文档视界 最新最全的文档下载
当前位置:文档视界 › 高二数学数列练习题(含答案)

高二数学数列练习题(含答案)

高二数学数列练习题(含答案)
高二数学数列练习题(含答案)

高二《数列》专题

1.n S 与n a 的关系:1

1(1)(1)

n n n S n a S S n -=??=?

->?? ,已知n S 求n a ,应分1=n 时1a = ;2≥n 时,n a =

两步,最后考虑1a 是否满足后面的n a . 2.等差等比数列

(3)累乘法(

n n n c a a =+1型);(4)利用公式1

1(1)(1)

n n n S n a S S n -=??=?->??;(5)构造法(b ka a n n +=+1型)(6) 倒数法 等

4.数列求和

(1)公式法;(2)分组求和法;(3)错位相减法;(4)裂项求和法;(5)倒序相加法。

5. n S 的最值问题:在等差数列{}n a 中,有关n S 的最值问题——常用邻项变号法求解:

(1)当0,01<>d a 时,满足??

?≤≥+00

1

m m a a 的项数m使得m S 取最大值.

(2)当 0,01>

?≥≤+00

1

m m a a 的项数m使得m S 取最小值。

也可以直接表示n S ,利用二次函数配方求最值。在解含绝对值的数列最值问题时,注意转化思想的应用。

6.数列的实际应用

现实生活中涉及到银行利率、企业股金、产品利润、人口增长、工作效率、图形面积、等实际问题,常考虑用数列的知识来解决.

训练题

一、选择题

1.已知等差数列{}n a 的前三项依次为1a -、1a +、23a +,则2011是这个数列的 (?B ) A.第1006项?? ?B .第1007项

C . 第1008项 D. 第1009项

2.在等比数列}{n a 中,485756=-=+a a a a ,则10S 等于 (A ) A .1023 B .1024 C .511 D .512

3.若{an }为等差数列,且a 7-2a 4=-1,a 3=0,则公差d =

( )

A.-2 B .-错误! C.错误! D.2

由等差中项的定义结合已知条件可知2a 4=a5+a 3,∴2d =a 7-a 5=-1,即d =-错误!.故选B.

4.已知等差数列{a n}的公差为正数,且a 3·a 7=-12,a 4+a 6=-4,则S 20为( A )

A.180??? ? ??? B .-180 C.90???? ???D.-90

5.(2010青岛市)已知{}n a 为等差数列,若π=++951a a a ,则28cos()a a +的值为( A )

?A .2

1

-

B.23-

C.2

1

?D .23

6.在等比数列{an }中,若a 3a 5a 7a 9a 11=243,则错误!的值为?( )

A.9 B .1 C.2 D.3

解析 由等比数列性质可知a 3a5a 7a9a 11=a 错误!=243,所以得a 7=3,又错误!=错误!=a7,故选D.

7.已知等差数列{an }的前n 项和为S n,a 1+a 5=错误!S 5,且a 9=20,则S 11=( )

A.260 B.220 C .130

D .110

解析 ∵S5=\f(a 1+a 5,2)×5,又∵错误!S 5=a 1+a5,∴a 1+a5=0.∴a3=0,∴S11=错误!×11=错误!×11=错误!×11=110,故选D.

8各项均不为零的等差数列{a n }中,若a 错误!-a n -1-a n +1=0(n ∈N *,n ≥2),则S 2 009等于

A .0 ?B.2 C.2 009

D .4 018

解析 各项均不为零的等差数列{an },由于a 错误!-a n-1-an +1=0(n ∈N *,n≥2),则a 错误!-2a n =0,a n=2,S 2 009=4 018,故选D.

9.数列{an}是等比数列且a n >0,a 2a4+2a 3a5+a 4a 6=25,那么a 3+a5的值等于

A.5 B.10

C .15 ?D.20

解析 由于a 2a 4=a 错误!,a4a 6=a错误!,所以a 2·a 4+2a 3·a 5+a 4·a6=a 错误!+2a 3a 5+a 错误!=(a 3+a 5)2=25.所以a 3+a5=±5.又an>0,所以a 3+a 5=5.所以选A.

10. 首项为1,公差不为0的等差数列{a n}中,a 3,a4,a6是一个等比数列的前三项,则这个等比数列的第四项是?

( ) A.8 B .-8 C.-6 D.不确定

答案 B

解析 a 错误!=a 3·a 6?(1+3d )2=(1+2d )·(1+5d ) ?d (d +1)=0?d=-1,∴a 3=-1,a4=-2,∴q =2. ∴a 6=a4·q =-4,第四项为a 6·q =-8.

11.在△AB C中,tan A是以-4为第三项,4为第七项的等差数列的公差,t an B 是以3

1

为第三项,9为第六项的等比数列的公比,则这个三角形是(B )

A.钝角三角形 ??????

B.锐角三角形 C .等腰三角形 ????D .非等腰的直角三角形

12、(2009澄海)记等差数列{}n a 的前项和为n s ,若103s s =,且公差不为0,则当n s 取最大值时,=n ( )C

A.4或5

B .5或6 ? C.6或7?? D .7或8

13.在等差数列{an }中,前n 项和为S n ,且S 2 011=-2 011,a 1 007=3,则S 2 012的值为??( )

A.1 006 ?B .-2 012 C .2 012

D .-1 006

答案 C 解析 方法一 设等差数列的首项为a 1,公差为d ,根据题意可得,

错误!

即错误!解得错误!

所以,S 2 012=2 012a 1+错误!d

=2 012×(-4 021)+2 012×2 011×2 =2 012×(4 022-4 021)=2012.

方法二 由S 2 011=2 011(a 1+a 2 011)

2=2 011a1 006=-2 011, 解得a1 006=-1,则

S 2 012=2 012(a1+a 2 012)

=错误!=错误!=2 012.

14.设函数f (x )满足f(n +1)=错误!(n ∈N*),且f (1)=2,则f(20)=( B )

A.95

B.97

C.105

D .192

解析 f (n +1)=f(n )+错误!,∴错误!

累加,得f (20)=f (1)+(错误!+错误!+…+错误!)=f (1)+错误!=97.

15.已知数列{}n a 的前n 项和n S 满足1)1log 2+=+n S n (,则通项公式为(B )

A .)(2*

N n a n n ∈= B. ?

??≥==)2(2)

1(3n n a n n

C. )(2*

1N n a n n ∈=+ D. 以上都不正确

16.一种细胞每3分钟分裂一次,一个分裂成两个,如果把一个这种细胞放入某个容器内,恰好一小时充满该容器,如果开始把2个这种细胞放入该容器内,则细胞充满该容器的时间为 ( D ) A.15分钟? B .30分钟 C .45分钟? D.57分钟 二、填空题

1、等差数列{a n }的前n 项和为S n ,若a 2=1,a 3=3,则S 4= 8.

2.(2008·广东理,2)记等差数列{an }的前n 项和为S n ,若a 1=2

1

,S 4=20,则S6= . 48 3..(2010广州一模).在等比数列{}n a 中,11a =,公比2q =,若64n a =,则n 的值为 .7 4.(2008·海南、宁夏理,4)设等比数列{a n }的公比q =2,前n 项和为Sn ,则

24a S = . 2

15

5.等差数列{a n },{b n }的前n 项和分别为S n 和T n ,若错误!=错误!,则错误!=________.

答案 \f (199,299) 解析 错误!=错误!=错误!=错误!

6、数列{}n a 的前n 项和记为()11,1,211n n n S a a S n +==+≥则{}n a 的通项公式 解:(Ⅰ)由121n n a S +=+可得()1212n n a S n -=+≥,两式相减得()112,32n n n n n a a a a a n ++-==≥

又21213a S =+= ∴213a a = 故{}n a 是首项为1,公比为3得等比数列 ∴1

3n n a -=

7.已知各项都为正数的等比数列{a n }中,a2·a4=4,a1+a 2+a 3=14,则满足a n ·a n+1·a n +2>

错误!的最大正整数n的值为________.答案 4

解析 设等比数列{a n }的公比为q ,其中q >0,依题意得a 错误!=a 2·a 4=4.又a 3>0,因此a

=a 1q2=2,a 1+a2=a 1+a 1q =12,由此解得q =\f(1,2),a 1=8,a n=8×(\f(1,2))n -1

=24-n ,a n ·a n +1·a n +2=29-3n.由于2-3=18>错误!,因此要使29-3n >错误!,只要9-3n ≥-3,即

n ≤4,于是满足a n ·a n+1·a n+2>19的最大正整数n 的值为4.

8.等比数列{a n }的首项为a1=1,前n项和为Sn ,若\f (S 10,S5)=错误!,则公比q等于________.

答案 -12 解析 因为S 10S 5

=31

32,所以错误!=错误!=-错误!,即q 5=(-错误!)5,所以q =-错误!.

三、解答题

1(2010山东理数)(18)(本小题满分12分)

已知等差数列{}n a 满足:37a =,5726a a +=,{}n a 的前n项和为n S . (Ⅰ)求n a 及n S ; (Ⅱ)令b n=

2

1

1

n a -(n ∈N*),求数列{}n b 的前n 项和n T . 1【解析】(Ⅰ)设等差数列{}n a 的公差为d ,因为37a =,5726a a +=,所以有

1127

21026

a d a d +=??

+=?,解得13,2a d ==, 所以321)=2n+1n a n =+-(

;n S =n(n-1)

3n+22

?=2n +2n 。 (Ⅱ)由(Ⅰ)知2n+1n a =,所以b n =

211n a -=2

1=2n+1)1-(114n(n+1)?=111

(-)4n n+1

?,

所以n T =

111111(1-+++-)4223

n n+1?-=11

(1-)=

4n+1?n 4(n+1), 即数列{}n b 的前n 项和n T =n

4(n+1)

2.(全国新课标理17) 已知等比数列

{}

n a 的各项均为正数,且

212326

231,9a a a a a +==.

(I )求数列

{}

n a 的通项公式. (II )设

31323log log log n n b a a a =++

+,求数列1

{}

n b 的前n 项和.

2解:(Ⅰ)设数列{an}的公比为q ,由

2

3

26

9a a a =得

3234

9a a

=所以

219q =

.由条件可知c>0,故1

3q =

.

12231

a a +=得

12231

a a q +=,所以

113a =

. 故数列{an }的通项式为a n=1

3n .

(Ⅱ )

31323n log log ...log n b a a a =+++(12...)

(1)2

n n n =-++++=-

故12112()(1)1n

b n n n n =-=--++ 12111111112...2((1)()...())22311n n b b b n n n +++=--+-++-=-++ 所以数列1{}n b 的前n 项和为21n n -+

3. (本小题满分12分)已知{a n }是各项均为正数的等比数列, 且a1+a 2=2(1

a 1

+错误!),a 3+a 4+a5=64(错误!+错误!+错误!).

(1)求{an }的通项公式; (2)设b n =(a n+\f(1,a n ))2,求数列{bn}的前n 项和T n. 解析 (1)设{a n }的公比为q ,则a n =a1q

n-1

. 由已知,有

错误!化简,得错误!

又a 1>0,故q =2,a 1=1. 所以a n =2n-1. (2)由(1)知,b n =错误!2=a 错误!+错误!+2=4n-1+错误!+2.

因此,T n =(1+4+…+4n -1)+(1+错误!+…+错误!)+2n=错误!+错误!+2n =错误!(4n -41-n )+2n +1.

4.(山东省济南市2011)

已知}{n a 为等比数列,256,151==a a ;n S 为等差数列}{n b 的前n 项和,,21=b 8525S S =. (1) 求}{n a 和}{n b 的通项公式;(2) 设n T n n b a b a b a ++=2211,求n T .

解:(1) 设{an }的公比为q ,由a 5=a 1q 4得q =4

所以an=4n-1.设{ bn }的公差为d ,由5S 5=2 S 8得5(5 b 1+10d )=2(8 b1+28d),

322

3

231=?==a d ,

所以b n =b 1+(n -1)d=3n -1.(2) T n =1·2+4·5+42

·8+…+4n -1

(3n -1),①

4T n =4.2+42.5+43.8+ (4)

(3n -1),②

②-①得:3T n =-2-3(4+42+…+4n )+4n (3n-1) = -2+4(1-4n -

1)+4n (3n-1) =2+(3n-2)·4n

∴T n =(n -32)4n +3

2

5.(2013广东理) 设数列{}n a 的前n 项和为n S .已知11a =,

21212

33

n n S a n n n +=---,*n ∈N . (Ⅰ) 求2a 的值; (Ⅱ) 求数列{}n a 的通项公式; (Ⅲ) 证明:对一切正整数n ,有12

11

174

n a a a +++

<. 【解析】(Ⅰ) 依题意,1212

2133S a =-

--,又111S a ==,所以24a =; (Ⅱ) 当2n ≥时,32112

233

n n S na n n n +=---,

()()()()32

1122111133n n S n a n n n -=-------

两式相减得()()()2112

213312133n n n a na n a n n n +=----+---

整理得()()111n n n a na n n ++=-+,即111n n a a n n +-=+,又21121

a a

-=

故数列n a n ??

????

是首项为111a =,公差为1的等差数列,

所以()111n

a n n n

=+-?=,所以2n a n =. (Ⅲ) 当1n =时,11714a =<;当2n =时,1211157

1444

a a +

=+=<; 当3n ≥时,

()21111111n a n n n n n

=<=---,此时

22212

1111111111111

111434

423341n a a a n n n ????

??+++

=+++++

<++-+-++- ? ? ?-??????

11171714244

n n =+

+-=-< 综上,对一切正整数n ,

有12

11

174

n a a a +

++

<. 6.(本小题满分14分)设各项均为正数的数列{}n a 的前n 项和为n S ,满足21441,,n n S a n n N *

+=--∈且

2514,,a a a 构成等比数列.

(1) 证明:2a =

(2) 求数列{

}n a 的通项公式;

(3) 证明:对一切正整数n ,有

1223

11111

2

n n a a a a a a ++++

<. 1.【解析】(1)当1n =时,22

122145,45a a a a =-=+,

20n a a >∴

(2)当2n ≥时,()2

14411n n S a n -=---,22114444n n n n n a S S a a -+=-=--

()2

22

1442n n n n a a a a +=++=+,

102n n n a a a +>∴=+ ∴当2n ≥时,{}n a 是公差2d =的等差数列.

2514,,a a a 构成等比数列,2

5

214a a a ∴=?,()()2

222824a a a +=?+,解得23a =, 由(1)可知,2

12145=4,1a a a =-∴=

21312a a -=-=∴

{}n a 是首项11a =,公差2d =的等差数列.

∴数列{}n a 的通项公式为21n a n =-. (3)

()()

1223

1111111

1

133557

2121n n a a a a a a n n ++++

=++++

???-+

11111111123355721211111.2212

n n n ??????????=?-+-+-+- ? ? ? ???-+????????????=

?-

7.(本题满分14分)2a ,5a 是方程2

x 02712=+-x 的两根, 数列{}n a 是公差为正的等差数列,数列{}n b 的前n 项和为n T ,且n T 2

1

1-

=n b ()*∈N n .

(1)求数列{}n a ,{}n b 的通项公式; (2)记n c =n a n b ,求数列{}n c 的前n 项和n S . 2.解:(1)由27,125252==+a a a a .且0>d 得9,352==a a …………… 2分

23

2

5=-=

∴a a d ,11=a ()*∈-=∴N n n a n 12 …………… 4分 在n n b T 211-

=中,令,1=n 得.321=b 当2≥n 时,Tn =,2

1

1n b -11211---=n n b T ,

两式相减得n n n b b b 21211-=

-,()231

1≥=∴-n b b n n …………… 6分 ()

*

-∈=

?

?

?

??=∴N n b n

n n 3

231321

. …………… 8分 (2)()n

n n n n c 3

2

43212-=?

-=, ……………… 9分 ??? ??-++++=∴n n n S 312353331232 ,??

? ??-+-+++=+1323123323331

23n n

n n n S ,……… 10分 ??????--??? ??++++=∴+132312313131231232n n n n S =2?????

???????---

???

??-?+

+-11

31231131191231n n n =1134

43

43123131312+++-=???

??---+n n n n n , ………………13分 n

n n S 3

2

22+-

=∴ …………… 14分

8.(全国大纲理20) 设数列{}n a 满足10a =且111

1.

11n n a a +-=--

(Ⅰ)求{}n a 的通项公式;

(Ⅱ)

1

, 1.

n

n n k n k b b S ==

=<∑记S 证明:

解: (I )由题设

111

1,

11n n

a a +-=-- 即

1

{}1n

a -是公差为1的等差数列。

111

1,.11n

n a a ==--故 所以

1

1.

n a n =- (II )由(I )得

n

b=

=

=-

,?…………8分

11

1 1.

n n

n k

k k

S b

==

===-<

∑∑

?…………12分

2016届高考数学经典例题集锦:数列(含答案)

数列题目精选精编 【典型例题】 (一)研究等差等比数列的有关性质 1. 研究通项的性质 例题1. 已知数列}{n a 满足1 111,3(2)n n n a a a n --==+≥. (1)求32,a a ; (2)证明: 312n n a -= . 解:(1)2 1231,314,3413a a a =∴=+==+= . (2)证明:由已知1 13 --=-n n n a a ,故)()()(12211a a a a a a a n n n n n -++-+-=--- 1 2 1313 3 312n n n a ---+=++++= , 所以证得31 2n n a -= . 例题2. 数列{}n a 的前n 项和记为11,1,21(1)n n n S a a S n +==+≥ (Ⅰ)求{}n a 的通项公式; (Ⅱ)等差数列{}n b 的各项为正,其前n 项和为n T ,且315T =,又112233,,a b a b a b +++成等比数列,求n T . 解:(Ⅰ)由121n n a S +=+可得121(2)n n a S n -=+≥, 两式相减得:112,3(2)n n n n n a a a a a n ++-==≥, 又21213a S =+=∴213a a = 故{}n a 是首项为1,公比为3的等比数列 ∴1 3 n n a -= (Ⅱ)设{}n b 的公差为d ,由315T =得,可得12315b b b ++=,可得25b = 故可设135,5b d b d =-=+,又1231,3,9a a a ===, 由题意可得2 (51)(59)(53)d d -+++=+,解得122,10d d == ∵等差数列{}n b 的各项为正,∴0d > ∴2d = ∴2(1) 3222n n n T n n n -=+ ?=+ 例题3. 已知数列{}n a 的前三项与数列{}n b 的前三项对应相同,且2 12322...a a a +++ 128n n a n -+=对任意的*N n ∈都成立,数列{} n n b b -+1是等差数列. ⑴求数列{}n a 与{}n b 的通项公式; ⑵是否存在N k * ∈,使得(0,1)k k b a -∈,请说明理由. 点拨:(1)2112322...28n n a a a a n -++++=左边相当于是数列{}12n n a -前n 项和的形式,可以联想到已知n S 求n a 的方法,当2n ≥时,1n n n S S a --=. (2)把k k a b -看作一个函数,利用函数的思想方法来研究k k a b -的取值情况. 解:(1)已知212322a a a +++ (1) 2n n a -+8n =(n ∈*N )① 2n ≥时,212322a a a +++ (2) 128(1)n n a n --+=-(n ∈*N )②

高中数学数列测试题附答案与解析

第二章 数列 1.{a n }是首项a 1=1,公差为d =3的等差数列,如果a n =2 005,则序号n 等于( ). A .667 B .668 C .669 D .670 2.在各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21,则a 3+a 4+a 5=( ). A .33 B .72 C .84 D .189 3.如果a 1,a 2,…,a 8为各项都大于零的等差数列,公差d ≠0,则( ). A .a 1a 8>a 4a 5 B .a 1a 8<a 4a 5 C .a 1+a 8<a 4+a 5 D .a 1a 8=a 4a 5 4.已知方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为 41的等差数列,则 |m -n |等于( ). A .1 B .43 C .21 D . 8 3 5.等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为( ). A .81 B .120 C .168 D .192 6.若数列{a n }是等差数列,首项a 1>0,a 2 003+a 2 004>0,a 2 003·a 2 004<0,则使前n 项和S n >0成立的最大自然数n 是( ). A .4 005 B .4 006 C .4 007 D .4 008 7.已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列, 则a 2=( ). A .-4 B .-6 C .-8 D . -10 8.设S n 是等差数列{a n }的前n 项和,若 35a a =95,则59S S =( ). A .1 B .-1 C .2 D .2 1 9.已知数列-1,a 1,a 2,-4成等差数列,-1,b 1,b 2,b 3,-4成等比数列,则 212b a a -的值是( ). A .21 B .-21 C .-21或21 D .4 1 10.在等差数列{a n }中,a n ≠0,a n -1-2n a +a n +1=0(n ≥2),若S 2n -1=38,则n =( ). A .38 B .20 C .10 D .9 二、填空题 11.设f (x )=221 +x ,利用课本中推导等差数列前n 项和公式的方法,可求得f (-5)+f (-4)+…+f (0)+… +f (5)+f (6)的值为 . 12.已知等比数列{a n }中,

高中数学数列基础知识与典型例题

数学基础知识例题

数学基础知识与典型例题(第三章数列)答案 例1. 当1=n 时,111==S a ,当2n ≥时,34)1()1(2222-=-+---=n n n n n a n ,经检验 1=n 时 11=a 也适合34-=n a n ,∴34-=n a n ()n N +∈ 例2. 解:∵1--=n n n S S a ,∴ n n n S S 221=--,∴12 211 =---n n n n S S 设n n n S b 2= 则{}n b 是公差为1的等差数列,∴11-+=n b b n 又∵2 322111=== a S b , ∴ 212 +=n S n n ,∴12)12(-+=n n n S ,∴当2n ≥时 2 12)32(--+=-=n n n n n S S a ∴????+=-2 2 )32(3 n n n a (1)(2)n n =≥,12)12(-+=n n n S 例3 解:1221)1(----=-=n n n n n a n a n S S a 从而有11 1 -+-=n n a n n a ∵11=a ,∴312=a ,31423?=a ,3142534??=a ,3 1 4253645???=a , ∴)1(234)1()1(123)2)(1(+=???-+????--=n n n n n n n a n ,∴122+==n n a n S n n . 例4.解:)111(2)1(23211+-=+=++++= n n n n n a n ∴12)111(2)111()3 1 21()211(2+= +-=??????+-++-+-=n n n n n S n 例5.A 例6. 解:1324321-+++++=n n nx x x x S ①()n n n nx x n x x x xS +-++++=-132132 ② ①-②()n n n nx x x x S x -++++=--1211 , 当1≠x 时,()()x nx x n x nx nx x nx x x S x n n n n n n n n -++-=-+--=---=-++1111111111 ∴()() 2 1111x nx x n S n n n -++-=+; 当1=x 时,()2 14321n n n S n +=++++= 例7.C 例8.192 例9.C 例10. 解:14582 54 54255358-=-? =?==a a a q a a 另解:∵5a 是2a 与8a 的等比中项,∴25482-?=a ∴14588-=a 例11.D 例12.C 例13.解:12311=-==S a , 当2n ≥时,56)]1(2)1(3[23221-=-----=-=-n n n n n S S a n n n ,1=n 时亦满足 ∴ 56-=n a n , ∴首项11=a 且 )(6]5)1(6[561常数=----=--n n a a n n ∴{}n a 成等差数列且公差为6、首项11=a 、通项公式为56-=n a n 例14. 解一:设首项为1a ,公差为d 则???? ????? = ??+??++=?+1732225662256)(635421112121 11d a d d a d a 5=?d 解二:??? ??==+27 32354 奇偶偶奇S S S S ???==?162192奇偶S S 由 d S S 6=-奇偶5=?d 例15. 解:∵109181a a a a =,∴205 100 110918===a a a a 例16. 解题思路分析: 法一:利用基本元素分析法 设{a n }首项为a 1,公差为d ,则71151 76772 151415752 S a d S a d ?? =+=?????=+=??∴ 121a d =-??=? ∴ (1)22n n n S -=-+∴ 15 2222 n S n n n -=-+=-此式为n 的一次函数 ∴ {n S n }为等差数列∴ 21944n T n n =- 法二:{a n }为等差数列,设S n =An 2 +Bn ∴ 2 72 157******** S A B S A B ?=?+=??=?+=?? 解之得:12 5 2 A B ?=????=-??∴ 21522n S n n =-,下略 注:法二利用了等差数列前n 项和的性质 例17.解:设原来三个数为2,,aq aq a 则必有 )32(22-+=aq a aq ①,)32()4(22-=-aq a aq ② 由①: a a q 24+=代入②得:2=a 或9 5 =a 从而5=q 或13 ∴原来三个数为2,10,50或9 338 ,926,92 例18.70 例19. 解题思路分析: ∵ {a n }为等差数列∴ {b n }为等比数列

数列求和方法和经典例题

数列求和方法和经典例题 求数列的前n 项和,一般有下列几种方法: 一、公式法 1、等差数列前n 项和公式 2、等比数列前n 项和公式 二、拆项分组求和法 某些数列,通过适当分组可得出两个或几个等差数列或等比数列,进而利用等差数列或等比数列求和公式求和,从而得出原数列的和。 三、裂项相消求和法 将数列中的每一项都分拆成几项的和、差的形式,使一些项相互拆消,只剩下有限的几项,裂项时可直接从通项入手,且要判断清楚消项后余下哪些项。 四、重新组合数列求和法 将原数列的各项重新组合,使它成为一个或n 个等差数列或等比数列后再求和 五、错位相减求和法 适用于一个等差数列和一个等比数列对应项相乘构成的数列求和 典型例题 一、拆项分组求和法 例1、求数列1111123,2482n n ??+ ???,,,,的前n 项和 例2、求和:222 221111n n x x x x x ??????++++++ ? ? ?????? ?

例3、求数列2211,12,122,,1222,n -+++++++的前n 项和 例4、求数列5,55,555,5555,的前n 项和 二、裂项相消求和法 例5、求和:()()11113352121n S n n =+++??-+ 例6、求数列1111,, ,,,12123123n +++++++的前n 项和 例7、求和:()11113242n S n n =+++??+

例8、数列{} n a 的通项公式n a =,求数列的前n 项和 三、重新组合数列求和法 例9、求2222222212345699100-+-+-++- 四、错位相减求和法 例10、求数列123,,,,,2482n n 的前n 项和 例11、求和:()23230n n S x x x nx x =++++≠

高二数学必修5数列单元测试.doc

________ 高二数学必修 5 数列单元测试 一、选择题: 时间 120 分钟 满分 100 分 3 分,共 30 分 . ) (本大题共 10 小题,每小题 1. 在数列- 1, 0, 1 , 1 , , n 2 中,是它的 9 8 n 2 A .第 100 项 B .第 12 项 C .第 10项 D .第 8项 2. 在数列 { a n } 中, a 1 2 , 2a n 1 2a n 1,则 a 101 的值为 A . 49 B . 50 C . 51 D .52 3. 等差数列 { a n } 中, a 1 a 4 a 7 39 , a 3 a 6 a 9 27 ,则数列 { a n } 的前 9 项的和等于 A . 66 B . 99 C . 144 D . 297 4. 设数列 {a n } 、 {b n } 都是等差数列,且 a 1=25,b 1=75,a 2+b 2=100,那么 a n +b n 所组成的数列的第 37 项的值是 ( ) .37 C 5.已知- 7, a 1, a 2,- 1 四个实数成等差数列,- 4, b 1, b 2, b 3,- 1 五个实数成等比数列,则 a 2a 1 = b 2 A . 1 B .- 1 C . 2 D .± 1 6. 等比数列 {a n } 中,前 n 项和 S n =3n +r ,则 r 等于 ( ) .0 C 7.已知数列 { a n } 的前 n 项和为 S 1 5 9 13 17 21 ( 1) n 1 (4n 3) , n 则 S 15 S 22 S 31 的值是( ) A. -76 B. 76 C. 46 D. 13 8. 6.已知等差数列 {a n } 的公差 d ≠0, 若 a 5、a 9、 a 15 成等比数列 , 那么公比为 A . 3 B . 2 C . 3 D . 4 4 3 2 3 9.若数列 { a } 是等比数列 , 则数列 { a +a } n n n+1 A .一定是等比数列 C .一定是等差数列 10.等比数列 {a n } 中, a 1 =512,公比 q= 1 2 B .可能是等比数列 , 也可能是等差数列 D .一定不是等比数列 ,用Ⅱ n 表示它的前 n 项之积:Ⅱ n =a 1 · a 2 a n 则Ⅱ 1 ,Ⅱ 2 , ,中最大的是 A .Ⅱ 11 B .Ⅱ 10 C .Ⅱ 9 D .Ⅱ 8 题号 1 2 3 4 5 6 7 8 9 10 答案 二、填空题 :( 本大题共 5 小题,每小题 4 分,共 20分。) 11.在数 {a n } 中,其前 n 项和 S n =4n 2- n - 8,则 a 4= 。 12. 设 S n 是等差数列 a 5 5 S 9 的值为 ________. a n 的前 n 项和,若 ,则 S 5 13.在等差数列 { a } 中,当 a = a a 3 9 { a } 中,对某些正整数 r 、s ( r ≠ s ) ,当 a ( r ≠ s ) 时, { a } 必定是常数数列。然而在等比数列 r n r s n n =a s 时,非常数数列 { a n } 的一个例子是 ____________. 14. 已知数列 1, ,则其前 n 项的和等于 。 15. 观察下列的图形中小正方形的个数,则第 n 个图中有 个小正方形 . 三、解答题:(本大题共 5 小题,共 50 分。解答应写出文字说明,或演算步骤) 16. (本小题满分 8 分)已知 a n 是等差数列,其中 a 1 25, a 4 16

高中数学必修5 数列经典例题集锦

高中数学必修5数列题目精选精编 【典型例题】 (一)研究等差等比数列的有关性质 1. 研究通项的性质 例题1. 已知数列}{n a 满足 1 111,3(2)n n n a a a n --==+≥. (1)求32,a a ; (2)证明: 312n n a -= . 解:(1)2 1231,314,3413a a a =∴=+==+=Q . (2)证明:由已知1 13--=-n n n a a ,故)()()(12211a a a a a a a n n n n n -++-+-=---Λ 1 2 1313 3 312n n n a ---+=++++=L , 所以证得312n n a -= . 例题2. 数列{}n a 的前n 项和记为11,1,21(1)n n n S a a S n +==+≥ (Ⅰ)求{ }n a 的通项公式; (Ⅱ)等差数列{ }n b 的各项为正, 其前n 项和为n T ,且315T =,又112233 ,,a b a b a b +++成等比数列,求n T . 解:(Ⅰ)由121n n a S +=+可得121(2)n n a S n -=+≥, 两式相减得:112,3(2)n n n n n a a a a a n ++-==≥, 又21213a S =+=∴213a a = 故{}n a 是首项为1,公比为3的等比数列 ∴1 3n n a -= (Ⅱ)设{}n b 的公比为d ,由315T =得,可得12315b b b ++=,可得25b = 故可设135,5b d b d =-=+,又1231,3,9a a a ===, 由题意可得2 (51)(59)(53)d d -+++=+,解得122,10d d == ∵等差数列{}n b 的各项为正,∴0d > ∴2d = ∴2(1) 3222n n n T n n n -=+ ?=+ 例题3. 已知数列{}n a 的前三项与数列{}n b 的前三项对应相同,且212322...a a a +++ 128n n a n -+=对任意的*N n ∈都成立,数列{} n n b b -+1是等差数列. ⑴求数列{ }n a 与{}n b 的通项公式; ⑵是否存在N k * ∈,使得(0,1)k k b a -∈,请说明理由. 点拨:(1)2112322...28n n a a a a n -++++=左边相当于是数列{}12n n a -前n 项和的形式, 可以联想到已知n S 求n a 的方法,当2n ≥时,1n n n S S a --=.

高中数学《数列》测试题

11会计5班《数列》数学测试卷2012.4 一、选择题(2'1836'?=) 1.观察数列1,8,27,x ,125,216,… 则x 的值为( ) A .36 B .81 C .64 D .121 2.已知数列12a =,12n n a a +=+,则4a 的值为( ) A .12 B .6 C .10 D .8 3.数列1,3,7,15,… 的通项公式n a 等于( ) A .1 2 n - B .21n - C .2n D .21n + 4.等差数列{n a }中,16a =,418a =,则公差d 为( ) A .4 B .2 C .—3 D .3 5.128是数列2,4,8,16,… 的第( )项 A .8 B .5 C .7 D .6 6.等差数列{n a }中,12a =,327S =,则3a 的值为( ) A .16 B .20 C .11 D .7 7.在等差数列中,第100项是48,公差是 1 3 ,首项是( ) A .5 B .10 C .15 D .20 8.在等差数列{n a }中,1234525a a a a a ++++=,则3a 为( ) A .3 B .4 C .5 D .6 9.已知数列0,0,0,0,… 则它是( ) A .等差数列非等比数列 B .等比数列非等差数列 C .等差数列又等比数列 D .非等差数列也非等比数列 10.在等比数列{n a }中,4520a a ?=,则27a a ?为( ) A .10 B .15 C .20 D .25 班级 姓名 学号 11.等比数列1,2,4,… 的第5项到第11项的和等于( ) A .2030 B .2033 C .2032 D .2031 12.等差数列中,第1项是 —8,第20项是106,则第20项是( ) A .980 B .720 C .360 D .590 13.在等比数列中,12a =,3q =,则4S =( ) A .18 B .80 C .—18 D .—80 14.三个正数成等差数列,其和为9,它们依次加上1,3,13后成为等比数列,则这三个数为( ) A .6,3,0 B .1,3,5 C .5,3,1 D .0,3,6 15.在等比数列中,第5项是 —1,第8项是 — 1 8 ,第13项是( ) A .13 B .1256- C .78- D .1128 - 16.若a ,b , c 成等比数列,则函数2 ()f x ax bx c =++的图像与x 轴的交点个数为( ) A .2 B .0 C .1 D .不确定 17.某农场计划第一年产量为80万斤,以后每年比前一年多种20%,第五年产量约为( ) A .199万斤 B .595万斤 C .144万斤 D .166万斤 18.把若干个苹果放到8个箱子中,每个箱子不能不装,要使每个箱子中所装的苹果个数互不相同,至少需要苹果( ) A .35个 B .36个 C .37个 D .38个 二、填空题(3'824'?=) 19.数列1,32- ,54,78-,916 ,… 的通项公式是 20.数列2,7,14,23,( ),47,… 并写出数列的通项公式

高中数列经典习题(含答案)讲解学习

高中数列经典习题(含 答案)

1、在等差数列{a n }中,a 1=-250,公差d=2,求同时满足下列条件的所有a n 的和, (1)70≤n ≤200;(2)n 能被7整除. 2、设等差数列{a n }的前n 项和为S n .已知a 3=12, S 12>0,S 13<0.(Ⅰ)求公差d 的取值范围; (Ⅱ)指出S 1,S 2,…,S 12,中哪一个值最大,并说明理由. 3、数列{n a }是首项为23,公差为整数的等差数列,且前6项为正,从第7项开始变为负的,回答下列各问:(1)求此等差数列的公差d;(2)设前n 项和为n S ,求n S 的最大值;(3)当n S 是正数时,求n 的最大值. 4、设数列{n a }的前n 项和n S .已知首项a 1=3,且1+n S +n S =21+n a ,试求此数列的通项公式n a 及前n 项和n S . 5、已知数列{n a }的前n 项和3 1=n S n(n +1)(n +2),试求数列{n a 1}的前n 项和. 6、已知数列{n a }是等差数列,其中每一项及公差d 均不为零,设 2122++++i i i a x a x a =0(i=1,2,3,…)是关于x 的一组方程.回答:(1)求所有这些方程的公共根; (2)设这些方程的另一个根为i m ,求证111+m ,112+m ,113+m ,…, 1 1+n m ,…也成等差数列. 7、如果数列{n a }中,相邻两项n a 和1+n a 是二次方程n n n c nx x ++32=0(n=1,2,3…)的两个根, 当a 1=2时,试求c 100的值. 8、有两个无穷的等比数列{n a }和{n a },它们的公比的绝对值都小于1,它们的各项和分别是1和2,并且对于一切自然数n,都有1+n a ,试求这两个数列的首项和公比.

数列经典例题

类型一:迭加法求数列通项公式 1.在数列中,,,求. 解析:∵, 当时, , , , 将上面个式子相加得到: ∴(), 当时,符合上式 故. 总结升华: 1. 在数列中,,若为常数,则数列是等差数列;若不是一个常数,而是关于的式子,则数列不是等差数列. 2.当数列的递推公式是形如的解析式, 而的和是可求的,则可用多式累(迭)加法得. 举一反三: 【变式1】已知数列,,,求. 【答案】

【变式2】数列中,,求通项公式. 【答案】. 类型二:迭乘法求数列通项公式 2.设是首项为1的正项数列,且 ,求它的通项公式. 解析:由题意 ∴ ∵,∴, ∴, ∴,又, ∴当时, , 当时,符合上式 ∴. 总结升华: 1. 在数列中,,若为常数且 ,则数列是等比数列;若不是一个常数,而是关于的式子,则数列不是等比数列. 2.若数列有形如的解析关系,而

的积是可求的,则可用多式累(迭)乘法求得. 举一反三: 【变式1】在数列中,,,求. 【答案】 【变式2】已知数列中,, ,求通项公式. 【答案】由得,∴, ∴, ∴当时, 当时,符合上式 ∴ 类型三:倒数法求通项公式 3.数列中,

,,求. 思路点拨:对两边同除以得即可. 解析:∵,∴两边同除以得, ∴成等差数列,公差为d=5,首项, ∴, ∴. 总结升华: 1.两边同时除以可使等式左边出现关于和的相同代数式的差,右边为一常数,这样把数列的每一项都取倒数,这又构成一个新的数列,而 恰是等差数列.其通项易求,先求的通项,再求的通项. 2.若数列有形如的关系,则可在 等式两边同乘以,先求出,再求得. 举一反三: 【变式1】数列中,,,求. 【答案】

高二数学数列练习题含答案

高二《数列》专题 1.n S 与n a 的关系:1 1(1)(1) n n n S n a S S n -=??=? ->?? ,已知n S 求n a ,应分1=n 时1a = ;2≥n 时,n a = 两步,最后考虑1a 是否满足后面的n a . 2.等差等比数列 3.数列通项公式求法。(1)定义法(利用等差、等比数列的定义);(2)累加法

(3)累乘法( n n n c a a =+1型);(4)利用公式1 1(1)(1) n n n S n a S S n -=??=?->??;(5)构造法(b ka a n n +=+1型)(6) 倒数法 等 4.数列求和 (1)公式法;(2)分组求和法;(3)错位相减法;(4)裂项求和法;(5)倒序相加法。 5. n S 的最值问题:在等差数列{}n a 中,有关n S 的最值问题——常用邻项变号法求解: (1)当0,01<>d a 时,满足???≤≥+00 1m m a a 的项数m 使得m S 取最大值. (2)当 0,01>

精品高考数列经典大题

精品高考数列经典大题 2020-12-12 【关键字】条件、满足 1.等比数列{}n a 的各项均为正数,4352,,4a a a 成等差数列,且2322a a =. (1)求数列{}n a 的通项公式; (2)设()()25 2123n n n b a n n += ++,求数列{}n b 的前n 项和n S . 2.已知数列{}n a 满足:11a =,且对任意∈n N *都有 n a ++ += . (Ⅰ)求2a ,3a 的值; (Ⅱ)求数列{}n a 的通项公式; n n a a ++∈n N *). 3.已知数列}{n a 满足且01=a *)(),1(2 1 21N n n n S S n n ∈++=+ (1)求23,,a a :并证明12,(*);n n a a n n N +=+∈ (2)设*),(1N n a a b n n n ∈-=+求证:121+=+n n b b ; (3)求数列*)}({N n a n ∈的通项公式。 4.设b>0,数列}{n a 满足b a =1,)2(1 11 ≥-+= --n n a nba a n n n .(1)求数列}{n a 的通项公 式;(2)证明:对于一切正整数n ,121+≤+n n b a . 5: 已知数列{}n a 是等差数列,() *+∈-=N n a a c n n n 21 2 (1)判断数列{}n c 是否是等差数列,并说明理由;(2)如果 ()为常数k k a a a a a a 13143,130********-=+++=+++ ,试写出数列{}n c 的 通项公式;(3)在(2)的条件下,若数列{}n c 得前n 项和为n S ,问是否存在这样的实数k ,使n S 当且仅当12=n 时取得最大值。若存在,求出k 的取值范围;

高中数列经典题型 大全

高中数学:《递推数列》经典题型全面解析 类型1 )(1n f a a n n +=+ 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。 例:已知数列{}n a 满足211=a ,n n a a n n ++=+2 11 ,求n a 。 类型2 n n a n f a )(1=+ 解法:把原递推公式转化为 )(1 n f a a n n =+,利用累乘法(逐商相乘法)求解。 例:已知数列{}n a 满足321=a ,n n a n n a 11+=+,求n a 。 例:已知31=a ,n n a n n a 2 3131 +-=+ )1(≥n ,求n a 。 类型3 q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。 例:已知数列{}n a 中,11=a ,321+=+n n a a ,求n a . 变式:递推式:()n f pa a n n +=+1。解法:只需构造数列{}n b ,消去()n f 带来的差异. 类型4 n n n q pa a +=+1(其中p ,q 均为常数,)0)1)(1((≠--q p pq )。 (1n n n a pa rq +=+, 其中p ,q, r 均为常数) 。 例:已知数列{}n a 中,65 1=a ,11)2 1(31+++=n n n a a ,求n a 。 类型5 递推公式为n n n qa pa a +=++12(其中p ,q 均为常数)。 解法一(待定系数——迭加法):数列{}n a :),0(025312N n n a a a n n n ∈≥=+-++, b a a a ==21,,求数列{}n a 的通项公式。 解法二(特征根法):数列{}n a :),0(025312N n n a a a n n n ∈≥=+-++, b a a a ==21,的特征 方程是:02532=+-x x 。 32,121= =x x Θ,∴1 2 11--+=n n n Bx Ax a 1)3 2(-?+=n B A 。又由b a a a ==21,,于是 ???-=-=??? ? ? ?+=+=)(32332b a B a b A B A b B A a 故1)32)((323--+-=n n b a a b a 例:已知数列{}n a 中,11=a ,22=a ,n n n a a a 3 1 3212+=++,求n a 。

高二数学数列测试题

高二数学第一次月考试题 (满分:150分 时间:120分钟) 一、选择题:(本大题共12小题,每小题5分,共60分) 1、若△ABC 的周长等于20,面积是310,A =60°,则BC 边的长是( ) A . 5 B .6 C .7 D .8 2.设数}{n a 是单调递增的等差数列,前三项的和为12,前三项的积为48,则它的首项是( ) A .1 B .2 C .4 D .8 3.已知数列{}n a 对任意的* p q ∈N ,满足p q p q a a a +=+,且26a =-,那么10a 等于( ) A .165- B .33- C .30- D .21- 4.在ABC ?中,根据下列条件解三角形,其中有两个解的是( ) A. b=10, A=450, C=600 B. a=6, c=5, B=600 C. a=7, b=5, A=600 D. a=14, b=16, A=450 5.在数列{}n a 中,12a =, 11ln(1)n n a a n +=++,则n a =( ) A .2ln n + B .2(1)ln n n +- C .2ln n n + D .1ln n n ++ 6.(理)在△ABC 中,若 c C b B a A sin cos cos = =,则△ABC 是( ) A .有一内角为30°的直角三角形 B .等腰直角三角形 C .有一内角为30°的等腰三角形 D .等边三角形 (文)在△ABC 中,若B b A a cos cos =,则△ABC 的形状是( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形 D .等腰或直角三角形 7.小长方形按照下图中的规律排列,每个图形中的小长方形的个数构成数列}{n a 有以下结论,①155=a ; ②}{n a 是一个等差数列; ③数列}{n a 是一个等比数列; ④数列}{n a 的递堆公式),(11* +∈++=N n n a a n n 其中正确的是( ) A .①②④ B .①③④ C .①② D .①④ 8.甲船在岛B 的正南方A 处,AB =10千米,甲船以每小时4千米的速度向正北航行,同时乙船自B 出发以每小时6千米的速度向北偏东60°的方向驶去,当甲,乙两船相距最近时,它们所航行的时间是( ) A . 7 150 分钟 B . 7 15 分钟 C .21.5分钟 D .2.15分钟 9.在下列表格中,每格填上一个数字后,使每一横行成等差..数列,每一纵列成等比..数列,则a b c ++的值为( )

1、高二数学等比数列综合测试题答案

等比数列测试题 A 组 一.填空题(本大题共8小题,每小题5分,共40分) 1.在等比数列{}n a 中,3620,160a a ==,则n a = . 1.20×2n-3.提示:q 3= 160 20=8,q=2.a n =20×2n-3. 2.等比数列中,首项为98,末项为13,公比为2 3 ,则项数n 等 于 . 2.4. 提示:1 3=98×(23 )n-1,n=4. 3.在等比数列中,n a >0,且21n n n a a a ++=+,则该数列的公比q 等于 . 3. 12.提示:由题设知a n q 2=a n +a n q,得q=12 +. 4.在等比数列{a n }中,已知S n =3n +b ,则b 的值为_______. 4.b=-1.提示:a 1=S 1=3+b ,n ≥2时,a n =S n -S n -1=2×3n -1. a n 为等比数列,∴a 1适合通项,2×31-1=3+ b ,∴b =-1. 5.等比数列{}n a 中,已知12324a a +=,3436a a +=,则56a a += 5.4.提示:∵在等比数列{}n a 中, 12a a +,34a a +,56a a +也成等比数列,∵12324a a +=,3436a a +=∴563636 4324 a a ?+= =. 6.数列{a n }中,a 1,a 2-a 1,a 3-a 2,…,a n -a n -1…是首项为1、公比为3 1的等比数列,则a n 等于 。 6.23(1- n 31 ).提示:a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n - a n -1)=23(1-n 3 1)。 7.等比数列 ,8,4,2,132a a a 的前n 项和S n = .

高中一年级数学数列部分经典习题及答案

.数 列 一.数列的概念: (1)已知* 2()156n n a n N n = ∈+,则在数列{}n a 的最大项为__(答:125 ); (2)数列}{n a 的通项为1 += bn an a n ,其中 b a ,均为正数,则n a 与1+n a 的大小关系为__(答:n a <1+n a ); (3)已知数列{}n a 中,2n a n n λ=+,且{}n a 是递增数列,数λ的取值围(答:3λ>-); 二.等差数列的有关概念: 1.等差数列的判断方法:定义法1(n n a a d d +-=为常数)或11(2)n n n n a a a a n +--=-≥。 设{}n a 是等差数列,求证:以b n = n a a a n +++ 21 *n N ∈为通项公式的数列{}n b 为等差数列。 2.等差数列的通项:1(1)n a a n d =+-或()n m a a n m d =+-。 (1)等差数列{}n a 中,1030a =,2050a =,则通项n a = (答:210n +); (2)首项为-24的等差数列,从第10项起开始为正数,则公差的取值围是______(答: 8 33 d <≤) 3.等差数列的前n 和:1()2n n n a a S += ,1(1) 2 n n n S na d -=+ 。 (1)数列 {}n a 中,*11(2,)2n n a a n n N -=+ ≥∈,32n a =,前n 项和15 2 n S =-,求1a ,n (答:13a =-,10n =); (2)已知数列 {}n a 的前n 项和2 12n S n n =-,求数列{||}n a 的前n 项和n T (答: 2* 2* 12(6,)1272(6,) n n n n n N T n n n n N ?-≤∈?=?-+>∈??). 三.等差数列的性质: 1.当公差0d ≠时,等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函数,且率为公差d ;前n 和 211(1)()222 n n n d d S na d n a n -=+ =+-是关于n 的二次函数且常数项为0. 2.若公差0d >,则为递增等差数列,若公差0d <,则为递减等差数列,若公差0d =,则为常数列。 3.当m n p q +=+时,则有q p n m a a a a +=+,特别地,当2m n p +=时,则有2m n p a a a +=. (1)等差数列{}n a 中,12318,3,1n n n n S a a a S --=++==,则n =____ (答:27) (2)在等差数列{}n a 中,10110,0a a <>,且1110||a a >,n S 是其前n 项和,则

高中数列经典例集

一、 经典例题剖析 考点一:等差、等比数列的概念与性质 例题1.(1)数列{a n }和{b n }满足)(121n n b b b n a +++= (n=1,2,3…), (1)求证{ b n }为等差数列的充要条件是{a n }为等差数列。 (2)数列{a n }和{c n }满足*)(21N n a a c n n n ∈+=+,探究}{n a 为等差数列的充分必要条例题2.已知数列{}n a 的首项 121a a =+(a 是常数,且1a ≠-),24221+-+=-n n a a n n (2n ≥),数列{}n b 的首项1b a =,2n a b n n +=(2n ≥)。 (1)证明:{}n b 从第2项起是以2为公比的等比数列; (2)设n S 为数列{}n b 的前n 项和,且{}n S 是等比数列,求实数a 的值; (3)当a>0时,求数列{}n a 的最小项。 例题4. 已知数列{}n a 满足411=a ,()),2(2 111N n n a a a n n n n ∈≥--=--. (Ⅰ)求数列{}n a 的通项公式n a ; (Ⅱ)设21 n n a b =,求数列{}n b 的前n 项和n S ; (Ⅲ)设2 )12(sin π-=n a c n n ,数列{}n c 的前n 项和为n T .求证:对任意的*∈N n ,74+1; ⑶ 求证:),2(21111111*21N n n a a a n ∈≥<++++++< 例题6已知数列{}n a 满足()111,21n n a a a n N *+==+∈ (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)若数列{}n b 满足n n b n b b b b a )1(44441111321+=---- ,证明:{}n a 是等差数列; (Ⅲ)证明:()23111123n n N a a a *++++<∈

(word完整版)高中数学必修五数列测试题

必修五阶段测试二(第二章 数列) 时间:120分钟 满分:150分 一、选择题(本大题共12小题,每小题5分,共60分) 1.(2017·山西朔州期末)在等比数列{a n }中,公比q =-2,且a 3a 7=4a 4,则a 8等于( ) A .16 B .32 C .-16 D .-32 2.已知数列{a n }的通项公式a n =????? 3n +1(n 为奇数),2n -2(n 为偶数),则a 2·a 3等于( ) A .8 B .20 C .28 D .30 3.已知等差数列{a n }和等比数列{b n }满足a 3=b 3,2b 3-b 2b 4=0,则数列{a n }的前5项和S 5为( ) A .5 B .10 C .20 D .40 4.(2017·山西忻州一中期末)在数列{a n }中,a n =-2n 2+29n +3,则此数列最大项的值是( ) A .102 B.9658 C.9178 D .108 5.等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为( ) A .81 B .120 C .168 D .192 6.等差数列{a n }中,a 10<0, a 11>0, 且a 11>|a 10|, S n 是前n 项的和,则( ) A .S 1, S 2, S 3, …, S 10都小于零,S 11,S 12,S 13,…都大于零 B .S 1,S 2,…,S 19都小于零,S 20,S 21,…都大于零 C .S 1,S 2,…,S 5都大于零,S 6,S 7,…都小于零 D .S 1,S 2,…,S 20都大于零,S 21,S 22,…都小于零 7.(2017·桐城八中月考)已知数列{a n }的前n 项和S n =an 2+bn (a ,b ∈R ),且S 25=100,则a 12+a 14等于( ) A .16 B .8 C .4 D .不确定 8.(2017·莆田六中期末)设{a n }(n ∈N *)是等差数列,S n 是其前n 项和,且S 5S 8,则下列结论错误的是( ) A .d <0 B .a 7=0 C .S 9>S 5 D .S 6和S 7均为S n 的最大值 9.设数列{a n }为等差数列,且a 2=-6,a 8=6,S n 是前n 项和,则( ) A .S 4<S 5 B .S 6<S 5 C .S 4=S 5 D .S 6=S 5 10.(2017·西安庆安中学月考)数列{a n }中,a 1=1,a 2=23,且1a n -1+1a n +1=2a n (n ∈N *,n ≥2),则a 6等于( )

相关文档
相关文档 最新文档