文档视界 最新最全的文档下载
当前位置:文档视界 › 专升本高数复习资料(超新超全)

专升本高数复习资料(超新超全)

专升本高数复习资料(超新超全)
专升本高数复习资料(超新超全)

严格依据大纲编写:

笔记目录

第一章极限和连续

第一节极限

[复习考试要求]

1.了解极限的概念(对极限定义等形式的描述不作要求)。会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。

2.了解极限的有关性质,掌握极限的四则运算法则。

3.理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。会进行无穷小量阶的比较(高阶、低阶、同阶和等价)。会运用等价无穷小量代换求极限。

4.熟练掌握用两个重要极限求极限的方法。

第二节函数的连续性

[复习考试要求]

1.理解函数在一点处连续与间断的概念,理解函数在一点处连续与极限存在之间的关系,掌握判断函数(含分段函数)在一点处连续性的方法。

2.会求函数的间断点。

3.掌握在闭区间上连续函数的性质会用它们证明一些简单命题。

4.理解初等函数在其定义区间上的连续性,会利用函数连续性求极限。

第二章一元函数微分学

第一节导数与微分

[复习考试要求]

1.理解导数的概念及其几何意义,了解可导性与连续性的关系,会用定义求函数在一点处的导数。

2.会求曲线上一点处的切线方程与法线方程。

3.熟练掌握导数的基本公式、四则运算法则以及复合函数的求导方法。

4.掌握隐函数的求导法与对数求导法。会求分段函数的导数。

5.了解高阶导数的概念。会求简单函数的高阶导数。

6.理解微分的概念,掌握微分法则,了解可微和可导的关系,会求函数的一阶微分。第二节导数的应用

[复习考试要求]

1.熟练掌握用洛必达法则求“0〃∞”、“∞-∞”型未定式的极限的方法。

2.掌握利用导数判定函数的单调性及求函数的单调增、减区间的方法。会利用函数的单调性证明简单的不等式。

3.理解函数极值的概念,掌握求函数的驻点、极值点、极值、最大值与最小值的方法,会解简单的应用题。

4.会判断曲线的凹凸性,会求曲线的拐点。

5.会求曲线的水平渐近线与铅直渐近线

第三章一元函数积分学

第一节不定积分

[复习考试要求]

1.理解原函数与不定积分的概念及其关系,掌握不定积分的性质。

2.熟练掌握不定积分的基本公式。

3.熟练掌握不定积分第一换元法,掌握第二换元法(仅限三角代换与简单的根式代换)。

4.熟练掌握不定积分的分部积分法。

5.掌握简单有理函数不定积分的计算。

第二节定积分及其应用

[复习考试要求]

1.理解定积分的概念及其几何意义,了解函数可积的条件

2.掌握定积分的基本性质

3.理解变上限积分是变上限的函数,掌握对变上限积分求导数的方法。

4.熟练掌握牛顿—莱布尼茨公式。

5.掌握定积分的换元积分法与分部积分法。

6.理解无穷区间的广义积分的概念,掌握其计算方法。

7.掌握直角坐标系下用定积分计算平面图形的面积以及平面图形绕坐标轴旋转所生成的旋转体的体积。

第四章多元函数微分学

[复习考试要求]

1.了解多元函数的概念,会求二元函数的定义域。了解二元函数的几何意义。

2.了解二元函数的极限与连续的概念。

3.理解二元函数一阶偏导数和全微分的概念,掌握二元函数的一阶偏导数的求法。掌握二元函数的二阶偏导数的求法,掌握二元函数的全微分的求法。

4.掌握复合函数与隐函数的一阶偏导数的求法。

5.会求二元函数的无条件极值和条件极值。

6.会用二元函数的无条件极值及条件极值解简单的实际问题。

第五章概率论初步

[复习考试要求]

1.了解随机现象、随机试验的基本特点;理解基本事件、样本空间、随机事件的概念。

2.掌握事件之间的关系:包含关系、相等关系、互不相容关系及对立关系。

3.理解事件之间并(和)、交(积)、差运算的意义,掌握其运算规律。

4.理解概率的古典型意义,掌握事件概率的基本性质及事件概率的计算。

5.会求事件的条件概率;掌握概率的乘法公式及事件的独立性。

6.了解随机变量的概念及其分布函数。

7.理解离散性随机变量的意义及其概率分布掌握概率分布的计算方法。

8.会求离散性随机变量的数学期望、方差和标准差。

第一章极限和连续

第一节极限

[复习考试要求]

1.了解极限的概念(对极限定义等形式的描述不作要求)。会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。

2.了解极限的有关性质,掌握极限的四则运算法则。

3.理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。会进行无穷小量阶的比较(高阶、低阶、同阶和等价)。会运用等价无穷小量代换求极限。

4.熟练掌握用两个重要极限求极限的方法。

[主要知识内容]

(一)数列的极限

1.数列

定义按一定顺序排列的无穷多个数

称为无穷数列,简称数列,记作{xn},数列中每一个数称为数列的项,第n项xn为数列的一般项或通项,例如

(1)1,3,5,…,(2n-1),…(等差数列)

(2)(等比数列)

(3)(递增数列)

(4)1,0,1,0,…,…(震荡数列)

都是数列。它们的一般项分别为

(2n-1),。

对于每一个正整数n,都有一个xn与之对应,所以说数列{xn}可看作自变量n的函数xn=f(n),它的定义域是全体正整数,当自变量n依次取1,2,3…一切正整数时,对应的函数值就排列成数列。

在几何上,数列{xn}可看作数轴上的一个动点,它依次取数轴上的点

x1,x2,x3,...xn,…。

2.数列的极限

定义对于数列{xn},如果当n→∞时,xn无限地趋于一个确定的常数A,则称当n趋于无穷大时,数列{xn}以常数A为极限,或称数列收敛于A,记作

比如:

无限的趋向0

,无限的趋向1

否则,对于数列{xn},如果当n→∞时,xn不是无限地趋于一个确定的常数,称数列{xn}没有极限,如果数列没有极限,就称数列是发散的。

比如:1,3,5,…,(2n-1),…

1,0,1,0,…

数列极限的几何意义:将常数A及数列的项依次用数轴上的点表示,若数列{xn}以A为极限,就表示当n趋于无穷大时,点xn可以无限靠近点A,即点xn与点A之间的距离|xn-A|趋于0。

比如:

无限的趋向0

无限的趋向1

(二)数列极限的性质与运算法则

1.数列极限的性质

定理1.1(惟一性)若数列{xn}收敛,则其极限值必定惟一。

定理1.2(有界性)若数列{xn}收敛,则它必定有界。

注意:这个定理反过来不成立,也就是说,有界数列不一定收敛。比如:

1,0,1,0,…有界:0,1

2.数列极限的存在准则

定理1.3(两面夹准则)若数列{xn},{yn},{zn}满足以下条件:

(1),

(2),则

定理1.4若数列{xn}单调有界,则它必有极限。

3.数列极限的四则运算定理。

定理1.5

(1)

(2)

(3)当时,

(三)函数极限的概念

1.当x→x0时函数f(x)的极限

(1)当x→x0时f(x)的极限

定义对于函数y=f(x),如果当x无限地趋于x0时,函数f(x)无限地趋于一个常数A,则称当x→x0时,函数f(x)的极限是A,记作

或f(x)→A(当x→x0时)

例y=f(x)=2x+1

x→1,f(x)→?

x<1x→1

x>1x→1

(2)左极限

当x→x0时f(x)的左极限

定义对于函数y=f(x),如果当x从x0的左边无限地趋于x0时,函数f(x)无限地趋于一个常数A,则称当x→x0时,函数f(x)的左极限是A,记作

或f(x0-0)=A

(3)右极限

当x→x0时,f(x)的右极限

定义对于函数y=f(x),如果当x从x0的右边无限地趋于x0时,函数f(x)无限地趋于一个常数A,则称当x→x0时,函数f(x)的右极限是A,记作

或f(x0+0)=A

例子:分段函数

,求,

解:当x从0的左边无限地趋于0时f(x)无限地趋于一个常数1。我们称当x→0时,f(x)的左极限是1,即有

当x从0的右边无限地趋于0时,f(x)无限地趋于一个常数-1。我们称当x→0时,f(x)的右极限是-1,即有

显然,函数的左极限右极限与函数的极限之间有以下关系:

定理1.6当x→x0时,函数f(x)的极限等于A的必要充分条件是

反之,如果左、右极限都等于A,则必有。

x→1时f(x)→?

x≠1

x→1f(x)→2

对于函数,当x→1时,f(x)的左极限是2,右极限也是2。

2.当x→∞时,函数f(x)的极限

(1)当x→∞时,函数f(x)的极限

y=f(x)x→∞f(x)→?

y=f(x)=1+

x→∞f(x)=1+→1

定义对于函数y=f(x),如果当x→∞时,f(x)无限地趋于一个常数A,则称当x→∞时,函数f(x)的极限是A,记作

或f(x)→A(当x→∞时)

(2)当x→+∞时,函数f(x)的极限

定义对于函数y=f(x),如果当x→+∞时,f(x)无限地趋于一个常数A,则称当x →+∞时,函数f(x)的极限是A,记作

这个定义与数列极限的定义基本上一样,数列极限的定义中n→+∞的n是正整数;而在这个定义中,则要明确写出x→+∞,且其中的x不一定是正整数,而为任意实数。y=f(x)x→+∞f(x)x→?

x→+∞,f(x)=2+→2

例:函数f(x)=2+e-x,当x→+∞时,f(x)→?

解:f(x)=2+e-x=2+,

x→+∞,f(x)=2+→2

所以

(3)当x→-∞时,函数f(x)的极限

定义对于函数y=f(x),如果当x→-∞时,f(x)无限地趋于一个常数A,则称当x →-∞时,f(x)的极限是A,记作

x→-∞f(x)→?

则f(x)=2+(x<0)

x→-∞,-x→+∞

f(x)=2+→2

例:函数,当x→-∞时,f(x)→?

解:当x→-∞时,-x→+∞

→2,即有

由上述x→∞,x→+∞,x→-∞时,函数f(x)极限的定义,不难看出:x→∞时f(x)的极限是A充分必要条件是当x→+∞以及x→-∞时,函数f(x)有相同的极限A。

例如函数,当x→-∞时,f(x)无限地趋于常数1,当x→+∞时,f(x)也无限地趋于同一个常数1,因此称当x→∞时的极限是1,记作

其几何意义如图3所示。

f(x)=1+

y=arctanx

不存在。

但是对函数y=arctanx来讲,因为有

即虽然当x→-∞时,f(x)的极限存在,当x→+∞时,f(x)的极限也存在,但这两个极限不相同,我们只能说,当x→∞时,y=arctanx的极限不存在。

x)=1+

y=arctanx

不存在。

但是对函数y=arctanx来讲,因为有

即虽然当x→-∞时,f(x)的极限存在,当x→+∞时,f(x)的极限也存在,但这两个极限不相同,我们只能说,当x→∞时,y=arctanx的极限不存在。

(四)函数极限的定理

定理1.7(惟一性定理)如果存在,则极限值必定惟一。

定理1.8(两面夹定理)设函数在点的某个邻域内(可除外)满足条件:(1),(2)

则有。

注意:上述定理1.7及定理1.8对也成立。

下面我们给出函数极限的四则运算定理

定理1.9如果则

(1)

(2)

(3)当时,时,

上述运算法则可推广到有限多个函数的代数和及乘积的情形,有以下推论:

(1)

(2)

(3)

用极限的运算法则求极限时,必须注意:这些法则要求每个参与运算的函数的极限存在,且求商的极限时,还要求分母的极限不能为零。

另外,上述极限的运算法则对于的情形也都成立。

(五)无穷小量和无穷大量

1.无穷小量(简称无穷小)

定义对于函数,如果自变量x在某个变化过程中,函数的极限为零,则称在该变化过程中,为无穷小量,一般记作

常用希腊字母,…来表示无穷小量。

定理1.10函数以A为极限的必要充分条件是:

可表示为A与一个无穷小量之和。

注意:(1)无穷小量是变量,它不是表示量的大小,而是表示变量的变化趋势无限趋于为零。

(2)要把无穷小量与很小的数严格区分开,一个很小的数,无论它多么小也不是无穷小量。

(3)一个变量是否为无穷小量是与自变量的变化趋势紧密相关的。在不同的变化过程中,同一个变量可以有不同的变化趋势,因此结论也不尽相同。

例如:

振荡型发散

(4)越变越小的变量也不一定是无穷小量,例如当x越变越大时,就越变越小,但它不是无穷小量。

(5)无穷小量不是一个常数,但数“0”是无穷小量中惟一的一个数,这是因为。

2.无穷大量(简称无穷大)

定义;如果当自变量(或∞)时,的绝对值可以变得充分大(也即无限地增大),则称在该变化过程中,为无穷大量。记作。

注意:无穷大(∞)不是一个数值,“∞”是一个记号,绝不能写成或。

3.无穷小量与无穷大量的关系

无穷小量与无穷大量之间有一种简单的关系,见以下的定理。

定理1.11在同一变化过程中,如果为无穷大量,则为无穷小量;反之,如果为无穷小量,且,则为无穷大量。

当无穷大

无穷小

当为无穷小

无穷大

4.无穷小量的基本性质

性质1有限个无穷小量的代数和仍是无穷小量;

性质2有界函数(变量)与无穷小量的乘积是无穷小量;特别地,常量与无穷小量的乘积是无穷小量。

性质3有限个无穷小量的乘积是无穷小量。

性质4无穷小量除以极限不为零的变量所得的商是无穷小量。

5.无穷小量的比较

定义设是同一变化过程中的无穷小量,即。

(1)如果则称是比较高阶的无穷小量,记作;

(2)如果则称与为同阶的无穷小量;

(3)如果则称与为等价无穷小量,记为;

(4)如果则称是比较低价的无穷小量。当

等价无穷小量代换定理:

如果当时,均为无穷小量,又有且存在,则。

均为无穷小

又有

这个性质常常使用在极限运算中,它能起到简化运算的作用。但是必须注意:等价无穷小量代换可以在极限的乘除运算中使用。

常用的等价无穷小量代换有:

当时,

sinx~x;tan~x;arctanx~x;arcsinx~x;

(六)两个重要极限

1.重要极限Ⅰ

重要极限Ⅰ是指下面的求极限公式

这个公式很重要,应用它可以计算三角函数的型的极限问题。

其结构式为:

2.重要极限Ⅱ

重要极限Ⅱ是指下面的公式:

其中e是个常数(银行家常数),叫自然对数的底,它的值为

e=2.718281828495045……

其结构式为:

重要极限Ⅰ是属于型的未定型式,重要极限Ⅱ是属于“”型的未定式时,这两个重要极限在极限计算中起很重要的作用,熟练掌握它们是非常必要的。

(七)求极限的方法:

1.利用极限的四则运算法则求极限;

2.利用两个重要极限求极限;

3.利用无穷小量的性质求极限;

4.利用函数的连续性求极限;

5.利用洛必达法则求未定式的极限;

6.利用等价无穷小代换定理求极限。

基本极限公式

(2)

(3)

(4)

例1.无穷小量的有关概念

(1)[9601]下列变量在给定变化过程中为无穷小量的是A. B.

C. D. [答]C

A.发散

D.

(2)[0202]当时,与x比较是

A.高阶的无穷小量

B.等价的无穷小量

C.非等价的同阶无穷小量

D.低阶的无穷小量

[答]B

解:当,与x是

极限的运算:

[0611]

解:

[答案]-1

例2.型因式分解约分求极限

(1)[0208] [答]

解:

(2)[0621]计算[答]

解:

例3.型有理化约分求极限

(1)[0316]计算 [答]

解:

(2)[9516] [答]

解:

例4.当时求型的极限 [答](1)[0308]

一般地,有

例5.用重要极限Ⅰ求极限

(1)[9603]下列极限中,成立的是A. B.

C. D. [答]B

(2)[0006] [答]

解:

例6.用重要极限Ⅱ求极限

(1)[0416]计算 [答]

[解析]解一:令

解二:

[0306]

[0601]

(2)[0118]计算 [答]

解:

例7.用函数的连续性求极限

[0407] [答]0

解:

例8.用等价无穷小代换定理求极限

[0317] [答]0

解:当

例9.求分段函数在分段点处的极限

(1)[0307]设

则在的左极限

[答]1

[解析]

(2)[0406]设,则 [答]1 [解析]

例10.求极限的反问题

(1)已知则常数

[解析]解法一:,即,得. 解法二:令,

得,解得.

解法三:(洛必达法则)

即,得.

(2)若求a,b的值.

[解析]型未定式.

当时,.

于是,得.

即,

所以.

[0402]

[0017],则k=_____.(答:ln2)

[解析]

前面我们讲的内容:

极限的概念;极限的性质;极限的运算法则;两个重要极限;无穷小量、无穷大量的概念;无穷小量的性质以及无穷小量阶的比较。

第二节函数的连续性

[复习考试要求]

1.理解函数在一点处连续与间断的概念,理解函数在一点处连续与极限存在之间的关系,掌握判断函数(含分段函数)在一点处连续性的方法。

2.会求函数的间断点。

3.掌握在闭区间上连续函数的性质会用它们证明一些简单命题。

4.理解初等函数在其定义区间上的连续性,会利用函数连续性求极限。

[主要知识内容]

(一)函数连续的概念

1.函数在点x0处连续

定义1设函数y=f(x)在点x0的某个邻域内有定义,如果当自变量的改变量△x(初值为x0)趋近于0时,相应的函数的改变量△y也趋近于0,即

则称函数y=f(x)在点x0处连续。

函数y=f(x)在点x0连续也可作如下定义:

定义2设函数y=f(x)在点x0的某个邻域内有定义,如果当x→x0时,函数y=f(x)的极限值存在,且等于x0处的函数值f(x0),即

定义3设函数y=f(x),如果,则称函数f(x)在点x0处左连续;如果,则称函数f(x)在点x0处右连续。由上述定义2可知如果函数y=f(x)在点x0处连续,则f(x)在点x0处左连续也右连续。

2.函数在区间[a,b]上连续

定义如果函数f(x)在闭区间[a,b]上的每一点x处都连续,则称f(x)在闭区间[a,b]上连续,并称f(x)为[a,b]上的连续函数。

这里,f(x)在左端点a连续,是指满足关系:,在右端点b连续,是指满足关系:,即f(x)在左端点a处是右连续,在右端点b处是左连续。

可以证明:初等函数在其定义的区间内都连续。

3.函数的间断点

定义如果函数f(x)在点x0处不连续则称点x0为f(x)一个间断点。

由函数在某点连续的定义可知,若f(x)在点x0处有下列三种情况之一:

(1)在点x0处,f(x)没有定义;

(2)在点x0处,f(x)的极限不存在;

(3)虽然在点x0处f(x)有定义,且存在,但

则点x0是f(x)一个间断点。

,则f(x)在

A.x=0,x=1处都间断

B.x=0,x=1处都连续

C.x=0处间断,x=1处连续

D.x=0处连续,x=1处间断

解:x=0处,f(0)=0

∵f(0-0)≠f(0+0)

x=0为f(x)的间断点

x=1处,f(1)=1

f(1-0)=f(1+0)=f(1)

∴f(x)在x=1处连续[答案]C

[9703]设,在x=0处连续,则k等于

A.0

B.

C.

D.2

分析:f(0)=k

[答案]B

例3[0209]设在x=0处连续,则a=

解:f(0)=e0=1

∵f(0)=f(0-0)=f(0+0)

∴a=1 [答案]1

(二)函数在一点处连续的性质

由于函数的连续性是通过极限来定义的,因而由极限的运算法则,可以得到下列连续函数的性质。

定理1.12(四则运算)设函数f(x),g(x)在x0处均连续,则

(1)f(x)±g(x)在x0处连续

(2)f(x)〃g(x)在x0处连续

(3)若g(x0)≠0,则在x0处连续。

定理1.13(复合函数的连续性)设函数u=g(x)在x=x0处连续,y=f(u)在u0=g(x0)处连续,则复合函数y=f[g(x)]在x=x0处连续。

在求复合函数的极限时,如果u=g(x),在x0处极限存在,又y=f(u)在对应的

处连续,则极限符号可以与函数符号交换。即

定理1.14(反函数的连续性)设函数y=f(x)在某区间上连续,且严格单调增加(或严格单调减少),则它的反函数x=f-1(y)也在对应区间上连续,且严格单调增加(或严格单调减少)。

(三)闭区间上连续函数的性质

在闭区间[a,b]上连续的函数f(x),有以下几个基本性质,这些性质以后都要用到。

定理1.15(有界性定理)如果函数f(x)在闭区间[a,b]上连续,则f(x)必在[a,b]上有界。

定理1.16(最大值和最小值定理)如果函数f(x)在闭区间[a,b]上连续,则在这个区间上一定存在最大值和最小值。

定理1.17(介值定理)如果函数f(x)在闭区间[a,b]上连续,且其最大值和最小值分别为M和m,则对于介于m和M之间的任何实数C,在[a,b]上至少存在一个ξ,使得

推论(零点定理)如果函数f(x)在闭区间[a,b]上连续,且f(a)与f(b)异号,则在[a,b]内至少存在一个点ξ,使得

f(ξ)=0

(四)初等函数的连续性

由函数在一点处连续的定理知,连续函数经过有限次四则运算或复合运算而得的函数在其定义的区间内是连续函数。又由于基本初等函数在其定义区间内是连续的,可以得到下列重要结论。

定理1.18初等函数在其定义的区间内连续。

利用初等函数连续性的结论可知:如果f(x)是初等函数,且x0是定义区间内的点,则

f(x)在x0处连续

也就是说,求初等函数在定义区间内某点处的极限值,只要算出函数在该点的函数值即可。

[0407]

[0611]

例1.证明三次代数方程x3-5x+1=0在区间(0,1)内至少有一个实根.

证:设f(x)=x3-5x+1

f(x)在[0,1]上连续

f(0)=1 f(1)=-3

由零点定理可知,至少存在一点ξ∈(0,1)

使得f(ξ)=0,ξ3-5ξ+1=0

即方程在(0,1)内至少有一个实根。

本章小结

函数、极限与连续是微积分中最基本、最重要的概念之一,而极限运算又是微积分的三大运算中最基本的运算之一,必须熟练掌握,这会为以后的学习打下良好的基础。这一章的内容在考试中约占15%,约为22分左右。现将本章的主要内容总结归纳如下:一、概念部分

重点:极限概念,无穷小量与等价无穷小量的概念,连续的概念。

极限概念应该明确极限是描述在给定变化过程中函数变化的性态,极限值是一个确定的常数。

函数在一点连续性的三个基本要素:

(1)f(x)在点x0有定义。

(2)存在。

(3)。

常用的是f(x0-0)=f(x0+0)=f(x0)。

二、运算部分

重点:求极限,函数的点连续性的判定。

1.求函数极限的常用方法主要有:

(1)利用极限的四则运算法则求极限;

对于“”型不定式,可考虑用因式分解或有理化消去零因子法。

(2)利用两个重要极限求极限;

(3)利用无穷小量的性质求极限;

(4)利用函数的连续性求极限;

若f(x)在x0处连续,则。

(5)利用等价无穷小代换定理求极限;

(6)会求分段函数在分段点处的极限;

(7)利用洛必达法则求未定式的极限。

2.判定函数的连续性,利用闭区间上连续函数的零点定理证明方程的根的存在性。

专升本高数复习资料.

第一章极限和连续 第一节极限 [复习考试要求] 1.了解极限的概念(对极限定义等形式的描述不作要求)。会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。 2.了解极限的有关性质,掌握极限的四则运算法则。 3.理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。会进行无穷小量阶的比较(高阶、低阶、同阶和等价)。会运用等价无穷小量代换求极限。 4.熟练掌握用两个重要极限求极限的方法。 第二节函数的连续性 [复习考试要求] 1.理解函数在一点处连续与间断的概念,理解函数在一点处连续与极限存在之间的关系,掌握判断函数(含分段函数)在一点处连续性的方法。 2.会求函数的间断点。 3.掌握在闭区间上连续函数的性质会用它们证明一些简单命题。 4.理解初等函数在其定义区间上的连续性,会利用函数连续性求极限。 第二章一元函数微分学 第一节导数与微分 [复习考试要求] 1.理解导数的概念及其几何意义,了解可导性与连续性的关系,会用定义求函数在一点处的导数。 2.会求曲线上一点处的切线方程与法线方程。 3.熟练掌握导数的基本公式、四则运算法则以及复合函数的求导方法。 4.掌握隐函数的求导法与对数求导法。会求分段函数的导数。 5.了解高阶导数的概念。会求简单函数的高阶导数。 6.理解微分的概念,掌握微分法则,了解可微和可导的关系,会求函数的一阶微分。 第二节导数的应用 [复习考试要求] 1.熟练掌握用洛必达法则求“0·∞”、“∞-∞”型未定式的极限的方法。 2.掌握利用导数判定函数的单调性及求函数的单调增、减区间的方法。会利用函数的单调性证明简单的不等式。 3.理解函数极值的概念,掌握求函数的驻点、极值点、极值、最大值与最小值的方法,会解简单的应用题。 4.会判断曲线的凹凸性,会求曲线的拐点。 5.会求曲线的水平渐近线与铅直渐近线

成人高考专升本高数一复习资料

成人高考高数一复习资料 1.理解极限的概念(对极限定义、、等形式的描述不作要求)。会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。 2.了解极限的有关性质,掌握极限的四则运算法则。 3.理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。会进行无穷小量阶的比较(高阶、低阶、同阶和等价)。会运用等价无穷小量代换求极限。 1.数列 按一定顺序排列的无穷多个数 称为数列,记作,其中每一个数称为数列的项,第n 项。为数列的一 般项或通项,例如 (1)1,3,5,…,,… (2) (3) (4)1 ,0,1,0,…,… 都是数列。 在几何上,数 列 可看作数轴上的一个动点,它依次取数轴 上的点 。 2. 数列的极限 定义对于数列 ,如果当 时, 无限地趋于一个常数A ,则称当n 趋于无穷大时,数列以常数A 为极限,或称数列收敛于A ,记作 否则称数列 没有极限,如果数列没有极限,就称数列是发散的。 数列极限的几何意义:将常数A 及数列的项 依次用数轴上的 点表示,若数列以A 为极限,就表示当n 趋于无穷大时,点 可以无限 定理 1.1(惟一性)若数列 收敛,则其极限值必定惟一。 定理1.2(有界性)若数列收敛,则它必定有界。 注意:这个定理反过来不成立,也就是说,有界数列不一定收敛。 定理 1.3(两面夹定理)若数列 ,, 满足不等式 且 。 定理1.4 若数列单调有界,则它必有极限。 下面我们给出数列极限的四则运算定理。 定理 1.5 (1) (2) (3)当时, (三)函数极限的概念1.当时函数的极限 (1)当时 的极限 定义 对于函数,如果当x 无限地趋于时,函数 无限地趋于一个常数A ,则称当时,函数 的极限是A ,记作 或 (当时) (2 )当 时 的左极限 定义 对于函数 ,如果当x 从 的左边无限地趋于时,函数 无 限地趋于一个常数A ,则称当 时,函数 的左极限是A ,记作 或 例如函数 当x 从0的左边无限地趋于0时,无限地趋于一个常数1.我们称:当 时,的左极限是1,即有 (3 )当 时, 的右极限 定义 对于函数 ,如果当x 从 的右边无限地趋于时,函数 无 限地趋于一个常数A ,则称当 时,函数 的右极限是A ,记作 或 又如函数 当x 从0的右边无限地趋于0时, 无限地趋于一个常数-1 。因此有 这就是说,对于函数 当时,的左极限是1,而右极限是 -1,即 但是对于函数 ,当 时, 的左极限是2,而右极限是2。 显然,函数的左极限、右极限 与函数的极限 之间 有以下关系: 定理1.6 当 时,函数 的极限等于A 的必要充分条件是 这就是说:如果当时,函数 的极限等于A ,则必定有左、右极限 都等于A 。 反之,如果左、右极限都等于A ,则必有。 这个结论很容易直接由它们的定义得到。 以上讲的是当时,函数的极限存在的情况,对于某些函数的某些点 处,当 时, 的极限也可能不存在。 2.当时,函数的极限 (1)当 时,函数 的极限 定义 对于函数 ,如果当 时, 无限地趋于一个常数A , 则称当 时,函数 的极限是A ,记作或 (当 时) (2)当时,函数 的极限 定义 对于函数 ,如果当时, 无限地趋于一个常数A , 则称当 时,函数的极限是A ,记作 这个定义与数列极限的定义基本上一样,只不过在数列极限的定义中一定表示,且n 是正整数;而在这个定义中,则要明确写出, 且其中的x 不一定是整数。

专升本高等数学测试及答案(第二章)

高等数学测试(第二章) 一.选择题(每小题2分,共20分) 1 .设函数0()10 2 x f x x ≠=??=?? 在0x =处( ) A .不连续B .连续但不可导C .可导D .可微 2.设函数()ln 2f x x x =在0x 处可导,且0()2f x '=,则0()f x 等于( )A .1 B .2 e C .2e D .e 3.设函数()f x 在点x a =处可导,则0()()lim x f a x f a x x →+--等于( ) A .0 B .()f a ' C .2()f a ' D .(2)f a ' 4.设x x x f += ??? ??11,x x g ln )(=,则[()]f g x '= ( ) A . 2) 1(1x + B .2)1(1x +- C .1x x + D .22 )1(x x +- 5.设函数 )(x f 在),(+∞-∞内可导,则下列结论中正确的是 ( ) A .若)(x f 为周期函数,则)(x f '也是周期函数 B .若)(x f 为单调增加函数,则)(x f '也是单调增加函数 C .若)(x f 为偶函数,则)(x f '也是偶函数 D .若 )(x f 为奇函数,则)(x f '也是奇函数 6.设)(x f 可导,则下列不成立的是 ( ) A .)0()0()(lim 0 f x f x f x '=-→ B .)()()2(lim 0 a f h a f h a f h '=-+→ C .)()()(lim 0 000 x f x x x f x f x '=??--→? D .)(2)()(lim 0000 x f x x x f x x f x '=??--?+→?

专升本高数知识点.

第一讲 函数、极限、连续 1、基本初等函数的定义域、值域、图像,尤其是图像包含了函数的所有信息。 2、函数的性质,奇偶性、有界性 奇函数:)()(x f x f -=-,图像关于原点对称。 偶函数: )()(x f x f =-,图像关于y 轴对称 3、无穷小量、无穷大量、阶的比较 设βα,是自变量同一变化过程中的两个无穷小量,则 (1)若0=β α lim ,则α是比β高阶的无穷小量。 (2)若c β α =lim (不为0) ,则α与β是同阶无穷小量 特别地,若1=β α lim ,则α与β是等价无穷小量 (3)若∞=β α lim ,则α与β是低阶无穷小量 记忆方法:看谁趋向于0的速度快,谁就趋向于0的本领高。 4、两个重要极限 (1)100==→→x x x x x x sin lim sin lim 使用方法:拼凑[][ ][][][][] 000 ==→→sin lim sin lim ,一定保证拼凑sin 后面和分母保持一致 (2)e x x x x x x =+=??? ? ?+→∞→1 0111)(lim lim [][][]e =+→1 1)(lim 使用方法1后面一定是一个无穷小量并且和指数互为倒数,不满足条件得拼凑。 5、()() ? ?>∞<==∞→m n m n m n b a X Q x P m n x ,,,lim 00

()x P n 的最高次幂是n,()x Q m 的最高次幂是m.,只比较最高次幂,谁的次幂高,谁的头大,趋向于无穷大的速 度快。m n =,以相同的比例趋向于无穷大;m n <,分母以更快的速度趋向于无穷大;m n >,分子以更快的速度趋向于无穷大。 7、左右极限 左极限:A x f x x =- →)(lim 0 右极限:A x f x x =+ →)(lim 0 A x f x f A x f x x x x x x ===+ - →→→)(lim )(lim )(lim 000 充分必要条件是 注:此条件主要应用在分段函数分段点处的极限求解。 8、连续、间断 连续的定义: []0)()(lim lim 000 =-?+=?→?→?x f x x f y x x 或)()(lim 00 x f x f x x =→ 间断:使得连续定义)()(lim 00 x f x f x x =→无法成立的三种情况 ??? ? ???≠→→)()(lim )(lim )()(00 00 0x f x f x f x f x f x x x x 不存在无意义 不存在, 记忆方法:1、右边不存在 2、左边不存在 3、左右都存在,但不相等 9、间断点类型 (1)、第二类间断点:)(lim 0 x f x x - →、)(lim 0x f x x + →至少有一个不存在 (2)、第一类间断点:)(lim 0 x f x x - →、)(lim 0x f x x + →都存在 ?? ???≠=+ - + - →→→→)(lim )(lim )(lim )(lim 000 x f x f x f x f x x x x x x x x 跳跃间断点:可去间断点: 注:在应用时,先判断是不是“第二类间断点”,左右只要有一个不存在,就是“第二类”然后再判断是不是第 一类间断点;左右相等是“可去”,左右不等是“跳跃” 10、闭区间上连续函数的性质 (1) 最值定理:如果)(x f 在[]b a ,上连续,则)(x f 在[]b a ,上必有最大值最小值。 (2) ξ零点定理:如果)(x f 在[]b a ,上连续,且0)()(

专升本高数公式大全

高等数学公式 导数公式: 基本积分表: a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(2 2 = '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 π π

河南专升本高数 第三章练习题

第三章 中值定理与导数的运用 §3.1 微分中值定理 1、证明: 2 22arctan arctan 1x x x π-=- , 在 1x <<+∞ 成立. 证明:令()2 22arc arc ,1x f x tgx t g x =--1x <<+∞, 因()()() () 22 2 2 2221222 112111x x x f x x x x x ---'=- ? +??-+ ?-?? ()()()()222222222212122 011141x x x x x x x ++=-=-=++-++ 所以()f x C =,又因 为 2arc arc ,13 f tg π==-所以C π=,得证! 2、证明不等式: arc arc tga tgb a b -≤-. 证明:(1)当a b =时,不等式显然成立。 (2)当a b <时,令()[]arctan ,,,f x x x a b =∈则 ()[],f x a b 在上连续,在(),a b 可导,由拉格朗日中值定理知,存在 ()()()()(,),,a b f b f a f b a ξξ'∈-=-使即 ()2 1 arctan arctan ,(,),1b a b a a b ξξ-= -∈+ 故2 1 arc arc 1tga tgb b a a b ξ -= -≤-+,(,)a b ξ∈ (3)当a b >时,令()[]arctan ,,,f x x x b a =∈ 以下证法同(2).

3、设()f x 在( , +)-∞∞满足()()f x f x '=()()f x f x '=,且 (0)1f =, 证明: ()x f x e =. 证明:令()(),( , +),x x e f x x ?-=∈-∞∞ ()()()()()0,,x x x x e f x e f x x e f x C ??---''=-+≡=≡因为所以 即()()()(),01,1,x f x Cf x f C f x e ====又因所以从而 4、设()f x 在[],a b 连续,在(),a b 二阶可导, 连接点(,())A a f a 和 (,())B b f b 的直线AB 与曲线()y f x =相交于点(,())C c f c , 证 明: 在(),a b 内存在一点ξ,使()0f ξ=". 证明:因为直线AB 与曲线()y f x =相交于点(,())C c f c ,所以 ()()()() f b f c f c f a b c c a --=-- 由拉格朗日中值定理知:存在()1,,a c ξ∈使 ()()()1f c f a f c a ξ-'=-,存在()2,,c b ξ∈使()() ()2f b f c f b c ξ-'=-,从 而()1f ξ'=()2f ξ' 由罗尔定理知,存在()()12,,,a b ξξξ∈?使()0f ξ''= §3.2 洛必达法则 1、求下列极限

成人高考专升本高等数学公式大全

成人高考专升本高等数 学公式大全 文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]

2016年成人高考(专升本)高等数学公式大全 提高成绩的途径大致可以分为两种:一是提高数学整体的素质和能力,更好的驾驭考试;二是熟悉考试特点,掌握考试方法,将自己已有的潜能和水平发挥到极致。 如果说在复习中,上面两种方法那一种更能在最短的时间内提成人高考试的分数呢?对于前者,是需要我们在整个高中乃至以前的学习积累下来的综合能力,这个能力的提高需要时间和积累,在短期内的提高是有限的;对于后者能力的了解和掌握对短期内迅速提成人高考试成绩的成效是很明显的。而且,在一般的学校教育中,往往只重视前者而忽视后者。我们用以下几个等式可以很好的说明上述两者的关系和作用。 一流的数学能力 + 一流的考试方法和技巧 = 顶尖的成绩 一流的数学能力 + 二流的考试方法和技巧 = 二流的成绩 二流的数学能力 + 一流的考试方法和技巧 = 二流的成绩其实对于考试方法和技巧的掌握,大致包含以下几个方面: 一、熟悉考试题型,合理安排做题时间。 其实,不仅仅是数学考试,在参任何一门考试之前,你都要弄清楚或明确几个问题:考试一共有多长时间,总分多少,选择、填空和其他

主观题各占多少分。这样,你才能够在考试中合理分配考试时间,一定要避免在不值得的地方浪费大量的时间,影响了其他题的解答。 拿安徽省的数学成人高考题为例,安徽省数学成人高考满分为150分,时间是2小时,其中选择题是12道,每题5分,共60分;填空题4道,每题是4分,共16分,解答题一共74分。所以在了解这些内容后,你一定要根据自己的情况,合理安排解题时间。 一般来说,选择题填空题最迟不宜超过40分钟,按照尚博学校的教学标准是让学生在30分钟之内高效的完成选择填空题。你必须留下一个多小时甚至更多的时间来处理后面的大题,因为大题意味着你不仅要想,还要写。 二、确保正确率,学会取舍,敢于放弃。 考试时,一定要根据自己的情况进行取舍,这样做的目的是:确保会做的题目一定能够拿分,部分会做或不太会做的题目尽量多拿分,一定不可能做出的题目,尽量少投入时间甚至压根就不去想。 对于基础较好的学生,如果感觉前面的选择填空题做的很顺利,时间很充裕,在前面几道大题稳步完成的情况下,可以冲击下最后的压轴题,向高分冲击。对于基础一般的学生,首先要保证的是前面的填空选择题大部分分值一定能够稳拿,甚至是拿满分。对于大题的前几题,也尽量多花点时间,一定不要在会做的题目上无谓失分,对于大题的后两

2021年专升本高数章节练习题

高数章节习题练习 第一节函数极限持续 1、设()12x f x x = -,求[()]f f x 2、设 2,01()3,12 x x f x x x ?≤≤=? <≤? ,()x g x e =,求[()]f g x . 3 、 ()ln(1)f x x =+- 4 、2 ()arccos(2)2 f x x x x =+---. 5、设()f x 和() g x 为任意函数,定义域均为(,)-∞+∞,试鉴定下列函数奇偶性. (1) ()()()()f x f x g x g x +-++- (2)()()()()f x f x g x g x --++- 6 、鉴定函数 ()ln(f x x =+奇偶性. 7、.22212 lim()n n n n n →∞++ + 8、.2 n n →∞ +++ + 9、.222lim(1)n n n n →∞++ 10、23lim( )21n n n n →∞ -+. .sin lim x x x →∞. 11、.21lim 1 n x x x x n x →+++--. 12、0sin(1)lim 3x x e x →-. sin 0lim sin x x x e e x x →--. 13、23lim( )2x x x x →∞ ++.

14、11lim(sin cos )x x x x →∞ +. 【例1-6】已知()f x 是多项式,且32()2lim 2x f x x x →∞-=,0() lim 3x f x x →=,求()f x . 【例1-7】当0x →时,比较下列无穷小阶. 1. 2x 比1cos x - 2、2x 比1-.3 、-比x .4.2x 比 tan sin x x - 【例1-8】讨论下列分段函数在指定点处持续性. 1 .01 ()1,11,1x f x x x x ?≤? 在1x =处持续性. 2.1,0()ln(1),0 x e x f x x x ??<=? ?+≥? 在0x =处持续性. 【例1-9】当常数a 为什么值时,函数2,0 ()ln(1),0x a x f x x x x -≤?? =?+>?? 在0x =处持续? 【例1-10】求下列函数间断点并判断其类型. 1. 1 ()x f x e = . 2. ()sin x f x x = . 3. 111()1 x x e f x e -= + .4. 1arctan ,0()0, 0x f x x x ? ≠? =??=? . 【例1-11】证明方程3 2410x x -+=在区间(0,1)内至少有一种根.

专升本高数复习资料(超新超全)

严格依据大纲编写: 笔记目录 第一章极限和连续 第一节极限 [复习考试要求] 1.了解极限的概念(对极限定义等形式的描述不作要求)。会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。 2.了解极限的有关性质,掌握极限的四则运算法则。 3.理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。会进行无穷小量阶的比较(高阶、低阶、同阶和等价)。会运用等价无穷小量代换求极限。 4.熟练掌握用两个重要极限求极限的方法。 第二节函数的连续性 [复习考试要求] 1.理解函数在一点处连续与间断的概念,理解函数在一点处连续与极限存在之间的关系,掌握判断函数(含分段函数)在一点处连续性的方法。 2.会求函数的间断点。 3.掌握在闭区间上连续函数的性质会用它们证明一些简单命题。 4.理解初等函数在其定义区间上的连续性,会利用函数连续性求极限。 第二章一元函数微分学 第一节导数与微分 [复习考试要求] 1.理解导数的概念及其几何意义,了解可导性与连续性的关系,会用定义求函数在一点处的导数。 2.会求曲线上一点处的切线方程与法线方程。 3.熟练掌握导数的基本公式、四则运算法则以及复合函数的求导方法。 4.掌握隐函数的求导法与对数求导法。会求分段函数的导数。 5.了解高阶导数的概念。会求简单函数的高阶导数。 6.理解微分的概念,掌握微分法则,了解可微和可导的关系,会求函数的一阶微分。

第二节导数的应用 [复习考试要求] 1.熟练掌握用洛必达法则求“0·∞”、“∞-∞”型未定式的极限的方法。 2.掌握利用导数判定函数的单调性及求函数的单调增、减区间的方法。会利用函数的单调性证明简单的不等式。 3.理解函数极值的概念,掌握求函数的驻点、极值点、极值、最大值与最小值的方法,会解简单的应用题。 4.会判断曲线的凹凸性,会求曲线的拐点。 5.会求曲线的水平渐近线与铅直渐近线 第三章一元函数积分学 第一节不定积分 [复习考试要求] 1.理解原函数与不定积分的概念及其关系,掌握不定积分的性质。 2.熟练掌握不定积分的基本公式。 3.熟练掌握不定积分第一换元法,掌握第二换元法(仅限三角代换与简单的根式代换)。 4.熟练掌握不定积分的分部积分法。 5.掌握简单有理函数不定积分的计算。 第二节定积分及其应用 [复习考试要求] 1.理解定积分的概念及其几何意义,了解函数可积的条件 2.掌握定积分的基本性质 3.理解变上限积分是变上限的函数,掌握对变上限积分求导数的方法。 4.熟练掌握牛顿—莱布尼茨公式。 5.掌握定积分的换元积分法与分部积分法。 6.理解无穷区间的广义积分的概念,掌握其计算方法。 7.掌握直角坐标系下用定积分计算平面图形的面积以及平面图形绕坐标轴旋转所生成的旋转体的体积。 第四章多元函数微分学

专升本高数复习资料

第一章极限和连续 第一节极限 [复习考试要求] 1.了解极限的概念(对极限定义等形式的描述不作要求)。会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。 2.了解极限的有关性质,掌握极限的四则运算法则。 3.理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。会进行无穷小量阶的比较(高阶、低阶、同阶和等价)。会运用等价无穷小量代换求极限。 4.熟练掌握用两个重要极限求极限的方法。 第二节函数的连续性 [复习考试要求] 1.理解函数在一点处连续与间断的概念,理解函数在一点处连续与极限存在之间的关系,掌握判断函数(含分段函数)在一点处连续性的方法。 2.会求函数的间断点。 3.掌握在闭区间上连续函数的性质会用它们证明一些简单命题。 4.理解初等函数在其定义区间上的连续性,会利用函数连续性求极限。 第二章一元函数微分学 第一节导数与微分 [复习考试要求] 1.理解导数的概念及其几何意义,了解可导性与连续性的关系,会用定义求函数在一点处的导数。 2.会求曲线上一点处的切线方程与法线方程。 3.熟练掌握导数的基本公式、四则运算法则以及复合函数的求导方法。 4.掌握隐函数的求导法与对数求导法。会求分段函数的导数。 5.了解高阶导数的概念。会求简单函数的高阶导数。 6.理解微分的概念,掌握微分法则,了解可微和可导的关系,会求函数的一阶微分。 第二节导数的应用 [复习考试要求] 1.熟练掌握用洛必达法则求“0〃∞”、“∞-∞”型未定式的极限的方法。 2.掌握利用导数判定函数的单调性及求函数的单调增、减区间的方法。会利用函数的单调性证明简单的不等式。 3.理解函数极值的概念,掌握求函数的驻点、极值点、极值、最大值与最小值的方法,会解简单的应用题。 4.会判断曲线的凹凸性,会求曲线的拐点。 5.会求曲线的水平渐近线与铅直渐近线 第三章一元函数积分学 第一节不定积分 [复习考试要求] 1.理解原函数与不定积分的概念及其关系,掌握不定积分的性质。 2.熟练掌握不定积分的基本公式。 3.熟练掌握不定积分第一换元法,掌握第二换元法(仅限三角代换与简单的根式代换)。 4.熟练掌握不定积分的分部积分法。 5. 掌握简单有理函数不定积分的计算。 第二节定积分及其应用 [复习考试要求] 1.理解定积分的概念及其几何意义,了解函数可积的条件 2.掌握定积分的基本性质 3.理解变上限积分是变上限的函数,掌握对变上限积分求导数的方法。 4.熟练掌握牛顿—莱布尼茨公式。 5.掌握定积分的换元积分法与分部积分法。 6.理解无穷区间的广义积分的概念,掌握其计算方法。 7.掌握直角坐标系下用定积分计算平面图形的面积以及平面图形绕坐标轴旋转所生成的旋转体的体积。 第四章多元函数微分学 [复习考试要求] 1.了解多元函数的概念,会求二元函数的定义域。了解二元函数的几何意义。 2.了解二元函数的极限与连续的概念。 3.理解二元函数一阶偏导数和全微分的概念,掌握二元函数的一阶偏导数的求法。掌握二元函数的二阶偏导数的求法,掌握二元函数的全微分的求法。 4.掌握复合函数与隐函数的一阶偏导数的求法。 5.会求二元函数的无条件极值和条件极值。 6.会用二元函数的无条件极值及条件极值解简单的实际问题。 第五章概率论初步 [复习考试要求] 1.了解随机现象、随机试验的基本特点;理解基本事件、样本空间、随机事件的概念。 2.掌握事件之间的关系:包含关系、相等关系、互不相容关系及对立关系。 3.理解事件之间并(和)、交(积)、差运算的意义,掌握其运算规律。 4.理解概率的古典型意义,掌握事件概率的基本性质及事件概率的计算。 5.会求事件的条件概率;掌握概率的乘法公式及事件的独立性。 6.了解随机变量的概念及其分布函数。 7.理解离散性随机变量的意义及其概率分布掌握概率分布的计算方法。 8.会求离散性随机变量的数学期望、方差和标准差。 第一章极限和连续 第一节极限 [复习考试要求] 1.了解极限的概念(对极限定义等形式的描述不作要求)。会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。 2.了解极限的有关性质,掌握极限的四则运算法则。 3.理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。会进行无穷小量阶的比较(高阶、低阶、同阶和等价)。会运用等价无穷小量代换求极限。 4.熟练掌握用两个重要极限求极限的方法。 [主要知识内容] (一)数列的极限 1.数列 定义按一定顺序排列的无穷多个数 称为无穷数列,简称数列,记作{x n },数列中每一个数称为数列的项,第n 项x n 为数列的一般项或通项,例如 (1)1,3,5,…,(2n -1),…(等差数列) (2)(等比数列) (3) (递增数列) (4)1,0,1,0,…,…(震荡数列) 都是数列。它们的一般项分别为 (2n-1),。 对于每一个正整数n ,都有一个x n 与之对应,所以说数列{x n }可看作自变量n 的函数x n =f (n ),它的定义域是全体正整数,当自变量n 依次取1,2,3…一切正整数时,对应的函数值就排列成数列。 在几何上,数列{x n }可看作数轴上的一个动点,它依次取数轴上的点x 1,x 2,x 3,...x n,…。 2.数列的极限 定义对于数列{x n },如果当n →∞时,x n 无限地趋于一个确定的常数A ,则称当n 趋于无穷大时,数列{x n }以常数A 为极限,或称数列收敛于A ,记作 比如: 无限的趋向0 ,无限的趋向1 否则,对于数列{x n },如果当n →∞时,x n 不是无限地趋于一个确定的常数,称数列{x n }没有极限,如果数列没有极限,就称数列是发散的。 比如:1,3,5,…,(2n-1),… 1,0,1,0,… 数列极限的几何意义:将常数A 及数列的项依次用数轴上的点表示,若数列{x n }以 A 为极限,就表示当n 趋于无穷大时,点x n 可以无限靠近点A ,即点x n 与点A 之间的距离|x n -A| 趋于0。 比如: 无限的趋向0 无限的趋向1 (二)数列极限的性质与运算法则 1.数列极限的性质 定理1.1(惟一性)若数列{x n }收敛,则其极限值必定惟一。 定理1.2(有界性)若数列{x n }收敛,则它必定有界。 注意:这个定理反过来不成立,也就是说,有界数列不一定收敛。比如: 1,0,1,0,…有界:0,1 2.数列极限的存在准则 定理1.3(两面夹准则)若数列{x n },{y n },{z n }满足以下条件: (1) , (2), 则 定理1.4若数列{x n }单调有界,则它必有极限。 3.数列极限的四则运算定理。 定理1.5 (1) (2) (3)当时, (三)函数极限的概念 1.当x →x 0时函数f (x )的极限 (1)当x →x 0时f (x )的极限 定义对于函数y=f (x ),如果当x 无限地趋于x 0时,函数f (x )无限地趋于一个常数A ,则称当x →x 0时,函数f (x )的极限是A ,记作 或f (x )→A (当x →x 0时) 例y=f (x )=2x+1 x →1,f (x )→? x<1x →1 x>1x →1 (2)左极限 当x →x 0时f (x )的左极限 定义对于函数y=f (x ),如果当x 从x 0的左边无限地趋于x 0时,函数f (x )无限地趋于一个常数A ,则称当x →x 0时,函数f (x )的左极限是A ,记作 或f (x 0-0)=A (3)右极限 当x →x 0时,f (x )的右极限 定义对于函数y=f (x ),如果当x 从x 0的右边无限地趋于x 0时,函数f (x )无限地趋于一个常数A ,则称当x →x 0时,函数f (x )的右极限是A ,记作 或f (x 0+0)=A 例子:分段函数

专升本数学公式汇总

专升本高等数学公式 一、求极限方法: 1、当x 趋于常数0x 时的极限: 02 2 00x x lim(ax bx c)ax bx c →++=++;0000 0ax b cx d ax b lim cx d cx d x x ++≠+??????→ ++→当; 00000cx d ,ax b ax b lim cx d x x +=+≠+???????????→∞+→当但; 222000ax bx f cx dx e ,ax bx f lim x x cx dx e ++++=++=??????????????→→++当且可以约去公因式后再求解。 2、当x 趋于常数∞时的极限: 1n n ax bx f n m,lim {x cx dx e n m -++???+>=∞???????????????→→∞++???+只须比较分子、分母的最高次幂若则。若n

专升本高数试题(卷)库

全国教师教育网络联盟入学联考 (专科起点升本科) 高等数学备考试题库 2012年 一、选择题 1. 设)(x f 的定义域为[]1,0,则)12 (-x f 的定义域为( ). A: ?? ?? ??1,21 B: 1,12?? ??? C: 1,12???? ?? D: 1,12?? ??? 2. 函数()()a r c s i n s i n f x x =的定义域为( ). A: (),-∞+∞ B: ,22ππ??- ?? ? C: ,22ππ??-???? D: []1,1- 3.下列说法正确的为( ).

A: 单调数列必收敛; B: 有界数列必收敛; C: 收敛数列必单调; D: 收敛数列必有界. 4.函数x x f sin )(=不是( )函数. A: 有界 B: 单调 C: 周期 D: 奇 5.函数1 23sin +=x e y 的复合过程为( ). A: 12,,sin 3+===x v e u u y v B: 12,sin ,3+===x v e u u y v C: 123,sin ,+===x e v v u u y D: 12,,sin ,3+====x w e v v u u y w 6.设??? ??=≠=0 1 4sin )(x x x x x f ,则下面说法不正确的为( ). A: 函数)(x f 在0=x 有定义; B: 极限)(lim 0 x f x →存在; C: 函数)(x f 在0=x 连续; D: 函数)(x f 在0=x 间断。 7. 极限x x x 4sin lim 0→= ( ). A: 1

专升本高数复习资料(超新超全)

笔记目录 第一章极限和连续 第一节极限 [复习考试要求] 1.了解极限的概念(对极限定义等形式的描述不作要求)。会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。 2.了解极限的有关性质,掌握极限的四则运算法则。 3.理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。会进行无穷小量阶的比较(高阶、低阶、同阶和等价)。会运用等价无穷小量代换求极限。 4.熟练掌握用两个重要极限求极限的方法。 第二节函数的连续性 [复习考试要求] 1.理解函数在一点处连续与间断的概念,理解函数在一点处连续与极限存在之间的关系,掌握判断函数(含分段函数)在一点处连续性的方法。 2.会求函数的间断点。 3.掌握在闭区间上连续函数的性质会用它们证明一些简单命题。 4.理解初等函数在其定义区间上的连续性,会利用函数连续性求极限。 第二章一元函数微分学 第一节导数与微分 [复习考试要求]

点处的导数。 2.会求曲线上一点处的切线方程与法线方程。 3.熟练掌握导数的基本公式、四则运算法则以及复合函数的求导方法。 4.掌握隐函数的求导法与对数求导法。会求分段函数的导数。 5.了解高阶导数的概念。会求简单函数的高阶导数。 6.理解微分的概念,掌握微分法则,了解可微和可导的关系,会求函数的一阶微分。第二节导数的应用 [复习考试要求] 1.熟练掌握用洛必达法则求“0·∞”、“∞-∞”型未定式的极限的方法。 2.掌握利用导数判定函数的单调性及求函数的单调增、减区间的方法。会利用函数的单调性证明简单的不等式。 3.理解函数极值的概念,掌握求函数的驻点、极值点、极值、最大值与最小值的方法,会解简单的应用题。 4.会判断曲线的凹凸性,会求曲线的拐点。 5.会求曲线的水平渐近线与铅直渐近线 第三章一元函数积分学 第一节不定积分 [复习考试要求] 1.理解原函数与不定积分的概念及其关系,掌握不定积分的性质。 2.熟练掌握不定积分的基本公式。 3.熟练掌握不定积分第一换元法,掌握第二换元法(仅限三角代换与简单的根式代换)。 4.熟练掌握不定积分的分部积分法。

关于专升本高等数学测试题答案

关于专升本高等数学测试 题答案 This manuscript was revised on November 28, 2020

专升本高等数学测试题 1.函数x y sin 1+=是( D ). (A ) 奇函数; (B ) 偶函数; (C ) 单调增加函数; (D ) 有界函数. 解析 因为1sin 1≤≤-x ,即2sin 10≤+≤x , 所以函数x y sin 1+=为有界函数. 2.若)(u f 可导,且)e (x f y =,则有( B ); (A )x f y x d )e ('d =; (B )x f y x x d e )e ('d =; (C )x f y x x d e )e (d =; (D )x f y x x d e )]'e ([d =. 解析 )e (x f y =可以看作由)(u f y =和x u e =复合而成的复合函数 由复合函数求导法 ()x x u f u f y e )(e )(?'=''=', 所以 x f x y y x x d e )e ('d d =?'=. 3.? ∞+-0 d e x x =( B ); (A)不收敛; (B)1; (C)-1; (D)0. 解析 ? ∞ +-0 d e x x ∞+--=0 e x 110=+=. 4.2(1)e x y y y x '''-+=+的特解形式可设为( A ); (A)2()e x x ax b + ; (B) ()e x x ax b +; (C) ()e x ax b +; (D) 2)(x b ax +. 解析 特征方程为0122=+-r r ,特征根为 1r =2r =1.λ=1是特征方程的特征重根,于是有2()e x p y x ax b =+. 5.=+??y x y x D d d 22( C ),其中D :1≤22y x +≤4; (A) 2π4 2 01 d d r r θ??; (B) 2π4 01 d d r r θ? ?; (C) 2π2 20 1 d d r r θ? ?; (D) 2π2 1 d d r r θ? ?. 解析 此题考察直角坐标系下的二重积分转化为极坐标形式.

专升本高数章节练习题

专升本高数章节练习题

高数章节习题练习 第一节函数极限连续 1、设()12x f x x = -,求[()]f f x 2、设 2,01 ()3,12 x x f x x x ?≤≤=? <≤? ,()x g x e =,求[()]f g x . 3、()arcsin(21)ln(1)f x x x =-+- 4、 21 ()arccos(2)2 x f x x x x -=+---. 5、设()f x 和()g x 为任意函数,定义域均为(,)-∞+∞,试判定下列函数的奇偶性. (1) ()()()() f x f x g x g x +-++- (2) ()()()()f x f x g x g x --++- 6、判定函数2()ln(1)f x x x =+ +的奇偶性. 7、.2221 2lim()n n n n n →∞ +++L 8、.2 2 2 111lim( )1 2 n n n n n →∞ + ++ +++L 9、.22 2lim(1)n n n n →∞ ++ 10 、 23lim()21n n n n →∞-+. .sin lim x x x →∞ .

11、.21lim 1 n x x x x n x →+++--L . 12 、 0sin(1)lim 3x x e x →-. sin 0lim sin x x x e e x x →--. 13、23lim()2x x x x →∞ ++. 14、11lim(sin cos )x x x x →∞+. 【例1-6】已知 ()f x 是多项式,且3 2()2lim 2x f x x x →∞-=,0() lim 3x f x x →=,求()f x . 【例1-7】当0x →时,比较下列无穷小的阶. 1.2x 比1cos x - 2、2x 比 11x +-.3、 11x x +--比 x .4.2x 比tan sin x x - 【例1-8】讨论下列分段函数在指定点处的连续性. 1. 2,01 ()1,11,1x x f x x x x ?≤? 在1x =处的连续性.

专升本高等数学测试题(答案)

专升本高等数学测试题 1.函数x y sin 1+=是( D ). (A ) 奇函数; (B ) 偶函数; (C ) 单调增加函数; (D ) 有界函数. 解析 因为1sin 1≤≤-x ,即2sin 10≤+≤x , 所以函数x y sin 1+=为有界函数. 2.若)(u f 可导,且)e (x f y = ,则有( B ); (A )x f y x d )e ('d =; (B )x f y x x d e )e ('d =; (C )x f y x x d e )e (d =; (D )x f y x x d e )]'e ([d =. 解析 )e (x f y =可以看作由)(u f y =和x u e =复合而成的复合函数 由复合函数求导法 ()x x u f u f y e )(e )(?'=''=', 所以 x f x y y x x d e )e ('d d =?'=. 3.?∞ +-0d e x x =( B ); (A)不收敛; (B)1; (C)-1; (D)0. 解析 ?∞+-0d e x x ∞ +--=0e x 110=+=. 4.2(1)e x y y y x '''-+=+的特解形式可设为( A ); (A)2()e x x ax b + ; (B) ()e x x ax b +; (C) ()e x ax b +; (D) 2 )(x b ax +. 解析 特征方程为0122=+-r r ,特征根为 1r =2r =1.λ=1是特征方程的特征重根,于是有2()e x p y x ax b =+. 5.=+??y x y x D d d 22( C ),其中D :1≤22y x +≤4; (A) 2π420 1d d r r θ??; (B) 2π401d d r r θ??; (C) 2π 2201d d r r θ??; (D) 2π2 01d d r r θ??. 解析 此题考察直角坐标系下的二重积分转化为极坐标形式.

相关文档
相关文档 最新文档