文档视界 最新最全的文档下载
当前位置:文档视界 › 专升本高数复习资料

专升本高数复习资料

专升本高数复习资料
专升本高数复习资料

第一章极限和连续 第一节极限

[复习考试要求]

1.了解极限的概念(对极限定义等形式的描述不作要求)。会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。

2.了解极限的有关性质,掌握极限的四则运算法则。

3.理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。会进行无穷小量阶的比较(高阶、低阶、同阶和等价)。会运用等价无穷小量代换求极限。

4.熟练掌握用两个重要极限求极限的方法。

第二节函数的连续性

[复习考试要求]

1.理解函数在一点处连续与间断的概念,理解函数在一点处连续与极限存在之间的关系,掌握判断函数(含分段函数)在一点处连续性的方法。

2.会求函数的间断点。

3.掌握在闭区间上连续函数的性质会用它们证明一些简单命题。

4.理解初等函数在其定义区间上的连续性,会利用函数连续性求极限。

第二章一元函数微分学 第一节导数与微分

[复习考试要求]

1.理解导数的概念及其几何意义,了解可导性与连续性的关系,会用定义求函数在一点处的导数。

2.会求曲线上一点处的切线方程与法线方程。

3.熟练掌握导数的基本公式、四则运算法则以及复合函数的求导方法。

4.掌握隐函数的求导法与对数求导法。会求分段函数的导数。

5.了解高阶导数的概念。会求简单函数的高阶导数。

6.理解微分的概念,掌握微分法则,了解可微和可导的关系,会求函数的一阶微分。

第二节导数的应用

[复习考试要求]

1.熟练掌握用洛必达法则求“0〃∞”、“∞-∞”型未定式的极限的方法。

2.掌握利用导数判定函数的单调性及求函数的单调增、减区间的方法。会利用函数的单调性证明简单的不等式。

3.理解函数极值的概念,掌握求函数的驻点、极值点、极值、最大值与最小值的方法,会解简单的应用题。

4.会判断曲线的凹凸性,会求曲线的拐点。

5.会求曲线的水平渐近线与铅直渐近线

第三章一元函数积分学 第一节不定积分

[复习考试要求]

1.理解原函数与不定积分的概念及其关系,掌握不定积分的性质。

2.熟练掌握不定积分的基本公式。

3.熟练掌握不定积分第一换元法,掌握第二换元法(仅限三角代换与简单的根式代换)。

4.熟练掌握不定积分的分部积分法。

5.

掌握简单有理函数不定积分的计算。

第二节定积分及其应用

[复习考试要求]

1.理解定积分的概念及其几何意义,了解函数可积的条件

2.掌握定积分的基本性质

3.理解变上限积分是变上限的函数,掌握对变上限积分求导数的方法。

4.熟练掌握牛顿—莱布尼茨公式。

5.掌握定积分的换元积分法与分部积分法。

6.理解无穷区间的广义积分的概念,掌握其计算方法。

7.掌握直角坐标系下用定积分计算平面图形的面积以及平面图形绕坐标轴旋转所生成的旋转体的体积。

第四章多元函数微分学

[复习考试要求]

1.了解多元函数的概念,会求二元函数的定义域。了解二元函数的几何意义。

2.了解二元函数的极限与连续的概念。

3.理解二元函数一阶偏导数和全微分的概念,掌握二元函数的一阶偏导数的求法。掌握二元函数的二阶偏导数的求法,掌握二元函数的全微分的求法。

4.掌握复合函数与隐函数的一阶偏导数的求法。

5.会求二元函数的无条件极值和条件极值。

6.会用二元函数的无条件极值及条件极值解简单的实际问题。

第五章概率论初步

[复习考试要求]

1.了解随机现象、随机试验的基本特点;理解基本事件、样本空间、随机事件的概念。

2.掌握事件之间的关系:包含关系、相等关系、互不相容关系及对立关系。

3.理解事件之间并(和)、交(积)、差运算的意义,掌握其运算规律。

4.理解概率的古典型意义,掌握事件概率的基本性质及事件概率的计算。

5.会求事件的条件概率;掌握概率的乘法公式及事件的独立性。

6.了解随机变量的概念及其分布函数。

7.理解离散性随机变量的意义及其概率分布掌握概率分布的计算方法。 8.会求离散性随机变量的数学期望、方差和标准差。

第一章极限和连续 第一节极限

[复习考试要求]

1.了解极限的概念(对极限定义等形式的描述不作要求)。会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。

2.了解极限的有关性质,掌握极限的四则运算法则。

3.理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。会进行无穷小量阶的比较(高阶、低阶、同阶和等价)。会运用等价无穷小量代换求极限。

4.熟练掌握用两个重要极限求极限的方法。 [主要知识内容] (一)数列的极限

1.数列

定义按一定顺序排列的无穷多个数

称为无穷数列,简称数列,记作{x n },数列中每一个数称为数列的项,第n 项x n 为数列的一般项或通项,例如

(1)1,3,5,…,(2n -1),…(等差数列) (2)(等比数列) (3)

(递增数列)

(4)1,0,1,0,…,…(震荡数列) 都是数列。它们的一般项分别为

(2n-1),。

对于每一个正整数n ,都有一个x n 与之对应,所以说数列{x n }可看作自变量n 的函数x n =f (n ),它的定义域是全体正整数,当自变量n 依次取1,2,3…一切正整数时,对应的函数值就排列成数列。 在几何上,数列{x n }可看作数轴上的一个动点,它依次取数轴上的点x 1,x 2,x 3,...x n,…。 2.数列的极限

定义对于数列{x n },如果当n →∞时,x n 无限地趋于一个确定的常数A ,则称当n 趋于无穷大时,数列{x n }以常数A 为极限,或称数列收敛于A ,记作

比如:

无限的趋向0

,无限的趋向1

否则,对于数列{x n },如果当n →∞时,x n 不是无限地趋于一个确定的常数,称数列{x n }没有极限,如果数列没有极限,就称数列是发散的。 比如:1,3,5,…,(2n-1),… 1,0,1,0,…

数列极限的几何意义:将常数A 及数列的项依次用数轴上的点表示,若数列{x n }以

A 为极限,就表示当n 趋于无穷大时,点x n 可以无限靠近点A ,即点x n 与点A 之间的距离|x n -A|

趋于0。 比如:

无限的趋向0

无限的趋向1

(二)数列极限的性质与运算法则 1.数列极限的性质

定理1.1(惟一性)若数列{x n }收敛,则其极限值必定惟一。 定理1.2(有界性)若数列{x n }收敛,则它必定有界。

注意:这个定理反过来不成立,也就是说,有界数列不一定收敛。比如: 1,0,1,0,…有界:0,1 2.数列极限的存在准则

定理1.3(两面夹准则)若数列{x n },{y n },{z n }满足以下条件: (1)

(2), 则

定理1.4若数列{x n }单调有界,则它必有极限。 3.数列极限的四则运算定理。 定理1.5

(1) (2)

(3)当时,

(三)函数极限的概念

1.当x →x 0时函数f (x )的极限 (1)当x →x 0时f (x )的极限

定义对于函数y=f (x ),如果当x 无限地趋于x 0时,函数f (x )无限地趋于一个常数A ,则称当x →x 0时,函数f (x )的极限是A ,记作

或f (x )→A (当x →x 0时)

例y=f (x )=2x+1 x →1,f (x )→? x<1x →1

x>1x →1

(2)左极限

当x →x 0时f (x )的左极限 定义对于函数y=f (x ),如果当x 从x 0的左边无限地趋于x 0时,函数f (x )无限地趋于一个常数A ,则称当x →x 0时,函数f (x )的左极限是A ,记作

或f (x 0-0)=A

(3)右极限

当x →x 0时,f (x )的右极限 定义对于函数y=f (x ),如果当x 从x 0的右边无限地趋于x 0时,函数f (x )无限地趋于一个常数A ,则称当x →x 0时,函数f (x )的右极限是A ,记作 或f (x 0+0)=A 例子:分段函数

,求

解:当x 从0的左边无限地趋于0时f (x )无限地趋于一个常数1。我们称当x →0时,f (x )的左极限是1,即有

当x 从0的右边无限地趋于0时,f (x )无限地趋于一个常数-1。我们称当x →0时,f (x )的右极限是-1,即有

显然,函数的左极限右极限与函数的极限

之间有以下关系:

定理1.6当x →x 0时,函数f (x )的极限等于A 的必要充分条件是

反之,如果左、右极限都等于A ,则必有

x →1时f(x)→? x ≠1

x →1f(x)→

2

对于函数

,当x →1时,f (x )的左极限是2,右极限也是2。

2.当x →∞时,函数f (x )的极限 (1)当x →∞时,函数f (x )的极限 y=f(x)x →∞f(x)→?

y=f(x)=1+

x →∞f(x)=1+→

1

定义对于函数y=f (x ),如果当x →∞时,f (x )无限地趋于一个常数A ,则称当x →∞时,函数f (x )的极限是A ,记作

或f (x )→A (当x →∞时)

(2)当x →+∞时,函数f (x )的极限 定义对于函数y=f (x ),如果当x →+∞时,f (x )无限地趋于一个常数A ,则称当x →+∞时,函数f (x )的极限是A ,记作

这个定义与数列极限的定义基本上一样,数列极限的定义中n →+∞的n 是正整数;而在这个定义中,则要明确写出x →+∞,且其中的x 不一定是正整数,而为任意实数。 y=f(x)x →+∞f(x)x →?

x →+∞,f(x)=2+

2

例:函数f (x )=2+e -x ,当x →+∞时,f (x )→? 解:f (x )=2+e -x =2+, x →+∞,f (x )=2+→2

所以

(3)当x →-∞时,函数f (x )的极限 定义对于函数y=f (x ),如果当x →-∞时,f (x )无限地趋于一个常数A ,则称当x →-∞时,f (x )的极限是A ,记作

x →-∞f(x)→? 则f(x)=2+(x <0) x →-∞,-x →+∞ f(x)=2+

2

例:函数

,当x →-∞时,f (x )→?

解:当x →-∞时,-x →+∞

→2,即有

由上述x →∞,x →+∞,x →-∞时,函数f (x )极限的定义,不难看出:x →∞时f (x )的极限是A 充分必要条件是当x →+∞以及x →-∞时,函数f (x )有相同的极限A 。 例如函数

,当x →-∞时,f (x )无限地趋于常数1,当x →+∞时,f (x )也无限地趋

于同一个常数1,因此称当x →∞时的极限是1,记作

其几何意义如图3所示。

f(x)=1+

y=arctanx

不存在。

但是对函数y=arctanx 来讲,因为有

即虽然当x →-∞时,f (x )的极限存在,当x →+∞时,f (x )的极限也存在,但这两个极限不相同,我们只能说,当x →∞时,y=arctanx 的极限不存在。 x)=1+

y=arctanx

不存在。

但是对函数y=arctanx 来讲,因为有

即虽然当x →-∞时,f (x )的极限存在,当x →+∞时,f (x )的极限也存在,但这两个极限不相同,我们只能说,当x →∞时,y=arctanx 的极限不存在。 (四)函数极限的定理 定理1.7(惟一性定理)如果存在,则极限值必定惟一。

定理1.8(两面夹定理)设函数在点

的某个邻域内(可除外)满足条件:

(1)

,(2)

则有。

注意:上述定理1.7及定理1.8对也成立。 下面我们给出函数极限的四则运算定理 定理1.9如果则

(1)

(2)

(3)当时,时,

上述运算法则可推广到有限多个函数的代数和及乘积的情形,有以下推论: (1)

(2)

(3)

用极限的运算法则求极限时,必须注意:这些法则要求每个参与运算的函数的极限存在,且求商的极限时,还要求分母的极限不能为零。 另外,上述极限的运算法则对于的情形也都成立。 (五)无穷小量和无穷大量 1.无穷小量(简称无穷小) 定义对于函数,如果自变量x 在某个变化过程中,函数

的极限为零,则称在该变化

过程中,为无穷小量,一般记作

常用希腊字母,…来表示无穷小量。 定理1.10函数

以A 为极限的必要充分条件是:

可表示为A 与一个无穷小量之和。

注意:(1)无穷小量是变量,它不是表示量的大小,而是表示变量的变化趋势无限趋于为零。 (2)要把无穷小量与很小的数严格区分开,一个很小的数,无论它多么小也不是无穷小量。 (3)一个变量是否为无穷小量是与自变量的变化趋势紧密相关的。在不同的变化过程中,同一个变量可以有不同的变化趋势,因此结论也不尽相同。 例如:

振荡型发散

(4)越变越小的变量也不一定是无穷小量,例如当x 越变越大时,就越变越小,但它不是

无穷小量。

(5)无穷小量不是一个常数,但数“0”是无穷小量中惟一的一个数,这是因为。

2.无穷大量(简称无穷大) 定义;如果当自变量(或∞)时,的绝对值可以变得充分大(也即无限地增大),

则称在该变化过程中,

为无穷大量。记作

注意:无穷大(∞)不是一个数值,“∞”是一个记号,绝不能写成或

3.无穷小量与无穷大量的关系

无穷小量与无穷大量之间有一种简单的关系,见以下的定理。 定理1.11在同一变化过程中,如果为无穷大量,

为无穷小量;反之,如果为无

穷小量,且,则

为无穷大量。

无穷大

无穷小

当为无穷小

无穷大

4.无穷小量的基本性质

性质1有限个无穷小量的代数和仍是无穷小量;

性质2有界函数(变量)与无穷小量的乘积是无穷小量;特别地,常量与无穷小量的乘积是无穷小量。

性质3有限个无穷小量的乘积是无穷小量。

性质4无穷小量除以极限不为零的变量所得的商是无穷小量。 5.无穷小量的比较 定义设是同一变化过程中的无穷小量,即

。 (1)如果则称

是比较高阶的无穷小量,记作;

(2)如果则称与

为同阶的无穷小量;

(3)如果则称

为等价无穷小量,记为;

(4)如果

则称是比

较低价的无穷小量。当

等价无穷小量代换定理:

如果当时,均为无穷小量,又有且

存在,则

均为无穷小

又有

这个性质常常使用在极限运算中,它能起到简化运算的作用。但是必须注意:等价无穷小量代换可以在极限的乘除运算中使用。 常用的等价无穷小量代换有: 当时,

sinx ~x;tan ~x;arctanx ~x;arcsinx ~

x;

(六)两个重要极限 1.重要极限Ⅰ

重要极限Ⅰ是指下面的求极限公式

这个公式很重要,应用它可以计算三角函数的型的极限问题。

其结构式为:

2.重要极限Ⅱ

重要极限Ⅱ是指下面的公式:

其中e 是个常数(银行家常数),叫自然对数的底,它的值为 e=2.718281828495045…… 其结构式为:

重要极限Ⅰ是属于型的未定型式,重要极限Ⅱ是属于“”型的未定式时,这两个重要极限在极限计算中起很重要的作用,熟练掌握它们是非常必要的。 (七)求极限的方法:

1.利用极限的四则运算法则求极限;

2.利用两个重要极限求极限;

3.利用无穷小量的性质求极限;

4.利用函数的连续性求极限;

5.利用洛必达法则求未定式的极限;

6.利用等价无穷小代换定理求极限。 基本极限公式

(2)

(3)

(4)

例1.无穷小量的有关概念

(1)[9601]下列变量在给定变化过程中为无穷小量的是 A.

B.

C.

D. [答]C

A.

发散

D.

(2)[0202]当时,与x 比较是 A.高阶的无穷小量B.等价的无穷小量

C.非等价的同阶无穷小量

D.低阶的无穷小量 [答]B 解:当

,

与x 是

极限的运算: [0611]

解:

[答案]-1 例

2.

型因式分解约分求极限

(1)[0208] [答]

:

(2)[0621]计算[答]

:

3.

型有理化约分求极限

(1)[0316]计算

[答]

:

(2)[9516] [答]

:

例4.当时求

型的极限 [答]

(1)[0308]

一般地,有

例5.用重要极限Ⅰ求极限

(1)[9603]下列极限中,成立的是

A.

B.

C.

D.

[答]B

(2)[0006] [答]

:

例6.用重要极限Ⅱ求极限

(1)[0416]计算 [答]

[解析]解一:令

解二:

[0306]

[0601]

(2)[0118]计算

[答]

解: 例7.用函数的连续性求极限 [0407] [答]0

解:

例8.用等价无穷小代换定理求极限

[0317]

[答]0

解:当

例9.求分段函数在分段点处的极限

(1)[0307]设

则在

的左极限

[答]1 [解析]

(2)[0406]设

,则

[答]1

[解析]

例10.求极限的反问题

(1)已知则常数

[解析]解法一:

,即

,得

.

解法二:令

得,解得. 解法三:(洛必达法则)

即,得

.

(2)若

求a,b 的值.

[解析]型未定式. 当时,

.

于是

,得

.

即,

所以.

[0402]

[0017]

,则k=_____.(答:ln2)

[解析]

前面我们讲的内容:

极限的概念;极限的性质;极限的运算法则;两个重要极限;无穷小量、无穷大量的概念;无穷小量的性质以及无穷小量阶的比较。

第二节函数的连续性

[复习考试要求]

1.理解函数在一点处连续与间断的概念,理解函数在一点处连续与极限存在之间的关系,掌握判断函数(含分段函数)在一点处连续性的方法。

2.会求函数的间断点。

3.掌握在闭区间上连续函数的性质会用它们证明一些简单命题。

4.理解初等函数在其定义区间上的连续性,会利用函数连续性求极限。

[主要知识内容]

(一)函数连续的概念 1.函数在点x 0处连续

定义1设函数y=f (x )在点x 0的某个邻域内有定义,如果当自变量的改变量△x (初值为x 0)趋近于0时,相应的函数的改变量△y

也趋近于0,即

则称函数y=f (x )在点x 0处连续。

函数y=f (x )在点x 0连续也可作如下定义:

定义2设函数y=f (x )在点x 0的某个邻域内有定义,如果当x →x 0时,函数y=f (x )的极限值存在,且等于x 0处的函数值f (x

0),即

定义3设函数y=f (x ),如果

,则称函数f (x )在点x 0处左连续;如果

则称函数f (x )在点x 0处右连续。由上述定义2可知如果函数y=f (x )在点x 0处连续,则f (x )在点x 0处左连续也右连续。 2.函数在区间[a ,b]上连续

定义如果函数f (x )在闭区间[a ,b]上的每一点x 处都连续,则称f (x )在闭区间[a ,b]上连续,并称f (x )为[a ,b]上的连续函数。

这里,f (x )在左端点a 连续,是指满足关系:,

在右端点b 连续,是指满足关系:

,即f (x )在左端点a 处是右连续,在右端点b 处是左连续。

可以证明:初等函数在其定义的区间内都连续。 3.函数的间断点

定义如果函数f (x )在点x 0处不连续则称点x 0为f (x )一个间断点。 由函数在某点连续的定义可知,若f (x )在点x 0处有下列三种情况之一: (1)在点x 0处,f (x )没有定义; (2)在点x 0处,f (x )的极限不存在; (3)虽然在点x 0处f (x

)有定义,且

存在,但

则点x 0是f (

x )一个间断点。

,则f (x )在

A.x=0,x=1处都间断

B.x=0,x=1处都连续

C.x=0处间断,x=1处连续

D.x=0处连续,x=1处间断 解:x=0处,f

(0)=0

∵f (0-0)≠f (0+0) x=0为f (x )的间断点 x=1处,f

(1)=1

f (1-0)=f (1+0)=f (1)

∴f (x )在x=1处连续 [答案]C

[9703]设

,在x=0处连续,则k 等于

A.0

B.

C.

D.2 分析:f

(0)=k

[答案] B

例3[0209]设

在x=0处连续,则a=

解:f (0)

=e 0=1

∵f (0)=f (0-0)=f (0+0) ∴a=1 [答案]1

(二)函数在一点处连续的性质

由于函数的连续性是通过极限来定义的,因而由极限的运算法则,可以得到下列连续函数的性质。 定理1.12(四则运算)设函数f (x ),g (x )在x 0处均连续,则 (1)f (x )±g (x )在x 0处连续 (2)f (x )〃g (x )在x 0处连续 (3)若g (x 0)≠0,则

在x 0处连续。

定理1.13(复合函数的连续性)设函数u=g (x )在x=x 0处连续,y=f (u )在u 0=g (x 0)处连续,则复合函数y=f[g (x )]在x=x 0处连续。

在求复合函数的极限时,如果u=g (x ),在x 0处极限存在,又y=f (u

)在对应的处连

续,则极限符号可以与函数符号交换。即

定理1.14(反函数的连续性)设函数y=f (x )在某区间上连续,且严格单调增加(或严格单调减少),则它的反函数x=f -1(y )也在对应区间上连续,且严格单调增加(或严格单调减少)。 (三)闭区间上连续函数的性质

在闭区间[a ,b]上连续的函数f (x ),有以下几个基本性质,这些性质以后都要用到。

定理1.15(有界性定理)如果函数f (x )在闭区间[a ,b]上连续,则f (x )必在[a ,b]上有界。 定理1.16(最大值和最小值定理)如果函数f (x )在闭区间[a ,b]上连续,则在这个区间上一定存在最大值和最小值。

定理1.17(介值定理)如果函数f (x )在闭区间[a ,b]上连续,且其最大值和最小值分别为M 和m ,则对于介于m 和M 之间的任何实数C ,在[a

,b]上至少存在一个ξ,使得

推论(零点定理)如果函数f (x )在闭区间[a ,b]上连续,且f (a )与f (b )异号,则在[a ,b]内至少存在一个点ξ,使得

f (ξ)=0

(四)初等函数的连续性

由函数在一点处连续的定理知,连续函数经过有限次四则运算或复合运算而得的函数在其定义的区间内是连续函数。又由于基本初等函数在其定义区间内是连续的,可以得到下列重要结论。 定理1.18初等函数在其定义的区间内连续。

利用初等函数连续性的结论可知:如果f (x )是初等函数,且x 0是定义区间内的点,则 f (x )在

x 0处连续

也就是说,求初等函数在定义区间内某点处的极限值,只要算出函数在该点的函数值即可。

[0407]

[0611]

例1.证明三次代数方程x 3-5x+1=0在区间(0,1)内至少有一个实根. 证:设f (x )=x 3-5x+1 f (x )在[0,1]上连续 f (0)=1 f (1)=-3

由零点定理可知,至少存在一点ξ∈(0,1) 使得f (ξ)=0,ξ3-5ξ+1=0

即方程在(0,1)内至少有一个实根。 本章小结

函数、极限与连续是微积分中最基本、最重要的概念之一,而极限运算又是微积分的三大运算中最基本的运算之一,必须熟练掌握,这会为以后的学习打下良好的基础。

这一章的内容在考试中约占15%,约为22分左右。现将本章的主要内容总结归纳如下: 一、概念部分

重点:极限概念,无穷小量与等价无穷小量的概念,连续的概念。

极限概念应该明确极限是描述在给定变化过程中函数变化的性态,极限值是一个确定的常数。 函数在一点连续性的三个基本要素: (1)f (x )在点x 0有定义。 (2)

存在。

(3)。

常用的是f (x 0-0)=f (x 0+0)=f (x 0)。 二、运算部分

重点:求极限,函数的点连续性的判定。 1.求函数极限的常用方法主要有: (1)利用极限的四则运算法则求极限;

对于“”型不定式,可考虑用因式分解或有理化消去零因子法。 (2)利用两个重要极限求极限;

(3)利用无穷小量的性质求极限; (4)利用函数的连续性求极限; 若f (x )在x 0处连续,则。 (5)利用等价无穷小代换定理求极限; (6)会求分段函数在分段点处的极限;

(7)利用洛必达法则求未定式的极限。

2.判定函数的连续性,利用闭区间上连续函数的零点定理证明方程的根的存在性。

专升本高数复习资料.

第一章极限和连续 第一节极限 [复习考试要求] 1.了解极限的概念(对极限定义等形式的描述不作要求)。会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。 2.了解极限的有关性质,掌握极限的四则运算法则。 3.理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。会进行无穷小量阶的比较(高阶、低阶、同阶和等价)。会运用等价无穷小量代换求极限。 4.熟练掌握用两个重要极限求极限的方法。 第二节函数的连续性 [复习考试要求] 1.理解函数在一点处连续与间断的概念,理解函数在一点处连续与极限存在之间的关系,掌握判断函数(含分段函数)在一点处连续性的方法。 2.会求函数的间断点。 3.掌握在闭区间上连续函数的性质会用它们证明一些简单命题。 4.理解初等函数在其定义区间上的连续性,会利用函数连续性求极限。 第二章一元函数微分学 第一节导数与微分 [复习考试要求] 1.理解导数的概念及其几何意义,了解可导性与连续性的关系,会用定义求函数在一点处的导数。 2.会求曲线上一点处的切线方程与法线方程。 3.熟练掌握导数的基本公式、四则运算法则以及复合函数的求导方法。 4.掌握隐函数的求导法与对数求导法。会求分段函数的导数。 5.了解高阶导数的概念。会求简单函数的高阶导数。 6.理解微分的概念,掌握微分法则,了解可微和可导的关系,会求函数的一阶微分。 第二节导数的应用 [复习考试要求] 1.熟练掌握用洛必达法则求“0·∞”、“∞-∞”型未定式的极限的方法。 2.掌握利用导数判定函数的单调性及求函数的单调增、减区间的方法。会利用函数的单调性证明简单的不等式。 3.理解函数极值的概念,掌握求函数的驻点、极值点、极值、最大值与最小值的方法,会解简单的应用题。 4.会判断曲线的凹凸性,会求曲线的拐点。 5.会求曲线的水平渐近线与铅直渐近线

高等数学基本知识

一、函数与极限 1、集合的概念 一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。比如“身材较高的人”不能构成集合,因为它的元素不是确定的。 我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a A。 ⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。记作N ⑵、所有正整数组成的集合叫做正整数集。记作N+或N+。 ⑶、全体整数组成的集合叫做整数集。记作Z。 ⑷、全体有理数组成的集合叫做有理数集。记作Q。 ⑸、全体实数组成的集合叫做实数集。记作R。 集合的表示方法 ⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合 ⑵、描述法:用集合所有元素的共同特征来表示集合。 集合间的基本关系 ⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A B(或B A)。。 ⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。 ⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。 ⑷、空集:我们把不含任何元素的集合叫做空集。记作,并规定,空集是任何集合的子集。 ⑸、由上述集合之间的基本关系,可以得到下面的结论: ①、任何一个集合是它本身的子集。即A A ②、对于集合A、B、C,如果A是B的子集,B是C的子集,则A是C的子集。 ③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。 集合的基本运算 ⑴、并集:一般地,由所有属于集合A或属于集合B的元素组成的集合称为A与B的并集。记作A ∪B。(在求并集时,它们的公共元素在并集中只能出现一次。) 即A∪B={x|x∈A,或x∈B}。 ⑵、交集:一般地,由所有属于集合A且属于集合B的元素组成的集合称为A与B的交集。记作A ∩B。 即A∩B={x|x∈A,且x∈B}。 ⑶、补集: ①全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集。通常记作U。

专升本高数公式大全

导数公式: 基本积分表: 三角函数的有理式积分: 2 22212211cos 12sin u du dx x tg u u u x u u x +==+-=+=, , ,  a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1 )(log ln )(csc )(csc sec )(sec csc )(sec )(22= '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 π π

专升本高数知识点.

第一讲 函数、极限、连续 1、基本初等函数的定义域、值域、图像,尤其是图像包含了函数的所有信息。 2、函数的性质,奇偶性、有界性 奇函数:)()(x f x f -=-,图像关于原点对称。 偶函数: )()(x f x f =-,图像关于y 轴对称 3、无穷小量、无穷大量、阶的比较 设βα,是自变量同一变化过程中的两个无穷小量,则 (1)若0=β α lim ,则α是比β高阶的无穷小量。 (2)若c β α =lim (不为0) ,则α与β是同阶无穷小量 特别地,若1=β α lim ,则α与β是等价无穷小量 (3)若∞=β α lim ,则α与β是低阶无穷小量 记忆方法:看谁趋向于0的速度快,谁就趋向于0的本领高。 4、两个重要极限 (1)100==→→x x x x x x sin lim sin lim 使用方法:拼凑[][ ][][][][] 000 ==→→sin lim sin lim ,一定保证拼凑sin 后面和分母保持一致 (2)e x x x x x x =+=??? ? ?+→∞→1 0111)(lim lim [][][]e =+→1 1)(lim 使用方法1后面一定是一个无穷小量并且和指数互为倒数,不满足条件得拼凑。 5、()() ? ?>∞<==∞→m n m n m n b a X Q x P m n x ,,,lim 00

()x P n 的最高次幂是n,()x Q m 的最高次幂是m.,只比较最高次幂,谁的次幂高,谁的头大,趋向于无穷大的速 度快。m n =,以相同的比例趋向于无穷大;m n <,分母以更快的速度趋向于无穷大;m n >,分子以更快的速度趋向于无穷大。 7、左右极限 左极限:A x f x x =- →)(lim 0 右极限:A x f x x =+ →)(lim 0 A x f x f A x f x x x x x x ===+ - →→→)(lim )(lim )(lim 000 充分必要条件是 注:此条件主要应用在分段函数分段点处的极限求解。 8、连续、间断 连续的定义: []0)()(lim lim 000 =-?+=?→?→?x f x x f y x x 或)()(lim 00 x f x f x x =→ 间断:使得连续定义)()(lim 00 x f x f x x =→无法成立的三种情况 ??? ? ???≠→→)()(lim )(lim )()(00 00 0x f x f x f x f x f x x x x 不存在无意义 不存在, 记忆方法:1、右边不存在 2、左边不存在 3、左右都存在,但不相等 9、间断点类型 (1)、第二类间断点:)(lim 0 x f x x - →、)(lim 0x f x x + →至少有一个不存在 (2)、第一类间断点:)(lim 0 x f x x - →、)(lim 0x f x x + →都存在 ?? ???≠=+ - + - →→→→)(lim )(lim )(lim )(lim 000 x f x f x f x f x x x x x x x x 跳跃间断点:可去间断点: 注:在应用时,先判断是不是“第二类间断点”,左右只要有一个不存在,就是“第二类”然后再判断是不是第 一类间断点;左右相等是“可去”,左右不等是“跳跃” 10、闭区间上连续函数的性质 (1) 最值定理:如果)(x f 在[]b a ,上连续,则)(x f 在[]b a ,上必有最大值最小值。 (2) ξ零点定理:如果)(x f 在[]b a ,上连续,且0)()(

(完整word版)同济大学高等数学教学大纲

《高等数学A》课程教学大纲 (216学时,12学分) 一、课程的性质、目的和任务 高等数学A是理科(非数学)本科个专业学生的一门必修的重要基础理论课,它是为培养我国社会主义现代化建设所需要的高质量专门人才服务的。 通过本课程的学习,要使学生获得:1、函数与极限;2、一元函数微积分学;3、向量代数与空间解析几何;4、多元函数微积分学; 5、无穷级数(包括傅立叶级数); 6、微分方程等方面的基本概念、基本理论和基本运算技能,为学习后继课程和进一步获取数学知识奠定必要的数学基础。 在传授知识的同时,要通过各个教学环节逐步培养学生具有抽象思维能力、逻辑推理能力、空间想象能力、运算能力和自学能力,还要特别注意培养学生具有综合运用所学知识去分析问题和解决问题 的能力。 二、总学时与学分 本课程的安排三学期授课,分为高等数学A(一)、(二)、(三),总学时为90+72+54,学分为5+4+3。 三、课程教学基本要求及基本内容 说明:教学要求较高的内容用“理解”、“掌握”、“熟悉”等词表述,要求较低的内容用“了解”、“会”等词表述。 高等数学A(一) 一、函数、极限、连续、 1. 理解函数的概念及函数奇偶性、单调性、周期性、有界性。 2. 理解复合函数和反函数的概念。 3. 熟悉基本初等函数的性质及其图形。 4. 会建立简单实际问题中的函数关系式。 5. 理解极限的概念,掌握极限四则运算法则及换元法则。 6. 理解子数列的概念,掌握数列的极限与其子数列的极限之间的 关系。

7. 理解极限存在的夹逼准则,了解实数域的完备性(确界原理、单界有界数列必有极限的原理,柯西(Cauchy),审敛原理、区间套定理、致密性定理)。会用两个重要极限求极限。 8. 理解无穷小、无穷大、以及无穷小的阶的概念。会用等价无穷 小求极限。 9. 理解函数在一点连续和在一个区间上连续的概念,了解间断点 的概念,并会判别间断点的类型。 10. 了解初等函数的连续性和闭区间上连续函数的性质(介值定理,最大最小值定理,一致连续性)。 二、一元函数微分学 1.理解导数和微分的概念,理解导数的几何意义及函数的可导性与连续性之间的关系。会用导数描述一些物理量。 2.掌握导数的四则运算法则和复合函数的求导法,掌握基本初等函数、双曲函数的导数公式。了解微分的四则运算法则和一阶微分形式不变性。 3.了解高阶导数的概念。 4.掌握初等函数一阶、二阶导数的求法。 5.会求隐函数和参数式所确定的函数的一阶、二阶导数。会求反函数的导数。 6.理解罗尔(Rolle)定理和拉格朗日(Lagrange)定理,了解柯西(Cauchy)定理和泰勒(Taylor)定理。 7.会用洛必达(L’Hospital)法则求不定式的极限。 8.理解函数的极值概念,掌握用导数判断函数的单调性和求极值的方法。会求解较简单的最大值和最小值的应用问题。 9.会用导数判断函数图形的凹凸性,会求拐点,会描绘函数的图形(包括水平和铅直渐进线)。 10.了解有向弧与弧微分的概念。了解曲率和曲率半径的概念并会计算曲率和曲率半径。 11.了解求方程近似解的二分法和切线法。 三、一元函数积分学 1. 理解原函数与不定积分的概念及性质,掌握不定积分的基本公式、换元法和分步积分法。会求简单的有理函数及三角函数有理式的积分。 2. 理解定积分的概念及性质,了解函数可积的充分必要条件。

成人高考专升本高数一复习资料

成人高考高数一复习资料 1.理解极限的概念(对极限定义、、等形式的描述不作要求)。会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。 2.了解极限的有关性质,掌握极限的四则运算法则。 3.理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。会进行无穷小量阶的比较(高阶、低阶、同阶和等价)。会运用等价无穷小量代换求极限。 1.数列 按一定顺序排列的无穷多个数 称为数列,记作,其中每一个数称为数列的项,第n 项。为数列的一 般项或通项,例如 (1)1,3,5,…,,… (2) (3) (4)1 ,0,1,0,…,… 都是数列。 在几何上,数 列 可看作数轴上的一个动点,它依次取数轴 上的点 。 2. 数列的极限 定义对于数列 ,如果当 时, 无限地趋于一个常数A ,则称当n 趋于无穷大时,数列以常数A 为极限,或称数列收敛于A ,记作 否则称数列 没有极限,如果数列没有极限,就称数列是发散的。 数列极限的几何意义:将常数A 及数列的项 依次用数轴上的 点表示,若数列以A 为极限,就表示当n 趋于无穷大时,点 可以无限 定理 1.1(惟一性)若数列 收敛,则其极限值必定惟一。 定理1.2(有界性)若数列收敛,则它必定有界。 注意:这个定理反过来不成立,也就是说,有界数列不一定收敛。 定理 1.3(两面夹定理)若数列 ,, 满足不等式 且 。 定理1.4 若数列单调有界,则它必有极限。 下面我们给出数列极限的四则运算定理。 定理 1.5 (1) (2) (3)当时, (三)函数极限的概念1.当时函数的极限 (1)当时 的极限 定义 对于函数,如果当x 无限地趋于时,函数 无限地趋于一个常数A ,则称当时,函数 的极限是A ,记作 或 (当时) (2 )当 时 的左极限 定义 对于函数 ,如果当x 从 的左边无限地趋于时,函数 无 限地趋于一个常数A ,则称当 时,函数 的左极限是A ,记作 或 例如函数 当x 从0的左边无限地趋于0时,无限地趋于一个常数1.我们称:当 时,的左极限是1,即有 (3 )当 时, 的右极限 定义 对于函数 ,如果当x 从 的右边无限地趋于时,函数 无 限地趋于一个常数A ,则称当 时,函数 的右极限是A ,记作 或 又如函数 当x 从0的右边无限地趋于0时, 无限地趋于一个常数-1 。因此有 这就是说,对于函数 当时,的左极限是1,而右极限是 -1,即 但是对于函数 ,当 时, 的左极限是2,而右极限是2。 显然,函数的左极限、右极限 与函数的极限 之间 有以下关系: 定理1.6 当 时,函数 的极限等于A 的必要充分条件是 这就是说:如果当时,函数 的极限等于A ,则必定有左、右极限 都等于A 。 反之,如果左、右极限都等于A ,则必有。 这个结论很容易直接由它们的定义得到。 以上讲的是当时,函数的极限存在的情况,对于某些函数的某些点 处,当 时, 的极限也可能不存在。 2.当时,函数的极限 (1)当 时,函数 的极限 定义 对于函数 ,如果当 时, 无限地趋于一个常数A , 则称当 时,函数 的极限是A ,记作或 (当 时) (2)当时,函数 的极限 定义 对于函数 ,如果当时, 无限地趋于一个常数A , 则称当 时,函数的极限是A ,记作 这个定义与数列极限的定义基本上一样,只不过在数列极限的定义中一定表示,且n 是正整数;而在这个定义中,则要明确写出, 且其中的x 不一定是整数。

专升本高数公式大全

高等数学公式 导数公式: 基本积分表: a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(2 2 = '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 π π

高数专升本试题与答案解析

普通专科教育考试 《数学(二)》 一、单项选择题(本大题共10小题,每小题2分,共20题。在每小题给出的四个备选项中, 选出一个正确的答案,并将所选项前面的字母填写在答题纸的相应位置上,填写在其他位置上无效。) 1.极限=+--+→2 32 lim 2 21x x x x x ( ) A.—3 B. —2 2.若函数()??? ? ???>=<+=?0 ,1 sin 0,00,sin 1 x x x x x a x x x 在0=x 处连续,则=a ( ) D.—1 3.函数()x f 在()+∞∞-,上有定义,则下列函数中为奇函数的是( ) A.() x f B.()x f C.()()x f x f -+ D.()()x f x f -- 4.设函数()x f 在闭区间[]b a , 上连续,在开区间()b a ,内可导,且()()b f a f =,则曲线()x f y =在()b a ,内平行于x 轴的切线( ) A.不存在 B.只有一条 C.至少有一条 D.有两条以上 5.已知某产品的总成本函数C 与产量x 的函数关系为C (),2000102.02 ++=x x x C 则当产 量10=x ,其边际成本是( ) A.—14 C.—20 6.设二元函数,xy y e x z +=则=??x z ( ) A. xy y e yx +-1 B.xy y ye yx +-1 C.xy y e x x +ln D.xy y ye x x +ln 7.微分方程y x e dx dy -=2的通解为( ) A.C e e y x =-2 B.C e e y x =-212 C.C e e y x =-22 1 D.C e e y x =+2 8.下列级数中收敛发散的是( ) A.∑∞ =1!1n n B.∑∞=123n n n C.∑∞ =+1 1n n n D.∑∞=13sin n n π

专升本高数复习资料(超新超全)

严格依据大纲编写: 笔记目录 第一章极限和连续 第一节极限 [复习考试要求] 1.了解极限的概念(对极限定义等形式的描述不作要求)。会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。 2.了解极限的有关性质,掌握极限的四则运算法则。 3.理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。会进行无穷小量阶的比较(高阶、低阶、同阶和等价)。会运用等价无穷小量代换求极限。 4.熟练掌握用两个重要极限求极限的方法。 第二节函数的连续性 [复习考试要求] 1.理解函数在一点处连续与间断的概念,理解函数在一点处连续与极限存在之间的关系,掌握判断函数(含分段函数)在一点处连续性的方法。 2.会求函数的间断点。 3.掌握在闭区间上连续函数的性质会用它们证明一些简单命题。 4.理解初等函数在其定义区间上的连续性,会利用函数连续性求极限。 第二章一元函数微分学 第一节导数与微分 [复习考试要求] 1.理解导数的概念及其几何意义,了解可导性与连续性的关系,会用定义求函数在一点处的导数。 2.会求曲线上一点处的切线方程与法线方程。 3.熟练掌握导数的基本公式、四则运算法则以及复合函数的求导方法。 4.掌握隐函数的求导法与对数求导法。会求分段函数的导数。 5.了解高阶导数的概念。会求简单函数的高阶导数。 6.理解微分的概念,掌握微分法则,了解可微和可导的关系,会求函数的一阶微分。

第二节导数的应用 [复习考试要求] 1.熟练掌握用洛必达法则求“0·∞”、“∞-∞”型未定式的极限的方法。 2.掌握利用导数判定函数的单调性及求函数的单调增、减区间的方法。会利用函数的单调性证明简单的不等式。 3.理解函数极值的概念,掌握求函数的驻点、极值点、极值、最大值与最小值的方法,会解简单的应用题。 4.会判断曲线的凹凸性,会求曲线的拐点。 5.会求曲线的水平渐近线与铅直渐近线 第三章一元函数积分学 第一节不定积分 [复习考试要求] 1.理解原函数与不定积分的概念及其关系,掌握不定积分的性质。 2.熟练掌握不定积分的基本公式。 3.熟练掌握不定积分第一换元法,掌握第二换元法(仅限三角代换与简单的根式代换)。 4.熟练掌握不定积分的分部积分法。 5.掌握简单有理函数不定积分的计算。 第二节定积分及其应用 [复习考试要求] 1.理解定积分的概念及其几何意义,了解函数可积的条件 2.掌握定积分的基本性质 3.理解变上限积分是变上限的函数,掌握对变上限积分求导数的方法。 4.熟练掌握牛顿—莱布尼茨公式。 5.掌握定积分的换元积分法与分部积分法。 6.理解无穷区间的广义积分的概念,掌握其计算方法。 7.掌握直角坐标系下用定积分计算平面图形的面积以及平面图形绕坐标轴旋转所生成的旋转体的体积。 第四章多元函数微分学

高等数学2课程教学大纲

高等数学A2 课程教学大纲 课程编号:10009B6 学时:90 学分:5 适用对象:理学类、工科类本科专业 先修课程:高等数学A1 考核要求:闭卷考试,总成绩=平时成绩20%+期末成绩80% 使用教材及主要参考书: 同济大学数学系主编,《高等数学》(下册),高等教育出版社,2002 年, 第五版 黄立宏主编,《高等数学》(上下册),复旦大学出版社,2006 年陈兰祥主编,《高等数学典型题精解》,学苑出版社,2001 年陈文灯主编,《考研数学复习指南(理工类)》,世界图书版公司2006年李远东、刘庆珍编,《高等数学的基本理论与方法》,重庆大学出版社,1995年 钱吉林主编,《高等数学辞典》,华中师范大学出版社,1999 年一、课程的性质和任务 高等数学课程是高等学校理工科各专业学生的一门必修的重要基础理论课,为学习后继课程(如大学物理等)奠定必要的基础,是为培养我国社会主义现代化建设所需要的高质量、高素质专门人才服务的。二、教学目的与要求 通过本课程的学习,使学生获得向量代数和空间解析几何、多元函数微分学、多元函数积分学、无穷级数(包括傅立叶级数)等方面的基本概念、基本理论和基本运算技能。 在传授知识的同时,要通过各个教学环节逐步培养学生具有抽象思维能力、逻辑推理能力、空间想象能力和自学能力,还要特别注意培养学生具有比较熟练的运算能力和综合运用所学知识去分析问题和解决问 题的能力。 三、学时分配

第八章多元函数微分法及其应用18 第九章重积分16 第十章曲线积分与曲面积分16 第十一章无穷级数18 总复习 6 四、教学中应注意的问题 1. 考虑学生的差异性,注意因材施教; 2. 考虑数学学科的抽象性,注意数形结合; 3. 考虑数学与现实生活的关系,注意在教学中多讲身边的数学, 使学生树立“学数学是为了用数学”的观点,培养学生“用数学”的好习惯。 五、教学内容 第七章:空间解析几何与向量代数 1 ?基本内容: 向量及其线性运算,数量积,向量积,曲面及其方程,空间曲线及其方程,平面及其方程,空间直线及其方程。 2 ?教学基本要求: (1)理解空间直角坐标系、理解向量的概念及其表示; (2)掌握向量的运算(线性运算、点乘法、叉乘法、)了解两个向量垂直、平行的条件; (3)掌握单位向量,方向余弦、向量的坐标表达式以及用坐标表达式进行向量运算的方法; (4)平面的方程和直线的方程及其求法,会利用平面、直线的相互关系解决有关问题 (5)理解曲面的方程的概念,了解常用二次曲面的方程及其图形,了解以坐标轴为旋转的旋转曲面及母线平行于坐标轴的柱面方程; (6)了解空间曲线的参数方程和一般方程; (7)了解曲面的交线在坐标平面上的投影。 3 ?教学重点与难点: 教学重点:向量的运算(线性运算、点乘法、叉乘法),两个向量垂直、平行的条件,向量方向余弦、向量的坐标表达式以及用坐标表达式进行向量运算,平面的方程和直线的方程及其求法,曲面方程的

最新专升本高数大纲.pdf

上海第二工业大学专升本考试大纲 《高等数学一》 《高等数学》专升本入学考试注重考察学生基础知识、基本技能和思维能力、运算能力、以及分析问题和解决问题的能力,考试时间2小时,满分150分。 考试内容 一、函数、极限与连续 (一)考试内容 函数的概念与基本特性;数列、函数极限;极限的运算法则;两个重要极限;无穷小的 概念与阶的比较;函数的连续性和间断点;闭区间上连续函数的性质。 (二)考试要求 1.理解函数的概念,了解函数的奇偶性、单调性、周期性、有界性。了解反函数的概念;理解复合函数的概念。理解初等函数的概念。会建立简单实际问题的函数关系。 2.理解数列极限、函数极限的概念(不要求做给出,求N或的习题);了解极限性质(唯一性、有界性、保号性)和极限的两个存在准则(夹逼准则和单调有界准则)。 3.掌握函数极限的运算法则;熟练掌握极限计算方法。掌握两个重要极限,并会用两个重要极限求极限。 4.了解无穷小、无穷大、高阶无穷小、等价无穷小的概念,会用等价无穷小求极限。 5.理解函数连续的概念;了解函数间断点的概念,会判别间断点的类型(第一类可去、跳跃 间断点与第二类间断点)。 6.了解初等函数的连续性;了解闭区间上连续函数的性质,会用性质证明一些简单结论。 二、导数与微分 (一)考试内容 导数概念及求导法则;隐函数与参数方程所确定函数的导数;高阶导数;微分的概念与 运算法则。 (二)考试要求 1.理解导数的概念及几何意义,了解函数可导与连续的关系,会求平面曲线的切、法线方程;

2.掌握导数的四则运算法则和复合函数的求导法则;掌握基本初等函数的求导公式,会熟练 求函数的导数。 3.掌握隐函数与参数方程所确定函数的求导方法(一阶);掌握取对数求导法。 4.了解高阶导数的概念,掌握初等函数的一阶、二阶导数的求法。会求简单函数的n 阶导数。5.理解微分的概念,了解微分的运算法则和一阶微分形式不变性,会求函数的微分。三、中值定理与导数应用(一)考试内容 罗尔中值定理、拉格朗日中值定理;洛必达法则;函数单调性与极值、曲线凹凸性与拐点。 (二)考试要求 1.理解罗尔中值定理、拉格朗日中值定理(对定理的分析证明不作要求);会用中值定理证 明一些简单的结论。2.掌握用洛必达法则求 0, ,0,,1, ,0等不定式极限的方法。 3.理解函数极值概念,掌握用导数判定函数的单调性和求函数极值的方法;会利用函数单调 性证明不等式;会求较简单的最大值和最小值的应用问题。4.会用导数判断曲线的凹凸性,会求曲线的拐点。四、不定积分(一)考试内容 原函数与不定积分概念,不定积分换元法,不定积分分部积分法。(二)考试要求 1.理解原函数与不定积分的概念和性质 。 2.掌握不定积分的基本公式、换元积分法和分部积分法(淡化特殊积分技巧的训练,对于有 理函数积分的一般方法不作要求,对于一些简单有理函数可作为两类积分法的例题作适当训练)。 五、定积分及其应用(一)考试内容 定积分的概念和性质,积分变上限函数,牛顿-莱布尼兹公式,定积分的换元积分法和分部积分法,无穷区间上的广义积分;定积分的应用——求平面图形的面积与旋转体体积。(二)考试要求

专升本高数试题(卷)库

全国教师教育网络联盟入学联考 (专科起点升本科) 高等数学备考试题库 2012年 一、选择题 1. 设)(x f 的定义域为[]1,0,则)12 (-x f 的定义域为( ). A: ?? ?? ??1,21 B: 1,12?? ??? C: 1,12???? ?? D: 1,12?? ??? 2. 函数()()a r c s i n s i n f x x =的定义域为( ). A: (),-∞+∞ B: ,22ππ??- ?? ? C: ,22ππ??-???? D: []1,1- 3.下列说法正确的为( ).

A: 单调数列必收敛; B: 有界数列必收敛; C: 收敛数列必单调; D: 收敛数列必有界. 4.函数x x f sin )(=不是( )函数. A: 有界 B: 单调 C: 周期 D: 奇 5.函数1 23sin +=x e y 的复合过程为( ). A: 12,,sin 3+===x v e u u y v B: 12,sin ,3+===x v e u u y v C: 123,sin ,+===x e v v u u y D: 12,,sin ,3+====x w e v v u u y w 6.设??? ??=≠=0 1 4sin )(x x x x x f ,则下面说法不正确的为( ). A: 函数)(x f 在0=x 有定义; B: 极限)(lim 0 x f x →存在; C: 函数)(x f 在0=x 连续; D: 函数)(x f 在0=x 间断。 7. 极限x x x 4sin lim 0→= ( ). A: 1

《高等数学》教学大纲

《高等数学》教学大纲 (2010年3月讨论稿) 全院专升本各专业适用 一、课程的性质与任务 《高等数学》课程,是成人高等教育本科各专业教学计划中的一门必修基础理论课,它不仅为专业计划中多门后继课程提供必要的数学基础,而且也是为提高学生科学素养而设置的课程。 通过本课程的学习,要使学生获得《高等数学》中的基本概念、基本理论和基本方法。要通过各个教学环节,逐步培养学生具备较熟练的运算能力和运用数学方法处理问题的初步能力。同时,在抽象思维和逻辑推理方面也有一定的提高,以提升学生的数学素质,使自学能力提高一个层次,为以后深造打下坚实的基础。 二、本课程的基本要求与重点 专升本数学教学是比较特殊的一种教学形式,因学生是专科毕业生,已初步获得一元微积分的基本知识。因此,根据成人高等教育以培养应用型人才的目标,按基础理论教材“必需、够用”的原则,本课程的基本要求: 1.加深掌握一元函数微分和积分两大基本数学方法的理解和应用; 2.获得多元函数微积分、常微分方程和无穷级数的系统的基本知识、基本理论和基本方法。 本课程的重点为:微分方程、二元函数微分学、二重积分、曲线积分和无穷级数。(说明:曲线积分和无穷级数经管类不作要求) 三、课程内容和考核要求 第一章函数、极限与连续性 (一)课程内容 1.初等函数与非初等函数; 2.函数的特性; 3.数列的极限; 4.函数的极限; 5.极限的运算法则; 6.两个重要极限; 7.无穷小量及其性质和无穷大量; 8.无穷小量的比较; 9.函数的连续性概念和连续函数的运算; 10.函数的间断点; 11.闭区间上连续函数的性质。 (二)考核要求 1.掌握求函数的定义域和函数值,理解函数记号的运用。 2.了解函数与其图形之间的关系,掌握画常用的简单的函数图像。

数学基本概念

基本概念 第一章数和数的运算一概念(一)整数 1整数的意义:自然数和0都是整数。2自然数: 我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。一个物体也没有,用0表示。0也是自然数。3计数单位 一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。4数位:计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。5数的整除 整数a除以整数b(b≠0),除得的商是整数而没有余数,我们就说a 能被b整除,或者说b能整除a。如果数a能被数b(b≠0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。倍数和约数是相互依存的。 因为35能被7整除,所以35是7的倍数,7是35的约数。 一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。 一个数的倍数的个数是无限的,其中最小的倍数是它本身。3的倍数有:3、6、9、12……其中最小的倍数是3,没有最大的倍数。 个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。。个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。。

一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。一个数各位数上的和能被9整除,这个数就能被9整除。 能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。 一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。 一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。能被2整除的数叫做偶数。不能被2整除的数叫做奇数。 0也是偶数。自然数按能否被2整除的特征可分为奇数和偶数。 一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。一个数,如果除了1和它本身还有别的约数,这样的数叫做合数,例如4、6、8、9、12都是合数。 1不是质数也不是合数,自然数除了1外,不是质数就是合数。如果把自然数按其约数的个数的不同分类,可分为质数、合数和1。

专升本高数复习资料

第一章极限和连续 第一节极限 [复习考试要求] 1.了解极限的概念(对极限定义等形式的描述不作要求)。会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。 2.了解极限的有关性质,掌握极限的四则运算法则。 3.理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。会进行无穷小量阶的比较(高阶、低阶、同阶和等价)。会运用等价无穷小量代换求极限。 4.熟练掌握用两个重要极限求极限的方法。 第二节函数的连续性 [复习考试要求] 1.理解函数在一点处连续与间断的概念,理解函数在一点处连续与极限存在之间的关系,掌握判断函数(含分段函数)在一点处连续性的方法。 2.会求函数的间断点。 3.掌握在闭区间上连续函数的性质会用它们证明一些简单命题。 4.理解初等函数在其定义区间上的连续性,会利用函数连续性求极限。 第二章一元函数微分学 第一节导数与微分 [复习考试要求] 1.理解导数的概念及其几何意义,了解可导性与连续性的关系,会用定义求函数在一点处的导数。 2.会求曲线上一点处的切线方程与法线方程。 3.熟练掌握导数的基本公式、四则运算法则以及复合函数的求导方法。 4.掌握隐函数的求导法与对数求导法。会求分段函数的导数。 5.了解高阶导数的概念。会求简单函数的高阶导数。 6.理解微分的概念,掌握微分法则,了解可微和可导的关系,会求函数的一阶微分。 第二节导数的应用 [复习考试要求] 1.熟练掌握用洛必达法则求“0〃∞”、“∞-∞”型未定式的极限的方法。 2.掌握利用导数判定函数的单调性及求函数的单调增、减区间的方法。会利用函数的单调性证明简单的不等式。 3.理解函数极值的概念,掌握求函数的驻点、极值点、极值、最大值与最小值的方法,会解简单的应用题。 4.会判断曲线的凹凸性,会求曲线的拐点。 5.会求曲线的水平渐近线与铅直渐近线 第三章一元函数积分学 第一节不定积分 [复习考试要求] 1.理解原函数与不定积分的概念及其关系,掌握不定积分的性质。 2.熟练掌握不定积分的基本公式。 3.熟练掌握不定积分第一换元法,掌握第二换元法(仅限三角代换与简单的根式代换)。 4.熟练掌握不定积分的分部积分法。 5. 掌握简单有理函数不定积分的计算。 第二节定积分及其应用 [复习考试要求] 1.理解定积分的概念及其几何意义,了解函数可积的条件 2.掌握定积分的基本性质 3.理解变上限积分是变上限的函数,掌握对变上限积分求导数的方法。 4.熟练掌握牛顿—莱布尼茨公式。 5.掌握定积分的换元积分法与分部积分法。 6.理解无穷区间的广义积分的概念,掌握其计算方法。 7.掌握直角坐标系下用定积分计算平面图形的面积以及平面图形绕坐标轴旋转所生成的旋转体的体积。 第四章多元函数微分学 [复习考试要求] 1.了解多元函数的概念,会求二元函数的定义域。了解二元函数的几何意义。 2.了解二元函数的极限与连续的概念。 3.理解二元函数一阶偏导数和全微分的概念,掌握二元函数的一阶偏导数的求法。掌握二元函数的二阶偏导数的求法,掌握二元函数的全微分的求法。 4.掌握复合函数与隐函数的一阶偏导数的求法。 5.会求二元函数的无条件极值和条件极值。 6.会用二元函数的无条件极值及条件极值解简单的实际问题。 第五章概率论初步 [复习考试要求] 1.了解随机现象、随机试验的基本特点;理解基本事件、样本空间、随机事件的概念。 2.掌握事件之间的关系:包含关系、相等关系、互不相容关系及对立关系。 3.理解事件之间并(和)、交(积)、差运算的意义,掌握其运算规律。 4.理解概率的古典型意义,掌握事件概率的基本性质及事件概率的计算。 5.会求事件的条件概率;掌握概率的乘法公式及事件的独立性。 6.了解随机变量的概念及其分布函数。 7.理解离散性随机变量的意义及其概率分布掌握概率分布的计算方法。 8.会求离散性随机变量的数学期望、方差和标准差。 第一章极限和连续 第一节极限 [复习考试要求] 1.了解极限的概念(对极限定义等形式的描述不作要求)。会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。 2.了解极限的有关性质,掌握极限的四则运算法则。 3.理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。会进行无穷小量阶的比较(高阶、低阶、同阶和等价)。会运用等价无穷小量代换求极限。 4.熟练掌握用两个重要极限求极限的方法。 [主要知识内容] (一)数列的极限 1.数列 定义按一定顺序排列的无穷多个数 称为无穷数列,简称数列,记作{x n },数列中每一个数称为数列的项,第n 项x n 为数列的一般项或通项,例如 (1)1,3,5,…,(2n -1),…(等差数列) (2)(等比数列) (3) (递增数列) (4)1,0,1,0,…,…(震荡数列) 都是数列。它们的一般项分别为 (2n-1),。 对于每一个正整数n ,都有一个x n 与之对应,所以说数列{x n }可看作自变量n 的函数x n =f (n ),它的定义域是全体正整数,当自变量n 依次取1,2,3…一切正整数时,对应的函数值就排列成数列。 在几何上,数列{x n }可看作数轴上的一个动点,它依次取数轴上的点x 1,x 2,x 3,...x n,…。 2.数列的极限 定义对于数列{x n },如果当n →∞时,x n 无限地趋于一个确定的常数A ,则称当n 趋于无穷大时,数列{x n }以常数A 为极限,或称数列收敛于A ,记作 比如: 无限的趋向0 ,无限的趋向1 否则,对于数列{x n },如果当n →∞时,x n 不是无限地趋于一个确定的常数,称数列{x n }没有极限,如果数列没有极限,就称数列是发散的。 比如:1,3,5,…,(2n-1),… 1,0,1,0,… 数列极限的几何意义:将常数A 及数列的项依次用数轴上的点表示,若数列{x n }以 A 为极限,就表示当n 趋于无穷大时,点x n 可以无限靠近点A ,即点x n 与点A 之间的距离|x n -A| 趋于0。 比如: 无限的趋向0 无限的趋向1 (二)数列极限的性质与运算法则 1.数列极限的性质 定理1.1(惟一性)若数列{x n }收敛,则其极限值必定惟一。 定理1.2(有界性)若数列{x n }收敛,则它必定有界。 注意:这个定理反过来不成立,也就是说,有界数列不一定收敛。比如: 1,0,1,0,…有界:0,1 2.数列极限的存在准则 定理1.3(两面夹准则)若数列{x n },{y n },{z n }满足以下条件: (1) , (2), 则 定理1.4若数列{x n }单调有界,则它必有极限。 3.数列极限的四则运算定理。 定理1.5 (1) (2) (3)当时, (三)函数极限的概念 1.当x →x 0时函数f (x )的极限 (1)当x →x 0时f (x )的极限 定义对于函数y=f (x ),如果当x 无限地趋于x 0时,函数f (x )无限地趋于一个常数A ,则称当x →x 0时,函数f (x )的极限是A ,记作 或f (x )→A (当x →x 0时) 例y=f (x )=2x+1 x →1,f (x )→? x<1x →1 x>1x →1 (2)左极限 当x →x 0时f (x )的左极限 定义对于函数y=f (x ),如果当x 从x 0的左边无限地趋于x 0时,函数f (x )无限地趋于一个常数A ,则称当x →x 0时,函数f (x )的左极限是A ,记作 或f (x 0-0)=A (3)右极限 当x →x 0时,f (x )的右极限 定义对于函数y=f (x ),如果当x 从x 0的右边无限地趋于x 0时,函数f (x )无限地趋于一个常数A ,则称当x →x 0时,函数f (x )的右极限是A ,记作 或f (x 0+0)=A 例子:分段函数

相关文档
相关文档 最新文档