提高TiO2的光催化性能的报道,掺杂的半导体光催化材料由于其物理和光学性质的改变,通过扩展光响应范围和提高光生电荷的分,从而提高了光催化性能(2)。 纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面有其广泛的应用前景(3)。例如Cr-Cr2O3颗粒膜对太阳光有强烈的吸收作用,从而有效地将太阳光能转换为热能。纳米粒子的粒径远小于光波波长。与入射光有交互作用,光透性可以通过控制粒径和气孔率而加以精确控制,在光感应和光过滤中应用广泛。由于量子

浅谈纳米材料光催化技术研究现状

龙源期刊网 https://www.docsj.com/doc/5415498858.html, 浅谈纳米材料光催化技术研究现状 作者:林雪牛文成 来源:《神州》2012年第29期 摘要:近年来,人们对半导体纳米光学材料的研究越来越广泛。从1972年Fujishima和Honda利用TiO2电极实验发现光解水现象开始,人们逐步开始对半导体材料进行研究。本文就纳米材料光催化技术研究现状和发展前景进行了简要介绍。 关键词:纳米材料,光催化 一、纳米材料的分类 人类对材料科学的探索与研究已有上千年的历史了,但是纳米材料作为新型材料的一种,其从发展到现在也不过二三十年的时间。1984年,德国著名学者通过现代技术将一个6nm的铁晶体压制成纳米块,并详细的分析了其内部结构的改变而引起的性能差异。发现从强度和硬度上都较普通钢铁强很多倍,并且在低温下失去传导能力,随着自身晶粒尺寸的减小,材料的熔点也会随之降低。1990年,纳米科技大会在美国第一次胜利举办,《纳米技术杂志》的正 式创刊标志着纳米科技从此正式开山立派。而我国的纳米领域的研究基本与国际发展同步,目前已具备开展纳米科技的研究条件,国家重点研究机构对相关高科技的研究步伐不断加快,部分领域已经与国际先进水平持平,这些都为实现跨越式发展提供了可能。近年来,我国通过结合国家战略需求,对纳米技术在能源、环境、资源和污水处理等领域开展深入研究,纳米材料净化机、助燃剂、固硫剂和降解剂等新型产品相继研究成功。 人们对于一门新学科——纳米材料学的研究已经有一定的进展。通常纳米材料以三种方式分类:按结构分类、按化学组分分类和按应用分类: 1、按结构分,我们通常将其分为四类:第一类是具有原子簇与原子束结构的零维纳米材料;第二类是具有纤维结构的一维纳米材料;第三类是具有层状结构的二维纳米材料;第四类是晶粒尺寸至少在一个方向上在纳米量级的单位纳米材料。 2、按化学组分,通常又有两种分类方式,一种是按材料的化学性质分类,另一种是按材料的物理性质分类。按材料化学性质,我们通常将其分为纳米金属材料,纳米晶体材料,纳米陶瓷,纳米玻璃,纳米高分子和纳米复合材料;按材料物理性质,我们可将纳米材料分为纳米半导体材料,纳米磁性材料,纳米非线性光学材料,纳米铁电体材料,纳米超导材料和纳米热电材料等等。 3、按应用,我们可将其分为纳米电子材料、纳米光催化材料、纳米生物医学材料、纳米光敏材料、纳米储能材料等等。 二、纳米光催化技术的研究现状

纳米材料与纳米催化

纳米材料与纳米催化 1.什么是纳米材料? 基本构成单元内容? 判断的标准什么? 答:纳米材料(nanometer material)是指其结构单元的尺寸介于1纳米~100纳米范围之间。由于它的尺寸已经接近电子的相干长度,它的性质因为强相干所带来的自组织使得性质发生很大变化。并且,其尺度已接近光的波长,加上其具有大表面的特殊效应,因此其所表现的特性,例如熔点、磁性、光学、导热、导电特性等等,往往不同于该物质在整体状态时所表现的性质。纳米材料是在三维空间中至少有一维处于纳米尺度范围。 纳米材料的基本结构单元分为四类: 零维:三维均为纳米尺度,如纳米颗粒、原子团簇等。 一维:空间两维在纳米尺度,如纳米管、纳米棒等。 二维:空间一维在纳米尺度,如超薄膜、多层膜等。 三维:宏观固体,但由纳米基本单元构成,如纳米固体等。 纳米材料的判断标准: 微粒尺寸和晶粒尺寸是否小于100nm; 是否具有不同于常规材料(bulk)的性能。 2.纳米微粒的基本理论的内容是什么(7条)? 并简要说明量子尺寸 效应、小尺寸效应、表面效应? 答:纳米微粒的基本理论的内容包括久保理论(电子能级的不连续性)、量子尺寸效应、小尺寸效应、表面效应、宏观量子隧道

效应、库仑堵塞与量子隧穿效应、介电限域效应。 量子尺寸效应: 当粒子尺寸下降到某一值时,金属费米能级附近的电子能级由准连续变为离散能级和纳米半导体微粒能隙变宽现象均称为量子尺寸效应。 小尺寸效应: 当超细微粒的尺寸与光波波长、德布罗意波长以及超导态的相干长度或透射深度等物理特征尺寸相当或更小时,晶体周期性的边界条件将被破坏;同时超细微粒的颗粒表面层附近原子密度减小,导致声、光、电、磁、热、力学等特性呈现新的小尺寸效应。 表面效应: 表面效应又称界面效应,是指纳米微粒的表面原子数与总原子数之比随粒径减小而急剧增大后所引起的性质上的变化。随着纳米微粒的粒径逐渐减小达到纳米尺寸,除了造成表面积迅速增加之外,表面能量也会大幅递增。 3.简要说明纳米微粒的化学特征有哪些?防止团聚的方法。 答:纳米微粒的化学特征有吸附、分散和团聚。 吸附是相接触的不同相之间产生的结合现象。吸附可以分成两类,一是物理吸附,吸附剂与吸附相之间是以范德瓦耳斯力之类较弱的物理力结合;二是化学吸附,吸附剂与吸附相之间是以

纳米载体的限域效应对催化性能影响机制的研究进展

纳米载体的限域效应对催化性能影响机制的研究进展 自上世纪末以来, 纳米科学和技术有了长足的进展,其中纳米材料的一个重要特性是,将体系的尺寸减小到一个特定的范围(如 1~100 nm)时,在不添加任何其他组分的情况下,纳米体系的电子结构会发生变化。量子力学已经证明,大量原子组成的固体材料的价电子为连续的“能带”,当这类体相材料在某一方向上被缩小,特别是缩小到纳米尺度时,电子在该方向的运动就受到空间的束缚和限域,这种限域效应将会改变电子运动特性、导致体系电子结构特别是价电子结构的改变,从而可能会产生量子突变。这种体系尺寸对电子特性的调变为催化剂的催化特性进行调控提供了一种很好的途径[1]。. 近几年,部分研究团队在利用纳米材料的限域效应对催化剂的改性以及催化过程的研究等方面开展了创新性的研究工作,并且大量具有影响力的研究报道和文章被发表出来,其中中国科学院大连化学物理所包信和院士团队在这方面的工作开展的较早也很突出。该团队在铂金属颗粒表面加载了过渡金属氧化物,制备出了具有界面限域效应的TMO/Pt非均相逆催化剂(Oxide-on-Metal Inverse Catalysts),利用界面限域效应对催化体系结构和电子特性的影响作用,改善了在催化过程(特别是在催化氧化反应)中传统非均相催化剂容易出现的催化活性中心的失活以及催化功能的失效等问题[2]。

图1两种金属催化体系的结构示意图 (A)传统的氧化物作为载体的金属催化体系(Oxide supported metal system) 和 (B)过渡金属纳米氧化物倒载型催化体系(oxide-on-metal system) 如图1所示为传统过渡金属氧化物作为载体的催化体系和过渡金属纳米氧化物倒载型催化体系的结构示意图。纳米氧化物倒载型催化体系相比传统非均相催化剂,具有更多的TMO/Pt界面(如示意图B 中氧化物边缘的黄色虚线所示)。由于TMO与Pt的表面张力的不同,倒载型催化体系中氧化物(FeO)趋向于在Pt金属表面形成均有双层结构的层状纳米岛结构(由于Fe与Pt具有较强的作用力,双层结构底层与Pt金属结合的为Fe原子,上层为氧原子),而传统催化体系中的Pt金属易于在氧化物颗粒形成较大的颗粒状结构,如下图2所示。基于上述的界面结构特点,倒载型催化体系具有更多的TMO/Pt 界面,并且过渡金属中阳离子(Fe)与贵金属(Pt)间的相互作用力更强。 图2 两种催化体系的界面结构示意图 (A、B为传统的氧化物作为载体的金属催化体系, C、D为过渡金属纳米氧化物倒载型催化体系)

tio2光催化技术

纳米TiO2光催化剂安全环保性能研究 作者:北京化工大学 徐瑞芬教授 纳米科技的发展为人类治理环境开辟了 一条行之有效的途径,我们可以合理利用自然光资源,通过纳米TiO2半导体的光催化效应,在材料内部由吸收光激发电子,产生电子-空穴对,即光生载流子,迅速迁移到材料表面,激活材料表面吸附氧和水分,产生活性氢氧自由基(oOH )和超氧阴离子自由基(O2·-),从而转化为一种具有安全化学能的活性物质,起到矿化降解环境污染物和抑菌杀菌的作用。 纳米TiO2光催化应用技术工艺简单、成本低廉,利用自然光即可催化分解细菌和污染物,具有高催化活性、良好的化学稳定性和热稳定性、无二次污染、无刺激性、安全无毒等特点,且能长期有益于生态自然环境,是最具有开发前景的绿色环保催化剂之一。 本研究在用亚稳态氯化法合成纳米二氧化钛的技术基础上,根据光催化功能高效性的需要,进行掺杂和表面处理,制成特有的在室内自然光和黑暗区微光也能显著发挥光催化作用的纳米二氧化钛,将其作为功能粉体材料,复合到塑料、皮革、纤维、涂料等材料中,研制成无污染、无毒害的纳米TiO2光催化绿色复合材料,充分发挥抗菌、降解有机污染物、除臭、自净化的功能,这类环保型功能材料实施方便、应用性强,能实用到生活空间的多种场合,发挥其多功能效应,成为我们生活环境中起长期净化作用的环保材料。 2 纳米TiO2光催化剂对环境的净化功能研究 2.1室内环境的净化 随着建筑材料中各种添加物的使用,室内装饰材料和各种家用化学物质的使用,室内空气污染的程度越来越严重。调查表明,室内空气污染物浓度高于室外,甚至高于工业区。据有关部门测试,现代居室内空气中挥发性有机化合物高达300多种,其中对人体容易造成伤害、甚至致癌的就有20多种,极大地威胁着人类的健康生活。随着人们健康和环保意识的增强,人们对具有光催化净化室内外空气、抗菌杀毒等功能性绿色环保材料的需求日益迫切,纳米TiO2光催化剂的出现为环境净化材料的发展开辟了一片新天地,也为人们对健康环境需求的解决提供了有效的途径。

纳米催化技术

纳米催化技术综述 学院:化学化工专业:化学工程姓名:孙晶芸学号:MZ13485 [摘要]纳米材料由于颗粒小、比表面积大、形成凹凸不平的原子台阶,这些特性是催化剂所必备的,因此进行纳米催化材料的研究开发是非常有意义的。本文就纳米粒子的制备及应用领域为中心进行探讨。[关键字]纳米催化;稀土催化材料;光催化 引言 纳米催化剂由于其高效的还原或氧化作用,在催化领域的应用非常广泛,与普通商用催化剂相比,表现出高活性和高选择性等优异的催化性能。在反应中,纳米催化剂的尺寸、形貌、表面性质等对其活性和选择性起到了关键的作用。纳米颗粒由于尺寸小,表面所占的体积分数大,表面的键态和电子态与颗粒内部不同,表面原子配位不全等,导致表面的活性位置增加,这就使纳米颗粒具备了作为催化剂的基本条件。随着粒径的减小,表面光滑程度变差,形成了凹凸不平的原子台阶,这就增加了化学反应的接触面。 催化剂的作用主要可归结为三个方面:一是提高反应速度,增加反应效率;二是决定反应路径,有优良的选择性,如只进行氢化、脱氢反应,不发生氢化分解和脱水反应;三是降低反应温度。近年来在纳米催化剂的研究方面已取得一些成果,体现了纳米催化剂的优越性[1-5]。目前,关于纳米粒子的催化剂有以下几种,即纳米金属催化剂,主要以贵金属为主,如Pt、Rh、Ag、Pd,非贵金属有Fe、Co、Ni等。第二种以氧化物为载体,把粒径为l nm-10nm的金属粒子分散到这种多孔的衬底上。衬底的种类很多,有氧化铝、氧化硅、氧化镁、氧化钛、沸石等。第三种是WC、γ-Al2O3、γ-Fe2O3等纳米聚合体或者是分散于载体上。 纳米稀土Ti02复合氧化物[6-8]在可见光的照射下对碳氢化合物有催化作用,利用这样一个效应可以在玻璃、陶瓷和瓷砖的表面涂上一层纳米Ti02薄层,有很好的保洁作用,在实验室已制成自洁玻璃和自洁瓷砖。粘污在表面上的物质,包括油污、细菌在光的照射下由于纳米TiO2的催化作用,会进一步氧化变成气体或者很容易被擦掉的物质。这使高层建筑的玻璃、厨房容易粘污的瓷砖的保洁都可以很容易地进行。日本已经制备出保洁瓷砖,装饰了一家医院的墙壁,使用证明,这种保洁瓷砖有明显的杀菌作用。本文根据近几年国内外的研究报道,对纳米催

纳米催化剂简介

纳米催化剂简介 摘要 催化剂的作用主要可归结为三个方面:一是提高反应速度,增加反应效率;二是决定反应路径,有优良的选择性,例如只进行氢化、脱氢反应,不发生氢化分解和脱水反应;三是降低反应温度。纳米粒子作为催化剂必须满足上述的条件。近年来科学工作者在纳米微粒催化剂的研究方面已取得一些结果,显示了纳米粒子催化剂的优越性。 纳米微粒由于尺寸小,表面所占的体积百分数大,表面的键态和电子态与颗粒内部不同,表面原子配位不全等导致表面的活性位置增加,这就使它具备了作为催化剂的基本条件。最近,关于纳米微粒表面形态的研究指出,随着粒径的减小,表面光滑程度变差,形成了凸凹不平的原子台阶,这就增加了化学反应的接触面。有人预计超微粒子催化剂在下一世纪很可能成为催化反应的主要角色。尽管纳米级的催化剂还主要处于实验室阶段,尚未在工业上得到广泛的应用,但是它的应用前途方兴未艾。 关键词:性质,制备,典型催化剂,表征技术,应用,

目录 绪论-----------------------------------------------------------1 1. 纳米催化剂性质----------------------------------------------1 1.1 纳米催化剂的表面效应-------------------------------------1 1.2 体积效应-------------------------------------------------1 1.3 量子尺寸效应---------------------------------------------1 2. 纳米催化剂的制备--------------------------------------------2 2.1 溶胶凝胶法-----------------------------------------------2 2.2 浸渍法---------------------------------------------------2 2.3 沉淀法---------------------------------------------------3 2.4 微乳液法-------------------------------------------------3 2.5 离子交换法-----------------------------------------------3 2.6 水解法---------------------------------------------------3 2.7 等离子体法----------------------------------------------3 2.8 微波合成法-----------------------------------------------4 2.9 纳米材料制备耦合技术-------------------------------------4 3. 几种典型催化剂----------------------------------------------4 3.1 纳米金属粒子催化剂---------------------------------------4 3.2 纳米金属氧化物催化剂-------------------------------------5 3.3 纳米半导体粒子的光催化-----------------------------------5 3.4 纳米固载杂多酸盐催化剂-----------------------------------5 3.5 纳米固体超强酸催化剂-------------------------------------6 3.6 纳米复合固体超强酸催化剂---------------------------------6 3.7 磁性纳米固体酸催化剂-------------------------------------6 3.8 碳纳米管催化剂-------------------------------------------7 3.9 其它纳米催化剂-------------------------------------------7 4. 纳米催化剂表征技术------------------------------------------7

MS用于催化和纳米材料简介

催化、分离与化学反应 催化对于工业界,特别是化工和石化行业,是一项十分关键的技术,它使得设计具有特定性质的化合物及优化工艺过程成为可能。分子和材料的结构与相互作用控制着催化与分离过程;无论过程中是否使用催化剂,电子结构和热化学都是影响化学反应的关键因素之一。通过把强大的分子模拟技术(包括分子力学和量子力学)与结构判定和建模工具结合,可以帮助我们对这些性质进行深入的了解和研究。化学反应主要由分子的结构及其电子排布所决定,通过分子模拟研究化学反应,需要化学家对反应的过程建立模型并使之可视化,而更重要的是精确计算所研究体系的热力学性质。总之,对催化、分离及反应的计算要求有两个基础:首先是对各种各样的材料和化合物建立模型的能力,包括有机分子、高分子、无机固体、金属及表面等;其次,许多工具是必需的,包括结构判定工具、模拟相互作用和输运性质的分子力学和分子动力学工具以及可准确预测电子结构和热化学性质的量子力学工具。Accelrys将所有这些工具集成到它的Materials Studio软件环境中,这在世界上是独一无二的。Accelrys软件可用于对金属茂催化剂、沸石和分子筛、金属和金属氧化物在内的各种催化体系进行表征、优化和设计。 纳米材料 纳米材料、纳米结构是当今世界新材料研究领域中最富有活力、对未来经济和社会发展有着十分重要影响的研究对象,也是纳米科技中最为活跃、最接近应用的重要组成部分。纳米技术广泛地应用在信息、生物技术、能源、环境、先进制造技术和国防等领域,这当中元件的小型化、智能化、高集成、高密度存储和超快传输等要求是刺激纳米材料快速发展的动力之一。Materials Studio分子模拟平台提供了多种方法来研究纳米材料:原子/分子水平的纳米尺度材料的模拟计算技术、介观尺度的纳米材料模拟技术以及线性标度量子力学方法,这些方法可以帮助研究者构建材料的纳米尺度团簇、周期性结构模型和纳米尺度粗粒度模型,并对纳米尺度基元的表面修饰改性、分子组装与自组装、液滴外延生长、介孔内延生长等行为进行研究,能够对包括金属、合金、氧化物、氮化物、碳化物、离子晶体和半导体等多种纳米材料在内的对象进行系统地计算,可以得到因为纳米尺度的因素引起的纳米材料与结构的特殊的物理与化学特性,比如高韧性纳米陶瓷、纳米药物、超强纳米金属/纤维以及异质、异相的不同性质的纳米基元(零维纳米微粒/团簇、一维纳米管、纳米棒/带/丝等)的组合等,从而可以帮助发现新现象、认识新规律、提出新概念、建立新理论、验证和发展新原理,丰富纳米材料领域的研究内涵,为构筑纳米材料科学体系的新框架奠定基础,最终

纳米结构与纳米材料25个题目+完整答案

1.什么是纳米材料?其内涵是什么?(从零、一、二、三维考虑) 2.纳米材料的四大效应是什么?对每一效应举例说明。 3.纳米材料的常用的表征方法有哪些? 4.用来直接观察材料形态的SEM、TEM、AFM对所测定的样品有哪些特定要求?从它们的图像中能够得到哪些基本信息? 5.纳米颗粒的高表面活性有何优缺点?如何利用? 6.在纳米颗粒的气相合成中涉及到哪些基本环节?气相合成大致可分为哪四种?气相成核理论的机制有哪两种? 7.溶胶-凝胶法制备纳米颗粒的基本过程是怎样的? 8.用溶胶-凝胶技术结合碳纳米管的生长机理,可获得密度不同的碳纳米管阵列(也叫纳米森林),简要阐述其主要步骤及如何控制碳纳米管的分布密度? 9.改变条件可制备不同晶粒大小的二氧化钛,下图分别为两种晶粒尺寸不同的二氧化钛的XRD图与比表面积数据。请用Scherrer 方程、BET比表面积分别估算这两种二氧化钛的晶粒尺寸(XRD测试时所用的 = 1.5406?,锐钛矿相二氧化钛的密度是3.84 g/cm3)(默写出公式并根据图中的数据来计算)。 10.氧化物或者氮化物纳米材料具有许多特殊的功能,请以一种氧化物或者氮化物为例,举出其三种主要的制备方法(用到的原料、反应介质、主要的表征手段)、主要用途(与纳米效应有关的用途)、并介绍这种物质的至少两种晶相。 11.举出五种碳的纳米材料,阐述其一维材料与二维材料的结构特点、用途。 12.简述纳米材料的力学性能、热学性能与光学性能有怎样的变化? 13.什么叫化学气相沉积法,它与外场结合又可衍生出哪些方法?简述VLS机制。 14.纳米半导体颗粒具有光催化性能的主要原因是什么?光催化有哪些具体应用 15.利用机械球磨法制备纳米颗粒的主要机制是什么?有何优、缺点? 16 何为“自催化VLS生长”?怎样利用自催化VLS生长实现纳米线的掺杂? 17.液相合成金属纳米线,加入包络剂(capping reagent)的作用是什么? 18.何为纳米材料的模板法合成?它由哪些优点?合成一维纳米材料的模板有哪些? 19.试结合工艺流程图分别说明氧化铝模板的制备过程以及氧化铝模板合成纳米线阵列的过程 20.从力学特性、电学特性和化学特性来阐述碳纳米管的性质,它有哪些主要的应用前景? 21.如何提高传统光刻技术中曝光系统的分辩率? 22.试比较电子束刻蚀和离子束刻蚀技术的异同点和优缺点。 23.比较极紫外光刻技术和X射线光刻技术的异同。 24.何为纳米材料的自组装?用于制备纳米结构的微乳液体系一般有几个组成部分? 25 何谓“取向搭接Oriented attachment”“奥斯德瓦尔德熟化Ostwald ripening”?

相关文档