文档视界 最新最全的文档下载
当前位置:文档视界 › 单脉冲雷达理以及应用

单脉冲雷达理以及应用

单脉冲雷达理以及应用
单脉冲雷达理以及应用

单脉冲定向原理

对目标的定向,即测定目标的方向,是雷达的主要任务之一。单脉冲定向是雷达定向的一个重要方法。所谓“单脉冲”,是指使用这种方法时,只需要一个目标回波脉冲,就可以给出目标角位置的全部信息。根据从回波信号中提取目标角信息的特点,可以将单脉冲定向分为两种基本的方法:振幅定向法和相位定向法,分别见于下图。除了上述两种方法外,由它们合成的振幅—相位定向法(或称为综合法)也得到了广泛的应用。

图2-1 单脉冲振幅定向法 图2-2单脉冲相位定向法

2.1 振幅定向法

振幅定向法是用天线接收到的回波信号幅度值来进行角度测量的,该幅度值的变化规律取决于天线方向图以及天线的扫描方式。振幅定向法可以分为最大信号法和等信号法两大类,其中等信号法又可以分为比幅法和和差法。

如图所示,平面两波束相互部分交叠,其等强信号轴的方向已知,两波束中心轴与等强信号轴的偏角0θ也已知。假设目标回波信号来向与等强信号轴向的夹角为θ,天线波束方向图函数为F(θ),则两个子波束的方向图函数可分别写成

()()()???-=+=θθθθθθ02

01)(F F F F (2-1) 两波束接收到的目标回波信号可以表示成:

()()()()()()???-==+==θθθθθθθθ022

011F K F K u F K F K u a a a a (2-2) 其中a K 为回波信号的幅度系数。

对于比幅法,直接计算两回波信号的幅度比值有:

()()()()

θθθθθθ-+=0021F F u u (2-3) 根据上式比值的大小可以判断目标回波信号偏角θ的方向,再通过查表就可以估计出θ的大小。

对于和差法,由()θ1u 和()θ2u 可计算得到其和值()θ∑u 及差值()θ?u 分别如下: ()()()()()()()()()()()()???--+=-=-++=+=?

∑θθθθθθθθθθθθθθ00210021F F K u u u F F K u u u a a (2-4) 其中()()()θθθθθ-++=∑00)(F F F 称为和波束方向图;

()()()θθθθθ--+=?00)(F F F 称为差波束方向图。

若θ很小(在等强信号轴附近),根据泰勒公式可以将

()θθ+0F 和()θθ-0F 展

开近似为: ()()()()()()()()()()()()???'-=+'-=-'+≈+'+=+θ

θθθθθθθθθθθθθθθθθ002000002000F F o F F F F F o F F F 进一步可以得到:

()()()()???'≈≈?

∑θθθθθ0022F K u F K u a a (2-5)

归一化和差信号值可得:

()()()()

υθθθθθθ='=∑?00F F u u (2-6) 其中()()00θθυF F '=

是天线方向图在波束偏转角0θ处的归一化斜率系数。

即可计算得到目标回波信号偏角θ为:

()()υθθθ1∑?=u u

对于振幅定向法来说,其优点是测向精度较高,便于自动测角,缺点是系统较复杂,作用距离较小等。

2.2 相位定向法

相位定向法是将两个天线接收到的信号相位加以比较以确定目标在一个座标平面内方向。如上图所示,对于遥远区域内的点目标,目标回波可近似看成是两列平行波分别入射到两天线上,因而两天线接收到的目标回波信号振幅相同而相位不同。

两天线接收到的目标回波信号时差为:

C

d θτsin = (2-7) 其中C 为电磁波在空气介质中的传播速度。

则对应的相位差为:

θλπ?sin 2d =

? (2-8) 如果我们能测出信号到达天线1和2的相位差,那么,我们就能得到信号到

达的方向θ为: ??

? ???=d π?λ

θ2arcsin (2-9) 相位定向法容易得到较高的精度,这是它突出的优点,其缺点是容易引起相位差的测量模糊,并需要对信号频率进行测量。

2.3 单脉冲雷达系统

多路接收是实现单脉冲定向的技术方法,单脉冲定向的关键就在于用几个独立的接收支路同时接收目标的回波信号,然后再将这些信号加以处理比较,最终计算得到目标信号的到达角。通常,在三维空间对一个目标定向要采用四个独立的接收支路:方位面两个支路,俯仰面两个支路。

根据角度鉴别器和测角方法的不同,单脉冲雷达系统一般可以分为九种类型,如表1-2所示。图1-5给出了两维角坐标(方位和俯仰)振幅和-差式单脉冲雷达系统框图。

测角方法(角度鉴别器的

类型)

三种定向方法的基本单脉冲雷达

振幅法相位法综合法

振幅法相位法和差式振幅——振幅

振幅——相位

振幅和——差

相位——振幅

相位——相位

相位和——差

综合振幅

综合相位

综合和——差表2-1 九种基本的单脉冲雷达系统

图2—3 振幅和-差式单脉冲雷达系统框图

∑-波导桥的和输出;△-波导桥的差输出

单脉冲雷达不仅可以用于搜索,也可以用来对目标进行自动精确跟踪。与圆锥扫描雷达相比,单脉冲雷达具有如下优点:跟踪精度高;作用距离不受限制;数据率的潜力大;抗干扰性能好等。当然,它也存在一些缺点与不足,例如:系统复杂和只能应用窄波束天线等等,但是随着科技的发展,与雷达的其它许多新技术相比,这些复杂性已经成为次要的问题。

2.4雷达系统仿真模型

雷达系统仿真是数字仿真技术与雷达技术结合的产物。纯软件的仿真,就

是利用计算机软件来建立雷达的模型,然后在数字计算机上复现雷达系统的动态工作过程。具体的说,仿真的对象是雷达系统,包括雷达本身(硬件及软件)、雷达目标及目标环境;仿真的手段是数字计算机,包括软件及硬件;仿真的方式是复现蕴含在雷达目标及目标环境信息的雷达信号。这里所说的“复现”就是重现雷达信号的产生、传递、处理等动态过程,从时间关系上看,就是重现一个随机的时间。纯软件仿真的系统模型如下:

图2-4 雷达仿真模型

建立雷达的系统模型,从逻辑上讲,应当采用与制造实际雷达系统相同的思路。建立通用的仿真模型,就必须把重点放在精确仿真功能组件上来,这是因为大多数的雷达系统都可以采用相同的功能组件,只不过系统参数有所不同而已。因此,在建立通用的雷达系统模型时,首要任务是建立各种功能组件的数学模型;其次是用计算机程序实现各组件的功能;再次就是把各功能组件组合成分系统模型;最后把各个分系统模型组合成总系统模型。

2.4 本次毕设的工作

本次毕设使用的是半实物的仿真,实验室具备一个机载四天线雷达,而且有一个目标模拟运动架,可以同时进行X轴与Y轴的运动。模拟运动架上面放置发射源,模拟目标回波,回波信号被雷达的四个天线接收并经过和差处理形成三路信号,分别为和路信号,方位差路信号与俯仰差路信号。三路信号经过中频放大器后进入PCI-9812数据采集卡进行高速采样,三路采样是同时进行的。然后进行曲线拟合得出三路信号的幅度与相位,从幅相信息获得雷达对目标搜索与跟踪的可行性。

由于分工问题,本次毕设的主要工作是中频放大器的调试,PCI9812数据采集卡的安装与编程,曲线拟合的算法研究与编程以及幅度相位跟踪曲线的研究。本次仿真的简单框图如下所示:

图2-5 毕设简单框图

毫米波单脉冲雷达目标二维结构成像方法

西安电子科技大学学报990305 西安电子科技大学 JOURNAL OF XIDIAN UNIVERSITY 1999年第26卷 第3期Vol.26 No.31999 毫米波单脉冲雷达目标二维结构成像方法 刘峥, 张守宏 摘要: 基于步进频率距离高分辨技术和单脉冲偏轴测角技术,研究了一种在杂波背景下雷达目标高分辨二维结构成像的方法,并给出了地面坦克目标的成像实例.该方法具有算法简便、实时性强、杂波抑制能力强等特点,为毫米波雷达在强杂波背景中识别目标提供了一条有效途径. 关键词: 步进频率;单脉冲雷达;目标成像 中图分类号:TN958.4 文献标识码:A 文章编号:1001-2400(1999)03-0281-05 A method of target two-dimensional structure imaging for a millimeter-wave monopulse radar LIU Zheng, ZHANG Shou-hong (National Key Lab. of Radar Signal Processing, Xidian Univ., Xi′an 710071, China) Abstract: Based on stepped frequency high range resolution (HRR) and monopulse angle measurement techniques, a method for a millimeter-wave monopulse radar to construct two-dimensional structure images of targets in clutter background is proposed, with an example of imaging for a tank model. The method is characterized by its simple algorithm, good real-time property and strong ability to suppress clutter, and provides a practical approach to the target identification in high clutter by an MMW radar. Key Words: stepped frequency;monopulse radar;target imaging 现代雷达及其武器系统要求雷达不但要具备传统的目标探测与定位功能,而且还要具备较强的目标分类与识别功能.雷达成像技术使得现代雷达可以获得有关目标形状和结构的细节信息,从而有利于实现目标识别.毫米波雷达以其波束窄、角度分辨率高、可用带宽大以及器件尺寸小等特点特别有利于雷达成像.步进频率体制是实现高距离分辨率(High Range Resolution, 简记为HRR)的有效技术手段;而单脉冲偏轴测角方法的测角精度高、所用时间短,当雷达与目标间的距离较近时(例如3 km以内)可以达到较高的角分辨率而实时地给出目标的横向距离信息.笔者讨论了毫米波步进频率单脉冲体制下的目标二维高分辨结构成像方法,并以地面坦克目标为例,说明了该方法的成像效果. 1 基本原理 在毫米波段,目标对入射电磁波的反射属准光学区反射.当目标受到高分辨雷达探测信号照射时,其散射场主要成分为目标边缘、凸面曲率不连续点、棱角、端部等的场.这些对应于目标强散射点的场分量可用散射中心的概念来描述,目标回波可模型化为多个散射中心回波的合成,即把目标视为由若干等效散射中心组成的多散射中心模型.散射中心反映了目标的细节几何形状与结构特征,成像就是从目标回波中重现各散射中心在目标物体上的空间分布及其散射强度的相对大小.采用距离高分辨技术,有可能将目标的若干强散射中心在距离上加以分辨,使它们位于不同的距离单元之内.通过单脉冲测角,可得到每个距离单元散射中心的横向位置信息,这样即可实现基于散射中心模型的目标二维成像. 步进频率体制是实现HRR的一种行之有效的技术手段,其主要缺点是对目标的运动比较敏感[1,2],为此可采用运动补偿的方法来消除目标径向运动带来的影响.采用步进频率体制的单脉冲二维成像处理框图见图1.file:///E|/qk/xadzkjdx/xadz99/xadz9903/990305.htm(第 1/6 页)2010-3-23 10:31:21

单脉冲雷达

雷达大作业 单脉冲雷达在测角方面的应用 班级: 1302019 姓名: 指导教师:魏青

一、引言 1、背景 对目标的定向,是雷达的主要任务之一,单脉冲定向是雷达定向的一个重要方法。之所以叫“单脉冲”,是因为这种方法只需要一个目标回波脉冲,就可以给出目标角位置的全部信息。单脉冲技术由于其良好的测角、角跟踪性能和抗干扰能力,因此除了在跟踪雷达中应用之外,还广泛应用到各种武器平台的控制雷达当中。本文分析了标定方法确定天线方向图信息的理论有效性,给出利用标定结果进行宽带单脉冲测角的方法。 2、简介 宽带单脉冲雷达是将传统的单脉冲雷达加载宽带信号。在宽带信号观测下,目标可认为由一系列孤立的散射点组成。从而宽带单脉冲雷达测角实际上是测定一系列散射点的角度。宽带单脉冲雷达测角具有广泛的应用价值,除了标跟踪,还可以应用于三维成像。根据对宽带单脉冲测角的基本原理分析可知,天线方向图在测角中发挥了重要的作用,目前的文献在讨论宽带单脉冲测角时,通常都是采取与文献类似的方法: 根据理论模型,设定方向图函数。对于实际的宽带单脉冲雷达系统,方向图函数通常并不是严格的满足理论模型。此外,精确测量实际雷达系统的方向图际雷达系统进行标定来为测角提供必要的方向图信息。 二、单脉冲雷达的自动测角系统中的优势 1、角度跟踪精度 与圆锥扫描雷达相比,单脉冲雷达的角度跟踪精度要高得多。其主要原因有以下两点: 第一,圆锥扫描雷达至少要经过一个圆锥扫描周期后才能获得角误差信息,在此期间,目标振幅起伏噪声也叠加在圆锥扫描调制信号(角误差信号)上形成干扰,而自动增益控制电路的带宽又不能太宽,以免将频率为圆锥扫描频率的角误差信号也平滑掉,因而不能消除目标振幅起伏噪声的影响,在锥扫频率附近一定带宽内的振幅起伏噪声可以进入角跟踪系统,引起测角误差。而单脉冲雷达是在同一个脉冲内获得角误差信息,且自动增益控制电路的带宽可以较宽,故目标振幅起伏噪声的影响基本可以消除。 第二、圆锥扫描雷达的角误差信号以调制包络的形式出现,它的能量存在于上、下边频的两个频带内,而单脉冲雷达的角误差信息只存在于一个频带内。故圆锥扫描雷达接收机热噪声的影响比单脉冲雷达大一倍。单脉冲雷达的角跟踪精度比圆锥扫描雷达的要高一个量级,约为0.1-0.2密位。

6、多普勒天气雷达原理与应用

第六部分多普勒天气雷达原理与应用(周长青) 我国新一代天气雷达原理;天气雷达图像识别;对流风暴的雷达回波特征;新一代天气雷达产品 第一章我国新一代天气雷达原理 一、了解新一代天气雷达的三个组成部分和功能 新一代天气雷达系统由三个主要部分构成:雷达数据采集子系统(RDA)、雷达产品生成子系统(RPG)、主用户处理器(PUP)。 二、了解电磁波的散射、衰减、折射 散射:当电磁波束在大气中传播,遇到空气分子、大气气溶胶、云滴和雨滴等悬浮粒子时,入射电磁波会从这些粒子上向四面八方传播开来,这种现象称为散射。 衰减:电磁波能量沿传播路径减弱的现象称为衰减,造成衰减的物理原因是当电磁波投射到气体分子或云雨粒子时,一部分能量被散射,另一部分能量被吸收而转变为热能或其他形式的能量。 折射:电磁波在真空中是沿直线传播的,而在大气中由于折射率分布的不均匀性(密度不同、介质不同),使电磁波传播路径发生弯曲的现象,称为折射。 三、了解雷达气象方程 在瑞利散射条件下,雷达气象方程为: 其中Pr表示雷达接收功率,Z为雷达反射率,r为目标物距雷达的距离。Pt表示雷达发射功率,h为雷达照射深度,G为天线增益,θ、φ表示水平和垂直波宽,λ表示雷达波长,K表示与复折射指数有关的系数,C为常数,之决定于雷达参数和降水相态。 四、了解距离折叠 最大不模糊距离:最大不模糊距离是指一个发射脉冲在下一个发射脉冲发出前能向前走并返回雷达的最长距离,Rmax=0.5c/PRF, c为光速,PRF为脉冲重复频率。 距离折叠是指雷达对雷达回波位置的一种辨认错误。当距离折叠发生时,雷达所显示的回波位置的方位角是正确的,但距离是错误的(但是可预计它的正确位置)。当目标位于最大不模糊距离(Rmax)以外时,会发生距离折叠。换句话说,当目标物位于Rmax之外时,雷达却把目标物显示在Rmax以内的某个位置,我们称之为‘距离折叠’。 五、理解雷达探测原理。 反射率因子Z值的大小,反映了气象目标内部降水粒子的尺度和数密度,反射率越大,说明单位体积中,降水粒子的尺度大或数量多,亦即反映了气象目标强度大。 反射率因子(回波强度): 即反射率因子为单位体积内中降水粒子直径6次方的总和。 意义:一般Z值与雨强I有以下关系: 层状云降水 Z=200I1.6 地形雨 Z=31I1.71 雷阵雨 Z=486I1.37 新一代天气雷达取值 Z=300I1.4 六、了解雷达资料准确的局限性、资料误差和资料的代表性 由于雷达在探测降水粒子时,以大气符合标准大气情况为假定,与实际大气存在一定的差别,使雷达资料的准确度具有一定的局限性,且由于雷达本身性能差异及探测方法的固有局限,对探测目标存在距离折叠及速度模糊现象,对距离模糊和速度模

基于Web的DLD—100A型单脉冲二次雷达远程监控系统

基于Web的DLD—100A型单脉冲二次雷达远程监控系统 基于Web的航管二次雷达的远程监控可供雷达维护人员远程的掌握雷达的运行状态、故障情况,便于即使的采取措施,保障雷达的正常运行。本项目主要探讨了运用Tomcat架构的服务器为远程客户端提供雷达数据接入。这样可以达到远程监控二次雷达运行情况的目的。 标签:单脉冲二次雷达;Tomcat;远程监控 引言 中国民航飞行学院广汉机场二次雷达站是国家重点建设工程项目,使用的是中国电子科技集团公司南京十四所研发的DLD-100A单脉冲二次雷达。该二次雷达在本地有两个监控席位,用网线分别接到两台电脑上进入雷达监控软件。该监控席位主要是为雷达站值班人员提供实时的雷达原始数据,方便对雷达的运行状态进行监控。雷达维护人员除了在雷达站本地观察雷达运行状态外,不能进行远程监视,给日常维护工作带来一定的限制。如果能通过网络解决对雷达本地的原始数据监视,维护人员可以远程的掌握雷达的运行状态、故障情况,便于即使的采取措施,保障雷达的正常运行。 1 课题描述 国内外对雷达远程监控的研究比较多,主要有基于硬件传输的远程监控和基于单片机的远程监控系统的研究。上述研究均需要有专有通信设备、通信线路的支持,成本都比较高,设计不灵活,不易改进等缺陷。 现今Internet的技术的高度发展,数据通过Internet可以方便传输到任何地方。基于WEB的雷达监视能通过网络解决对雷达本地的原始数据监视,维护人员可以在任何可以上网的地方掌握雷达的运行状态、故障情况,便于及时的采取措施,保障雷达的正常运行。 基于web的远程控制软件开发毕业设计的主要任务是要求能够从web的远程监视并控制二次雷达运行状况。采用服务器(Server),客户端(Client)模式,使用Tomcat服务器上运行JSP(Java Server Pages)和Servlet(一种服务器端的Java应用程序,实现基本的远程监视控制要求。 2 相关技术 2.1 Tomcat 服务器 是一个免费的开放源代码的Web 应用服务器。Tomcat 运行时占用的系统资源小,扩展性好,支持负载平衡与邮件服务等开发应用系统常用的功能;而且它还在不断的改进和完善中,任何一个感兴趣的程序员都可以更改它或在其中加入

单脉冲雷达理以及应用

单脉冲定向原理 对目标的定向,即测定目标的方向,是雷达的主要任务之一。单脉冲定向是雷达定向的一个重要方法。所谓“单脉冲”,是指使用这种方法时,只需要一个目标回波脉冲,就可以给出目标角位置的全部信息。根据从回波信号中提取目标角信息的特点,可以将单脉冲定向分为两种基本的方法:振幅定向法和相位定向法,分别见于下图。除了上述两种方法外,由它们合成的振幅—相位定向法(或称为综合法)也得到了广泛的应用。 图2-1 单脉冲振幅定向法 图2-2单脉冲相位定向法 2.1 振幅定向法 振幅定向法是用天线接收到的回波信号幅度值来进行角度测量的,该幅度值的变化规律取决于天线方向图以及天线的扫描方式。振幅定向法可以分为最大信号法和等信号法两大类,其中等信号法又可以分为比幅法和和差法。 如图所示,平面两波束相互部分交叠,其等强信号轴的方向已知,两波束中心轴与等强信号轴的偏角0θ也已知。假设目标回波信号来向与等强信号轴向的夹角为θ,天线波束方向图函数为F(θ),则两个子波束的方向图函数可分别写成 ()()()???-=+=θθθθθθ02 01)(F F F F (2-1) 两波束接收到的目标回波信号可以表示成:

()()()()()()???-==+==θθθθθθθθ022 011F K F K u F K F K u a a a a (2-2) 其中a K 为回波信号的幅度系数。 对于比幅法,直接计算两回波信号的幅度比值有: ()()()() θθθθθθ-+=0021F F u u (2-3) 根据上式比值的大小可以判断目标回波信号偏角θ的方向,再通过查表就可以估计出θ的大小。 对于和差法,由()θ1u 和()θ2u 可计算得到其和值()θ∑u 及差值()θ?u 分别如下: ()()()()()()()()()()()()???--+=-=-++=+=? ∑θθθθθθθθθθθθθθ00210021F F K u u u F F K u u u a a (2-4) 其中()()()θθθθθ-++=∑00)(F F F 称为和波束方向图; ()()()θθθθθ--+=?00)(F F F 称为差波束方向图。 若θ很小(在等强信号轴附近),根据泰勒公式可以将 ()θθ+0F 和()θθ-0F 展 开近似为: ()()()()()()()()()()()()???'-=+'-=-'+≈+'+=+θ θθθθθθθθθθθθθθθθθ002000002000F F o F F F F F o F F F 进一步可以得到: ()()()()???'≈≈? ∑θθθθθ0022F K u F K u a a (2-5) 归一化和差信号值可得: ()()()() υθθθθθθ='=∑?00F F u u (2-6) 其中()()00θθυF F '= 是天线方向图在波束偏转角0θ处的归一化斜率系数。

一次雷达和二次雷达

1 一次雷达与二次雷达 二次雷达与一次雷达基本上是并行发展的。与一次雷达相比,二次雷达有回波强、无目标闪烁效应、询问波长与应答波长不等的特点,从而消除了地物杂波和气象杂波的干扰。单脉冲技术应用于二次雷达,可以方便地基于多个波束对目标测量,进而有效地增加数据冗余度,提高角度测量的精度。对应答处理而言,单脉冲技术的应用,大大提高了在混叠或交织情况下对应答码的解码能力,使单脉冲二次雷达与常规二次雷达相比实现了一次质的飞跃。 二次雷达与一次雷达的根本区别是工作方式不同。一次雷达依靠目标对雷达发射的电磁波的反射机理工作,它可以主动发现目标并对目标定位;二次雷达则是在地面站和目标应答机的合作下,采用问答模式工作。目前的航管二次雷达共有七种询问模式,分别称为1、2、3/A、B、C、D和S模式。根据询问脉冲P1与P3的间距决定(S模式除外)各种询问模式。 机载应答机发出的应答码由16个信息码位组成,这些码位的代号依次是 F1、C1、A1、C2、A2、C4、A4、X、B1、D1、B2、D2、B4、D4、F2 和SPI。每个码位都有两种状态,即有脉冲或无脉冲。有脉冲时为“1”,无脉冲时为“0”。F1与F2的0.5电平处的脉冲前沿间隔为20.3±0.1μs,称为框架脉冲,它们是二次雷达应答信号的标志脉冲,均恒为“1”状态。X位是备用状态,恒为“0”。两个框架脉冲(F1与F2)之间的12个信息码位,可以编成4 096个独立的应答码。SPI是特殊定位识别码,当两架飞机相互接近或者应答码相同时,调度员可以要求其中的一架飞机在已回答的12个码位基础上再增加一个SPI脉冲,以便准确识别。二次雷达应答信号组成如图1所示。 2 应答处理器系统组成 单脉冲二次雷达应答信号处理的基本流程如图2所示。 在视频预处理器中,和与差支路的∑、△视频信号,经A/D转换器进行数字化处理后,变成两组8位的数字信号传送给应答处理机;将∑接收单元与△接收单元的信号经相位鉴别器,生成表示目标在波束中心左侧或右侧的轴向指示信号BI(2位),送应答处理器;∑与ΩSLS(1位);接收信号 经6dB检测、反窄处理、二分层产生PSV(处理后的和视频,1位)。视频预处理器产生上述信号并输入给应答处理机,进行框架检测、和差比计算、码装配等处理,最终形成应答报告输出给点/航迹处理计算机。应答处理机系统的组成如图3。 在应答处理机中选用了Lattice公司的EPLD作为主处理芯片(ispLSI1032E)。该芯片有64个I/O端,8个指定输入端,6 000个逻辑门,192个寄存器,最大时延≤12ns,通过简单的5线接口,即可用PC机对线路板上菊花链结构的最多8个芯片进行编程。PC104是嵌入式计算机,其CPU是一片兼容的64位第六代处理器,运行速度可达300MHz,其图形处理器可支持各种LCD及TFT显示屏,同时支持PS/2键盘、PS/2鼠标、两串行接口、一并行接口、USB接口、声卡功能。 应答处理机的工作原理:1位PSV、8位和视频、8位差视频、2位轴向指示及1位接收旁瓣抑制信号,在经过输入缓冲并与系统时钟信号同步后,其中的PSV信号进入边沿产生电路,所产生的前沿延迟一个框架时间(20.3μs)后与未延迟的前沿信号相与给出目标框架,启动4个解码器中处于空闲状态的装配器开始解码工作,产生解码需要的定时脉冲序列。同时和视频、差视频、轴向指示、旁瓣抑制信号送入视频采样电路,经过视频采样产生的SVA(和视频幅度)和DVA(差视频幅度)经和差比计算电路产生SDR值,SVA、DVA、SDR送数字寄存器进行延迟,延迟及未延迟的SVA、SDR、轴向指示、接收旁瓣抑制和目标前沿信号一起送入代码装配器,在定时脉冲的作用下,对目标应答信息进行解码、去除幻影应答、解旁瓣应答和军事告急应答。经过进一步相关、确认和修正后,将目标的SVA和SDR代码、综合的代码置信度信息及一些标志信息送代码装配总线,在输出控制的情况

振幅和差单脉冲雷达

振幅和差单脉冲雷达振幅和差单脉冲雷达在自动测角中的应用 姓名: 学号: 2014-12-20 西安电子科技大学 信息对抗

摘要: 在雷达系统中,为了确定目标的位置,不仅需要知道距离参量,同时也需要知道目标的空间方位,为此需要知道目标的方位角和俯仰角。雷达测角的物理基础是电磁波在均匀介质中沿直线传播和雷达天线具有方向性。测角的方法可分为振幅法和相位法两大类。在雷达测角中,为了快速地提供目标的精确坐标值,要采用自动测角的方法。自动测角时,天线能自动跟踪目标,同时将目标的坐标数据传送到计算机中。在自动测角系统中,有一种典型的方式——单脉冲自动测角系统。单脉冲自动测角属于同时波瓣测角法,单脉冲雷达的种类很多,最常用的是振幅和差单脉冲雷达。 关键字:雷达自动测角系统振幅和差单脉冲雷达 一、单脉冲雷达 什么是单脉冲雷达? 单脉冲雷达是一种精密跟踪雷达。它每发射一个脉冲,天线能同时形成若干个波束,将各波束回波信号的振幅和相位进行比较,当目标位于天线轴线上时,各波束回波信号的振幅和相位相等,信号差为零;当目标不在天线轴线上时,各波束回波信号的振幅和相位不等,产生信号差,驱动天线转向目标直至天线轴线对准目标,这样便可测出目标的高低角和方位角,从各波束接收的信号之和,可测出目标的距离,从而实现对目标的测量和跟踪。 单脉冲雷达通常有振幅比较单脉冲雷达和相位比较单脉冲雷达两大类(本次只研究振幅比较法)。它有较高的测角精度、分辨率和数据率,但设备比较复杂。单脉冲雷达早在60年代就已广泛应用。在军事上主要用于目标识别、靶场精密跟踪测量、弹道导弹预警和跟踪、导弹再入弹道测量、火箭和卫星跟踪、武器火力控制、炮位侦察、地形跟随、导航、地图测绘等;在民用上主要用于中交通管制。 二、振幅和差单脉冲雷达 振幅定向法是用天线接收到的回波信号幅度值来进行角度测量的,该幅度值的变化规律取决于天线方向图以及天线的扫描方式。振幅定向法可以分为最大信号法和等信号法两大类,其中等信号法又可以分为比幅法和和差法。此次试验只研究和差式雷达。

单脉冲天线

第十三章单脉冲天线 一、引言 单脉冲雷达体制系统,主要用于高速目标的跟踪定位。如飞机、导弹、火箭、人造卫星的跟踪。单脉冲雷达系统中的天线称为单脉冲天线。单脉冲雷达天线要求产生一个主瓣的和波束,以及具有两个(或四个)主瓣的差波束,如下图13-1所示。差波束的两个峰值之间的最小值称为“零值”。和波束的作用是探测目标的距离(r)并行距离跟踪;差波束的作用是探测目标的方位角和俯仰角信息(,?θ)并行角跟踪。一个目标的距离信息r和角信息,?θ已知,则目标的空间位置就确定了。如果目标正好在和波束最大值方向,则差波束接收到的信号很弱(为零值);当目标移动时,则差波束接收到的信号由弱变强,则可利用差信号来驱动伺服机构,使天线在俯仰或方位上转动,始终使差波束的零值方向对准目标,从而实现跟踪。 图13-1单脉冲天线方向图 二、单脉冲天线组成。 在雷达应用中,单脉冲天线可采用阵列天线,也可采用反射面和单脉冲馈源组成。如果是后者,则馈源一般采用多个(4个)叭或者单口多模喇叭。形成差波束的关键是使用了比较器(和差器)。 三、分类。 根据比较回波信号的幅度和相位,单脉冲分为幅度单脉冲、相位单脉冲和幅相单脉冲,它们的主要区别在于天线。无论是幅度还是相位单脉冲,为了确定目标在某一平面的角度(方位、俯仰),都要求同时产生两个形状相同的波束。这里只讨论幅度单脉冲(比幅)。 四、工作原理。 为了说明问题,先考虑一个平面(俯仰面)内单脉冲技术的工作原理。

当一个横向偏焦的喇叭,置于抛面焦点附近时天线将产生一个偏离天线轴的 θ正比于偏焦距离x。为了获得两个对称于天线轴,并有波瓣,其波束偏移角 s θ的波瓣,可用两个对称于天线轴的横向偏焦喇叭来完成,如图13-2相同偏移角 s 所示。 图13-2 幅度比较单脉冲 若探测到一个目标,来自A方向,这时两波束收到的回波信号,相位相同,但幅度不等。两信号相减形成的差信号是目标方向的函数。这个差信号的大小,表示了目标偏离天线轴向角度的大小,差信号的正负,则表示目标偏向哪一边。由差信号驱动电机使天线转动而对准目标,则差信号为0。从而实现了跟踪。 一般的比幅单脉冲天线的馈源是由四个喇叭和比较电路构成的。假如上图为俯仰面的话,另两个喇叭则构成方位面。四喇叭馈源及比较器电路如图13-3所示。 图13-3 幅度比较单脉冲天线的馈源和比较器

多普勒雷达原理

汽笛声变调的启示--多普勒雷达原理 1842年一天,奥地利数学家多普勒路过铁路交叉处,恰逢一列火车从他身 旁驰过,他发现火车由远而近时汽笛声变响,音调变尖(注:应为“汽笛声的音频频率变高”);而火车由近而远时汽笛声变弱,音调变低(应为“汽笛声的音频频率降低了”)。他对这种现象感到极大兴趣,并进行了研究。发现这是由于振源与观察者之间存在着相对运动,使观察者听到的声音频率不同于振源频率的缘故,称为频移现象。因为这是多普勒首先提出来的,所以称为多普勒效应。 由于缺少实验设备,多普勒当时没有用实验进行验证。几年后有人请一队小号手在平板车上演奏,再请训练有素的音乐家用耳朵来辨别音调的变化,验证了该效应。 为了理解这一现象,需要考察火车以恒定速度驶近时,汽笛发出的声波在传播过程中表现出的是声波波长缩短,好像波被“压缩”了。因此,在一定时间间隔内传播的波数就增加了,这就是观察者为什么会感受到声调变高的原因;相反,当火车驶向远方时,声波的波长变大,好像波被“拉伸”了。因此,汽笛声听起来就显得低沉。 用科学语言来说,就是在一个物体发出一个信号时,当这个物体和接收者之间有相对运动时,虽然物体发出的信号频率固定不变,但接收者所接收到的信号频率相对于物体发出的信号频率出现了差异。多普勒效应也可以用波在介质中传播的衰减理论解释,波在介质中传播,会出现频散现象,随距离增加,高频向低频移动。 多普勒效应不仅适用于声波,它也适用于所有类型的波,包括电磁波。 多普勒效应被发现以后,直到1930年左右,才开始应用于电磁波领域中。常见的一种应用是医生检查就诊人用的“彩超”,就是利用了声波的多普勒效应。简单地说,“彩超”就是高清晰度的黑白B超再加上彩色多普勒。超声振荡器产生一种高频的等幅超声信号,向人体心血管器官发射,当超声波束遇到运动的脏器和血管时,便产生多普勒效应,反射信号为换能器所接受,根据反射波与发射波的频率差可以求出血流速度,根据反射波的频率是增大还是减小判定血流方向。 20世纪40年代中期,也就是多普勒发现这种现象之后大约100年,人们才将多普勒效应应用于雷达上。多普勒雷达就是利用多普勒效应进行定位,测速,测距等的雷达。当雷达发射一固定频率的脉冲波对空扫描时,如遇到活动目标,回波的频率与发射波的频率出现频率差(称为多普勒频率),根据多普勒频率的大小,可测出目标对雷达的径向相对运动速度;根据发射脉冲和接收的时间差,可以测出目标的距离。20世纪70年代以来,随着大规模集成电路和数字处理技术的发展,多普勒雷达广泛用于机载预警、导航、导弹制导、卫星跟踪、战场侦察、靶场测量、武器火控和气象探测等方面,成为重要的军事装备以及科学研究、业务应用装置。 多普勒天气雷达,是以多普勒效应为基础,当大气中云雨等目标物相对于雷达发射信号波有运动时,通过测定接收到的回波信号与发射信号之间的频率差异就能够解译出所需的信息。它与过去常规天气雷达仅仅接收云雨目标物对雷达发射电磁波的反射回波进了一大步。这种多普勒天气雷达的工作波长一般为5~10厘米,除了能起到常规天气雷达通过回波测定云雨目标物空间位置、强弱分布、垂直结构等作用,它的重大改进在于利用多普勒效应可以测定降水粒子的运

单脉冲雷达角度跟踪技术研究

单脉冲雷达角度跟踪技术研究 【摘要】简单介绍了单脉冲雷达的特点及工作原理,重点分析了多部干扰机对单脉冲雷达的角度干扰问题,并对相干干扰和非相干干扰的干扰效果进行了讨论,指出两点源非相干干扰是实际工程中一种比较理想的干扰方式。 【关键词】单脉冲雷达、角度跟踪、相干干扰、非相干干扰 一、引言 对雷达进行干扰要对准雷达的四个系统:显示系统、距离跟踪系统、速度跟踪系统和角度跟踪系统。在雷达发展的早期,只要对前三个系统中的一个(或两个)系统进行有效地干扰,就可达到破坏雷达角跟踪系统正常工作的目的。现在随着新体制雷达的出现和抗干扰技术的不断提高,尤其是单脉冲雷达体制的出现,使很多干扰技术难以奏效。本文以振幅和差式单脉冲雷达为例,讨论了用多部干扰机对单脉冲雷达实施干扰的情况。 二、分析 1.单脉冲雷达 ◆定义 单脉冲雷达是指由单个回波脉冲即可获得目标空间角信息的雷达。 ◆特点 单脉冲雷达是一种精密跟踪雷达。它有较高的测角精度、分辨率和数据率,但设备比较复杂。单脉冲雷达早在60年代就已广泛应用。美国、英国、法国和日本等国军队大量装备单脉冲雷达,主要用于目标识别、靶场精密跟踪测量、弹道导弹预警和跟踪、导弹再入弹道测量、火箭和卫星跟踪、武器火力控制、炮位侦察、地形跟随、导航、地图测绘等;在民用上主要用于中交通管制。目前使用的单脉冲雷达基本上都实现了模块化、系列化和通用化,具有多目标跟踪、动目标显示、故障自检、维修方便等特点。 ◆分类 根据从回波中获取角信息的方式(测角法)不同,单脉冲雷达可分为振幅法(比幅)、相位法(比相)和综合法(振幅相位)3种。这3种测角法又可用3种角度鉴

别器(振幅式、相位式、和差式)中的任何一种来获得目标的角度信息,因此综合起来有9种形式的单脉冲雷达系统,其中以振幅和差式单脉冲雷达系统用的最多。通常分为有振幅比较单脉冲雷达和相位比较单脉冲雷达两大类。 工作原理 单脉冲雷达每发射一个脉冲,天线能同时形成若干个波束,将各波束回波信号的振幅和相位进行比较,当目标位于天线轴线上时,各波束回波信号的振幅和相位相等,信号差为零;当目标不在天线轴线上时,各波束回波信号的振幅和相位不等,产生信号差,驱动天线转向目标直至天线轴线对准目标,这样便可测出目标的高低角和方位角,从各波束接收的信号之和,可测出目标的距离,从而实现对目标的测量和跟踪。它具有圆锥扫描雷达所没有的优点:获得角误差信息的时间短(以微秒计算);不受回波振幅起伏变化的影响;测角精度高(0.1~0.5mil);测角支路抗幅度调制干扰(如回答式倒相干扰)的能力强。振幅和差式单脉冲雷达系统的基本工作原理:将两个比幅天线方向图所得的幅度不同的信号经过和差变换器之后,再把和信号(U∑ )、差信号(U△ )加到鉴相器得出差信号。 2 雷达角跟踪技术 2.1 信号处理和测量技术 PD采用一种合适的且可以适当改变的配置方式及数据处理算法,可成功的实现跟踪低仰角目标。假定一种处理算法,地面的反射系数应有一个确定的模型(如镜面反射和几何光学原理),重要的是要估计这样的算法偏离假定的反射模型的灵敏度如何。在一个真实系统中,这样的偏差肯定会发生。即使是光滑的镜面表面(理想的镜面反射),当雷达位于几倍天线直径大的该表面时,由物理光学原理即菲涅尔区,也需要校正。关键的问题是,在反射的雷达信号中有多少是未知量,要确定这些未知量,雷达需要测量的量是多少,很明显,在多路径效应下,未知数的数量会增加。雷达必须做更多的测量才能获得反射平面的信息以鉴别目标的真实仰角。但是更多的工作是需要找到最优的算法,需要确定它们对不同反射系数模型的灵敏度。

脉冲多普勒雷达

脉冲多普勒雷达(pulse Doppler Radar) 学习笔记 1:PD雷达简介 PD雷达的广泛定义应为:能实现对雷达信号脉冲串频谱单根谱线滤波(频域滤波),具有对目标进行速度分辨能力的雷达 PD雷达是一种利用多普勒效应检测目标信息的脉冲雷达。通常工作在一组较高的脉冲频率上,并采用主振放大链型的信号源和距离门窄带滤波器链的信号处理器. 它具有较高的速度分辨能力,从而可以更有效的解决抑制极强的地杂波干扰的问题。 PD 雷达有多种工作模式,下图给出了PD雷达的各种工作模式。 它们各具特点,分别适用不同的环境。低重PD雷达测距不会产生模糊,旁瓣杂波电平较低,但测速模糊。高重PD雷达与之相反,测距产生模糊,旁瓣杂波由于距离重叠效应,电平比较高,但测速是清晰的。中重PD雷达的距离和多普勒频移都产生模糊,通过辅助方法可以解测距和测速模糊。 1:测速原理 雷达对目标速度的测量主要利用电磁波照射在运动目标上时产生的多普勒效应来进行。对雷达而言,当雷达与目标之间存在相对运动时,多普勒效应体现在回波信号的频率与发射信号的频率不相等。雷达发射电磁波信号后,当遇到一个向着雷达运动的目标时,由于多普勒效应,雷达接收到从这个目标返回的电磁波信号的频率将高于雷达的发射频率。而当雷达发射的电磁波遇到一个在远离雷达方向运动的目标时,则雷达收到的是低于雷达发射频率的电磁波信号。多普勒雷达正是利用两者频率之间的差值,即多普勒频移df来实现对目标速度的测量。 2:距离模糊产生原因 雷达的最大单值测距范围由其脉冲重复周期T r(PRT)决定。为保证单值测距, 通常应R max 选取T R>2 C

R max为被测目标的最大作用距离。 有时雷达重复频率的选择不能满足单值测距的要求, 例如在脉冲多普勒雷达或远程雷达, 这时目标回波对应的距离R为 R=c (m×T r+t r) 式中,t r为测得的回波信号与发射脉冲间的时延。这时将产生测距模糊, 为了得到目标的真实距离R, 必须判明式(2.1.7)中的模糊值m。 2:

单脉冲自动测角系统在导引头中的应用

雷达原理大作业——单脉冲自动测角系统在导引头中的应用 学院:电子工程学院 完成人及学号:

杨超() 王东旭() 韩孟洲() 程荣() 谭宗欣() 于振浩()任课教师:饶鲜

目录: 一、单脉冲自动测角系统简介- 4 - 1.单脉冲雷达- 4 - 2.自动测角系统- 4 - 3.单脉冲自动测角系统- 4 - 二、单脉冲自动测角原理- 5 - 1.振幅定向法- 5 - 2.相位定向法- 7 - 三、单脉冲自动测角系统的特点- 7 - 1.角度跟踪精度- 7 - 2.天线增益和作用距离- 8 - 3.角度信息的数据率- 8 - 4.抗干扰能力- 8 - 5.复杂程度- 8 - 四、单脉冲自动测角系统的仿真- 9 - 五、单脉冲雷达的应用- 12 - 六、总结- 13 -

一、单脉冲自动测角系统简介 1.单脉冲雷达 单脉冲雷达是一种精密跟踪雷达。它每发射一个脉冲,天线能同时形成若干个波束,将各波束回波信号的振幅和相位进行比较,当目标位于天线轴线上时,各波束回波信号的振幅和相位相等,信号差为零;当目标不在天线轴线上时,各波束回波信号的振幅和相位不等,产生信号差,驱动天线转向目标直至天线轴线对准目标,这样便可测出目标的高低角和方位角,从各波束接收的信号之和,可测出目标的距离,从而实现对目标的测量和跟踪。 2.自动测角系统 在火控系统中使用的雷达,必须快速连续地提供单个目标(飞机、导弹等)坐标的精确数值,此外在靶场测量、卫星跟踪、宇宙航行等方面应用时,雷达也是观测一个目标,而且必须精确地提供目标坐标的测量数据。 为了快速地提供目标的精确坐标值,要采用自动测角的方法。自动测角时,天线能自动跟踪目标,同时将目标的坐标数据经数据传递系统送到计算机数据处理系统。 和自动测距需要有一个时间鉴别器一样,自动测角也必须要有一个角误差鉴别器。当目标方向偏离天线轴线(即出现了误差角ε)时,就能产生一误差电压。误差电压的大小正比于误差角,其极性随偏离方向不同而改变。此误差电压经跟踪系统变换、放大、处理后,控制天线向减小误差角的方向运动,使天线轴线对准目标。 用等信号法测角时,在一个角平面内需要两个波束。这两个波束可以交替出现(顺序波瓣法),也可以同时存在(同时波瓣法)。前一种方式以圆锥扫描雷达为典型,后一种是单脉冲雷达。 3.单脉冲自动测角系统 单脉冲自动测角属于同时波瓣测角法。在一个角平面内,两个相同的波束部分重叠,其交叠方向即为等信号轴。将这两个波束同时接收到的回波信号进行比较,就可取得目标在这个平面上的角误差信号,然后将此误差电压放大变换后加到驱动电动机,控制天线向减小误差的方向运动。因为两个波束同时接收回波,故单脉冲测角获得目标角误差信息的时间可以

脉冲多普勒雷达的总结

脉冲多普勒雷达的总结 1、适用范围 脉冲多普勒(PD)雷达是在动目标显示雷达基础上发展起来的一种新型雷达体制。这种雷达具有脉冲雷达的距离分辨力和连续波雷达的速度分辨力,有更强的抑制杂波的能力,因而能在较强的杂波背景中分辨出动目标回波。 2、PD雷达的定义及其特征 (1)定义:PD雷达是一种利用多普勒效应检测目标信息的脉冲雷达。 (2)特征:①具有足够高的脉冲重复频率(简称PRF),以致不论杂波或所观测到的目标都没有速度模糊。 ②能实现对脉冲串频谱单根谱线的多普勒滤波,即频域滤波。 ③PRF很高,通常对所观测的目标产生距离模糊。 3、PD雷达的分类 图1 PD雷达的分类图 ①MTI雷达(低PRF):测距清晰,测速模糊 ②PD雷达(中PRF):测距模糊,测速模糊,是机载雷达的最佳波形选择 ③PD雷达(高PRF):测距模糊,测速清晰 4、机载下视PD雷达的杂波谱分析 机载下视PD雷达的地面杂波是由主瓣杂波、旁瓣杂波和高度线杂波所组成的。 、PRF 的选择 (1)高、中、低脉冲重复频率的选择 ①机载雷达在没有地杂波背景干扰的仰视情况下,通常采用低PRF加脉冲压缩。 ②迎面攻击时高PRF优于中PRF。尾随时,在低空,中PRF优于高PRF ;在高空,高PRF优于中PRF。 ③交替使用中、高PRF的方法,或者再加上在下视时采用低PRF的方法,并在低、中PRF时配合采用脉冲压缩技术,将是在所有工作条件下得到远距离探测性能的最有效的方

法。 (2)高PRF时重复频率的选择 ①使迎面目标谱线不落人旁瓣杂波区中: ②为了识别迎面和离去的目标: A、当接收机单边带滤波器对主瓣杂波频率固定时: B、当接收机单边带滤波器相对发射频率是固定时: 注:单边带滤波器的通带范围应从,单边带滤波器的中心频率是固定的,但偏离应为。 6、PD雷达的信号处理系统 PD雷达的信号处理系统主要由单边带滤波器、主瓣杂波抑制滤波器、零多普勒频率抑制滤波器、多普勒滤波器组、检波积累、转换器和门限等部分组成,下面总结各组成部分的特点及其实现方法。 (1)单边带滤波器 特点:带宽近似等于脉冲重复频率fr, 一般设置在中频; 从回波频谱中只滤出单根谱线; 避免了后面信号处理过程中可能产生的频谱折叠效应; 距离选通波门必须设在单边带滤波器之前; 要求带外抑制至少要大于60dB; 实现方法:采用石英晶体滤波器 (2)主瓣杂波抑制滤波器 特点:比目标回波能量要高出60-80dB; 主瓣杂波抑制滤波器的幅一频特性应是主瓣杂波频谱包络的倒数; 相当于一个白化滤波器,经过主瓣杂波抑制之后,后面的多普勒滤波器可以 按照白噪声中的匹配滤波理论来进行设计; 实现方法:首先确定它的频率,用一个混频器先消除变化的,就可以用一个固定频率的滤波器将其滤除. 确定主瓣杂波中心频率有两种方法:一种方法是利用频率跟踪; 另一种是由天线指向和载机飞行速度计算出主瓣杂波应有的多普勒频移,直接控制压 控振荡器去产生的振荡濒率。 (3)零多普勒频率抑制滤波器 特点:用于高度杂波的滤除; 同时抑制发射机直接进人到接收机的泄漏; 实现方法:①只需断开滤波器组中落人高度杂波区的那些子滤波器的输出; ②使用可防止检测高度线杂波专用的CFAR电路; ③使用航迹消隐器除去最后输出的高度线杂波。 (4)多普勒滤波器组 特点:是覆盖预期的目标多普勒频移范围的一组邻接的窄带滤波器; 起到了实现速度分辨和精确测量的作用; 可以设在中频,也可以设在视频;

单脉冲雷达设计

1 雷达距离方程: 其中, P t 为发射功率,G 为天线增益,σ为目标雷达横截面积,λ为传播波长,S min 为最小可检测信号。但是由于: (1) 最小可检测信号的统计特征(接收机噪声决定)。 (2) 目标雷达横截面积的起伏和不确定性。 (3) 雷达系统的损耗。 (4) 地球表面和大气层引起的传播效应。 因此,距离指标必须包括雷达探测一个特定距离上规定目标的概率,且在无目标回波出现时有规定的虚假检测概率。雷达作用距离将是检测概率P d 和虚警概率P fa 的函数。 检测概率和虚警概率是由用用户对系统的要求所确定。根据确定的检测概率和虚警概率,可以求出最小的信噪比S/N 。 关于三者之间的关系,Albersheim 研究出一个简单的检经验公式: S/N=A+0.12AB+1.7B 注:信噪比是一个数字,不用dB 表示。 式中: A=ln[0.62/P fa ]和B=ln[P d /(1-P d )] 2 脉冲积累对检测性能的改善: 多个脉冲积累后可以有效提高信噪比,从而改善雷达的检测能力。实际情况下,利用检波后积累都存在积累损耗。 利用统计检测理论,可以求得检波后积累效率和所要求的每个脉冲信噪比(S/N )n ,积累损耗和积累改善因子可由书本查出,他们()4max 322max 422min 44R G P R A P S P t r t i r πσλπλσ===

只随检测概率和虚警概率稍稍变化。 如果同样的n个脉冲由理想的检波后积累器积累,得到信噪比要小于单个信噪比的n倍。则存在损耗,检波后积累效率可定义为: E i(n)=(S/N)1/n(S/N)n 积累损耗(dB)定义为: L i(n)=10log[1/E i(n)] 积累n个脉冲后,雷达方程为: R max4=P t GA eσ/(4π)2kT0BF n(S/N)n 方程中除(S/N)n是n个要积累的相同脉冲中每个脉冲的信噪比以外,其余参数与先前使用相同。当n为确定参数时,查询表可得E i(n)。每个脉冲信噪比可由Albersheim经验公式得到: (S/N)n=-5lg n +[6.2+4.54/(n-0.44)0.5]*lg(A+0.12AB+1.7B) 积累损耗或效率是理论上的损耗,在雷达中用于实现积累过程的实际方法也会引起损耗。 3 匹配滤波器接收机: 定义:雷达接收机输出信号峰值-噪声(功率)比最大将使目标可检测性最大,能做到这一点的线性网络称为匹配滤波器。 匹配滤波器的冲击响应函数:h(t)=G a s(t m-t) 总结: (1)匹配滤波器的输出峰值信号-平均噪声比仅与接收信号的总能量和单位带宽的噪声功率有关。 (2)最大输出信噪比:2E/N

振幅和差单脉冲雷达

[文档标题] [文档副标题] 姓名: 学号: 摘要: 在雷达系统中,为了确定目标的位置,不仅需要知道距离参量,同时也需要知道目标的空间方位,为此需要知道目标的方位角和俯仰角。雷达测角的物理基础是电磁波在均匀介质中沿直线传播和雷达天线具有方向性。测角的方法可分为振幅法和相位法两大类。在雷达测角中,为了快速地提供目标的精确坐标值,要采用自动测角的方法。自动测角时,天线能自动跟踪目标,同时将目标的坐标数据传送到计算机中。在自动测角系统中,有一种典型的方式——单脉冲自动测角系统。单脉冲自动测角属于同时波瓣测角法,单脉冲雷达的种类很多,最常用的是振幅和差单脉冲雷达。 关键字:雷达 自动测角系统 振幅和差单脉冲雷达 一、 单脉冲雷达 什么是单脉冲雷达? 单脉冲雷达是一种精密跟踪雷达。它每发射一个脉冲,天线能同时形成若干个波束,将各波束回波信号的振幅和相位进行比较,当目标位于天线轴线上时,各波束回波信号的振幅和相位相等,信号差为零;当目标不在天线轴线上时,各波束回波信号的振幅和相位不等,产生信号差,驱动天线转向目标直至天线轴线对准目标,这样便可测出目标的高低角和方位角,从各波束接收的信号之和,可测出目标的距离,从而实现对目标的测量和跟踪。 单脉冲雷达通常有振幅比较单脉冲雷达和相位比较单脉冲雷达两大类(本次只研究振幅比较法)。它有较 高的测角精度、分辨率和数据率,但设备比较复杂。单脉冲雷达早在60年代就已广泛应用。在军事上主要用 于目标识别、靶场精密跟踪测量、弹道导弹预警和跟踪、导弹再入弹道测量、火箭和卫星跟踪、武器火力控制、炮位侦察、地形跟随、导航、地图测绘等;在民用上主要用于中交通管制。 2014-12-20 信息对抗

单脉冲压缩雷达原理

单脉冲角度跟踪技术研究 学生尤阳 班级 0209991班 学号 02099043 专业电子信息工程 学院电子工程学院 西安电子科技大学 2012年5月

一、引言 单脉冲角跟踪系统的方案包括三通道、双通道、单通道单脉冲等。在跟踪系统精度要求不高的系统中,采用单通道单脉冲跟踪系统的设备越来越多,例如业务测控站、遥感地面站、卫星侦察信号接收站、遥测地面站等。较常用的实现方案是在常规双通道的基础上,用低频调制信号对差信号进行四相调制后再与和信号合并,变成一个通道输出,其合成信号只需经包络检波即可得到误差电压。由于进行了通道合并,这种体制不存在和、差通道合并后的相位和增益不一致问题不需要调整通道的相位除低噪放大器(LNA)外所有的设备可以安装在机房,大大提高了设备的可靠性、使用性和维护性,同时减少了设备,造价也大大降低。 二、系统工作原理及误差电压的提取 为了确保系统的G / T 值,应考虑在LNA后进行和、差信号的合成。为了阐明其物理概念,将双通道单脉冲合成为单通道单脉冲的跟踪系统方框图进行简化。简化后的框图如图 1 所示。 图1 跟踪系统框图 设从天馈来的信号为单频信号,在分析时假定天线和、差信道在接收频带内辐射特性保持不变,而且和、差信道及从天线的来波均为理想圆极化波。馈源端口输出和信号的瞬时值为 差信号由方位与俯仰差信号相位正交合成得到为 式中μ为差斜率,A为目标在方位上偏离电轴的角度,E 为目标在俯仰上偏离电轴的角度。 差信号的矢量关系为A = θcosФE = θs i nФ 图 2 双通道单脉冲合成矢量图

由图2,可将ed 变换为 式中Am μθ 为差信号的幅度,其中θ =B A+ 22;φ = tg -1 E / A为差路合成载波的相位,它与A、E 的比例大小有关,可见误差信号包含在幅度Am μθ 和相位φ 之中。 1. 单通道单脉冲的合成跟踪接收系统采用单通道时,和、差信号必须以适当的方式合成,目的是合成后的信号能在终端解调出角误差信息。通常在和、差信号合成前,先对差信号进行四相调制,再与和信号合成。 和、差信号分别经低噪声放大K E 、K ? 后为 差信号经四相调制后为 其中,φ为和、 差信号的相对相位差β(t)周期为 t4 =1/ Ω的信号调相, 在四相调制时有 ~t 调制后的差信号经一定向耦合器与和信号合成,其合成信号为 式中 M 为定向耦合器的耦合系数,一般取 6 ~ 9 dB。 2. 合成信号的解调和误差电压的提取 合成信号经下变频和放大后,频率仍记作ω,将合成信号变换后得:

相关文档