文档视界 最新最全的文档下载
当前位置:文档视界 › 概率论重点题

概率论重点题

概率论重点题
概率论重点题

概率统计重难点题

1.已知一个家庭有3个小孩,且其中一个为女孩,求至少有一个男

孩的概率(小孩为男为女是等可能的).

【解】 设A ={其中一个为女孩},B ={至少有一个男孩},样本点总数为23=8,故

()6/86

()()7/87

P AB P B A P A =

== 或在缩减样本空间中求,此时样本点总数为7.

6()7

P B A =

2.已知5%的男人和%的女人是色盲,现随机地挑选一人,此人恰为

色盲,问此人是男人的概率(假设男人和女人各占人数的一半). 【解】 设A ={此人是男人},B ={此人是色盲},则由贝叶斯公式

()()()

()()()()()()

P A P B A P AB P A B P B P A P B A P A P B A =

=

+ 0.50.0520

0.50.050.50.002521

?=

=

?+? 3.在一个盒中装有15个乒乓球,其中有9个新球,在第一次比赛中

任意取出3个球,比赛后放回原盒中;第二次比赛同样任意取出3个球,求第二次取出的3个球均为新球的概率.

【解】 设A i ={第一次取出的3个球中有i 个新球},i =0,1,2,={第二

次取出的3球均为新球} 由全概率公式,有

3

0()()()i i i P B P B A P A ==∑

331232133

369968967

96333333331515151515151515

C C C C C C C C C C C C C C C C C C =?+?+?+?0.089=

4.某保险公司把被保险人分为三类:“谨慎的”,“一般的”,“冒失的”.

统计资料表明,上述三种人在一年内发生事故的概率依次为,和;如果“谨慎的”被保险人占20%,“一般的”占50%,“冒失的”占30%,现知某被保险人在一年内出了事故,则他是“谨慎的”的概率是多少

【解】 设A ={该客户是“谨慎的”},B ={该客户是“一般的”},

C ={该客户是“冒失的”},

D ={该客户在一年内出了事故}

则由贝叶斯公式得

()()(|)

(|)()()(|)()(|)()(|)

P AD P A P D A P A D P D P A P D A P B P D B P C P D C =

=++ 0.20.05

0.0570.20.050.50.150.30.3

?=

=?+?+?31.设随机变量

X ~U (0,1),试求:

(1) Y =e X 的分布函数及密度函数; (2) Z =?2ln X 的分布函数及密度函数. 【解】(1) (01)1P X <<=

故 (1e e)1X P Y <=<= 当1y ≤时()()0Y F y P Y y =≤=

当1

ln 0

d ln y x y ==?

当y ≥e 时()(e )1X Y F y P y =≤= 即分布函数

0,

1()ln ,1e 1,e Y y F y y y y ≤??

=<

故Y 的密度函数为

1

1e ,

()0,Y y y f y ?<

=???

其他 (2) 由P (0

(0)1P Z >=

当z ≤0时,()()0Z F z P Z z =≤=

当z >0时,()()(2ln )Z F z P Z z P X z =≤=-≤

/2(ln )(e )2

z z

P X P X -=≤-=≥ /2

1

/2e

d 1

e z z x --==-?

即分布函数

-/2

0,

0()1-e ,Z z z F z z ≤?=?>?

0 故Z 的密度函数为

/2

1e ,0

()20,

z Z z f z z -?>?=??≤?0

5.设随机变量X 的密度函数为

f (x )=2

2,0π,π

0,

.x

x ?<

当y ≤0时,()()0Y F y P Y y =≤=

当0

(0arcsin )(πarcsin π)P X y P y X =<≤+-≤<

arcsin π220

πarcsin 22

d d ππ

y

y x x x x -=+?? 22

2211arcsin 1πarcsin ππy y =+--()()

2

arcsin π

y =

当y ≥1时,()1Y F y = 故Y 的密度函数为

6.设随机变量(X ,Y )的概率密度为

f (x ,y )=??

?<<<.

,

0,

10,,1其他x x y

求条件概率密度f Y |X (y |x ),f X |Y (x |y ).

题11图

【解】()(,)d X f x f x y y +∞

-∞=?

1d 2,01,

0,

.x

x

y x x -?=<

1d 1,10,

()(,)d 1d 1,01,0,

.y Y y

x y y f y f x y x x y y -+∞

-∞

?=+-<

???

??

?其他 所以

|1

,||1,

(,)

(|)2

()

0,.

Y X

X

y x

f x y

f y x x

f x

?

<<

?

==?

??其他

|

1

,1,

1

(,)1

(|),1,

()1

0,.

X Y

Y

y x

y

f x y

f x y y x

f y y

?

<<

?-

?

?

==-<<

?

+

?

?

?

?

其他

7.设二维随机变量(X,Y)在以(0,0),(0,1),(1,0)为顶点的三角形区域上服从均匀分布,求Cov(X,Y),ρXY.

【解】如图,S D=1

2

,故(X,Y)的概率密度为

题18图

2,(,),

(,)

0,

x y D

f x y

?

=?

?其他.

()(,)d d

D

E X xf x y x y

=??11

00

1

d2d

3

x

x x y

-

==

??

22

()(,)d d

D

E X x f x y x y

=??112

00

1

d2d

6

x

x x y

-

==

??

从而

2

22

111

()()[()].

6318

D X

E X E X

??

=-=-=

?

??

同理11

(),().

318

E Y D Y

==

而11

00

1

()(,)d d2d d d2d.

12

x

D D

E XY xyf x y x y xy x y x xy y

-

====

??????

所以

1111Cov(,)()()()123336

X Y E XY E X E Y =-=

-?=-. 从而 11

2)()

XY D Y ρ-=

=

=- 8.某车间有同型号机床200部,每部机床开动的概率为,假定各机

床开动与否互不影响,开动时每部机床消耗电能15个单位.问至少供应多少单位电能才可以95%的概率保证不致因供电不足而影响生产.

【解】要确定最低的供应的电能量,应先确定此车间同时开动的机床

数目最大值m ,而m 要满足200部机床中同时开动的机床数目不超过m 的概率为95%,于是我们只要供应15m 单位电能就可满足要求.令X 表同时开动机床数目,则X ~B (200,),

()140,()42,E X D X ==

0.95{0}().

P X m P X m =≤≤=≤=Φ

查表知 1.64,

= ,m =151. 所以供电能151×15=2265(单位).

9.某药厂断言,该厂生产的某种药品对于医治一种疑难的血液病的治愈率为.医院检验员任意抽查100个服用此药品的病人,如果其中多于75人治愈,就接受这一断言,否则就拒绝这一断言. (1) 若实际上此药品对这种疾病的治愈率是,问接受这一断言的概率是多少

(2) 若实际上此药品对这种疾病的治愈率是,问接受这一断言的概率是多少 【解】1,,

1,2,

,100.0,.

i i X i ?==?

?第人治愈其他

令100

1

.i i X X ==∑

(1) X ~B (100,,

100

1{75}1{75}1i i P X P X =>=-≤≈-Φ∑ 1( 1.25)(1.25)0.8944.=-Φ-=Φ=

(2) X ~B (100,,

100

1{75}1{75}1i i P X P X =>=-≤≈-Φ∑

11(1.09)0.1379.=-Φ=-Φ= 10. 对于一个学生而言,来参加家长会的家长人数是一个随机变量,

设一个学生无家长、1 名家长、2名家长来参加会议的概率分别为,,.若学校共有400名学生,设各学生参加会议的家长数相与独立,且服从同一分布.

(1) 求参加会议的家长数X 超过450的概率

(2) 求有1名家长来参加会议的学生数不多于340的概率. 【解】(1) 以X i (i =1,2,…,400)记第i 个学生来参加会议的家长数.则X i 的分布律为

X i

2

P

易知E (X i =),D (X i )=,i =1,2,…,400. 而400

i i X X =∑,由中心极限定理得

400

400 1.1

~(0,1).4000.19

419

i

i

X

N -?=??∑近似地

于是{450}1{450}1419P X P X >=-≤≈-Φ

????

1(1.147)0.1357.=-Φ=

(2) 以Y 记有一名家长来参加会议的学生数.则

Y ~B (400,由拉普拉斯中心极限定理得

{340(2.5)0.9938.4000.80.2P Y ≤≈Φ=Φ=??

11.设总体X 服从二项分布b (n ,p ),n 已知,X 1,X 2,…,X n 为来自

X 的样本,求参数p 的矩法估计.

【解】1(),(),E X np E X A X ===因此np =X

所以p 的矩估计量 ?X

p

n

= 12.设总体X 的密度函数

f (x ,θ)=2

2

(),0,0,

.x x θθθ

?-<

【解】2302

20

2

2()()d ,233

x x E X x x x θ

θθ

θθθθ??=

-=-= ????

令E (X )=A 1=X ,因此3

θ

=X

所以θ的矩估计量为 ^

3.X θ=

13.设总体X 的密度函数为f (x ,θ),X 1,X 2,…,X n 为其样本,求

θ的极大似然估计.

(1) f (x ,θ)=,0,

0,0.e x x x θθ-?≥?

(2) f (x ,θ)=1,01,

0,

.x x θθ-?<

【解】(1) 似然函数1

1

1

(,)e

e

n

i

i

i n

n

x x n

n

i i i L f x θ

θθθ

θ=--==∑===∏∏

1

ln ln n i i g L n x θθ===-∑

由1

d d ln 0d d n

i i g L n x θθθ==

=-=∑知 1

?n

i

i n

x

θ==

所以θ的极大似然估计量为1

?X

θ=. (2) 似然函数1

1

,01n

n

i i i L x x θ

θ

-==<<∏,i =1,2,…,n.

1

ln ln (1)ln n

i i L n x θθ==+-∏

由1

d ln ln 0d n

i i L n

x θθ==+=∏知 1

1?ln ln n

n

i

i

i i n n

x

x θ

===-=-

∑∏

所以θ的极大似然估计量为 1

?ln n

i

i n

x

θ==-

14. 已知某炼铁厂的铁水含碳量在正常情况下服从正态分布N ,.现在测了5炉铁水,其含碳量(%)分别为

问若标准差不改变,总体平均值有无显着性变化(α=) 【解】

0010/20.0250.025: 4.55;: 4.55.5,0.05, 1.96,0.1084.364,(4.364 4.55)

3.851,

0.108

.

H H n Z Z x x Z Z Z αμμμμασ==≠=======-=

=

=->

所以拒绝H 0,认为总体平均值有显着性变化.

15. 某种矿砂的5个样品中的含镍量(%)经测定为:

设含镍量服从正态分布,问在α=下能否接收假设:这批矿砂的含镍量为. 【解】设

0010/20.0050.005: 3.25;: 3.25.5,0.01,(1)(4) 4.60413.252,0.013,(3.252 3.25)

0.344,

0.013(4).

H H n t n t x s x t t t αμμμμα==≠===-====-=

==<

所以接受H 0,认为这批矿砂的含镍量为.

16. 在正常状态下,某种牌子的香烟一支平均克,若从这种香烟堆中

任取36支作为样本;测得样本均值为(克),样本方差s 2=(g 2).问这堆香烟是否处于正常状态.已知香烟(支)的重量(克)近似服从正态分布(取α=). 【解】设

0010/20.02520.025: 1.1;: 1.1.

36,0.05,(1)(35) 2.0301,36,1.008,0.1,

6 1.7456,

1.7456(35)

2.0301.

H H n t n t n x s x t t t αμμμμα==≠===-=========<=

所以接受H 0,认为这堆香烟(支)的重要(克)正常.

概率论与数理统计知识点总结!

《概率论与数理统计》 第一章随机事件及其概率 §1.1 随机事件 一、给出事件描述,要求用运算关系符表示事件: 二、给出事件运算关系符,要求判断其正确性: §1.2 概率 古典概型公式:P (A )= 所含样本点数 所含样本点数 ΩA 实用中经常采用“排列组合”的方法计算 补例1:将n 个球随机地放到n 个盒中去,问每个盒子恰有1个球的概率是多少?解:设A : “每个盒子恰有1个球”。求:P(A)=?Ω所含样本点数:n n n n n =???... Α所含样本点数:!1...)2()1(n n n n =??-?-?n n n A P ! )(=∴ 补例2:将3封信随机地放入4个信箱中,问信箱中信的封数的最大数分别为1、2、3的概率各是多少? 解:设A i :“信箱中信的最大封数为i”。(i =1,2,3)求:P(A i )=? Ω所含样本点数:6444 443==?? A 1所含样本点数:24234=?? 8 36424)(1== ∴A P A 2所含样本点数: 363423=??C 16 9 6436)(2== ∴A P A 3所含样本点数:443 3 =?C 16 1644)(3== ∴A P 注:由概率定义得出的几个性质: 1、0

P(A 1+A 2+...+ A n )= P(A 1) + P(A 2) +…+ P(A n ) 推论2:设A 1、 A 2、…、 A n 构成完备事件组,则 P(A 1+A 2+...+ A n )=1 推论3: P (A )=1-P (A ) 推论4:若B ?A ,则P(B -A)= P(B)-P(A) 推论5(广义加法公式): 对任意两个事件A 与B ,有P(A ∪B)=P(A)+P(B)-P(A B) 补充——对偶律: n n A A A A A A ???=???......2121 n n A A A A A A ???=??? (2121) §1.4 条件概率与乘法法则 条件概率公式:P(A/B)= )()(B P AB P (P(B)≠0)P(B/A)= ) () (A P AB P (P(A)≠0) ∴P (AB )=P (A /B )P (B )= P (B / A )P (A ) 有时须与P (A+B )=P (A )+P (B )-P (AB )中的P (AB )联系解题。 全概率与逆概率公式: 全概率公式: ∑==n i i i A B P A P B P 1 )/()()( 逆概率公式: ) () ()/(B P B A P B A P i i = ),...,2,1(n i = (注意全概率公式和逆概率公式的题型:将试验可看成分为两步做,如果要求第二步某事件的概率,就用全概率公式;如果求在第二步某事件发生条件下第一步某事件的概率,就用逆概率公式。) §1.5 独立试验概型 事件的独立性: )()()(B P A P AB P B A =?相互独立与 贝努里公式(n 重贝努里试验概率计算公式):课本P24 另两个解题中常用的结论—— 1、定理:有四对事件:A 与B 、A 与B 、A 与B 、A 与B ,如果其中有一对相互 独立,则其余三对也相互独立。 2、公式:)...(1)...(2121 n n A A A P A A A P ???-=??? 第二章 随机变量及其分布

学习概率论总结报告(个人总结)

实用汇总报告 学习概率论心得思想到 在大二刚开学我接触到了概率论与数理统计这门课程,虽然在高中时已经接触到了许多跟概率相关的东西,比如随机事件、古典概型以及一系列的计算方法但是在接触到更加高深的层次后还是有许多不一样的感受。 在课程开始之初老师就告诉我们这门课不是很难,关键还在于上课认真听讲。通过老师的简单介绍,我了解到概率论与数理统计是研究随机现象统计规律性的一门数学学科,其理论与方法的应用非常广泛,几乎遍及所有科学技术领域、工农业生产、国民经济以及我们的日常生活。对于作为信息管理与信息系统专业的我,其日后的帮助也是很大的,尤其是对于日后电脑方面的操作有着至关重要的辅助作用。 在这门课程中我们首先研究的是随机事件及一维随机变量二维随机变量的分布和特点。而在第二部分的数理统计中,它是以概率论为理论基础,根据试验或者观察得到的数据来研究随机现象,对研究对象的客观规律性做出种种估计和判断。整本书就是重点围绕这两个部分来讲述的。初学时,就算觉得理解了老师的讲课内容,但是一联系实际也会很难以应用上,简化不出有关所学知识的模型。在期末复习中,自己重新对于整个书本的流程安排还有每个章节的重点重新复习一遍,才觉得有了点头绪。 在长达一个学期的学习中,我增长了不少课程知识,同时也获得了好多关于这门课程的心得思想到。整个学期下来这门课程给我最深刻的思想到就是这门课程很抽象,很难以理解,但是这门课程给我带来了一种新的思维方式。前几章的知识好多都是高中讲过的,接触下来觉得挺简单,但是后面从第五章的大数定理及中心极限定理就开始是新的内容了。我觉得学习概率论与数理统计最重要的就是要学习书本中渗透的一种全新的思维方式。统计与概率的思维方式,和逻辑推理不一样,它是不确定的,也就是随机的思想。这也是一我思维能力最主要的体现,整个学习过程中要紧紧围绕这个思维方式进行。这些都为后面的数理统计还有参数估计、检验假设打下了基础。其次,在所有数学学科中,概率论是一门具有广泛应用的数学分支,是一门真正是把实际问题转换成数学问题的学科。在最后一章中,假设检验就是一个很好的例子。由前面所讲的伯努利大数定律知,小概率事件在N次重复试验中出现的概率很小,因此我们认为在一次试验中,小概率事件一般不会发生,如果发生了就该怀疑这件事件的真实性。正是根据这个思想去解决实际中的检验问题,总之概率与数理统计就是一门将现实中的问题建立模型然后应用理论知识解决掉的学科,具有很强的实际应用性。 在整个学期学习过程中,老师生动的讲解让我一直对这门课程保持着浓厚的兴趣,课上总是会讲解一些实际中的问题,比如抽奖先后中奖概率都一样,扔硬币为什么正反面的概率都是二分之一……一些问题还会让我们更理性的对待实际中的一些问题,比如赌博赢的概率很小,彩票中奖概率也是微乎其微,所以不能迷恋那些,不能期望用投机取巧来赚取钱财。总之,概率论与数理统计给予我的帮助是很大的。不仅拓展了我的数学思维,而且还帮助我把课堂上的知识与生活中的例子联系了起来。当然,这些与老师的辛勤劳动是分不开的,在此,十分感谢马金凤老师对我们一学期以来的谆谆教诲。 1 / 1

《概率论与数理统计》期末考试试题及解答

一、填空题(每小题3分,共15分) 1. 设事件B A ,仅发生一个的概率为0.3,且5.0)()(=+B P A P ,则B A ,至少有一个不发 生的概率为__________. 答案:0.3 解: 3.0)(=+B A B A P 即 )(25.0)()()()()()(3.0AB P AB P B P AB P A P B A P B A P -=-+-=+= 所以 1.0)(=AB P 9.0)(1)()(=-==AB P AB P B A P . 2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______. 答案: 161-e 解答: λλ λ λλ---= =+==+==≤e X P e e X P X P X P 2 )2(, )1()0()1(2 由 )2(4)1(==≤X P X P 知 λλλ λλ---=+e e e 22 即 0122 =--λλ 解得 1=λ,故 16 1)3(-= =e X P 3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2 X Y =在区间)4,0(内的概率 密度为=)(y f Y _________. 答案: 04,()()0,. Y Y X y f y F y f <<'===? 其它 解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则 2 ()()())))Y X X F y P Y y P X y y y y y =≤=≤ =≤- - 因为~(0,2)X U ,所以(0X F = ,即()Y X F y F = 故

概率论与数理统计期末总结

第1章 概率论的基本概念 1.1 随机试验 称满足以下三个条件的试验为随机试验: (1)在相同条件下可以重复进行; (2)每次试验的结果不止一个,并且能事先明确所有的可能结果; (3)进行试验之前,不能确定哪个结果出现。 1.2 样本点 样本空间 随机事件 随机试验的每一个可能结果称为一个样本点,也称为基本事件。 样本点的全体所构成的集合称为样本空间,也称为必然事件。必然事件在每次试验中必然发生。 随机试验的样本空间不一定唯一。在同一试验中,试验的目的不同时,样本 空间往往是不同的。所以应从试验的目的出发确定样本空间。 样本空间的子集称为随机事件,简称事件。 在每次试验中必不发生的事件为不可能事件。 1.3 事件的关系及运算 (1)包含关系 B A ?,即事件A 发生,导致事件B 发生; (2)相等关系 B A =,即B A ?且A B ?; (3)和事件(也叫并事件) B A C ?=,即事件A 与事件B 至少有一个发生; (4)积事件(也叫交事件) B A AB C ?==,即事件A 与事件B 同时发生; (5)差事件 AB A B A C -=-=,即事件A 发生,同时,事件B 不发生; (6)互斥事件(也叫互不相容事件) A 、 B 满足φ=AB ,即事件A 与事件B 不同时发生; (7)对立事件(也叫逆事件) A A -Ω=,即φ=Ω=?A A A A ,。

1.4 事件的运算律 (1)交换律 BA AB A B B A =?=?,; (2)结合律 ()()()()C AB BC A C B A C B A =??=??,; (3)分配律 ()()()()()()C A B A BC A AC AB C B A ??=??=?,; (4)幂等律 A AA A A A ==?, ; (5)差化积 B A AB A B A =-=-; (6)反演律(也叫德·摩根律)B A AB B A B A B A B A ?==?=?=?,。 1.5 概率的公理化定义 设E 是随机试验,Ω为样本空间,对于Ω中的每一个事件A ,赋予一个实数P (A ),称之为A 的概率,P (A )满足: (1)1)(0≤≤A P ; (2)1)(=ΩP ; (3)若事件 ,,, ,n A A A 21两两互不相容,则有 () ++++=????)()()(2121n n A P A P A P A A A P 。 1.6 概率的性质 (1)0)(=φP ; (2)若事件n A A A ,, , 21两两不互相容,则())()()(2121n n A P A P A P A A A P +++=??? ; (3))(1)(A P A P -=; (4))()()(AB P B P A B P -=-。 特别地,若B A ?,则)()(),()()(B P A P A P B P A B P ≤-=-; (5))()()()(AB P B P A P B A P -+=?。

北京邮电大学概率论期末考试试卷及答案

第1章 概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ; B :两次出现同一面,则= ; C :至少有一次出现正面,则C= . §1 .2 随机事件的运算 1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件: (1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则 (1)=?B A ,(2)=AB ,(3)=B A , (4)B A ?= ,(5)B A = 。 §1 .3 概率的定义和性质 1. 已知6.0)(,5.0)(,8.0)(===?B P A P B A P ,则 (1) =)(AB P , (2)()(B A P )= , (3))(B A P ?= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = . §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。 2. 已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则=?)(B A P 。 §1 .6 全概率公式 1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随机地抽一个 签,说明两人抽“中‘的概率相同。 2. 第一盒中有4个红球6个白球,第二盒中有5个红球5个白球,随机地取一盒,从中随 机地取一个球,求取到红球的概率。 §1 .7 贝叶斯公式 1. 某厂产品有70%不需要调试即可出厂,另30%需经过调试,调试后有80%能出厂,求(1) 该厂产品能出厂的概率,(2)任取一出厂产品, 求未经调试的概率。 2. 将两信息分别编码为A 和B 传递出去,接收站收到时,A 被误收作B 的概率为,

概率论期末复习试题二

概率论与数理统计试题 11级计算机大队二区队 一、选择题: 1、假设事件A与事件B互为对立,则事件AB( )。 (A) 是不可能事件(B) 是可能事件 (C) 发生的概率为1 (D) 是必然事件 答案:A。这是因为对立事件的积事件是不可能事件。 2、某人睡午觉醒来,发现表停了,他打开收音机想听电台整点报时,则他等待的时间小于10分钟的概率是()。 A、1 6 B、 1 12 C、 1 60 D、 1 72 答案:A。以分钟为单位,记上一次报时时刻为0,则下一次报时时刻为60,于是,这个人打开收音机的时间必在(0,60),记“等待时间短于分 钟”为事件A。则有S=(0,60),A=(50,60)所以P(A)=A S = 10 60 = 1 6 。 3、设连续型随机变量(X,Y)的两个分量X和Y相互独立,且服从同一分布,问P{X≤Y}=()。 A、0 B、1 2 C、 1 4 D、1 答案:B。利用对称性,因为X,Y独立同分布,所以有P{X≤Y}=P{Y≤X}, 而P{X≤Y}+ P{Y≤X}=1,所以P{X≤Y}=1 2 4、设二维随机变量(X,Y)的分布函数为F(x,y),分布律如下:

则F (2,3)=()。 A 、0 B 、14 C 、716 D 、916 答案:D 。 F (2,3)=P {X ≤2,Y ≤3} =P {X=1,Y=1}+P {X=1,Y=2}+ P {X=1,Y=3}+ P {X=2,Y=1}+ P {X=2.Y=2} + P {X=2,Y=3} =14+0+0+116+1 4+0 =9 16 5、下列命题中错误的是( )。 (A)若X p (λ),则()()λ==X D X E ; (B)若X 服从参数为λ的指数分布,则()()λ 1 ==X D X E ; (C)若X b (θ,1),则()()()θθθ-==1,X D X E ; (D)若X 服从区间[b a ,]上的均匀分布,则() 3 222 b ab a X E ++=. 答案:B 。 ()()2,λλ==X D X E 6、设()Y X ,服从二维正态分布,则下列条件中不是Y X ,相互独立的充分必要条 件是( )。 (A) Y X ,不相关 (B) ()()()Y E X E XY E = (C) ()0,cov =Y X (D) ()()0==Y E XY E

统计概率知识点归纳总结归纳大全

统计概率知识点归纳总结大全 1.了解随机事件的发生存在着规律性与随机事件概率的意义. 2.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率、 3.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率. 4.会计算事件在n 次独立重复试验中恰好发生k 次的概率. 5.掌握离散型随机变量的分布列、 6.掌握离散型随机变量的期望与方差、 7.掌握抽样方法与总体分布的估计、 8.掌握正态分布与线性回归、 考点1、求等可能性事件、互斥事件与相互独立事件的概率 解此类题目常应用以下知识: (1)等可能性事件(古典概型)的概率:P (A )=)()(I card A card =n m ; 等可能事件概率的计算步骤: (1) 计算一次试验的基本事件总数n ; (2) 设所求事件A,并计算事件A 包含的基本事件的个数m ; (3) 依公式()m P A n =求值; (4) 答,即给问题一个明确的答复、 (2)互斥事件有一个发生的概率:P (A +B )=P (A )+P (B ); 特例:对立事件的概率:P (A )+P (A )=P (A +A )=1、 (3)相互独立事件同时发生的概率:P (A ·B )=P (A )·P (B ); 特例:独立重复试验的概率:P n (k )=k n k k n p p C --)1(、其中P 为事件A 在一次试验中发生的概率,此式为二项式 [(1-P)+P]n 展开的第k+1项、

(4)解决概率问题要注意“四个步骤,一个结合”: ① 求概率的步骤就是: 第一步,确定事件性质???????等可能事件 互斥事件 独立事件 n 次独立重复试验 即所给的问题归结为四类事件中的某一种、 第二步,判断事件的运算???和事件积事件 即就是至少有一个发生,还就是同时发生,分别运用相加或相乘事件、 第三步,运用公式()()()()()()()()(1) k k n k n n m P A n P A B P A P B P A B P A P B P k C p p -?=???+=+???=??=-??等可能事件: 互斥事件: 独立事件: n 次独立重复试验:求解 第四步,答,即给提出的问题有一个明确的答复、 考点2离散型随机变量的分布列 1、随机变量及相关概念 ①随机试验的结果可以用一个变量来表示,这样的变量叫做随机变量,常用希腊字母ξ、η等表示、 ②随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量、 ③随机变量可以取某区间内的一切值,这样的随机变量叫做连续型随机变量、 2、离散型随机变量的分布列 ①离散型随机变量的分布列的概念与性质 一般地,设离散型随机变量ξ可能取的值为1x ,2x ,……,i x ,……,ξ取每一个值i x (=i 1,2,……)的概率P(i x =ξ)=i P ,则称下表、

四川大学概率统计往年期末试题

四川大学期末考试试题 (2008-2009学年第二学期) 一、单项选择题(每空2分,共10分) 1.设事件A 和B 独立,且,5.0)(,3.0)(==B P A P 则=)(B A P Y ( ) (A)0.8 (B)0.5 (C)0.65 (D)0.95 2.设随机变量X 的密度函数为+∞<<-∞=---x e x f x x ,61 )(625102π则 E(X)=( ) (A)5 (B)3 (C)-3 (D)-5 3.设X 有分布函数),(x F 令53-=X Y ,则Y 的分布函数为( ) (A)??? ??+3531y F (B))53(+y F (C) )353(-y F (D) ?? ? ??+35y F 4.设总体n X X X ,,,21Λ是独立同分布的随机变量序列,均服从参数为1的指数分布,令∑==n i i X n X 122 1,则?→?P X 2( ) (A)1 (B)2 (C)3 (D)4 5.设总体3212 ,,),,(~X X X N X σμ是来自X 的样本,记 32114 14121X X X Z ++=,3212313131X X X Z ++=,2125253X X Z += 这三个对μ的无偏估计量中,( )最有效 (A)1Z (B)2Z (C)3Z (D)无法判断 二、填空题(每空2分,共10分) 1.一个袋子中有3个红球,2个白球,从中任取3个球,则至少取得一个白球的概率是______; 2.设), 3.0,100(~B X 由切比雪夫不等式,≥<-)10|30(|X P _______; 3.设)4 3;914,1,1(~),(-N Y X 的二维正态分布,记Y X Z 32-=,则~Z _________分布; 4.设)(~λP X ,已知1)]2)(1[(=--X X E ,则=λ__________; 5.设总体)1,0(~N X ,321,,X X X 分别是来自X 的样本,

概率论期末考试复习题及答案()

第一章 1.设P (A )=3 1,P (A ∪B )=2 1,且A 与B 互不相容,则P (B )=____6 1_______. 2. 设P (A )=3 1,P (A ∪B )=2 1,且A 与B 相互独立,则P (B )=______4 1_____. 3.设事件A 与B 互不相容,P (A )=0.2,P (B )=0.3,则P (B A ?)=___0.5_____. 4.已知P (A )=1/2,P (B )=1/3,且A ,B 相互独立,则P (A B )=________1/3________. A 与B 相互独立 5.设P (A )=0.5,P (A B )=0.4,则P (B|A )=___0.2________. 6.设A ,B 为随机事件,且P(A)=0.8,P(B)=0.4,P(B|A)=0.25,则P(A|B)=____ 0.5______. 7.一口袋装有3只红球,2只黑球,今从中任意取出2只球,则这两只恰为一红一黑的概率是________ 0.6________. 8.设袋中装有6只红球、4只白球,每次从袋中取一球观其颜色后放回,并再放入1只同 颜色的球,若连取两次,则第一次取得红球且第二次取得白球的概率等于____12/55____. 9.一袋中有7个红球和3个白球,从袋中有放回地取两次球,每次取一个,则第一次取得红球且第二次取得白球的概率p=___0.21_____. 10.设工厂甲、乙、丙三个车间生产同一种产品,产量依次占全厂产量的45%,35%,20%,且各车间的次品率分别为4%,2%,5%.求:(1)从该厂生产的产品中任取1件,它是次品的概率; 3.5% (2)该件次品是由甲车间生产的概率. 35 18 第二章 1.设随机变量X~N (2,22),则P {X ≤0}=___0.1587____.(附:Φ(1)=0.8413) 设随机变量X~N (2,22),则P{X ≤0}=(P{(X-2)/2≤-1} =Φ(-1)=1-Φ(1)=0.1587 2.设连续型随机变量X 的分布函数为???≤>-=-,0, 0;0,1)(3x x e x F x

最新统计概率知识点归纳总结大全

统计概率知识点归纳总结大全 1.了解随机事件的发生存在着规律性和随机事件概率的意义. 2.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率. 3.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率. 4.会计算事件在n 次独立重复试验中恰好发生k 次的概率. 5. 掌握离散型随机变量的分布列. 6.掌握离散型随机变量的期望与方差. 7.掌握抽样方法与总体分布的估计. 8.掌握正态分布与线性回归. 考点1. 求等可能性事件、互斥事件和相互独立事件的概率 解此类题目常应用以下知识: (1)等可能性事件(古典概型)的概率:P (A )=) ()(I card A card =n m ; 等可能事件概率的计算步骤: (1) 计算一次试验的基本事件总数n ; (2) 设所求事件A ,并计算事件A 包含的基本事件的个数m ; (3) 依公式()m P A n =求值; (4) 答,即给问题一个明确的答复. (2)互斥事件有一个发生的概率:P (A +B )=P (A )+P (B ); 特例:对立事件的概率:P (A )+P (A )=P (A +A )=1. (3)相互独立事件同时发生的概率:P (A ·B )=P (A )·P (B ); 特例:独立重复试验的概率:P n (k )=k n k k n p p C --)1(.其中P 为事件A 在一次试验中发生的概率,此式为二项式[(1-P)+P]n 展开的第k+1项.

(4)解决概率问题要注意“四个步骤,一个结合”: ① 求概率的步骤是: 第一步,确定事件性质???? ???等可能事件 互斥事件 独立事件 n 次独立重复试验 即所给的问题归结为四类事件中的某一种. 第二步,判断事件的运算?? ?和事件积事件 即是至少有一个发生,还是同时发生,分别运用相加或相乘事件. 第三步,运用公式()()()()()()()()(1) k k n k n n m P A n P A B P A P B P A B P A P B P k C p p -? =???+=+? ??=??=-??等可能事件: 互斥事件: 独立事件: n 次独立重复试验:求解 第四步,答,即给提出的问题有一个明确的答复. 考点2离散型随机变量的分布列 1.随机变量及相关概念 ①随机试验的结果可以用一个变量来表示,这样的变量叫做随机变量,常用希腊字母ξ、η等表示. ②随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量. ③随机变量可以取某区间内的一切值,这样的随机变量叫做连续型随机变量. 2.离散型随机变量的分布列 ①离散型随机变量的分布列的概念和性质 一般地,设离散型随机变量ξ可能取的值为1x ,2x ,……,i x ,……,ξ取每一个值i x (=i 1,2,……)的概率P (i x =ξ)=i P ,则称下表.

概率论知识点总结及心得体会

概率论总结及心得体会 2008211208班 08211106号 史永涛 班内序号:01 目录 一、前五章总结 第一章随机事件和概率 (1) 第二章随机变量及其分布 (5) 第三章多维随机变量及其分布 (10) 第四章随机变量的数字特征 (13) 第五章极限定理 (18) 二、学习概率论这门课的心得体会 (20) 一、前五章总结 第一章随机事件和概率 第一节:1.、将一切具有下面三个特点:(1)可重复性(2)多结果性(3)不确定性的试验或观察称为随机试验,简称为试验,常用E表示。 在一次试验中,可能出现也可能不出现的事情(结果)称为随机事件,简称为事件。

不可能事件:在试验中不可能出现的事情,记为Ф。 必然事件:在试验中必然出现的事情,记为S或Ω。 2、我们把随机试验的每个基本结果称为样本点,记作e 或ω. 全体 样本点的集合称为样本空间. 样本空间用S或Ω表示. 一个随机事件就是样本空间的一个子集。 基本事件—单点集,复合事件—多点集 一个随机事件发生,当且仅当该事件所包含的一个样本点出现。 事件间的关系及运算,就是集合间的关系和运算。 3、定义:事件的包含与相等 若事件A发生必然导致事件B发生,则称B包含A,记为B?A 或A?B。 若A?B且A?B则称事件A与事件B相等,记为A=B。 定义:和事件 “事件A与事件B至少有一个发生”是一事件,称此事件为事件 A与事件B的和事件。记为A∪B。用集合表示为: A∪B={e|e∈A,或e∈B}。 定义:积事件 称事件“事件A与事件B都发生”为A与B的积事件,记为A∩ B或AB,用集合表示为AB={e|e∈A且e∈B}。 定义:差事件 称“事件A发生而事件B不发生,这一事件为事件A与事件B的差 事件,记为A-B,用集合表示为 A-B={e|e∈A,e?B} 。

【期末复习】大学概率论与数理统计期末考试试卷 答案

20**~20**学年第一学期概率论与数理统计期末考试试卷(A 卷)答案 一.(本题满分8分) 某城市有汽车100000辆,牌照编号从00000到99999.一人进城,偶然遇到一辆车,求该车牌照号中含有数字8的概率. 解: 设事件{}8汽车牌照号中含有数字=A ,所求概率为()A P .…………….2分 ()()40951.010 91155 =-=-=A P A P .…………….6分 二.(本题满分8分) 设随机事件,,满足:()()()41===C P B P A P ,()0=AB P ,()()16 1==BC P AC P .求随机事件,,都不发生的概率. 解: 由于AB ABC ?,所以由概率的非负性以及题设,得()()00=≤≤AB P ABC P ,因此有 ()0=ABC P .…………….2分 所求概率为() C B A P .注意到C B A C B A ??=,因此有…………….2分 ()()C B A P C B A P ??-=1…………….2分 ()()()()()()()ABC P BC P AC P AB P C P B P A P -+++---=1 8 3 016116104141411=-+++--- =.…………….2分 三.(本题满分8分) 某人向同一目标进行独立重复射击,每次射击时命中目标的概率均为,()10<

概率论与数理统计总结

第一章 随机事件与概率 第一节 随机事件及其运算 1、 随机现象:在一定条件下,并不总是出现相同结果的现象 2、 样本空间:随机现象的一切可能基本结果组成的集合,记为Ω={ω},其中ω 表示基本结果,又称为样本点。 3、 随机事件:随机现象的某些样本点组成的集合常用大写字母A 、B 、C 等表 示,Ω表示必然事件, ?表示不可能事件。 4、 随机变量:用来表示随机现象结果的变量,常用大写字母X 、Y 、Z 等表示。 5、 时间的表示有多种: (1) 用集合表示,这是最基本形式 (2) 用准确的语言表示 (3) 用等号或不等号把随机变量于某些实属联结起来表示 6、事件的关系 (1)包含关系:如果属于A 的样本点必属于事件B ,即事件 A 发生必然导致事 件B 发生,则称A 被包含于B ,记为A ?B; (2)相等关系:若A ?B 且B ? A ,则称事件A 与事件B 相等,记为A =B 。 (3)互不相容:如果A ∩B= ?,即A 与B 不能同时发生,则称A 与B 互不相容 7、事件运算 (1)事件A 与B 的并:事件A 与事件B 至少有一个发生,记为 A ∪B 。 (2)事件A 与B 的交:事件A 与事件B 同时发生,记为A∩ B 或AB 。 (3)事件A 对B 的差:事件A 发生而事件B 不发生,记为 A -B 。用交并补可以 表示为B A B A =-。 (4)对立事件:事件A 的对立事件(逆事件),即 “A 不发生”,记为A 。 对立事件的性质:Ω=?Φ=?B A B A ,。 8、事件运算性质:设A ,B ,C 为事件,则有 (1)交换律:A ∪B=B ∪A ,AB=BA (2)结合律:A ∪(B ∪C)=(A ∪B)∪C=A ∪B ∪C A(BC)=(AB)C=ABC (3)分配律:A ∪(B∩C)=(A ∪B)∩(A∪C)、 A(B ∪C)=(A∩B)∪(A∩C)= AB ∪AC (4)棣莫弗公式(对偶法则):B A B A ?=? B A B A ?=? 9、事件域:含有必然事件Ω ,并关于对立运算和可列并运算都封闭的事件类ξ 称为事件域,又称为σ代数。具体说,事件域ξ满足: (1)Ω∈ξ; (2)若A ∈ξ,则对立事件A ∈ξ; (3)若A n ∈ξ,n=1,2,···,则可列并 ∞ =1 n n A ∈ξ 。

概率论与数理统计知识点总结(详细)

《概率论与数理统计》 第一章概率论的基本概念 (2) §2.样本空间、随机事件..................................... 2.. §4 等可能概型(古典概型)................................... 3.. §5.条件概率.............................................................. 4.. . §6.独立性.............................................................. 4.. . 第二章随机变量及其分布 (5) §1随机变量.............................................................. 5.. . §2 离散性随机变量及其分布律................................. 5..§3 随机变量的分布函数....................................... 6..§4 连续性随机变量及其概率密度............................... 6..§5 随机变量的函数的分布..................................... 7..第三章多维随机变量. (7) §1 二维随机变量............................................ 7...§2边缘分布................................................ 8...§3条件分布................................................ 8...§4 相互独立的随机变量....................................... 9..§5 两个随机变量的函数的分布................................. 9..第四章随机变量的数字特征.. (10)

概率统计期末考试试题附答案

中国计量学院2011 ~ 2012 学年第 1 学期 《 概率论与数理统计(A) 》课程考试试卷B 开课二级学院: 理学院 ,考试时间: 2011 年 12_月26 日 14 时 考试形式:闭卷√、开卷□,允许带 计算器 入场 考生姓名: 学号: 专业: 班级: 1.某人射击时,中靶的概率为4 3 ,若射击直到中靶为止,则射击次数为3的概率为( ). (A) 43412?)( (B) 343)( (C) 41432?)( (D) 34 1)( 2.n 个随机变量),,3,2,1(n i X i =相互独立且具有相同的分布并且a X E i =)(,b X Var i =)(,则这些随机变量的算术平均值∑= =n i i X n X 1 1的数学期望和方差分别为( ). (A ) a ,2n b (B )a ,n b (C)a ,n b 2 (D )n a ,b 3.若100张奖券中有5张中奖,100个人分别抽取1张,则第100个人能中奖的概率为( ). (A) 01.0 (B) 03.0 (C) 05.0 (D) 0 4. 设 )(),(21x F x F 为两个分布函数,其相应的概率密度)(),(21x f x f 是连续函数,则必为概率密度的是( ). (A) )()(21x f x f (B))()(212x F x f (C))()(21x F x f (D) )()()()(1221x F x f x F x f + 5.已知随机变量X 的概率密度函数为?????≤>=-0,00 ,)(22 22x x e a x x f a x ,则随机变量X Y 1 = 的期望 =)(Y E ( ).

最新版概率统计简明教程期末复习题(答案)

工程数学考试题 第一题:第五页 第五题 5.用事件A,B,C 的运算关系表示下列事件。 (1)A 出现,B ,C 都不出现; (2)A ,B 都出现,C 不出现; (3)所有三个事件都出现; (4)三个事件中至少有一个出现; (5)三个事件都不出现; (6)不多于一个事件出现;(7)不多于两个事件出现; (8)三个事件中至少有两个出现。 第二题:第六页 第七题 7.接连进行三次射击,设i A ={第i 次射击命中}(i=1,2,3),试用1A ,2A ,3A 表述下列事件。 (1)A={前两次至少有一次击中目标} (2)B={三次射击恰好命中两次} (3)C={三次射击至少命中两次} (4)D={三次射击都未命中} 第三题:第二十九页 例14 例 14 从次品率为p=0.2的一批产品中,有放回抽取5次,每次取一件,分别求抽到的5件恰好有3件次品以及至多有3件次品这两个事件的概率。 第四题:第二十九页 例 15 例 15 某公司生产一批同型号的医疗仪器,产品的80%无需调试即为合格品,而其余20%需进一步调试。经调试后,其中70%为合格品,30%为次品。假设每台仪器的生产是相互独立的。 (1)求该批仪器的合格率; (2)又若从该批仪器中随机地抽取3台,求恰有一台为次品的概率。 第五题:第三十一页 第一题 1.已知随机事件A 的概率P (A )=0.5,随机事件B 的概率P (B )=0.6及条件概率P (B|A )=0.8,试求P (AB )及)B A P(。 第六题:第三十三页 第十二题 12.设事件A ,B 相互独立。证明:A ,B 相互独立,B ,A 相互独立。 第七题:第三十三页 第十五题 15.三个人独立破译一密码,他们能独立破译出的概率分别为0.25,.035,0.4,求此密码被破译出的概率。 第八题:第五十一页 例 19 例 19 某地抽样调查结果表明,考生的外语成绩(百分制)X 服从正态分布),(2 72σN ,且96分以上的考生占考生总数的2.3%,试求考生的外语成绩在60分至84分之间的概率。 第九题:第五十四页 第十六题 16.设随机变量X 的密度函数为()?? ?<<=其他, , 0, 40, 2x x x f 试求: (1)常数A ; (2)P(0

概率统计知识点全面总结

知识点总结:统计与概率 I 统计 1.三大抽样 (1)基本定义: ① 总体:在统计中,所有考查对象的全体叫做全体. ② 个体:在所有考查对象中的每一个考查对象都叫做个体. ③ 样本:从总体中抽取的一部分个体叫做总体的样本. ④ 样本容量:样本中个体的数目叫做样本容量. (2)抽样方法: ①简单随机抽样:逐个不放回、等可能性、有限性。=======★适用于总体较少★ 抽签法:整体编号( 1~N )放入不透明的容器中搅拌均匀逐个抽取n 次,即可得样本容量为 n 的样本。 随机数表法:整体编号(等位数,如001、111不能是1、111) 从0~9中随机取一行一列然后初方向随机 (上、下、左、右)重复,超过范围则忽略不计直至取得以n 为样本容量的样本。 ②系统抽样:容量大.等距,等可能。=======★适用于总体多★ 用随机方法编号,若N 无法被整除,则剔除后再分组,n N k 。再用简单随机抽样法来抽取一个个体,设为l ,则编号为l ,k+l ,2k+l ……(n-1)k ,抽出容量为n 的样本。(每组编号相同)。 ③分层抽样:总体差异明显.按所占比例抽取.等可能.=======★适用于由差异明显的几部分构成的总体★ 总体有几个差异明显的部分构成,经总体分成几个部分,然后按照所占比例进行抽样.抽样比为:k =n N 3.总体分布的估计: (1)一表二图: ①频率分布表——数据详实 ②频率分布直方图——分布直观 ③频率分布折线图——便于观察总体分布趋势 ★注:总体分布的密度曲线与横轴围成的面积为1。 (2)茎叶图: ①茎叶图适用于数据较少的情况,从中便于看出数据的分布,以及中位数.众位数等。 ②个位数为叶,十位数为茎,右侧数据按照从小到大书写,相同的数据重复写。

概率论与数理统计知识点总结(免费超详细版)

《概率论与数理统计》 第一章 概率论的基本概念 §2.样本空间、随机事件 1.事件间的关系 B A ?则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生 B }x x x { ∈∈=?或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ?发生 B }x x x { ∈∈=?且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ?发生 B }x x x { ?∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生 φ=?B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的 且S =?B A φ=?B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件 2.运算规则 交换律A B B A A B B A ?=??=? 结合律)()( )()(C B A C B A C B A C B A ?=???=??

分配律 )()B (C A A C B A ???=??)( ))(()( C A B A C B A ??=?? 徳摩根律B A B A A B A ?=??=? B — §3.频率与概率 定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事 件A 发生的频数,比值n n A 称为事件A 发生的频率 概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ), 称为事件的概率 1.概率)(A P 满足下列条件: (1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P (3)可列可加性:设n A A A ,,,21Λ是两两互不相容的事件,有∑===n k k n k k A P A P 1 1 )()(Y (n 可 以取∞) 2.概率的一些重要性质: (i ) 0)(=φP (ii )若n A A A ,,,21Λ是两两互不相容的事件,则有∑===n k k n k k A P A P 1 1 )()( Y (n 可以取∞)

相关文档
相关文档 最新文档