文档视界 最新最全的文档下载
当前位置:文档视界 › 概率论与数理统计学习总结

概率论与数理统计学习总结

概率论与数理统计学习总结
概率论与数理统计学习总结

概率论与数理统计

学习报告

学院

学号:

姓名:

概率论与数理统计学习报告

通过短短一学期的学习,虽然学习、研究地并不深入,但该课程的每一处内容都有不同的奇妙吸引着我,让我对它在生活中饰演的角色充满遐想;它将我带入了一个由随机变量为桥梁,通过表面偶然性找出其内在规律性,从而与其它的数学分支建立联系的世界,让我对这种进行大量的随机重复实验,通过分析研究得出统计规律性的过程产生了极大地兴趣。我很喜欢这门课程,但也不得不说课后在它上面花的时间并不多,因此学得还不深入,但它真的深深地吸引了我,我一定会找时间进一步深入地学习它。

先简单地介绍一下概率论与数理统计这门学科。

概率论是基于给出随机现象的数学模型,并用数学语言来描述它们,然后研究其基本规律,透过表面的偶然性,找出其内在的规律性,建立随机现象与数学其他分支的桥梁,使得人们可以利用已成熟的数学工具和方法来研究随机现象,进而也为其他数学分支和其他新兴学科提供了解决问题的新思路和新方法。数理统计是以概率论为基础,基于有效的观测、收集、整理、分析带有随机性的数据来研究随机现象,进而对所观察的问题作出推断和预测,直至为采取一定的决策和行动提供依据和建议。

概率论与数理统计是研究随机现象及其规律性的一门数学学科。研究随机现象的规律性有其独特的思想方法,它不是寻求出现每一现象的一切物理因素,不能用研究确定性现象的方法研究随机现象,而是承认在所研究的问题中存在一些人们不能认识或者根本不知道的

随机因素作用下,发生随机现象。这样,人们既可以通过试验来观察随机现象,揭示其规律性,作出决策,也可根据实际问题的具体情况找出随机现象的规律,作出决策。

至今,概率论与数理统计的理论与方法已经广泛应用于自然科学、社会科学以及人文科学等各个领域中,并随着计算机的普及,概率论与数理统计已成为处理信息、制定决策的重要理论和方法。它们不仅是许多新兴学科,如信息论、控制论、排队论、可靠性论以及人工智能的数学理论基础,而且与其他领域的新兴学科的相互交叉而产生了许多新的分支和边缘学科,如生物统计、统计物理、数理金融、神经网络统计分析、统计计算等。

概率论应用随机变量与随机变量的概率分布、数字特征及特征函数为数学工具对随机现象进行描述、分析与研究,其前提条件是假设随机变量的概率分布是已知的;而数理统计中作为研究对象的随机变量的概率分布是完全未知的,或者分布类型已知,但其中的某些参数或某些数字特征是未知的。概率论研究问题的方法是从假设、命题、已知的随机现象的事实出发,按一定的逻辑推理得到结论,在方法上是演绎式的。而统计学的方法是归纳式的,从所研究地对象的全体中随机抽取一部分进行试验或观测,以获得试验数据,依据试验数据所获取的信息,对整体进行推断,是归纳而得到结论的。因此掌握它特有的学习方法是很重要的。

在学习的过程中,不论是老师提出的一些希望我们课后讨论的问题还是自己在做作业看书过程中遇到的一些问题都引发了我的一些

思考,或许解答得并不全面甚至还可能是不正确的,但确实是自己的一点思考,提出来以后逐步地去解决完善吧。

<一>随机事件及其概率问题:

(1)事件A=Φ,那么

(=

?A

)

)

(对吗?

P0

=A

=

?

A

解析:此种说法不对。概率论里说了不可能事件的发生概率是0,但0概率事件可能发生.比如在宇宙中抽一个人,抽到你的概率。这就是一个0概率事件可能发生的例子!

随机变量分连续和离散两种,它们各自的分布描述是不同的。对于离散随机变量,如果它的事件域是有限个事件,则可以认为概率为0的事件一定不会发生,概率为1的事件必然发生。但若事件是无限的,则还要具体分析。既然0概率事件都是有可能发生的,那么概率趋近于零的事件果然有可能发生,只不过我们平时在处理问题的时候,把概率趋近于零的事件算作0概率事件,只是算作,不是绝对的是。对于连续性随机变量,单个具体点的概率密度值为一有界常数,这个值可以是任意的(包括0和1),但因为点是没有长度的,所以该点的概率密度积分为0(因为该点概率密度值有界),即该点所对应的事件发生的概率为0,但这个事件仍然是可能发生的,因为这个事件在事件域内。也就是说,概率为0的事件并不一定不会发生。同理,某个点的概率密度值为1,但该点的概率密度积分仍为0,所以概率为1的事件也不一定必然发生。总之,对于连续性随机变量,讨论单个点的概率是没有意义的(都为0),我们讨论的是,这个随机变量落在一个区间内的概率。

(2)事件A 、B 、C ,它们两两独立,是否A 、B 、C 一定是相互独立?

解析:不一定。举一个反例:某一个袋中有4个球,一个白色,

一个黑色,一个红色,一个为这三色,现任取一个球观察颜色。可知:设事件A,B,C,A=(有红色),B=(有白色),C=(有黑色)。

21

)()()(===C P B P A P ,

)()()()()()(2

1

21

41

)()()(C P B P C P A P B P A P BC P AC P AB P ===?====?A 、B 、C 两两独立,又?=??≠=)()()(21

21

21

41

)(C P B P A P ABC P A 、B 、C 不

是相互独立。所以几个事件两两独立不一定它们就是相互独立。

(对于此反例,

有一个问题就是21

21)()()()()()(41

)()()?======C P B P C P A P B P A P BC P AC P AB P ,(,

虽然在数值上相等,但会是一个数值上的巧合吗?

)()()(B P A P AB P =一定成立吗?)

(3)独立与互不相容的关系:(独立条件:)()()(B P A P AB P =,互不相容条件:0)(=AB P )

解析:若1)(0,1)(0<<<

?

>=0)()()(B P A P AB P A 、B 相容。 b: A 、B 不独立,?=0)(AB P A 、B 互不相容;?>≠0()()()B P A P AB P A 、B 相容

(4)A 与B 互相独立,B C ?, A 、C 是否一定互相独立?

解析:A 、C 不一定独立。举一反例:如图:

B C B P A P AB P ?≠?=,0)()()( )()C P 所以

A 、C 不独立。

<二>随机变量及其分布问题:

概率论中引入随机变量,从而使研究对象由随机事件扩大为随机变量,对于随机变量的分布函数,我们能够用微积分为工具进行研究,强有力的数学分析工具大大地增强了我们研究随机现象的手段——

<三>随机变量数字特征与极限定理:

我们都知道随机变量的概率分布能够完整地描述随机变量的统计规律,但在许多的实际问题中,求概率分布并不容易,另一方面,有时不需要知道随机变量的概率分布,而只需要知道他的某些数字特征就够了。数字特征虽然不像概率分布那样完整地描述了随机变量的统计规律,但它能集中地反映随机变量的某些统计特性,而且许多重要分布中的参数都与数字特征有关,因而数字特征在概率论与数理统计中占有重要地位。我们也学习了几种常见的分布的数字特征,包括期望、方差、协方差、相关系数以及矩等。

(1)不相关与独立之间的关系:

解析:不相关的等价命题:1。0

ρ2。cov(x,y)=0 3。

=

E(XY)=E(X)E(Y) 4。D(X+Y)=D(X)+D(Y)

E

X

(Y

E

E

XY

)

)

有数字特征)

不相关

独立?

=

(

?)(

(

结论:(1)X与Y独立,则X与Y一定不相关

(2)X 与Y 不相关,则X 与Y 不一定独立

证明:(1)由于X 与Y 独立,所以f(xy)=f(x)f(y),(f 为概率密度函数)于

是:E(XY)=∫∫f(xy)dxdy=∫∫[f(x)*f(y)]dxdy=∫f(x)dx*∫f(y)dy=E(X)E(Y) 所以:E(XY)=E(X)E(Y),即X ,Y 不相关。

(2)反例:X=cost,Y=sint ,其中t 是(0,2π]上的均匀分布随机变量。易得X 和Y 不相关,因为:

E(XY)=E(cost sint)=(1/2π)*∫sint cost dt = 0

E(X)=(1/2π)* ∫cost dt = 0,E(Y)=(1/2π)* ∫sint dt = 0 所以E(XY)=E(X)E(Y)。但是他们是不独立的。

因为:X 和Y 各自的概率密度函数在(-1,1)上有值,但是XY 的联合概率密度只在单位圆内有值,所以f(XY)不等于f(x)*f(y),两者不独立。

(2)切比雪夫不等式:[]2)

()(εεX D X E X P ≤≥-

切比雪夫不等式给出了在随机变量X 的分布未知的情况下,利用)(X E 和)(X D 对X 的概率分布进行估计的方法,有很广泛的应用。

(3) 注意一些应用中的独立条件:1。概率密度Y X f x f y x f )(),(=

(y );2。卷积公式 .=)(z f Z dx x z x f Y X )()f (-?+∞∞

-;3。N 个独立正态分布之和仍然是正态分布),(1211∑∑∑

===→n i i n i i n i i N X σμ;4。)()()(Y E X E XY E =,

)()()(Y D X D Y X D +=+

<四>数理统计与参数估计:

数理统计以概率论为理论基础,根据试验或观测到的数据,研究

如何利用有效的方法对这些已知的数据进行整理、分析和推断,从而对研究对象的性质和统计规律作出合理科学的估计和判断。然而在实际问题中,所研究的总体分布类型往往是已知的,但依赖于一个或几个的未知参数,如何从样本估计总体的未知参数就成为数理统计的基本问题之一。通过学习,简单地了解了一些关于点估计和区间估计的问题,能够解决一些简单的实际问题。

(1)如何推导出的样本方差:)(11)(1121222X n x n X x n S

n i i i --=--=∑∑= 推导过程:X~N ),(2σ

μ,X ~N ),(2n σμ。(注意独立条件)

1,---=-∑≠=n x n x x X x n i j i j j

i i i =11,1---∑≠=n x x n n n i j j j i ~N ))1(1

34,1

(2223σμ-++--n n n n n n 由2

S 是)(X D 的无偏估计从,中随机抽取n 个样本,

是样本均值,

是样本方差。那么为什么样本方差是除以

而不是n 呢?对于一个随机变量,分别表示其数学期望和方差,从中随机抽取n 个样本,是样本均值,记为的方差和期望。

概率论与数理统计与生活实际问题有着很密切的联系。它能将生活中的一些问题建立成一种数学模型,并且教给我们一些收集、分析、处理试验数据能力,使我们能够利用学过的成熟的数学工具和方法来

研究随机现象解决生活实际问题。以下就是几类我认为比较经典的模型和处理方法:

(1)“抓阄”是否是真正的公平?

解析:建立一个概率论模型:袋中有a 个黑球,b 个白球。随机地(不放回)把球一个个地摸出来。求A=“第k 次摸出的是黑球”的概率(k b a +≤).

解题:把a 个黑球与b 个白球看作是不同的,且把b a +个球的每一种排列看作是基本事件。于是基本事件总数)(b a +!。由于第k 次摸得黑球有a 种可能,而另外1-+b a 次摸得球的排列有)1(-+b a !种可能。所以A 中包含的基本事件数为)1(-+?b a a !。因此有:b a a

b a b a a A P +=I +I

-+?=)()1()(。由结果得出它与k 值无关,无论哪一次取

得黑球的概率都是一样的,或者说是取得黑球概率与先后次序无关。这就从理论上说明了平常人们采取的“抓阄”的办法是公平合理的。

(2)把一个比较复杂的随机变量X 拆成n 个比较简单的随机变量i x 的和,然后通过这些比较简单的随机变量的数学期望,根据数学期望的性质求得X 的数学期望。这是概率论中常采用的处理方法。建立一个数学模型:

r 个人在楼的底层进入电梯,楼上有n 层,每个乘客在任一层下电梯的概率是相同的。如到某一层无乘客下电梯,电梯就不停下。求直到乘客都下完时电梯停车的次数X 的数学期望。

解题:设i X 表示在第i 层电梯停车的次数,则

=i X {层有人下电梯。,第层没有人下电梯,第i i 1,0,易见

∑-===n i i n i i E X E X X 11)(X )(,且 由于每个人在任一层下电梯的概率均为n

1, 故r 个人同时不在第i 层下电梯的概率为r n )11(-

,即:r i n X P )11()0(-==。从而,r i n X P )11(1)1(--== 于是:

),,...,2,1()11(1)11(11)11(0)(n i n n n X E r r r i =--=?????

?--?+-?= 得?????

?-

-==∑=r n i i n n X E X E )11(1)()(1 (3)贝叶斯公式的应用:∑==n j j j i i i A B P A

P A B P A P B A P 1)

()()()()( 式中)(i A P 称为先验

概率,一般在试验前就已知,常常是以往的经验总结;)(B A P i 称为后

验概率,它反映了试验之后对各种原因发生的可能性大小的新知识。贝叶斯公式实际就是根据先验概率求后验概率的公式。

例题模型:设患病的人经过检查,被查出的概率为0.95,而为患病的人经检查,被误认为有肺病的概率为0.002。又设在全城居民中患病的概率为0.1%。若从居民中随机抽一人检查,诊断为有肺病,求这个人确实患有肺病的概率。

解题:以A 表示某居民患肺病的事件,A 以表示某居民无肺病。设B 为检查后诊断为有肺病的事件,于是问题就是求)(B A P .由于A A A A B 与又,+?互

不相容,322.0999

.0002.095.0001.095.0001.0)()()()()

()()(≈?+??=+=A B P A P A B P A P A B P A P B A P 概率论与数理统计有太多的奥妙,在我们的生活中有太多的“可

能性”“把握有多大”“估计值”“预测”。。。都与概率论与数理统计有着密切的联系,当我们真正的去深入研究它的时候,我相信我们一定会有意想不到的收获。

概率论与数理统计总结

第一章 随机事件与概率 第一节 随机事件及其运算 1、 随机现象:在一定条件下,并不总是出现相同结果的现象 2、 样本空间:随机现象的一切可能基本结果组成的集合,记为Ω={ω},其中ω 表示基本结果,又称为样本点。 3、 随机事件:随机现象的某些样本点组成的集合常用大写字母A 、B 、C 等表 示,Ω表示必然事件, ?表示不可能事件。 4、 随机变量:用来表示随机现象结果的变量,常用大写字母X 、Y 、Z 等表示。 5、 时间的表示有多种: (1) 用集合表示,这是最基本形式 (2) 用准确的语言表示 (3) 用等号或不等号把随机变量于某些实属联结起来表示 6、事件的关系 (1)包含关系:如果属于A 的样本点必属于事件B ,即事件 A 发生必然导致事 件B 发生,则称A 被包含于B ,记为A ?B; (2)相等关系:若A ?B 且B ? A ,则称事件A 与事件B 相等,记为A =B 。 (3)互不相容:如果A ∩B= ?,即A 与B 不能同时发生,则称A 与B 互不相容 7、事件运算 (1)事件A 与B 的并:事件A 与事件B 至少有一个发生,记为 A ∪B 。 (2)事件A 与B 的交:事件A 与事件B 同时发生,记为A∩ B 或AB 。 (3)事件A 对B 的差:事件A 发生而事件B 不发生,记为 A -B 。用交并补可以 表示为B A B A =-。 (4)对立事件:事件A 的对立事件(逆事件),即 “A 不发生”,记为A 。 对立事件的性质:Ω=?Φ=?B A B A ,。 8、事件运算性质:设A ,B ,C 为事件,则有 (1)交换律:A ∪B=B ∪A ,AB=BA (2)结合律:A ∪(B ∪C)=(A ∪B)∪C=A ∪B ∪C A(BC)=(AB)C=ABC (3)分配律:A ∪(B∩C)=(A ∪B)∩(A∪C)、 A(B ∪C)=(A∩B)∪(A∩C)= AB ∪AC (4)棣莫弗公式(对偶法则):B A B A ?=? B A B A ?=? 9、事件域:含有必然事件Ω ,并关于对立运算和可列并运算都封闭的事件类ξ 称为事件域,又称为σ代数。具体说,事件域ξ满足: (1)Ω∈ξ; (2)若A ∈ξ,则对立事件A ∈ξ; (3)若A n ∈ξ,n=1,2,···,则可列并 ∞ =1 n n A ∈ξ 。

概率论与数理统计课程教学大纲

概率论与数理统计课程教学大纲 一、课程说明 (一)课程名称:概率论与数理统计 所属专业:物理学 课程性质:必修 学分:3 (二)课程简介、目标与任务; 《概率论与数理统计》是研究随机现象规律性的一门学科;它有着深刻的实际背景,在自然科学、社会科学、工程技术、军事和工农业生产等领域中有广泛的应用。通过本课程的学习,使学生掌握概率与数理统计的基本概念,并在一定程度上掌握概率论认识问题、解决问题的方法。同时这门课程的学习对培养学生的逻辑思维能力、分析解决问题能力也会起到一定的作用。 (三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接; 先修课程:高等数学。后续相关课程:统计物理。《概率论与数理统计》需要用到高等数学中的微积分、级数、极限等数学知识与计算方法。它又为统计物理、量子力学等课程提供了数学基础,起了重要作用。 (四)教材与主要参考书。 教材: 同济大学数学系编,工程数学–概率统计简明教程(第二版),高等教 育出版社,2012. 主要参考书: 1.浙江大学盛骤,谢式千,潘承毅编,概率论与数理统计(第四版), 高等教育出版社,2008. 2.J.L. Devore, Probability and Statistics(fifth ed.)概率论与数 理统计(第5版)影印版,高等教育出版社,2004. 二、课程内容与安排 第一章随机事件 1.1 样本空间和随机事件; 1.2 事件关系和运算。

第二章事件的概率 2.1概率的概念;2.2 古典概型;2.3几何概型;2.4 概率的公理化定义。第三章条件概率与事件的独立性 3.1 条件概率; 3.2 全概率公式; 3.3贝叶斯公式;3.4 事件的独立性; 3.5 伯努利试验和二项概率。 第四章随机变量及其分布 4.1 随机变量及分布函数;4.2离散型随机变量;4.3连续型随机变量。 第五章二维随机变量及其分布 5.1 二维随机变量及分布函数;5.2 二维离散型随机变量;5.3 二维连续随机变量;5.4 边缘分布; 5.5随机变量的独立性。 第六章随机变量的函数及其分布 6.1 一维随机变量的函数及其分布;6.2 多元随机变量的函数的分布。 第七章随机变量的数字特征 7.1数学期望与中位数; 7.2 方差和标准差; 7.3协方差和相关系数; *7.4大数律; 7.5中心极限定理。 第八章统计量和抽样分布 8.1统计与统计学;8.2统计量;8.3抽样分布。 第九章点估计

概率论与数理统计知识点总结详细

概率论与数理统计知识点 总结详细 Newly compiled on November 23, 2020

《概率论与数理统计》 第一章 概率论的基本概念 §2.样本空间、随机事件 1.事件间的关系 B A ?则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生 B }x x x { ∈∈=?或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ?发生 B }x x x { ∈∈=?且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ?发生 B }x x x { ?∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生 φ=?B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的 且S =?B A φ=?B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件 2.运算规则 交换律A B B A A B B A ?=??=? 结合律)()( )()(C B A C B A C B A C B A ?=???=?? 分配律 )()B (C A A C B A ???=??)( 徳摩根律B A B A A B A ?=??=? B — §3.频率与概率 定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率 概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件: (1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P

概率论与数理统计的发展

数理统计学前沿简介 (陈希孺院士访谈) 一、概率论与数理统计学的产生和发展 记者:陈希孺院士,请你谈谈概率论与数理统计学学科的诞生和发展情况。 陈希孺院士:我们先从数理统计学开始,数理统计学是研究收集数据、分析数据并据以对所研究的问题作出一定的结论的科学和艺术。数理统计学所考察的数据都带有随机性(偶然性)的误差。这给根据这种数据所作出的结论带来了一种不确定性,其量化要借助于概率论的概念和方法。数理统计学与概率论这两个学科的密切联系,正是基于这一点。 统计学起源于收集数据的活动,小至个人的事情,大至治理一个国家,都有必要收集种种有关的数据,如在我国古代典籍中,就有不少关于户口、钱粮、兵役、地震、水灾和旱灾等等的记载。现今各国都设有统计局或相当的机构。当然,单是收集、记录数据这种活动本身并不能等同于统计学这门科学的建立,需要对收集来的数据进行排比、整理,用精炼和醒目的形式表达,在这个基础上对所研究的事物进行定量或定性估计、描述和解释,并预测其在未来可能的发展状况。例如根据人口普查或抽样调查的资料对我国人口状况进行描述,根据适当的抽样调查结果,对受教育年限与收入的关系,对某种生活习惯与嗜好(如吸烟)与健康的关系作定量的评估。根据以往一般时间某项或某些经济指标的变化情况,预测其在未来一般时间的走向等,做这些事情的理论与方法,才能构成一门学问——数理统计学的内容。

这样的统计学始于何时?恐怕难于找到一个明显的、大家公认的起点。一种受到某些著名学者支持的观点认为,英国学者葛朗特在1662年发表的著作《关于死亡公报的自然和政治观察》,标志着这门学科的诞生。中世纪欧洲流行黑死病,死亡的人不少。自1604年起,伦敦教会每周发表一次“死亡公报”,记录该周内死亡的人的姓名、年龄、性别、死因。以后还包括该周的出生情况——依据受洗的人的名单,这基本上可以反映出生的情况。几十年来,积累了很多资料,葛朗特是第一个对这一庞大的资料加以整理和利用的人,他原是一个小店主的儿子,后来子承父业,靠自学成才。他因这一部著作被选入当年成立的英国皇家学会,反映学术界对他这一著作的承认和重视。 这是一本篇幅很小的著作,主要内容为8个表,从今天的观点看,这只是一种例行的数据整理工作,但在当时则是有原创性的科研成果,其中所提出的一些概念,在某种程度上可以说沿用至今,如数据简约(大量的、杂乱无章的数据,须注过整理、约化,才能突出其中所包含的信息)、频率稳定性(一定的事件,如“生男”、“生女”,在较长时期中有一个基本稳定的比率,这是进行统计性推断的基础)、数据纠错、生命表(反映人群中寿命分布的情况,至今仍是保险与精算的基础概念)等。 葛朗特的方法被他同时代的政治经济学家佩蒂引进到社会经济问题的研究中,他提倡在这类问题的研究中不能尚空谈,要让实际数据说话,他的工作总结在他去世后于1690年出版的《政治算术》一书中。 当然,也应当指出,他们的工作还停留在描述性的阶段,不是现代意义下的数理统计学,那时,概率论尚处在萌芽的阶段,不足以给数理统计学的发展提供充分的理论支持,但不能由此否定他们工作的重大意义,作为现代数理统计学发展的几个源头之一,他们以及后续学者在人口、社会、经济等

概率论与数理统计期末考试试题及解答

概率论与数理统计期末考 试试题及解答 Prepared on 24 November 2020

一、填空题(每小题3分,共15分) 1.设事件B A ,仅发生一个的概率为,且5.0)()(=+B P A P ,则B A ,至少有一个不发生的概率为__________. 答案: 解: 即 所以 9.0)(1)()(=-==AB P AB P B A P . 2.设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则 ==)3(X P ______. 答案: 解答: 由 )2(4)1(==≤X P X P 知 λλλλλ---=+e e e 22 即 0122=--λλ 解得 1=λ,故 3.设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2X Y =在区间) 4,0(内的概率密度为=)(y f Y _________. 答案: 解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则 因为~(0,2)X U ,所以(0X F = ,即()Y X F y F = 故 另解 在(0,2)上函数2y x = 严格单调,反函数为()h y =所以 4.设随机变量Y X ,相互独立,且均服从参数为λ的指数分布,2)1(-=>e X P ,则=λ_________,}1),{min(≤Y X P =_________. 答案:2λ=,-4{min(,)1}1e P X Y ≤=- 解答: 2(1)1(1)P X P X e e λ-->=-≤==,故 2λ= 41e -=-. 5.设总体X 的概率密度为 ?????<<+=其它, 0, 10,)1()(x x x f θ θ 1->θ. n X X X ,,,21 是来自X 的样本,则未知参数θ的极大似然估计量为_________. 答案: 解答: 似然函数为 解似然方程得θ的极大似然估计为

概率论与数理统计小结

概率论与数理统计主要内容小结 概率部分 1、全概率公式与贝叶斯公式 全概率公式: )()|()(11B P B A P A P = ++)()|(22B P B A P )()|(n n B P B A P + 其中n B B B ,,,21 是空间S 的一个划分。 贝叶斯公式:∑== n j j j i i i B A P B P B A P B P A B P 1 ) |()() |()()|( 其中n B B B ,,,21 是空间S 的一个划分。 2、互不相容与互不相关 B A ,互不相容0)(,==?B A P B A φ 事件B A ,互相独立))(()(B A P B A P =? ; 两者没有必然联系 3、几种常见随机变量概率密度与分布律:两点分布,二项分布,泊松分布,均匀分布,二项分布,指数分布,正态分布。 ),,1(~p b X 即二点分布,则分布律为.1,0,)1(}{1=-==-k p p k x P k k ),,(~p n b X 即二项分布,则分布律为.,...,1,0,)1(}{n k p p C k x P k n k k n =-==- ),(~λπX 即泊松分布,则分布律为,......1,0,! }{== =-k k e k x P k λ λ ),,(~b a U X 即均匀分布,则概率密度为.,0),(,1 )(??? ??∈-=其它 b a x a b x f ),(~θE X 即指数分布,则概率密度为.,00 ,1)(?? ???>=-其它x e x f x θ θ ),,(~2σμN X 即正态分布,则则概率密度为+∞<<-∞= - x e x f x ,21)(2 2π .

概率论与数理统计教学大纲(48学时)

概率论与数理统计课程教学大纲(48学时) 撰写人:陈贤伟编写日期:2019 年8月 一、课程基本信息 1.课程名称:概率论与数理统计 2.课程代码: 3.学分/学时:3/48 4.开课学期:4 5.授课对象:本科生 6.课程类别:必修课 / 通识教育课 7.适用专业:软件技术 8.先修课程/后续课程:高等数学、线性代数/各专业课程 9.开课单位:公共基础课教学部 10.课程负责人: 11.审核人: 二、课程简介(包含课程性质、目的、任务和内容) 概率论与数理统计是描述“随机现象”并研究其数量规律的一门数学学科。通过本课程的教学,使学生掌握概率的定义和计算,能用随机变量概率分布及数字特征研究“随机现象”的规律,了解数理统计的基本理论与思想,并掌握常用的包括点估计、区间估计和假设检验等基本统计推断方法。该课程的系统学习,可以培养学生提高认识问题、研究问题与处理相关实际问题的能力,并为学习后继课程打下一定的基础。 本课程主要介绍随机事件及其概率、随机变量及其分布、多维随机变量及其分布、随机变量的数字特征、大数定律与中心极限定理、数理统计的基本概念、参数估计、假设检验等。 体现在能基于随机数学及统计推断的基本理论和方法对实验现象和数据进行分析、解释,并能对工程领域内涉及到的复杂工程问题进行数学建模和分析,且通过各个教学环节逐步培养学生的抽象思维能力、逻辑推理能力、数学运算能力、综合解题能力、数学建模与实践能力以及自学能力。 三、教学内容、基本要求及学时分配 1.随机事件及其概率(8学时) 理解随机事件的概念;了解样本空间的概念;掌握事件之间的关系和运算。理解概率的定义;掌握概率的基本性质,并能应用这些性质进行概率计算。理解条件概率的概念;掌握概率的加法公式、乘法公式;了解全概率公式、贝叶斯公式;理解事件的独立性概念。掌握应用事件独立性进行简单概率计算。理解伯努利试验;掌握二项分布的应用和计算。 2.随机变量及其分布(6学时) 理解随机变量的概念,理解随机变量分布函数的概念及性质,理解离散型随机变量的分布律及其性质,理解连续型随机变量的概率密度及其性质;掌握应用概率分布计算简单事件概率的方法,掌握二项分布、泊松分布、正态分布、均匀分布和指数分布和应用,掌握求简单随机变量函数的概率分布的方法。 3.多维随机变量及其分布(7学时)

概率论与数理统计概率历史的介绍

一、概率定义的发展与分析 1.古典定义的历史脉络 古典定义中的“古典”表明了这种定义起源的古老,它源于赌博.博弈的形式多种多样,但是它们的前提是“公平”,即“机会均等”,而这正是古典定义适用的重要条件:同等可能.16世纪意大利数学家和赌博家卡尔丹(1501—1576)所说的“诚实的骰子”,即道明了这一点.在卡尔丹以后约三百年的时间里,帕斯卡、费马、伯努利等数学家都在古典概率的计算、公式推导和扩大应用等方面做了重要的工作.直到1812年,法国数学家拉普拉斯(1749—1827)在《概率的分析理论》中给出概率的古典定义:事件A的概率等于一次试验中有利于事件A的可能结果数与该事件中所有可能结果数之比. 2.古典定义的简单分析 古典定义通过简单明了的方式定义了事件的概率,并给出了简单可行的算法.它适用的条件有二:(1)可能结果总数有限;(2)每个结果的出现有同等可能.其中第(2)条尤其重要,它是古典概率思想产生的前提. 如何在更多和更复杂的情况下,体现出“同等可能”?伯努利家族成员做了这项工作,他们将排列组合的理论运用到了古典概率中.用排列(组合)体现同等可能的要求,就是将总数为P(n,r)的各种排列(或总数为C(n,r)的各种组合)看成是等可能的,通常用“随意取”来表达这个意思.即使如此,古典定义的方法能应用的范围仍然很窄,

而且还有数学上的问题. “应用性的狭窄性”促使雅各布?伯努利(1654—1705)“寻找另一条途径找到所期待的结果”,这就是他在研究古典概率时的另一重要成果:伯努利大数定律.这条定律告诉我们“频率具有稳定性”,所以可以“用频率估计概率”,而这也为以后概率的统计定义奠定了思想基础.“古典定义数学上的问题”在贝特朗(1822—1900)悖论中表现得淋漓尽致,它揭示出定义存在的矛盾与含糊之处,这导致了拉普拉斯的古典定义受到猛烈批评. 3.统计定义的历史脉络 概率的古典定义虽然简单直观,但是适用范围有限.正如雅各布?伯努利所说:“……这种方法仅适用于极罕见的现象.”因此,他通过观察来确定结果数目的比例,并且认为“即使是没受过教育和训练的人,凭天生的直觉,也会清楚地知道,可利用的有关观测的次数越多,发生错误的风险就越小”.虽然原理简单,但是其科学证明并不简单,在古典概型下,伯努利证实了这一点,即“当试验次数愈来愈大时,频率接近概率”. 事实上,这不仅对于古典概型适用,人们确信“从现实中观察的频率稳定性”的事实是一个普遍规律.1919年,德国数学家冯?米塞斯(1883—1953)在《概率论基础研究》一书中提出了概率的统计定义:在做大量重复试验时,随着试验次数的增加,某个事件出现的频率总是在一个固定数值的附近摆动,显示出一定的稳定性,把这个固定的数值定义为这一事件的概率.

概率论与数理统计必考大题解题索引

概率论与数理统计必考大题解题索引 编制:王健 审核: 题型一:古典概型:全概率公式和贝叶斯公式的应用。 【相关公式】 全概率公式: ()()()()()() n 1122S P()=|()||()() (|)() =()(|)()(|). i n n E S A E B A P A B P B P A B P B P A B P B P AB P B A P A P A P A B P B P A B P B +++= =+12设实验的样本空间为,为的事件,B ,B ,……,B 为的划分,且>0,则有: P ?…其中有:。特别地:当n 2时,有: 贝叶斯公式: ()()i 1 00(1,2,,),()(|)() (|)()(|)() =()(|)() (|)()(|)()(|)() i i i i n i i j E S A E A P B i n P B A P A B P B P B A P A P A B P B P AB P A B P B P B A P A P A B P B P A B P B =>>===== +∑12n 设实验的样本空间为。为的事件,B ,B ,……,B 为S 的一个划分,且P ,……则有:特别地: 当n 2时,有: 【相关例题】 1.三家工厂生产同一批产品,各工厂的产量分别占总产量的40%、25%、35%,其产品的不合格率依次为0.05、0.04、和0.02。现从出厂的产品中任取一件,求: (1)恰好取到不合格品的概率; (2)若已知取到的是不合格品,它是第二家工厂生产的概率。 解:设事件 表示:“取到的产品是不合格品”;事件i A 表示:“取到的产品是第i 家工 厂生产的”(i =123,,)。 则Ω== 3 1i i A ,且P A i ()>0,321A A A 、、两两互不相容,由全概率公式得 (1)∑=?=3 1 )|()()(i i i A A P A P A P 1000/37100 210035100410025100510040=?+?+?=

概率论和数理统计知识点总结[超详细版]

《概率论与数理统计》 第一章 概率论的基本概念 §2.样本空间、随机事件 1.事件间的关系 B A ?则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生 B }x x x { ∈∈=?或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ?发生 B }x x x { ∈∈=?且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ?发生 B }x x x { ?∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生 φ=?B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的 且S =?B A φ=?B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件 2.运算规则 交换律A B B A A B B A ?=??=? 结合律)()( )()(C B A C B A C B A C B A ?=???=?? 分配律 )()B (C A A C B A ???=??)( ))(()( C A B A C B A ??=?? 徳摩根律B A B A A B A ?=??=? B — §3.频率与概率 定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事 件A 发生的频数,比值n n A 称为事件A 发生的频率 概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件: (1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P

概率论与数理统计课后习题及答案-高等教育出版社

概率论与数理统计课后习题答案 高等教育出版社 习题解答 1. 将一枚均匀的硬币抛两次,事件C B A ,,分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”。试写出样本空间及事件C B A ,,中的样本点。 解:{=Ω(正,正),(正,反),(反,正),(反,反)} {=A (正,正),(正,反)};{=B (正,正),(反,反)} {=C (正,正),(正,反),(反,正)} 2. 在掷两颗骰子的试验中,事件D C B A ,,,分别表示“点数之和为偶数”,“点 数之和小于5”,“点数相等”,“至少有一颗骰子的点数为3”。试写出样本空间及事件D C B A BC C A B A AB ---+,,,,中的样本点。 解:{})6,6(,),2,6(),1,6(,),6,2(,),2,2(),1,2(),6,1(,),2,1(),1,1(ΛΛΛΛ=Ω; {})1,3(),2,2(),3,1(),1,1(=AB ; {})1,2(),2,1(),6,6(),4,6(),2,6(,),5,1(),3,1(),1,1(Λ=+B A ; Φ=C A ;{})2,2(),1,1(=BC ; {})4,6(),2,6(),1,5(),6,4(),2,4(),6,2(),4,2(),5,1(=---D C B A 3. 以C B A ,,分别表示某城市居民订阅日报、晚报和体育报。试用C B A ,,表示以下 事件: (1)只订阅日报; (2)只订日报和晚报; (3)只订一种报; (4)正好订两种报; (5)至少订阅一种报; (6)不订阅任何报; (7)至多订阅一种报; (8)三种报纸都订阅; (9)三种报纸不全订阅。 解:(1)C B A ; (2)C AB ; (3)C B A C B A C B A ++; (4)BC A C B A C AB ++; (5)C B A ++; (6)C B A ; (7)C B A C B A C B A C B A +++或C B C A B A ++ (8)ABC ; (9)C B A ++ 4. 甲、乙、丙三人各射击一次,事件321,,A A A 分别表示甲、乙、丙射中。试说明下列事件所表示的结果:2A , 32A A +, 21A A , 21A A +, 321A A A , 313221A A A A A A ++. 解:甲未击中;乙和丙至少一人击中;甲和乙至多有一人击中或甲和乙至少有一人未击中;甲和乙都未击中;甲和乙击中而丙未击中;甲、乙、丙三人至少有两人击中。 5. 设事件C B A ,,满足Φ≠ABC ,试把下列事件表示为一些互不相容的事件的和:C B A ++,C AB +,AC B -.

概率论与数理统计知识点总结(详细)

《概率论与数理统计》 第一章概率论的基本概念 (2) §2.样本空间、随机事件..................................... 2.. §4 等可能概型(古典概型)................................... 3.. §5.条件概率.............................................................. 4.. . §6.独立性.............................................................. 4.. . 第二章随机变量及其分布 (5) §1随机变量.............................................................. 5.. . §2 离散性随机变量及其分布律................................. 5..§3 随机变量的分布函数....................................... 6..§4 连续性随机变量及其概率密度............................... 6..§5 随机变量的函数的分布..................................... 7..第三章多维随机变量. (7) §1 二维随机变量............................................ 7...§2边缘分布................................................ 8...§3条件分布................................................ 8...§4 相互独立的随机变量....................................... 9..§5 两个随机变量的函数的分布................................. 9..第四章随机变量的数字特征.. (10)

概率论与数理统计知识点总结详细

概率论与数理统计知识 点总结详细 Document number:PBGCG-0857-BTDO-0089-PTT1998

《概率论与数理统计》 第一章 概率论的基本概念 §2.样本空间、随机事件 1.事件间的关系 B A ?则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生 B }x x x { ∈∈=?或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ?发生 B }x x x { ∈∈=?且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ?发生 B }x x x { ?∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生 φ=?B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的 且S =?B A φ=?B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件 2.运算规则 交换律A B B A A B B A ?=??=? 结合律)()( )()(C B A C B A C B A C B A ?=???=?? 分配律 )()B (C A A C B A ???=??)( ))(()( C A B A C B A ??=?? 徳摩根律B A B A A B A ?=??=? B — §3.频率与概率 定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率 概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件: (1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P

概率论与数理统计试题与答案

概率论与数理统计试题 与答案 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

概率论与数理统计试题与答案(2012-2013-1) 概率统计模拟题一 一、填空题(本题满分18分,每题3分) 1、设,3.0)(,7.0)(=-=B A P A P 则)(AB P = 。 2、设随机变量p)B(3,~Y p),B(2,~X ,若9 5 )1(= ≥X p ,则=≥)1(Y p 。 3、设X 与Y 相互独立,1,2==DY DX ,则=+-)543(Y X D 。 4、设随机变量X 的方差为2,则根据契比雪夫不等式有≤≥}2EX -X {P 。 5、设)X ,,X ,(X n 21 为来自总体)10(2 χ的样本,则统计量∑==n 1 i i X Y 服从 分布。 6、设正态总体),(2σμN ,2σ未知,则μ的置信度为α-1的置信区间的长度 =L 。(按下侧分位数) 二、选择题(本题满分15分,每题3分) 1、 若A 与自身独立,则( ) (A)0)(=A P ; (B) 1)(=A P ;(C) 1)(0<

(完整word版)概率论与数理统计教案(48课时)

《概率论与数理统计》课程教案 第一章 随机事件及其概率 一.本章的教学目标及基本要求 (1) 理解随机试验、样本空间、随机事件的概念; (2) 掌握随机事件之间的关系与运算,; (3) 掌握概率的基本性质以及简单的古典概率计算; 学会几何概率的计算; (4) 理解事件频率的概念,了解随机现象的统计规律性以及概率的统计定义。了解概 率的公理化定义。 (5) 理解条件概率、全概率公式、Bayes 公式及其意义。理解事件的独立性。 二.本章的教学内容及学时分配 第一节 随机事件及事件之间的关系 第二节 频率与概率 2学时 第三节 等可能概型(古典概型) 2 学时 第四节 条件概率 第五节 事件的独立性 2 学时 三.本章教学内容的重点和难点 1) 随机事件及随机事件之间的关系; 2) 古典概型及概率计算; 3)概率的性质; 4)条件概率,全概率公式和Bayes 公式 5)独立性、n 重伯努利试验和伯努利定理 四.教学过程中应注意的问题 1) 使学生能正确地描述随机试验的样本空间和各种随机事件; 2) 注意让学生理解事件,,,,,A B A B A B A B AB A ???-=Φ…的具体含义,理解 事件的互斥关系; 3) 让学生掌握事件之间的运算法则和德莫根定律; 4) 古典概率计算中,为了计算样本点总数和事件的有利场合数,经常要用到排列和组 合,复习排列、组合原理; 5) 讲清楚抽样的两种方式——有放回和无放回; 五.思考题和习题 思考题:1. 集合的并运算?和差运算-是否存在消去律?

2. 怎样理解互斥事件和逆事件? 3. 古典概率的计算与几何概率的计算有哪些不同点?哪些相同点? 习题: 第二章 随机变量及其分布 一.本章的教学目标及基本要求 (1) 理解随机变量的概念,理解随机变量分布函数的概念及性质, 理解离散型和连续 型随机变量的概率分布及其性质,会运用概率分布计算各种随机事件的概率; (2) 熟记两点分布、二项分布、泊松分布、正态分布、均匀分布和指数分布的分布律 或密度函数及性质; 二.本章的教学内容及学时分配 第一节 随机变量 第二节 第二节 离散型随机变量及其分布 离散随机变量及分布律、分布律的特征 第三节 常用的离散型随机变量 常见分布(0-1分布、二项分布、泊松分布) 2学时 第四节 随机变量的分布函数 分布函数的定义和基本性质,公式 第五节 连续型随机变量及其分布 连续随机变量及密度函数、密度函数的性质 2学时 第六节 常用的连续型随机变量 常见分布(均匀分布、指数分布、正态分布)及概率计算 2学时 三.本章教学内容的重点和难点 a) 随机变量的定义、分布函数及性质; b) 离散型、连续型随机变量及其分布律或密度函数,如何用分布律或密度函数求任何 事件的概率; c) 六个常见分布(二项分布、泊松分布、几何分布、均匀分布、指数分布、正态分布); 四.教学过程中应注意的问题 a) 注意分布函数(){}F x P X x =<的特殊值及左连续性概念的理解; b) 构成离散随机变量X 的分布律的条件,它与分布函数()F x 之间的关系; c) 构成连续随机变量X 的密度函数的条件,它与分布函数()F x 之间的关系; d) 连续型随机变量的分布函数()F x 关于x 处处连续,且()0P X x ==,其中x 为任

《概率论与数理统计》课程学习心得

《概率论与数理统计》课程学习感想 概率论与数理统计是研究随机现象统计规律的科学,既是重要的基础理论,又是实践性很强的应用科学。 概率论与数理统计是现代数学的一个重要分支。近二十年来,随着计算机的发展以及各种统计软件的开发,概率统计方法在金融、保险、生物、医学、经济、运筹管理和工程技术等领域得到了广泛应用。主要包括:极限理论、随机过程论、数理统计学、概率论方法应用、应用统计学等。极限理论包括强极限理论及弱极限理论;随机过程论包括马氏过程论、鞅论、随机微积分、平稳过程等有关理论。概率论方法应用是一个涉及面十分广泛的领域,包括随机力学、统计物理学、保险学、随机网络、排队论、可靠性理论、随机信号处理等有关方面。它主要是通过数学建模,理论分析、推导,数值计算以及计算机模拟等理论分析、统计分析和模拟分析,以求研究和分析所涉及的理论问题和实际问题。 实用性赋予了概率论与数理统计强大的生命力。17世纪概率论与数理统计作为学科诞生后,其方法就被英国古典政治经济学创始人佩蒂引进到社会经济问题的研究中,他提倡让实际数据说话,其对资本主义经济的研究从流通领域进入生产领域,对商品的价值量做了正确的分析。 生活中会遇到这样的事例:有四张彩票供三个人抽取,其中只有一张彩票有奖。第一个人去抽,他的中奖概率是25%,结果没抽到。第二个人看了,心里有些踏实了,他中奖的概率是33%,结果他也没抽到。第三个人心里此时乐开了花,其他的人都失败了,觉得自己很幸运,中奖的机率高达50%,可结果他同样没中奖。由此看来,概率的大小只是在效果上有所不同,很大的概率给人的安慰感更为强烈。但在实质上却没有区别,每个人中奖的概率都是50%,即中奖与不中奖。 同样的道理,对于个人而言,在生活中要成功做好一件事的概率是没有大小之分的,只有成功或失败之分。但这概率的大小却很能影响人做事的心态。 如果说概率有大小之分,那应该不是针对个体而言,而是从一个群体出发,因为不同的人有不同的信念,有不同的做事方法。把地球给撬起来,这在大多数

概率论与数理统计浙大版概述

§3.2 二维 r.v.的条件分布 ,2,1,,),(====j i p y Y x X P ij j i 设二维离散型 r.v. ( X ,Y )的分布 若 )(1>===∑∞ =?j ij i i p x X P p 则称 ? = ===i ij i j i p p x X P y Y x X P )(),(为在 X = x i 的条件下, Y 的条件分布律 ,2,1=j ) (i j x X y Y P ===记作 二维离散 r.v.的条件分布律

若 , 0)(1 >===∑∞ =?i ij j j p y Y P p 则称 j ij j j i p p y Y P y Y x X P ?====)(),(为在 Y = y j 的条件下X 的条件分布律 ,2,1=i ) (j i y Y x X P ===记作 类似乘法公式 ) ()(),(i j i j i x X y Y P x X P y Y x X P ======) ()(j i j y Y x X P y Y P ====或 ,2,1,=j i

类似于全概率公式 ) ,()(1 1∑∑∞ =∞======j j i j ij i y Y x X P p x X P ) ()(1 j j j i y Y P y Y x X P ====∑∞ = ,2,1=i ) ,()(1 1∑∑∞ =∞======i j i i ij j y Y x X P p y Y P ) ()(1i i i j x X P x X y Y P ====∑∞ = ,2,1=j

例1把三个球等可能地放入编号为 1, 2, 3 的三个盒子中, 每盒可容球数无限. 记X 为落入 1 号盒的球数, Y 为落入 2 号盒的球数,求 (1) 在Y = 0 的条件下,X 的分布律; (2) 在X = 2 的条件下,Y 的分布律.

概率论与数理统计考试试卷与答案

0506 一.填空题(每空题2分,共计60 分) 1、A、B 是两个随机事件,已知p(A) 0.4,P(B) 0.5,p(AB) 0.3 ,则p(A B) 0.6 , p(A -B) 0.1 ,P(A B)= 0.4 , p(A B) 0.6。 2、一个袋子中有大小相同的红球6只、黑球4只。(1)从中不放回地任取2 只,则第一次、第二次取红色球的概率为:1/3 。(2)若有放回地任取 2 只,则第一次、第二次取红色球的概率为:9/25 。( 3)若第一次取一只球观查球颜色后,追加一只与其颜色相同的球一并放入袋中后,再取第二只,则第一次、第二次取红色球的概率为:21/55 。 3、设随机变量X 服从B(2,0.5)的二项分布,则p X 1 0.75, Y 服从二项分 布B(98, 0.5), X 与Y 相互独立, 则X+Y 服从B(100,0.5),E(X+Y)= 50 , 方差D(X+Y)= 25 。 4、甲、乙两个工厂生产同一种零件,设甲厂、乙厂的次品率分别为0.1、 0.15.现从由甲厂、乙厂的产品分别占60%、40%的一批产品中随机抽取 一件。 ( 1)抽到次品的概率为:0.12 。 2)若发现该件是次品,则该次品为甲厂生产的概率为:0.5 6、若随机变量X ~N(2,4)且(1) 0.8413 ,(2) 0.9772 ,则P{ 2 X 4} 0.815 , Y 2X 1,则Y ~ N( 5 ,16 )。

7、随机变量X、Y 的数学期望E(X)= -1,E(Y)=2, 方差D(X)=1 ,D(Y)=2, 且 X、Y 相互独立,则:E(2X Y) - 4 ,D(2X Y) 6 。 8、设D(X) 25 ,D( Y) 1,Cov( X ,Y) 2,则D(X Y) 30 9、设X1, , X 26是总体N (8,16)的容量为26 的样本,X 为样本均值,S2为样本方 差。则:X~N(8 ,8/13 ),25S2 ~ 2(25),X 8 ~ t(25)。 16 s/ 25 10、假设检验时,易犯两类错误,第一类错误是:”弃真” ,即H0 为真时拒绝H0, 第二类错误是:“取伪”错误。一般情况下,要减少一类错误的概率,必然增大另一类错误的概率。如果只对犯第一类错误的概率加以控制,使之

概率论与数理统计概率历史介绍

概率论与数理统计概率历史介绍

一、概率定义的发展与分析 1.古典定义的历史脉络 古典定义中的“古典”表明了这种定义起源的古老,它源于赌博.博弈的形式多种多样,但是它们的前提是“公平”,即“机会均等”,而这正是古典定义适用的重要条件:同等可能.16世纪意大利数学家和赌博家卡尔丹(1501—1576)所说的“诚实的骰子”,即道明了这一点.在卡尔丹以后约三百年的时间里,帕斯卡、费马、伯努利等数学家都在古典概率的计算、公式推导和扩大应用等方面做了重要的工作.直到1812年,法国数学家拉普拉斯(1749—1827)在《概率的分析理论》中给出概率的古典定义:事件A的概率等于一次试验中有利于事件A的可能结果数与该事件中所有可能结果数之比. 2.古典定义的简单分析 古典定义通过简单明了的方式定义了事件的概率,并给出了简单可行的算法.它适用的条件有二:(1)可能结果总数有限;(2)每个结果的出现有同等可能.其中第(2)条尤其重要,它是古典概率思想产生的前提. 如何在更多和更复杂的情况下,体现出“同等可能”?伯努利家族成员做了这项工作,他们将排列组合的理论运用到了古典概率中.用排列(组合)体现同等可能的要求,就是将总数为P(n,r)的各种排列(或总数为C(n,r)的各种组合)看成是等可能的,通常用“随意取”来表达这个意思.即使如此,古典定义的方法能应用的范围仍然很窄,而且还有数学上的问题. “应用性的狭窄性”促使雅各布?伯努利(1654—1705)“寻找另一条途径找到所期待的结果”,这就是他在研究古典概率时的另一重要成果:伯努利大数定律.这条定律告诉我们“频率具有稳定性”,所以可以“用频率估计概率”,而这也为以后概率的统计定义奠定了思想基础.“古典定义数学上的问题”在贝特朗(1822—1900)悖论中表现得淋漓尽致,它揭示出定义存在的矛盾与含糊之处,这导致了拉普拉斯的古典定义受到猛烈批评. 3.统计定义的历史脉络 概率的古典定义虽然简单直观,但是适用范围有限.正如雅各布?伯努利所说:“……这种方法仅适用于极罕见的现象.”因此,他通过观察来确定结果数目的比例,并且认为“即使是没受过教育和训练的人,凭天生的直觉,也会清楚地知道,可利用的有关观测的次数越多,发生错误的风险就越小”.虽然原理简单,但是其科学证明并不简单,在古典概型下,伯努利证实了这一点,即“当试验次数愈来愈大时,频率接近概率”. 事实上,这不仅对于古典概型适用,人们确信“从现实中观察的频率稳定性”的事实是一个普遍规律.1919年,德国数学家冯?米塞斯(1883—1953)在《概率论基础研究》一书中提出了概率的统计定义:在做大量重复试验时,随着试验次数的增加,某个事件出现的频率总是在一个固定数值的附近摆动,显示出一定的稳定性,把这个固定的数值定义为这一事件的概率.

相关文档
相关文档 最新文档