文档视界 最新最全的文档下载
当前位置:文档视界 › 单脉冲雷达角度跟踪技术研究

单脉冲雷达角度跟踪技术研究

单脉冲雷达角度跟踪技术研究
单脉冲雷达角度跟踪技术研究

单脉冲雷达角度跟踪技术研究

【摘要】简单介绍了单脉冲雷达的特点及工作原理,重点分析了多部干扰机对单脉冲雷达的角度干扰问题,并对相干干扰和非相干干扰的干扰效果进行了讨论,指出两点源非相干干扰是实际工程中一种比较理想的干扰方式。

【关键词】单脉冲雷达、角度跟踪、相干干扰、非相干干扰

一、引言

对雷达进行干扰要对准雷达的四个系统:显示系统、距离跟踪系统、速度跟踪系统和角度跟踪系统。在雷达发展的早期,只要对前三个系统中的一个(或两个)系统进行有效地干扰,就可达到破坏雷达角跟踪系统正常工作的目的。现在随着新体制雷达的出现和抗干扰技术的不断提高,尤其是单脉冲雷达体制的出现,使很多干扰技术难以奏效。本文以振幅和差式单脉冲雷达为例,讨论了用多部干扰机对单脉冲雷达实施干扰的情况。

二、分析

1.单脉冲雷达

◆定义

单脉冲雷达是指由单个回波脉冲即可获得目标空间角信息的雷达。

◆特点

单脉冲雷达是一种精密跟踪雷达。它有较高的测角精度、分辨率和数据率,但设备比较复杂。单脉冲雷达早在60年代就已广泛应用。美国、英国、法国和日本等国军队大量装备单脉冲雷达,主要用于目标识别、靶场精密跟踪测量、弹道导弹预警和跟踪、导弹再入弹道测量、火箭和卫星跟踪、武器火力控制、炮位侦察、地形跟随、导航、地图测绘等;在民用上主要用于中交通管制。目前使用的单脉冲雷达基本上都实现了模块化、系列化和通用化,具有多目标跟踪、动目标显示、故障自检、维修方便等特点。

◆分类

根据从回波中获取角信息的方式(测角法)不同,单脉冲雷达可分为振幅法(比幅)、相位法(比相)和综合法(振幅相位)3种。这3种测角法又可用3种角度鉴

别器(振幅式、相位式、和差式)中的任何一种来获得目标的角度信息,因此综合起来有9种形式的单脉冲雷达系统,其中以振幅和差式单脉冲雷达系统用的最多。通常分为有振幅比较单脉冲雷达和相位比较单脉冲雷达两大类。

工作原理

单脉冲雷达每发射一个脉冲,天线能同时形成若干个波束,将各波束回波信号的振幅和相位进行比较,当目标位于天线轴线上时,各波束回波信号的振幅和相位相等,信号差为零;当目标不在天线轴线上时,各波束回波信号的振幅和相位不等,产生信号差,驱动天线转向目标直至天线轴线对准目标,这样便可测出目标的高低角和方位角,从各波束接收的信号之和,可测出目标的距离,从而实现对目标的测量和跟踪。它具有圆锥扫描雷达所没有的优点:获得角误差信息的时间短(以微秒计算);不受回波振幅起伏变化的影响;测角精度高(0.1~0.5mil);测角支路抗幅度调制干扰(如回答式倒相干扰)的能力强。振幅和差式单脉冲雷达系统的基本工作原理:将两个比幅天线方向图所得的幅度不同的信号经过和差变换器之后,再把和信号(U∑ )、差信号(U△ )加到鉴相器得出差信号。

2 雷达角跟踪技术

2.1 信号处理和测量技术

PD采用一种合适的且可以适当改变的配置方式及数据处理算法,可成功的实现跟踪低仰角目标。假定一种处理算法,地面的反射系数应有一个确定的模型(如镜面反射和几何光学原理),重要的是要估计这样的算法偏离假定的反射模型的灵敏度如何。在一个真实系统中,这样的偏差肯定会发生。即使是光滑的镜面表面(理想的镜面反射),当雷达位于几倍天线直径大的该表面时,由物理光学原理即菲涅尔区,也需要校正。关键的问题是,在反射的雷达信号中有多少是未知量,要确定这些未知量,雷达需要测量的量是多少,很明显,在多路径效应下,未知数的数量会增加。雷达必须做更多的测量才能获得反射平面的信息以鉴别目标的真实仰角。但是更多的工作是需要找到最优的算法,需要确定它们对不同反射系数模型的灵敏度。

图l 从平坦地面镜面反射产生的多路径问题示意图

下面介绍一种基于多路径信号传播模型的目标高度估计值。如图1所示的平坦地球表面反射几何模型,多路径回波理论上可以分解成3个部分,用多路径模型表示为

式中:p表示镜面反射系数模型; r 表示多路径延时

式中: Hr和Ht分别表示雷达天线高度和目标高度;R为目标到雷达的径向距离。如果已知Tm,则可以通过式(2)直接计算出目标的高度,但由于r远比Tm目标的径向尺度小,3部分回波实际上是叠加在一起的,因此直接通过目标高分辨测量多路径延时是不可能的。考虑到多路径分量与主路径分量在时间域的强相关作用可以通过目标像(含多路径分量)的自相关函数来估计Tm。

2.2 频率捷变技术

雷达工作频率动态变化的能力有助于改善低角跟踪性能。通常的低角跟踪问题只有当目标和它的镜象之间的距离小到多普勒滤波和距离波门不能把目标分离出来时,才会遇到。因此根据接收到的信噪比通过合适的频率变化,一部带宽非常宽的雷达就能把目标和镜像信号分开。这些动态——相移技术是与频谱展宽技术

密切相关的,特别是对着扫描区域进行精确跟踪时,更为突出。要完成这个工作,一种方法就是递归地估计出目标距离、高度和反射信号相位,并根据这些估计出目标和镜象的高度差。于是我们可选择下一个试探频率以改变相对相位使得天线信号交替地变为极大和极小。这样,我们并不是根据天线的位置来获得目标高度,而是根据频率差、距离测量值和已知的雷达站的几何关系求出目标高度。拓宽捷变频率范围、提高捷变频率速度和向自适应方向发展是频率捷变雷达的发展趋势。自适应抗干扰频率捷变雷达能测出干扰信号频谱中的最弱点频率,并能自动地快速捷变到这一频率。自适应频率捷

变跟踪雷达还能自动跳到回波幅度最强即角误差最小的频率。目前,人们正在研究把频率捷变同自适应旁瓣对消技术结合起来,以便同时具备对抗自备式干扰机和掩护式干扰机的能力。

2.3 双波段组合技术

通常可利用高频窄波束雷达与常规跟踪雷达组合一体的技术来克服多路径效应。用于阻止多路径信号进入天线的最简单的方法是采用极窄的波束宽度,以防止波束全部打地,从而避免接收多路径反射信号,但是极窄波束将导致捕获时间较长,而且对于常规火控雷达工作频率来说,还需要大口径天线。将高频窄波束雷达与常规跟踪雷达有效的组合在一起,可以较好地弥补二者的不足。常规跟踪雷达主要用于跟踪远距离目标,其波束宽,反应速度快,跟踪精度低。当目标进入近距离时,高频窄波束雷达已获得足够的目标信息,系统转向高频率窄脉冲波段自动跟踪,其波束窄受多路径影响小,跟踪精度高。通常窄波束雷达频率可在Ku波段和Ka波段之间选择,如图2所示。

图2 X/Ka双波段组合式跟踪雷达

2.4 雷达组网技术

把几个雷达站联成一体是改进整个系统性能,包括低角跟踪性能的一种有效方法。由于目标的雷达反射截面积是仰角和波长的函数,目标运动时各站所对应的目标反射截面积是起伏的,从而影响单站对目标的捕获和跟踪,而通过对多部雷达特别是其中的低空补盲雷达所测数据进行融合处理,可以提高发现概率并获得稳定跟踪,从而改善低空性能。首先一个或多个雷达站跟踪同一个目标,它将它们的垂直扫描误差信号进行混合平均,这样可将来自不相关的反射产生的误差信号进行有效的对消,而来自目标的直达信号可相干叠加。这是能改善低角跟踪性能的一种比较简单的方法,特别是如果有两部以上的雷达跟踪同一个目标,即使只有一部在发射也是有用的。然而多部发射能大大改善低角跟踪性能。例如,考虑3部单脉冲雷达站(以不同频率工作),它们正在跟踪同一目标,但它们以各自的频率用各自的接收天线各自获得有关仰角和差信号的回波脉冲强度方面的信息,它们可以相互交换这种信息。提高雷达组网技术,设计和建造新的雷达信息综合处理系统和信息分发系统,在结构上采用分布式来避免过于集中,使雷达网的工作效能更高,生存能力更强,避免战争中防空雷达全面瘫痪的局面。

3 .用多部干扰机对单脉冲雷达的干扰

在角度系统不可分辨的角度范围内,出现两个或两个以上的目标或干扰源,就能破坏跟踪系统对目标(干扰源)的跟踪,这种方法叫多点干扰法。根据各干扰源之间干扰信号的相位关系,多点干扰可分为3种不同的情况:非相干干扰(两个干扰源在高频相位上是无关的)、相干干扰(两个干扰源在高频相位上存在一定的关系)和扫频干扰。

2.1 非相干干扰

非相干干扰是由散布在空间的两个不相干的干扰源所产生的干扰。假定单脉冲雷达天线的等信号方向和第一个干扰源Oj1第二个干扰源Oj2之间的夹角分别为θ1、θ2,而两干扰源Oj、Oj2之间的夹角为△θ,天线方向图为F(θ)。当天线A1、A2受到两干扰源Oj、Oj2和两目标同时作用时,它们分别为

图1 单脉冲雷达跟踪系统天线方向图

式中:U 、w1 为来自第一个干扰源Oj1的干扰信号振幅和角频率;U2、w2 为来自第一个干扰源Oj2的干扰信号振幅和角频率;u1.u2同时包含干扰信号和回波信号。加入到和支路的信号为u1+u2差支路的信号为u1-u2两者经过变频、中放、鉴相后输出的误差电压为(当△θ较小时,天线方向图F(θ)在θ=θ。处近似为线性)

系统跟踪在平衡位置时,误差电压uFD为零,这时可以解得

从式(3)可以看出,在两个目标信号共同作用下,天线偏离两目标的角度大小与两目标的辐射功率成反比。下面分3种情况进行讨论:

(1)两个不带干扰机的目标

设目标2是飞机,目标1是假目标(假定其有效反射面积为飞机的三倍),那么,雷达便跟踪在飞机和假目标之间离飞机3/4的距离上。若两目标为同类飞机编队飞行,雷达将跟踪在两架飞机连线中心,并随目标回波起伏作随机摆动,造成跟踪误差,并且若两者距离足够大,那么导弹将从两者之间穿过,不会摧毁任何一个目标。

(2)两个带干扰机的目标

如果两个干扰机按一定程序断续地开机,这时跟踪干扰机的雷达,将时而跟踪这一目标,时而跟踪另一目标,随着干扰转换的节拍而产生追摆(闪烁)。闪烁干扰的作用使两目标之间的最小分辨角显著增加。这种干扰的一个重要参数是干扰机的交换频,若交换频率过高,则雷达跟踪系统不能及时反应。通常,干扰机的交换频率△F约为0.5~1 Hz。

(3)对寻的导弹的误引干扰

对寻的导弹的误引干扰是空间两点干扰原理的一种具体运用,其原理是在导弹跟踪系统不可分辨的角度范围内,用两部以上的干扰机,采取顺序开机的办法,把导弹引导到目标和干扰机之外。

2.2 相干干扰

相干干扰就是由散布于空间的两个在高频相位上存在一定关系的干扰源所产生的干扰。它是利用两个相干干扰源同时作用产生合成波,人为地造成相位波前畸变,对雷达测角系统进行欺骗干扰,所以又叫相位波前失真干扰。从原理上

讲,相干干扰可使雷达天线等信号轴方向跟踪在两干扰源连线之外,所以干扰效果比非相干干扰更理想。在一般情况下,设两相干干扰源在天线孔径处产生的电场相位差为α,通过计算可求得,天线将跟踪的方向θ满足下式

考虑到角度θ很小,tanθ~ θ,所以

式中:θ为误差角;β为两个信号的振幅比;△θ为两个

干扰源之间的角差。

从式(5)中我们可得出:

(1)两相干干扰源产生的相位波前失真,取决于干扰源的振幅比β,相位差以及两干扰源的角差α。当△θ固定,相位相反和振幅相等时,相位波前失真最大,而与雷达的天线方向图形状无关。

(2)相干干扰对任何测角系统都有效,单脉冲雷达在对抗相干干扰方面,和其他测角系统相比,并无优越之处。和非相干干扰效果相比,相干干扰效果好。但是,在实际应用中,相干干扰受到很多限制:两个点源信号在天线口面的相位差控制在5。以内;干扰机必须有很大的功率;两个干扰源需要一定的间距等。2.3 扫频干扰

扫频干扰是以一定的调谐速度在整个干扰频段内周期性地改变干扰频率,它可使干扰频段内的所有雷达都受到干扰。适当选择干扰机的扫频速度,可以使被干扰的雷达接收机的灵敏度在两次干扰作用之间不能完全恢复,或者造成雷达画面闪动。扫频干扰用来干扰角跟踪系统时,应根据测角支路的反应速度而适当降低扫频速度。从原理上讲,也可以起到闪烁干扰的作用。

可见选取重要密度函数时,需要从中采样的能力,并且要能够计算出的值。这在为有限集或为高斯函数时是可能的,对于其它模型则仍然需要构造最佳重要密度的近似。选取重要密度

函数最简单和易于实现的方法是使之等于先验密度,即

此时,

实用中可根据具体情况选择各种不同的重要密度函数,这已经成为粒子滤波器设计中最关键的步骤。

三、结论

目前所采用的干扰技术,主要是噪声干扰、距离拖引干扰、速度拖引干扰等技术。从理论上讲,任何由“一点”产生的回答式调幅干扰、噪声干扰对单脉冲雷达的角度系统干扰效果都不大,而采用两部干扰机同时对其作用则可获得较理想的干扰效果。在实际工程中,两点源相干干扰虽然干扰效果比较理想,但因为条件难以满足,其应用受到很大限制;两点源非相干干扰是一种比较合适的干扰方式。

过去一直采取解析形式对非线性系统进行近似,得到次优滤波估计值。为提高算法的精确性、实时性和鲁棒性,随着计算存储成本的降低,采用非参数法的序贯蒙特卡罗粒子滤波器获得了广泛关注。尽管它可能存在退化现象,但通过合理选择重要密度和再采样技术的引入,可以得到有效遏制,因而成为极有前途的一种估计方法。

参考文献

1 刘玉山,许创杰.雷达对抗及反对抗.北京:电子工业出版社,

2 王心福.对雷达角跟踪系统干扰问题.电子对抗技术,1999,(3):3~11

3 钱逢安,张平定,等.雷达抗干扰.空军第二高射炮兵学院,l982

4 王小谟,等.雷达与探测.北京:国防工业出版社。2000

5 侯印呜,等.综合电子战.北京:国防工业出版社,2001

毫米波单脉冲雷达目标二维结构成像方法

西安电子科技大学学报990305 西安电子科技大学 JOURNAL OF XIDIAN UNIVERSITY 1999年第26卷 第3期Vol.26 No.31999 毫米波单脉冲雷达目标二维结构成像方法 刘峥, 张守宏 摘要: 基于步进频率距离高分辨技术和单脉冲偏轴测角技术,研究了一种在杂波背景下雷达目标高分辨二维结构成像的方法,并给出了地面坦克目标的成像实例.该方法具有算法简便、实时性强、杂波抑制能力强等特点,为毫米波雷达在强杂波背景中识别目标提供了一条有效途径. 关键词: 步进频率;单脉冲雷达;目标成像 中图分类号:TN958.4 文献标识码:A 文章编号:1001-2400(1999)03-0281-05 A method of target two-dimensional structure imaging for a millimeter-wave monopulse radar LIU Zheng, ZHANG Shou-hong (National Key Lab. of Radar Signal Processing, Xidian Univ., Xi′an 710071, China) Abstract: Based on stepped frequency high range resolution (HRR) and monopulse angle measurement techniques, a method for a millimeter-wave monopulse radar to construct two-dimensional structure images of targets in clutter background is proposed, with an example of imaging for a tank model. The method is characterized by its simple algorithm, good real-time property and strong ability to suppress clutter, and provides a practical approach to the target identification in high clutter by an MMW radar. Key Words: stepped frequency;monopulse radar;target imaging 现代雷达及其武器系统要求雷达不但要具备传统的目标探测与定位功能,而且还要具备较强的目标分类与识别功能.雷达成像技术使得现代雷达可以获得有关目标形状和结构的细节信息,从而有利于实现目标识别.毫米波雷达以其波束窄、角度分辨率高、可用带宽大以及器件尺寸小等特点特别有利于雷达成像.步进频率体制是实现高距离分辨率(High Range Resolution, 简记为HRR)的有效技术手段;而单脉冲偏轴测角方法的测角精度高、所用时间短,当雷达与目标间的距离较近时(例如3 km以内)可以达到较高的角分辨率而实时地给出目标的横向距离信息.笔者讨论了毫米波步进频率单脉冲体制下的目标二维高分辨结构成像方法,并以地面坦克目标为例,说明了该方法的成像效果. 1 基本原理 在毫米波段,目标对入射电磁波的反射属准光学区反射.当目标受到高分辨雷达探测信号照射时,其散射场主要成分为目标边缘、凸面曲率不连续点、棱角、端部等的场.这些对应于目标强散射点的场分量可用散射中心的概念来描述,目标回波可模型化为多个散射中心回波的合成,即把目标视为由若干等效散射中心组成的多散射中心模型.散射中心反映了目标的细节几何形状与结构特征,成像就是从目标回波中重现各散射中心在目标物体上的空间分布及其散射强度的相对大小.采用距离高分辨技术,有可能将目标的若干强散射中心在距离上加以分辨,使它们位于不同的距离单元之内.通过单脉冲测角,可得到每个距离单元散射中心的横向位置信息,这样即可实现基于散射中心模型的目标二维成像. 步进频率体制是实现HRR的一种行之有效的技术手段,其主要缺点是对目标的运动比较敏感[1,2],为此可采用运动补偿的方法来消除目标径向运动带来的影响.采用步进频率体制的单脉冲二维成像处理框图见图1.file:///E|/qk/xadzkjdx/xadz99/xadz9903/990305.htm(第 1/6 页)2010-3-23 10:31:21

单脉冲雷达

雷达大作业 单脉冲雷达在测角方面的应用 班级: 1302019 姓名: 指导教师:魏青

一、引言 1、背景 对目标的定向,是雷达的主要任务之一,单脉冲定向是雷达定向的一个重要方法。之所以叫“单脉冲”,是因为这种方法只需要一个目标回波脉冲,就可以给出目标角位置的全部信息。单脉冲技术由于其良好的测角、角跟踪性能和抗干扰能力,因此除了在跟踪雷达中应用之外,还广泛应用到各种武器平台的控制雷达当中。本文分析了标定方法确定天线方向图信息的理论有效性,给出利用标定结果进行宽带单脉冲测角的方法。 2、简介 宽带单脉冲雷达是将传统的单脉冲雷达加载宽带信号。在宽带信号观测下,目标可认为由一系列孤立的散射点组成。从而宽带单脉冲雷达测角实际上是测定一系列散射点的角度。宽带单脉冲雷达测角具有广泛的应用价值,除了标跟踪,还可以应用于三维成像。根据对宽带单脉冲测角的基本原理分析可知,天线方向图在测角中发挥了重要的作用,目前的文献在讨论宽带单脉冲测角时,通常都是采取与文献类似的方法: 根据理论模型,设定方向图函数。对于实际的宽带单脉冲雷达系统,方向图函数通常并不是严格的满足理论模型。此外,精确测量实际雷达系统的方向图际雷达系统进行标定来为测角提供必要的方向图信息。 二、单脉冲雷达的自动测角系统中的优势 1、角度跟踪精度 与圆锥扫描雷达相比,单脉冲雷达的角度跟踪精度要高得多。其主要原因有以下两点: 第一,圆锥扫描雷达至少要经过一个圆锥扫描周期后才能获得角误差信息,在此期间,目标振幅起伏噪声也叠加在圆锥扫描调制信号(角误差信号)上形成干扰,而自动增益控制电路的带宽又不能太宽,以免将频率为圆锥扫描频率的角误差信号也平滑掉,因而不能消除目标振幅起伏噪声的影响,在锥扫频率附近一定带宽内的振幅起伏噪声可以进入角跟踪系统,引起测角误差。而单脉冲雷达是在同一个脉冲内获得角误差信息,且自动增益控制电路的带宽可以较宽,故目标振幅起伏噪声的影响基本可以消除。 第二、圆锥扫描雷达的角误差信号以调制包络的形式出现,它的能量存在于上、下边频的两个频带内,而单脉冲雷达的角误差信息只存在于一个频带内。故圆锥扫描雷达接收机热噪声的影响比单脉冲雷达大一倍。单脉冲雷达的角跟踪精度比圆锥扫描雷达的要高一个量级,约为0.1-0.2密位。

基于Web的DLD—100A型单脉冲二次雷达远程监控系统

基于Web的DLD—100A型单脉冲二次雷达远程监控系统 基于Web的航管二次雷达的远程监控可供雷达维护人员远程的掌握雷达的运行状态、故障情况,便于即使的采取措施,保障雷达的正常运行。本项目主要探讨了运用Tomcat架构的服务器为远程客户端提供雷达数据接入。这样可以达到远程监控二次雷达运行情况的目的。 标签:单脉冲二次雷达;Tomcat;远程监控 引言 中国民航飞行学院广汉机场二次雷达站是国家重点建设工程项目,使用的是中国电子科技集团公司南京十四所研发的DLD-100A单脉冲二次雷达。该二次雷达在本地有两个监控席位,用网线分别接到两台电脑上进入雷达监控软件。该监控席位主要是为雷达站值班人员提供实时的雷达原始数据,方便对雷达的运行状态进行监控。雷达维护人员除了在雷达站本地观察雷达运行状态外,不能进行远程监视,给日常维护工作带来一定的限制。如果能通过网络解决对雷达本地的原始数据监视,维护人员可以远程的掌握雷达的运行状态、故障情况,便于即使的采取措施,保障雷达的正常运行。 1 课题描述 国内外对雷达远程监控的研究比较多,主要有基于硬件传输的远程监控和基于单片机的远程监控系统的研究。上述研究均需要有专有通信设备、通信线路的支持,成本都比较高,设计不灵活,不易改进等缺陷。 现今Internet的技术的高度发展,数据通过Internet可以方便传输到任何地方。基于WEB的雷达监视能通过网络解决对雷达本地的原始数据监视,维护人员可以在任何可以上网的地方掌握雷达的运行状态、故障情况,便于及时的采取措施,保障雷达的正常运行。 基于web的远程控制软件开发毕业设计的主要任务是要求能够从web的远程监视并控制二次雷达运行状况。采用服务器(Server),客户端(Client)模式,使用Tomcat服务器上运行JSP(Java Server Pages)和Servlet(一种服务器端的Java应用程序,实现基本的远程监视控制要求。 2 相关技术 2.1 Tomcat 服务器 是一个免费的开放源代码的Web 应用服务器。Tomcat 运行时占用的系统资源小,扩展性好,支持负载平衡与邮件服务等开发应用系统常用的功能;而且它还在不断的改进和完善中,任何一个感兴趣的程序员都可以更改它或在其中加入

单脉冲雷达理以及应用

单脉冲定向原理 对目标的定向,即测定目标的方向,是雷达的主要任务之一。单脉冲定向是雷达定向的一个重要方法。所谓“单脉冲”,是指使用这种方法时,只需要一个目标回波脉冲,就可以给出目标角位置的全部信息。根据从回波信号中提取目标角信息的特点,可以将单脉冲定向分为两种基本的方法:振幅定向法和相位定向法,分别见于下图。除了上述两种方法外,由它们合成的振幅—相位定向法(或称为综合法)也得到了广泛的应用。 图2-1 单脉冲振幅定向法 图2-2单脉冲相位定向法 2.1 振幅定向法 振幅定向法是用天线接收到的回波信号幅度值来进行角度测量的,该幅度值的变化规律取决于天线方向图以及天线的扫描方式。振幅定向法可以分为最大信号法和等信号法两大类,其中等信号法又可以分为比幅法和和差法。 如图所示,平面两波束相互部分交叠,其等强信号轴的方向已知,两波束中心轴与等强信号轴的偏角0θ也已知。假设目标回波信号来向与等强信号轴向的夹角为θ,天线波束方向图函数为F(θ),则两个子波束的方向图函数可分别写成 ()()()???-=+=θθθθθθ02 01)(F F F F (2-1) 两波束接收到的目标回波信号可以表示成:

()()()()()()???-==+==θθθθθθθθ022 011F K F K u F K F K u a a a a (2-2) 其中a K 为回波信号的幅度系数。 对于比幅法,直接计算两回波信号的幅度比值有: ()()()() θθθθθθ-+=0021F F u u (2-3) 根据上式比值的大小可以判断目标回波信号偏角θ的方向,再通过查表就可以估计出θ的大小。 对于和差法,由()θ1u 和()θ2u 可计算得到其和值()θ∑u 及差值()θ?u 分别如下: ()()()()()()()()()()()()???--+=-=-++=+=? ∑θθθθθθθθθθθθθθ00210021F F K u u u F F K u u u a a (2-4) 其中()()()θθθθθ-++=∑00)(F F F 称为和波束方向图; ()()()θθθθθ--+=?00)(F F F 称为差波束方向图。 若θ很小(在等强信号轴附近),根据泰勒公式可以将 ()θθ+0F 和()θθ-0F 展 开近似为: ()()()()()()()()()()()()???'-=+'-=-'+≈+'+=+θ θθθθθθθθθθθθθθθθθ002000002000F F o F F F F F o F F F 进一步可以得到: ()()()()???'≈≈? ∑θθθθθ0022F K u F K u a a (2-5) 归一化和差信号值可得: ()()()() υθθθθθθ='=∑?00F F u u (2-6) 其中()()00θθυF F '= 是天线方向图在波束偏转角0θ处的归一化斜率系数。

一次雷达和二次雷达

1 一次雷达与二次雷达 二次雷达与一次雷达基本上是并行发展的。与一次雷达相比,二次雷达有回波强、无目标闪烁效应、询问波长与应答波长不等的特点,从而消除了地物杂波和气象杂波的干扰。单脉冲技术应用于二次雷达,可以方便地基于多个波束对目标测量,进而有效地增加数据冗余度,提高角度测量的精度。对应答处理而言,单脉冲技术的应用,大大提高了在混叠或交织情况下对应答码的解码能力,使单脉冲二次雷达与常规二次雷达相比实现了一次质的飞跃。 二次雷达与一次雷达的根本区别是工作方式不同。一次雷达依靠目标对雷达发射的电磁波的反射机理工作,它可以主动发现目标并对目标定位;二次雷达则是在地面站和目标应答机的合作下,采用问答模式工作。目前的航管二次雷达共有七种询问模式,分别称为1、2、3/A、B、C、D和S模式。根据询问脉冲P1与P3的间距决定(S模式除外)各种询问模式。 机载应答机发出的应答码由16个信息码位组成,这些码位的代号依次是 F1、C1、A1、C2、A2、C4、A4、X、B1、D1、B2、D2、B4、D4、F2 和SPI。每个码位都有两种状态,即有脉冲或无脉冲。有脉冲时为“1”,无脉冲时为“0”。F1与F2的0.5电平处的脉冲前沿间隔为20.3±0.1μs,称为框架脉冲,它们是二次雷达应答信号的标志脉冲,均恒为“1”状态。X位是备用状态,恒为“0”。两个框架脉冲(F1与F2)之间的12个信息码位,可以编成4 096个独立的应答码。SPI是特殊定位识别码,当两架飞机相互接近或者应答码相同时,调度员可以要求其中的一架飞机在已回答的12个码位基础上再增加一个SPI脉冲,以便准确识别。二次雷达应答信号组成如图1所示。 2 应答处理器系统组成 单脉冲二次雷达应答信号处理的基本流程如图2所示。 在视频预处理器中,和与差支路的∑、△视频信号,经A/D转换器进行数字化处理后,变成两组8位的数字信号传送给应答处理机;将∑接收单元与△接收单元的信号经相位鉴别器,生成表示目标在波束中心左侧或右侧的轴向指示信号BI(2位),送应答处理器;∑与ΩSLS(1位);接收信号 经6dB检测、反窄处理、二分层产生PSV(处理后的和视频,1位)。视频预处理器产生上述信号并输入给应答处理机,进行框架检测、和差比计算、码装配等处理,最终形成应答报告输出给点/航迹处理计算机。应答处理机系统的组成如图3。 在应答处理机中选用了Lattice公司的EPLD作为主处理芯片(ispLSI1032E)。该芯片有64个I/O端,8个指定输入端,6 000个逻辑门,192个寄存器,最大时延≤12ns,通过简单的5线接口,即可用PC机对线路板上菊花链结构的最多8个芯片进行编程。PC104是嵌入式计算机,其CPU是一片兼容的64位第六代处理器,运行速度可达300MHz,其图形处理器可支持各种LCD及TFT显示屏,同时支持PS/2键盘、PS/2鼠标、两串行接口、一并行接口、USB接口、声卡功能。 应答处理机的工作原理:1位PSV、8位和视频、8位差视频、2位轴向指示及1位接收旁瓣抑制信号,在经过输入缓冲并与系统时钟信号同步后,其中的PSV信号进入边沿产生电路,所产生的前沿延迟一个框架时间(20.3μs)后与未延迟的前沿信号相与给出目标框架,启动4个解码器中处于空闲状态的装配器开始解码工作,产生解码需要的定时脉冲序列。同时和视频、差视频、轴向指示、旁瓣抑制信号送入视频采样电路,经过视频采样产生的SVA(和视频幅度)和DVA(差视频幅度)经和差比计算电路产生SDR值,SVA、DVA、SDR送数字寄存器进行延迟,延迟及未延迟的SVA、SDR、轴向指示、接收旁瓣抑制和目标前沿信号一起送入代码装配器,在定时脉冲的作用下,对目标应答信息进行解码、去除幻影应答、解旁瓣应答和军事告急应答。经过进一步相关、确认和修正后,将目标的SVA和SDR代码、综合的代码置信度信息及一些标志信息送代码装配总线,在输出控制的情况

雷达自动跟踪技术研究

31 自动跟踪 本章介绍了跟踪检测目标的技术。使用雷达硬件和雷达信号处理实现跟踪,从而形成一个闭环系统。单目标跟踪(STT)和边跟踪边扫描(TWS)模式(在第2章中介绍)被检验。在我们考虑跟踪测量和方法之前,我们需要定义一些术语。 估计,准确性和精确度通常用于描述跟踪的不同方面。估算应用于任何参数的值,该参数的值(1)仅在与腐蚀干扰相结合时才能测量,例如热噪声(图31-1);(2)不能直接测量,例如基于一系列距离测量的距离速率。 根据该定义,雷达系统测量或计算的每个参数,无论多么精确,都是估计值。 接下来,区分两个重要参数:准确度和精度。通常,两者都指数量的测量,其在跟踪中包括目标参数,例如真实范围,速度和方位。因此,测量值表示雷达系统对目标的真实参数的估计。 准确度表示测量值与真实值的接近程度,而精度表示在同一参数的多个测量值中存在多少可变性。它们共同构成了雷达系统对真实目标参数进行估算的基础。图31-2显示了一个示例,其中准确度和精度可以看作非常不同并且(有时)彼此独立。跟踪雷达的目标是具有高准确度和高精度。

跟踪中使用的另一个术语是判别式,其量化测量函数的校准。它通常由执行测量的硬件或软件输出与跟踪误差的真实值的关系图表示(图31-3)。曲线的线性部分的斜率是判别式并且确定测量的灵敏度。通常,斜率随着信噪比的增加而增加。 判别式的一个重要特征是它们通常是归一化的,因此无量纲。因此,不一定需要精确测量电压或功率电平。此外,除了信噪比的影响之外,跟踪误差的测量值不随信号强度而变化。它们与目标的大小,范围,机动和雷达截面(RCS)波动无关。如果需要,可以通过将判别式乘以预先计算的常数来给出判别式。在整个跟踪过程中使用判别式,其目的是改进目标测量参数的估计,例如距离,多普勒,仰角和方位角。 31.1 单目标跟踪 单目标跟踪可提供有关目标位置,速度和加速度的连续且准确的当

振幅和差单脉冲雷达

振幅和差单脉冲雷达振幅和差单脉冲雷达在自动测角中的应用 姓名: 学号: 2014-12-20 西安电子科技大学 信息对抗

摘要: 在雷达系统中,为了确定目标的位置,不仅需要知道距离参量,同时也需要知道目标的空间方位,为此需要知道目标的方位角和俯仰角。雷达测角的物理基础是电磁波在均匀介质中沿直线传播和雷达天线具有方向性。测角的方法可分为振幅法和相位法两大类。在雷达测角中,为了快速地提供目标的精确坐标值,要采用自动测角的方法。自动测角时,天线能自动跟踪目标,同时将目标的坐标数据传送到计算机中。在自动测角系统中,有一种典型的方式——单脉冲自动测角系统。单脉冲自动测角属于同时波瓣测角法,单脉冲雷达的种类很多,最常用的是振幅和差单脉冲雷达。 关键字:雷达自动测角系统振幅和差单脉冲雷达 一、单脉冲雷达 什么是单脉冲雷达? 单脉冲雷达是一种精密跟踪雷达。它每发射一个脉冲,天线能同时形成若干个波束,将各波束回波信号的振幅和相位进行比较,当目标位于天线轴线上时,各波束回波信号的振幅和相位相等,信号差为零;当目标不在天线轴线上时,各波束回波信号的振幅和相位不等,产生信号差,驱动天线转向目标直至天线轴线对准目标,这样便可测出目标的高低角和方位角,从各波束接收的信号之和,可测出目标的距离,从而实现对目标的测量和跟踪。 单脉冲雷达通常有振幅比较单脉冲雷达和相位比较单脉冲雷达两大类(本次只研究振幅比较法)。它有较高的测角精度、分辨率和数据率,但设备比较复杂。单脉冲雷达早在60年代就已广泛应用。在军事上主要用于目标识别、靶场精密跟踪测量、弹道导弹预警和跟踪、导弹再入弹道测量、火箭和卫星跟踪、武器火力控制、炮位侦察、地形跟随、导航、地图测绘等;在民用上主要用于中交通管制。 二、振幅和差单脉冲雷达 振幅定向法是用天线接收到的回波信号幅度值来进行角度测量的,该幅度值的变化规律取决于天线方向图以及天线的扫描方式。振幅定向法可以分为最大信号法和等信号法两大类,其中等信号法又可以分为比幅法和和差法。此次试验只研究和差式雷达。

单脉冲天线

第十三章单脉冲天线 一、引言 单脉冲雷达体制系统,主要用于高速目标的跟踪定位。如飞机、导弹、火箭、人造卫星的跟踪。单脉冲雷达系统中的天线称为单脉冲天线。单脉冲雷达天线要求产生一个主瓣的和波束,以及具有两个(或四个)主瓣的差波束,如下图13-1所示。差波束的两个峰值之间的最小值称为“零值”。和波束的作用是探测目标的距离(r)并行距离跟踪;差波束的作用是探测目标的方位角和俯仰角信息(,?θ)并行角跟踪。一个目标的距离信息r和角信息,?θ已知,则目标的空间位置就确定了。如果目标正好在和波束最大值方向,则差波束接收到的信号很弱(为零值);当目标移动时,则差波束接收到的信号由弱变强,则可利用差信号来驱动伺服机构,使天线在俯仰或方位上转动,始终使差波束的零值方向对准目标,从而实现跟踪。 图13-1单脉冲天线方向图 二、单脉冲天线组成。 在雷达应用中,单脉冲天线可采用阵列天线,也可采用反射面和单脉冲馈源组成。如果是后者,则馈源一般采用多个(4个)叭或者单口多模喇叭。形成差波束的关键是使用了比较器(和差器)。 三、分类。 根据比较回波信号的幅度和相位,单脉冲分为幅度单脉冲、相位单脉冲和幅相单脉冲,它们的主要区别在于天线。无论是幅度还是相位单脉冲,为了确定目标在某一平面的角度(方位、俯仰),都要求同时产生两个形状相同的波束。这里只讨论幅度单脉冲(比幅)。 四、工作原理。 为了说明问题,先考虑一个平面(俯仰面)内单脉冲技术的工作原理。

当一个横向偏焦的喇叭,置于抛面焦点附近时天线将产生一个偏离天线轴的 θ正比于偏焦距离x。为了获得两个对称于天线轴,并有波瓣,其波束偏移角 s θ的波瓣,可用两个对称于天线轴的横向偏焦喇叭来完成,如图13-2相同偏移角 s 所示。 图13-2 幅度比较单脉冲 若探测到一个目标,来自A方向,这时两波束收到的回波信号,相位相同,但幅度不等。两信号相减形成的差信号是目标方向的函数。这个差信号的大小,表示了目标偏离天线轴向角度的大小,差信号的正负,则表示目标偏向哪一边。由差信号驱动电机使天线转动而对准目标,则差信号为0。从而实现了跟踪。 一般的比幅单脉冲天线的馈源是由四个喇叭和比较电路构成的。假如上图为俯仰面的话,另两个喇叭则构成方位面。四喇叭馈源及比较器电路如图13-3所示。 图13-3 幅度比较单脉冲天线的馈源和比较器

红外_雷达协同探测跟踪模型

第35卷,增刊红外与激光工程2006年10月V ol.35 Supplement Infrared and Laser Engineering Oct.2006 红外、雷达协同探测跟踪模型 贺有 (炮兵学院南京分院,江苏南京 211132) 摘要:雷达一直是战场进行目标跟踪识别的重要传感器,但是由于雷达在工作时要向空中辐射大功率电磁波,因而易遭受“电子对抗、反辐射导弹、隐身飞机和超低空突防”这“四大威胁”的攻击。和雷达不同,红外探测系统通过接收目标辐射源的电磁辐射进行探测和定位,因而不易被侦察或定位,具有强的抗干扰能力;此外,红外系统还可以获得目标的图像特征可进行目标识别。红外、雷达配合使用可成为相互独立又彼此补充的探测跟踪手段,本文中给出了红外探测系统与雷达协同探测的目标跟踪仿真模型。 关键词:雷达;目标跟踪;红外图像;仿真模型 中图分类号:TN219 文献标识码:A 文章编号:1007-2276(2006)增D-0306-06 Simulation model for combinatorial detecting and tracking process of IR and radar HE You (Nanjing Artillery Academy, Nanjing 211132, China) Abstract: IR sensors detecting in coordination with radar is a new trend in early-warning detecting systems. Radar and IR sensor are limited in respective aspects, however, the combination utilization of radar and IR sensor can make significant difference in the detecting capability. Moreover, a better precision and improved survivability could be derived for such a combination. The simulation model for the detecting and tracking process of such a combination is given. Key words: Radar; Target tracking; Infrared image; Simulation model 0引言 有源雷达一直是战场进行目标跟踪识别的重要传感器,但是由于雷达在工作时要向空中辐射大功率电磁波,因而易遭受“电子对抗、反辐射导弹、隐身飞机和超低空突防”这“四大威胁”的攻击。和雷达不同,红外探测通过接收目标辐射源的电磁辐射进行探测和定位,因而不易被侦察或定位,具有强的抗干扰能力;此外,红外系统还可以获得目标的图像特征可进行目标识别。红外已成为重要的被动探测手段。但是,红外也有其缺点,而红外、雷达配合使用可成为相互独立又彼此补充的探测跟踪手段。红外传感器的正确使用, 收稿日期:2006-08-14 作者简介:贺有(1965-),男,山西运城人,副教授,主要从事情报侦察指挥方面的研究。

单脉冲雷达角度跟踪技术研究

单脉冲雷达角度跟踪技术研究 【摘要】简单介绍了单脉冲雷达的特点及工作原理,重点分析了多部干扰机对单脉冲雷达的角度干扰问题,并对相干干扰和非相干干扰的干扰效果进行了讨论,指出两点源非相干干扰是实际工程中一种比较理想的干扰方式。 【关键词】单脉冲雷达、角度跟踪、相干干扰、非相干干扰 一、引言 对雷达进行干扰要对准雷达的四个系统:显示系统、距离跟踪系统、速度跟踪系统和角度跟踪系统。在雷达发展的早期,只要对前三个系统中的一个(或两个)系统进行有效地干扰,就可达到破坏雷达角跟踪系统正常工作的目的。现在随着新体制雷达的出现和抗干扰技术的不断提高,尤其是单脉冲雷达体制的出现,使很多干扰技术难以奏效。本文以振幅和差式单脉冲雷达为例,讨论了用多部干扰机对单脉冲雷达实施干扰的情况。 二、分析 1.单脉冲雷达 ◆定义 单脉冲雷达是指由单个回波脉冲即可获得目标空间角信息的雷达。 ◆特点 单脉冲雷达是一种精密跟踪雷达。它有较高的测角精度、分辨率和数据率,但设备比较复杂。单脉冲雷达早在60年代就已广泛应用。美国、英国、法国和日本等国军队大量装备单脉冲雷达,主要用于目标识别、靶场精密跟踪测量、弹道导弹预警和跟踪、导弹再入弹道测量、火箭和卫星跟踪、武器火力控制、炮位侦察、地形跟随、导航、地图测绘等;在民用上主要用于中交通管制。目前使用的单脉冲雷达基本上都实现了模块化、系列化和通用化,具有多目标跟踪、动目标显示、故障自检、维修方便等特点。 ◆分类 根据从回波中获取角信息的方式(测角法)不同,单脉冲雷达可分为振幅法(比幅)、相位法(比相)和综合法(振幅相位)3种。这3种测角法又可用3种角度鉴

别器(振幅式、相位式、和差式)中的任何一种来获得目标的角度信息,因此综合起来有9种形式的单脉冲雷达系统,其中以振幅和差式单脉冲雷达系统用的最多。通常分为有振幅比较单脉冲雷达和相位比较单脉冲雷达两大类。 工作原理 单脉冲雷达每发射一个脉冲,天线能同时形成若干个波束,将各波束回波信号的振幅和相位进行比较,当目标位于天线轴线上时,各波束回波信号的振幅和相位相等,信号差为零;当目标不在天线轴线上时,各波束回波信号的振幅和相位不等,产生信号差,驱动天线转向目标直至天线轴线对准目标,这样便可测出目标的高低角和方位角,从各波束接收的信号之和,可测出目标的距离,从而实现对目标的测量和跟踪。它具有圆锥扫描雷达所没有的优点:获得角误差信息的时间短(以微秒计算);不受回波振幅起伏变化的影响;测角精度高(0.1~0.5mil);测角支路抗幅度调制干扰(如回答式倒相干扰)的能力强。振幅和差式单脉冲雷达系统的基本工作原理:将两个比幅天线方向图所得的幅度不同的信号经过和差变换器之后,再把和信号(U∑ )、差信号(U△ )加到鉴相器得出差信号。 2 雷达角跟踪技术 2.1 信号处理和测量技术 PD采用一种合适的且可以适当改变的配置方式及数据处理算法,可成功的实现跟踪低仰角目标。假定一种处理算法,地面的反射系数应有一个确定的模型(如镜面反射和几何光学原理),重要的是要估计这样的算法偏离假定的反射模型的灵敏度如何。在一个真实系统中,这样的偏差肯定会发生。即使是光滑的镜面表面(理想的镜面反射),当雷达位于几倍天线直径大的该表面时,由物理光学原理即菲涅尔区,也需要校正。关键的问题是,在反射的雷达信号中有多少是未知量,要确定这些未知量,雷达需要测量的量是多少,很明显,在多路径效应下,未知数的数量会增加。雷达必须做更多的测量才能获得反射平面的信息以鉴别目标的真实仰角。但是更多的工作是需要找到最优的算法,需要确定它们对不同反射系数模型的灵敏度。

单脉冲自动测角系统在导引头中的应用

雷达原理大作业——单脉冲自动测角系统在导引头中的应用 学院:电子工程学院 完成人及学号:

杨超() 王东旭() 韩孟洲() 程荣() 谭宗欣() 于振浩()任课教师:饶鲜

目录: 一、单脉冲自动测角系统简介- 4 - 1.单脉冲雷达- 4 - 2.自动测角系统- 4 - 3.单脉冲自动测角系统- 4 - 二、单脉冲自动测角原理- 5 - 1.振幅定向法- 5 - 2.相位定向法- 7 - 三、单脉冲自动测角系统的特点- 7 - 1.角度跟踪精度- 7 - 2.天线增益和作用距离- 8 - 3.角度信息的数据率- 8 - 4.抗干扰能力- 8 - 5.复杂程度- 8 - 四、单脉冲自动测角系统的仿真- 9 - 五、单脉冲雷达的应用- 12 - 六、总结- 13 -

一、单脉冲自动测角系统简介 1.单脉冲雷达 单脉冲雷达是一种精密跟踪雷达。它每发射一个脉冲,天线能同时形成若干个波束,将各波束回波信号的振幅和相位进行比较,当目标位于天线轴线上时,各波束回波信号的振幅和相位相等,信号差为零;当目标不在天线轴线上时,各波束回波信号的振幅和相位不等,产生信号差,驱动天线转向目标直至天线轴线对准目标,这样便可测出目标的高低角和方位角,从各波束接收的信号之和,可测出目标的距离,从而实现对目标的测量和跟踪。 2.自动测角系统 在火控系统中使用的雷达,必须快速连续地提供单个目标(飞机、导弹等)坐标的精确数值,此外在靶场测量、卫星跟踪、宇宙航行等方面应用时,雷达也是观测一个目标,而且必须精确地提供目标坐标的测量数据。 为了快速地提供目标的精确坐标值,要采用自动测角的方法。自动测角时,天线能自动跟踪目标,同时将目标的坐标数据经数据传递系统送到计算机数据处理系统。 和自动测距需要有一个时间鉴别器一样,自动测角也必须要有一个角误差鉴别器。当目标方向偏离天线轴线(即出现了误差角ε)时,就能产生一误差电压。误差电压的大小正比于误差角,其极性随偏离方向不同而改变。此误差电压经跟踪系统变换、放大、处理后,控制天线向减小误差角的方向运动,使天线轴线对准目标。 用等信号法测角时,在一个角平面内需要两个波束。这两个波束可以交替出现(顺序波瓣法),也可以同时存在(同时波瓣法)。前一种方式以圆锥扫描雷达为典型,后一种是单脉冲雷达。 3.单脉冲自动测角系统 单脉冲自动测角属于同时波瓣测角法。在一个角平面内,两个相同的波束部分重叠,其交叠方向即为等信号轴。将这两个波束同时接收到的回波信号进行比较,就可取得目标在这个平面上的角误差信号,然后将此误差电压放大变换后加到驱动电动机,控制天线向减小误差的方向运动。因为两个波束同时接收回波,故单脉冲测角获得目标角误差信息的时间可以

单脉冲雷达设计

1 雷达距离方程: 其中, P t 为发射功率,G 为天线增益,σ为目标雷达横截面积,λ为传播波长,S min 为最小可检测信号。但是由于: (1) 最小可检测信号的统计特征(接收机噪声决定)。 (2) 目标雷达横截面积的起伏和不确定性。 (3) 雷达系统的损耗。 (4) 地球表面和大气层引起的传播效应。 因此,距离指标必须包括雷达探测一个特定距离上规定目标的概率,且在无目标回波出现时有规定的虚假检测概率。雷达作用距离将是检测概率P d 和虚警概率P fa 的函数。 检测概率和虚警概率是由用用户对系统的要求所确定。根据确定的检测概率和虚警概率,可以求出最小的信噪比S/N 。 关于三者之间的关系,Albersheim 研究出一个简单的检经验公式: S/N=A+0.12AB+1.7B 注:信噪比是一个数字,不用dB 表示。 式中: A=ln[0.62/P fa ]和B=ln[P d /(1-P d )] 2 脉冲积累对检测性能的改善: 多个脉冲积累后可以有效提高信噪比,从而改善雷达的检测能力。实际情况下,利用检波后积累都存在积累损耗。 利用统计检测理论,可以求得检波后积累效率和所要求的每个脉冲信噪比(S/N )n ,积累损耗和积累改善因子可由书本查出,他们()4max 322max 422min 44R G P R A P S P t r t i r πσλπλσ===

只随检测概率和虚警概率稍稍变化。 如果同样的n个脉冲由理想的检波后积累器积累,得到信噪比要小于单个信噪比的n倍。则存在损耗,检波后积累效率可定义为: E i(n)=(S/N)1/n(S/N)n 积累损耗(dB)定义为: L i(n)=10log[1/E i(n)] 积累n个脉冲后,雷达方程为: R max4=P t GA eσ/(4π)2kT0BF n(S/N)n 方程中除(S/N)n是n个要积累的相同脉冲中每个脉冲的信噪比以外,其余参数与先前使用相同。当n为确定参数时,查询表可得E i(n)。每个脉冲信噪比可由Albersheim经验公式得到: (S/N)n=-5lg n +[6.2+4.54/(n-0.44)0.5]*lg(A+0.12AB+1.7B) 积累损耗或效率是理论上的损耗,在雷达中用于实现积累过程的实际方法也会引起损耗。 3 匹配滤波器接收机: 定义:雷达接收机输出信号峰值-噪声(功率)比最大将使目标可检测性最大,能做到这一点的线性网络称为匹配滤波器。 匹配滤波器的冲击响应函数:h(t)=G a s(t m-t) 总结: (1)匹配滤波器的输出峰值信号-平均噪声比仅与接收信号的总能量和单位带宽的噪声功率有关。 (2)最大输出信噪比:2E/N

振幅和差单脉冲雷达

[文档标题] [文档副标题] 姓名: 学号: 摘要: 在雷达系统中,为了确定目标的位置,不仅需要知道距离参量,同时也需要知道目标的空间方位,为此需要知道目标的方位角和俯仰角。雷达测角的物理基础是电磁波在均匀介质中沿直线传播和雷达天线具有方向性。测角的方法可分为振幅法和相位法两大类。在雷达测角中,为了快速地提供目标的精确坐标值,要采用自动测角的方法。自动测角时,天线能自动跟踪目标,同时将目标的坐标数据传送到计算机中。在自动测角系统中,有一种典型的方式——单脉冲自动测角系统。单脉冲自动测角属于同时波瓣测角法,单脉冲雷达的种类很多,最常用的是振幅和差单脉冲雷达。 关键字:雷达 自动测角系统 振幅和差单脉冲雷达 一、 单脉冲雷达 什么是单脉冲雷达? 单脉冲雷达是一种精密跟踪雷达。它每发射一个脉冲,天线能同时形成若干个波束,将各波束回波信号的振幅和相位进行比较,当目标位于天线轴线上时,各波束回波信号的振幅和相位相等,信号差为零;当目标不在天线轴线上时,各波束回波信号的振幅和相位不等,产生信号差,驱动天线转向目标直至天线轴线对准目标,这样便可测出目标的高低角和方位角,从各波束接收的信号之和,可测出目标的距离,从而实现对目标的测量和跟踪。 单脉冲雷达通常有振幅比较单脉冲雷达和相位比较单脉冲雷达两大类(本次只研究振幅比较法)。它有较 高的测角精度、分辨率和数据率,但设备比较复杂。单脉冲雷达早在60年代就已广泛应用。在军事上主要用 于目标识别、靶场精密跟踪测量、弹道导弹预警和跟踪、导弹再入弹道测量、火箭和卫星跟踪、武器火力控制、炮位侦察、地形跟随、导航、地图测绘等;在民用上主要用于中交通管制。 2014-12-20 信息对抗

雷达机动目标跟踪技术研究

1 绪论 1.1 课题背景及目的 目标跟踪问题实际上就是目标状态的跟踪滤波问题,即根据传感器已获得的目标量测数据对目标状态进行精确的估计[1]。它是军事和民用领域中一个基本问题,可靠而精确地跟踪目标是目标跟踪系统设计的主要目的。在国防领域,目标跟踪可用于反弹道导弹的防御、空防预警、战场区域监视、精确制导和低空突防等。在民用领域,则用于航空和地面交通管制、机器人的道路规划和障碍躲避、无人驾驶车的跟踪行驶、电子医学等。作为科学技术发展的一个方面,目标跟踪问题可以追溯到第二次世界大战的前夕,即1937年世界上出现第一部跟踪雷达站SCR-28的时候。之后,许多科学家和工程师一直努力于该项课题的研究,各种雷达、红外、声纳和激光等目标跟踪系统相继得到发展并且日趋完善。 运动目标的机动会使跟踪系统的性能恶化,对机动目标进行跟踪是人们多年来一直关注的问题。随着现代航空航天技术的飞速发展,机动目标在空间飞行的速度、角度、加速度等参数不断变化,使得目标的位置具有很强的相关性,因此,提高对这类目标的跟踪性能便成为越来越重要的问题,迫切需要研究更为优越的跟踪滤波方法。机动目标的跟踪研究,已成为当今电子战的研究热点之一。今天,精密跟踪雷达不仅广泛应用于各类武器控制和各类实验靶场,而且还广泛应用于各种空间探测、跟踪和识别领域,以及最先进的武器控制系统。 跟踪模型和匹配滤波是机动目标跟踪的两个关键部分,机动目标的精确跟踪在过去和现在都是一个难题,最根本原因在于跟踪滤波采用的目标动力学模型和机动目标实际动力学模型不匹配,导致跟踪滤波器发散,跟踪性能严重下降。本文将机动目标作为研究对象,从目标的运动建模和匹配滤波算法入手,提出或修正跟踪算法,从而实现对机动目标的精确跟踪。 1.2 机动目标跟踪技术及其发展状况 目标机动是指运动当中的目标,其运动方式在不断地发生变化,从一种形式变化为另一种形式,目标的运动可能从匀速到变速,也可能送直线到转弯,它的运动方式并不

单脉冲压缩雷达原理

单脉冲角度跟踪技术研究 学生尤阳 班级 0209991班 学号 02099043 专业电子信息工程 学院电子工程学院 西安电子科技大学 2012年5月

一、引言 单脉冲角跟踪系统的方案包括三通道、双通道、单通道单脉冲等。在跟踪系统精度要求不高的系统中,采用单通道单脉冲跟踪系统的设备越来越多,例如业务测控站、遥感地面站、卫星侦察信号接收站、遥测地面站等。较常用的实现方案是在常规双通道的基础上,用低频调制信号对差信号进行四相调制后再与和信号合并,变成一个通道输出,其合成信号只需经包络检波即可得到误差电压。由于进行了通道合并,这种体制不存在和、差通道合并后的相位和增益不一致问题不需要调整通道的相位除低噪放大器(LNA)外所有的设备可以安装在机房,大大提高了设备的可靠性、使用性和维护性,同时减少了设备,造价也大大降低。 二、系统工作原理及误差电压的提取 为了确保系统的G / T 值,应考虑在LNA后进行和、差信号的合成。为了阐明其物理概念,将双通道单脉冲合成为单通道单脉冲的跟踪系统方框图进行简化。简化后的框图如图 1 所示。 图1 跟踪系统框图 设从天馈来的信号为单频信号,在分析时假定天线和、差信道在接收频带内辐射特性保持不变,而且和、差信道及从天线的来波均为理想圆极化波。馈源端口输出和信号的瞬时值为 差信号由方位与俯仰差信号相位正交合成得到为 式中μ为差斜率,A为目标在方位上偏离电轴的角度,E 为目标在俯仰上偏离电轴的角度。 差信号的矢量关系为A = θcosФE = θs i nФ 图 2 双通道单脉冲合成矢量图

由图2,可将ed 变换为 式中Am μθ 为差信号的幅度,其中θ =B A+ 22;φ = tg -1 E / A为差路合成载波的相位,它与A、E 的比例大小有关,可见误差信号包含在幅度Am μθ 和相位φ 之中。 1. 单通道单脉冲的合成跟踪接收系统采用单通道时,和、差信号必须以适当的方式合成,目的是合成后的信号能在终端解调出角误差信息。通常在和、差信号合成前,先对差信号进行四相调制,再与和信号合成。 和、差信号分别经低噪声放大K E 、K ? 后为 差信号经四相调制后为 其中,φ为和、 差信号的相对相位差β(t)周期为 t4 =1/ Ω的信号调相, 在四相调制时有 ~t 调制后的差信号经一定向耦合器与和信号合成,其合成信号为 式中 M 为定向耦合器的耦合系数,一般取 6 ~ 9 dB。 2. 合成信号的解调和误差电压的提取 合成信号经下变频和放大后,频率仍记作ω,将合成信号变换后得:

某型单脉冲雷达跟踪不稳定分析

某型单脉冲雷达跟踪不稳定分析 单脉冲雷达是一种精密测量雷达,主要用于目标识别、精密跟踪测量、火箭和卫星跟踪、导航、地图测绘等,其跟踪是否稳定对于数据获取的精度极为重要,对不稳定跟踪数据进行分析,对于发现解决设备问题起到重要作用。 标签:雷达;跟踪;数据分析 1引言 本论文主要对雷达跟踪不稳定数据进行分析,从而发现设备隐患,对问题解决起到定位作用。在某次跟蹤信标球过程中,开展了C跟踪加偏试验。方位或俯仰单独加偏2mil,方位和俯仰均出现了明显的跟踪抖动现象(随机发散),统计误差电压以1V为中心,在±0.5V范围内随机跳动,取消加偏跟踪,天线跟踪恢复稳定,加偏跟踪误差电压趋势见图1。随后开展光跟加偏试验,现象与主跟加偏基本一致。 2数据分析 以以往跟踪数据作为参考,加偏跟踪误差电压趋势见图2,加偏跟踪状态与正常跟踪状态误差电压幅度相当。本次加偏跟踪时偏置电压随机抖动幅度明显比以往大,且方位/俯仰单独加偏会影响俯仰/方位误差电压的输出。通过多次加偏跟踪数据分析比对,可以说明雷达存在跟踪不稳定问题。 3问题原因分析 场放以下引起天线跟踪加偏抖动可能的原因主要有3个:一是伺服及天线结构问题,二是接收馈线幅相不平衡问题,三是接收通道噪声过大问题。针对这三个原因,做了以下排查工作。 3.1针对伺服天线结构问题开展的排查 ①施放标定求,微光电视四个象限光学加偏2mil跟踪,天线跟踪稳定。②跟踪天宫1号过境目标,S信号四个象限加偏2mil跟踪,天线跟踪稳定。由此可以排除伺服及天线结构问题。 3.2针对接收馈线幅相不平衡问题开展的排查 ①对幅相一致性进行标定,正常。标定结果与之前保持不变,但跟踪加偏抖动现象仍然存在,排除幅相标定错误问题。②使用模拟器定向灵敏度测试功能,长期观察差通道幅度和相位变化情况,均正常,而且四象限加偏时角误差输出稳定无跳变。由此可以初步排除场放以下接收馈线幅相问题。

单脉冲雷达的改进方法

收稿日期225 作者简介刘才斌(2 ),男,湖北公安人,硕士、副教授, 主要研究方向雷达教学与研究。 文章编号:1002206402(2008)增刊20027202 单脉冲雷达的改进方法 刘才斌,王大鹏,张仲华 (武汉军械士官学校,湖北 武汉 430075) 摘 要:单脉冲体制的雷达以其在测角、跟踪方面的优越性,现在被广泛应用于各电子侦察部(分)队。但该体制也由于和、差通道的幅相特性的不一致,产生了测角误差,进而影响了系统的测角及跟踪性能。某型雷达由于在接收机中采用幅度、相位实时自动调整系统,使幅相一致性得到明显的提高,从而使测角误差大大减小。 关键词:单脉冲体制,测角误差,跟踪特性中图分类号:TP 391 文献标识码:A The Si n gle Pulse System Ra da r M ea sur es the Ca pe an d Follows the I m pr ovem en t of the Character ist i c L I U C ai 2bin,W AN G D a 2peng,ZHAN G Zhong 2hua (W uha n O rdnancy N on 2co mm issioned Of f icer A ca de my of PL A ,W uha n 430075,China ) Abstra ct:T he radar of the single pulse syste m th ink s it s in the asp ect s of m easuring t he Cap e and fo llow of super i o r ,now w a s p robed a brigade in each elect ron ics by the ex tensive appl ica t i on 1B u t that system too because of and,differ an inconfo r m ity fo r m utual ly characteristic of the pa ssage,produce to m ea sure the Cap e erro r m argin ,then affected the system m easure the C ape and fol l ow the funct ion 1Som e type rada r becau se of adop t ing the range in rece ive m achine ,m u tua lly an exa ltat ion fo r solidly hour au tom a t ic adjustm ent system ,m aking first m utually the consistency ge ts obvi ously,from but m ake m ea sure the Cap e erro r m argin to let up consum edly . Key words :the single p ulse syste m m easures ,m easure the e rror m argin of the angle ,i mp rovem ent m ethod 引 言 在战场侦察系统中使用的雷达,必须快速且准确地提供单个目标坐标(距离、方位)的精确数值并跟踪目标。 雷达测角的物理基础是电波在均匀介质中传播的直线性和雷达天线的方向性。为了快速地提供目标的精确值,要采用自动测角的方法。当目标方向偏离天线轴线(即出现了 误差角Ε )时,就能产生一误差电压,误差电压的大小正比于误差角Ε,其极性随偏离方向不同而改变。此误差电压经跟踪系统变换、放大、处理后,控制天线向减小误差角的方向运动,使天线轴线对准目标[1]。 图1 雷达和差波束图 单脉冲测角就是确定角度误差所必须的全部信息在单脉冲的基础上获得,单脉冲天线接收的目标回波信号经多模馈源后,在和、差支路中形成和 (2)、差(?)信号。雷达和差波束 图如图1所示。和波束回波信号主要用于作为相位基准以确定信号正负号,差波束回波信号主要用于测角。当目标在波束 (和波束)中心时,左右馈源收 到的回波信号相同,经多模馈 源后和(2)信号最大,差(?)信号为零;当目标偏离和波束中心时,单脉冲天线接收到的回波差(?)信号大小及差(?)信号极性符号代表了目标偏离波束中心的程度和方向。雷达计算机软件据此计算出代表方位误差大小的值,送至伺服系统 V o l .33,Sup p l em ent A p ril,2008 火力与指挥控制 Fire Co nt ro l and Comm and Co n tro l 第33卷增 刊 :2007101:1972:

相关文档