文档视界 最新最全的文档下载
当前位置:文档视界 › 气相色谱仪有哪些检测器修订版

气相色谱仪有哪些检测器修订版

气相色谱仪有哪些检测器修订版
气相色谱仪有哪些检测器修订版

气相色谱仪有哪些检测

器修订版

IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-ZZT18】

1、氢火焰离子化检测器(FID)用于微量有机物分析

2、热导检测器(TCD)用于常量、半微量分析,有机、无机物均有响应

3、电子捕获检测器(ECD)用于有机氯农药残留分析

4、火焰光度检测器(FPD)用于有机磷、硫化物的微量分析

5、氮磷检测器(NPD)用于有机磷、含氮化合物的微量分析

6、催化燃烧检测器(CCD)用于对可燃性气体及化合物的微量分析

7、光离子化检测器(PID)用于对有毒有害物质的痕量分析

FID(氢火焰检测器)居多。

它几乎对所有的有机物都有响应,而对无机物、惰性气体或火焰中不解离的物质等无响应或响应很小,它的灵敏度比热导检测器高100-10000倍,检测限达10-13g/s,对温度不敏感,响应快,适合连接开管柱进行复杂样品的分离,线性范围为10的7次方是气体色谱检测仪中对烃类(如丁烷,己烷)灵敏度最好的一种手段,广泛用于挥发性碳氢化合物和许多含炭化合物的检测。

TCD(热导池检测器);

热导池检测器(TCD)是一种结构简单、性能稳定、线性范围宽、对无机、有机物质都有响应、灵敏度适宜的检测器。其与FID、ECD、FPD等检测器并列为色谱法中最常用的检测器。

FPD (火焰光度检测器)

FPD的原理是基于样品在富氢火焰中燃烧,使含硫、磷的化合物经燃烧后又被氢还原,

产生激发态的S2*(S2的激发态)和 HPO*(HPO的激发态),这两种受激物质反回到基态时幅射出400nm和550nm左右的光谱,用光电倍增管测量这一光谱的强度,光强与样品的质

量流速成正比关系。FPD是灵敏度很高的选择性检测器,广泛地用于含硫、磷化合物的分析。

Agilent7890A气相色谱仪FPD检测器性能测试(精)

Chromatographic Checkout : To Verify FPD Performance (Sample 5188-5245 To Verify FPD Performance (Sample 5188-5245 To verify FPD performance, first check the phosphorus performance, then the sulfur performance. Preparation Phosphorus performance 1 Gather the following: ? Evaluation column, DB5 15 m × 0.32 mm × 1.0 μm (123-5513 ? FPD performance evaluation (checkout sample (5188-5245 ? Phosphorus filter ? Sulfur filter and filter spacer ? 4-mL solvent and waste bottles or equivalent for autoinjector. ? 2-mL sample vials or equivalent for sample. ? Chromatographic-grade isooctane for syringe wash solvent. 2 Verify the following: ? Capillary column adapter installed. If not, it. ? Chromatographic-grade gases plumbed and configured: helium as carrier gas, nitrogen, hydrogen, and air. ? Empty waste vials loaded in sample turret.

气相色谱检测器的分类和工作原理及应用范围

气相色谱检测器的分类和工作原理及应用范围 待测组分经色谱柱分离后,通过检测器将各组分的浓度或质量转变成相应的电信号,经放大器放大后,由记录仪或微处理机得到色谱图,根据色谱图对待测组分进行定性和定量分析。 气相色谱监测器根据其测定范围可分为: 通用型检测器:对绝大多数物质够有响应; 选择型检测器:只对某些物质有响应;对其它物质无响应或很小。 根据检测器的输出信号与组分含量间的关系不同,可分为: 浓度型检测器:测量载气中组分浓度的瞬间变化,检测器的响应值与组分在载气中的浓度成正比,与单位时间内组分进入检测器的质量无关。 质量型检测器:测量载气中某组分进入检测器的质量流速变化,即检测器的响应值与单位时间内进人检测器某组分的质量成正比 目前已有几十种检测器,其中最常用的是热导池检测器、电子捕获检测器(浓度型);火焰离子化检测器、火焰光度检测器(质量型)和氮磷检测器等。 一.检测器的性能指标——灵敏度(高)、稳定性(好)、响应(快)、线性范围(宽) (一)灵敏度——应答值 单位物质量通过检测器时产生的信号大小称为检测器对该物质的灵敏度。 响应信号(R)—进样量(Q)作图,可得到通过原点的直线,该直线的斜率就是检测器的灵敏度,以S表示: (3) 由此可知:灵敏度是响应信号对进入检测器的被测物质质量的变化率。 气相色谱检测器的灵敏度的单位,随检测器的类型和试样的状态不同而异: 对于浓度型检测器: 当试样为液体时,S的单位为mV·ml/mg,即1mL载气中携带1mg的某组分通过检测器时产生的mV数; 当试样为气体时,S的单位为mV·ml/ml,即1ml载气中携带1ml的某组分通过检测器时产生的mV数;

气相色谱仪由哪几部分组成

1、气相色谱仪由哪几部分组成 答:基本包括六个基本单元:气源系统、进样系统、柱系统、检测系统、数据采集及处理系统、温控系统。 2、在环已烯成分检测的实验中,我们所使用的气相色谱仪的固定相和流动相分别是什么? 答:固定相为:PEG毛细管柱。流动相为:氮气 3、在环已烯成分检测的实验中,我们所使用的液相色谱仪的检测器是什么检测器 答:为氢火焰离子化检测器。 4、气相色谱仪的适用范围是什么 答:气相色谱仪可以应用于分析气体试样,也可分析易挥发或可转化为易挥发的液体和固体。如:环境检测,食品检测,有机化合物的质量检测等范围。 5、高效液相色谱仪由哪几部分组成 答:主要包括:高压泵、进样阀、色谱柱、检测器、数据采集和处理系统等部分。 6、在反相高效液相色谱法分离芳香烃化合物的实验中,我们所使用的液相色谱仪的固定相和流动相分别是什么 答:固定相为:十八烷烃;流动相为:80%甲醇和20%水的混合溶液。 7、在反相高效液相色谱法分离芳香烃化合物的实验中,我们所使用的液相色谱仪的检测器是什么检测器 答:紫外吸收检测器。 8、什么叫反向高效液相色谱仪,什么叫正向液相色谱仪 答:固定相的极性小于流动相的极性叫做反向高效液相色谱仪;固定相的极性大于流动相的极性叫做正向高效液相色谱仪。 9、液相色谱仪的适用范围是什么 答:只要被分析物在流动相溶剂中有一定的溶解度,便可以分析。特别适合于那些沸点高、极性强、热稳定性差的化合物。如:环境检测,食品检测,有机化合物的含量检测等范围。 10、色谱仪进行定性分析和定量分析的依据分别为什么 答:定性分析的依据为:各检测物的保留时间;定量分析的依据为:峰面积与浓度成正比。 实验操作部分: 1、该实验中气相色谱仪的操作步骤是什么 打开氮气阀门——打开主机电源——设置温度(气化室150℃、色谱柱室75℃、检测器180℃)——打开空压机开关——打开氢气阀门——点火——待基线稳定后——进样——分析结束后读取数据。 2、在反相高效液相色谱法分离芳香烃化合物的实验中的操作步骤是什么 答:流动相的配制(超声脱气过滤);开机预热30分钟;进样(以微量注射器吸取适量试样并排气泡——将微量注射器插入六通阀——旋转六通阀——注入试样——旋转六通阀——拔出微量注射器);在计算机上读取数据——关机(先关泵后关电源)。

气相色谱仪有哪些检测器修订版

气相色谱仪有哪些检测 器修订版 IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-ZZT18】

1、氢火焰离子化检测器(FID)用于微量有机物分析 2、热导检测器(TCD)用于常量、半微量分析,有机、无机物均有响应 3、电子捕获检测器(ECD)用于有机氯农药残留分析 4、火焰光度检测器(FPD)用于有机磷、硫化物的微量分析 5、氮磷检测器(NPD)用于有机磷、含氮化合物的微量分析 6、催化燃烧检测器(CCD)用于对可燃性气体及化合物的微量分析 7、光离子化检测器(PID)用于对有毒有害物质的痕量分析 FID(氢火焰检测器)居多。 它几乎对所有的有机物都有响应,而对无机物、惰性气体或火焰中不解离的物质等无响应或响应很小,它的灵敏度比热导检测器高100-10000倍,检测限达10-13g/s,对温度不敏感,响应快,适合连接开管柱进行复杂样品的分离,线性范围为10的7次方是气体色谱检测仪中对烃类(如丁烷,己烷)灵敏度最好的一种手段,广泛用于挥发性碳氢化合物和许多含炭化合物的检测。 TCD(热导池检测器); 热导池检测器(TCD)是一种结构简单、性能稳定、线性范围宽、对无机、有机物质都有响应、灵敏度适宜的检测器。其与FID、ECD、FPD等检测器并列为色谱法中最常用的检测器。 FPD (火焰光度检测器) FPD的原理是基于样品在富氢火焰中燃烧,使含硫、磷的化合物经燃烧后又被氢还原, 产生激发态的S2*(S2的激发态)和 HPO*(HPO的激发态),这两种受激物质反回到基态时幅射出400nm和550nm左右的光谱,用光电倍增管测量这一光谱的强度,光强与样品的质

气相色谱仪检测器详细附图解说

气相色谱检测器 气相色谱检测器(Gas chromatographic detector),系指用于反映色谱柱后流出物成分和浓度变化的装置。检测作用的基本原理是利用样品组分与载气的物化性能之间的差异,当流经检测器的组分及浓度发生改变时,检测器立即产生了相应的信号。 用于气相色谱分析的检测器已有数十种之多,其中既有为气相色谱分析而专门研制的检测器(例如:氢焰检测器),也有利用原来分析化学中的测试装置作为检测器(例如:热导检测器),还有把其他大型分析仪器与气相色谱仪联用(例如:气相色谱-质谱联用仪)。 随着色谱法的不断发展和应用领域的迅速扩大,对检测器的要求也就越来越高。为了满足分析上的需要和操作上的方便,除了发展新型专用检测器之外,气相色谱检测器的另一个发展趋向是研制多功能检测器,即一个检测器能起数种检测器的作用。例如:若能把氢焰检测器与火焰光度检测器以及热离子检测器结合一体,那么,将给色谱分析工作带来极大方便。 用于气相色谱分析的检测器种类繁多,有关检测器的性能参见表2-3;在一般分析工作中,最常用的有热导检测器、氢焰检测器、电子捕获检测器、火焰光度检测器、热离子检测器等。本节将讨论这五种检测器的原理、结构、性能及其应用等方面的基础知识。 对检测器的基本要求如下: ①噪音较小,灵敏度高。 ②死体积小,响应迅速。 ③性能稳定,重现性好。 ④信号响应,规律性强。 表2-3 气相色谱检测器基本性能 一、基本概念 (一)分类方法 在气相色谱法中,检测器的分类较常用的有四种分类法。

1.按响应时间分类 ⑴积分型检测器 积分型检测器显示某一物理量随时间的累加,也即它所显示的信号是指在给定时间内物质通过检测器的总量。例如:质量检测器、体积检测器、电导检测器和滴定检测器等,此类检测器在一般色谱分析中应用较少。 ⑵微分型检测器 微分型检测器显示某一物理量随时间的变化,也即它所显示的信号表示在给定的时间里每一瞬时通过检测器的量。例如:热导检测器、氢焰检测器、电子捕获检测器和火焰光度检测器、热离子检测器等,此类检测器为一般色谱分析中的常用检测器。 2.按响应特性分类 ⑴浓度型检测器 浓度型检测器测量的是载气中组分浓度瞬间的变化,也即检测器的响应值取决于载气中组分的浓度。例如:热导检测器和电子捕获检测器等。 ⑵质量型检测器 质量型检测器测量的是载气中所携带的样品组分进入检测器的速度变化,也即检测器的响应值取决于单位时间组分进入检测器的质量。例如:氢焰检测器、火焰光度检测器、热离子检测器等。 3.按样品变化情况分类 ⑴破坏型检测器 在检测过程中,被测物质发生了不可逆变化。例如:氢焰检测器、火焰光度检测器、热离子检测器。 ⑵非破坏型检测器 在检测过程中,被测物质不发生不可逆变化。例如:热导检测器和电子捕获检测器。 4.按选择性能分类 ⑴多用型检测器 对许多种类物质都有较大响应信号的检测器称为多用型检测器。例如:热导检测器和氢焰检测器等属于多用型检测器。 ⑵专用型检测器 仅对某些种类物质有较大的响应信号,而对其他种类物质的响应信号很小或几乎不响应的检测器则称为专用型检测器。例如:电子捕获检测器、火焰光度检测器、热离子检测器等。 有时也把上述分类法结合起来。例如:把热导检测器称为微分-浓度-非破坏-多用型检测器,氢焰检测器称为微分-质量-破坏-多用型检测器。 (二)有关定义 1.灵敏度(S) 灵敏度(Sensitivity),系指单位量的物质通过检测器时所产生信号的大小,亦称检测器对该物质的响应值。 ⑴浓度型检测器灵敏度计算式 S c =AC1C2U e/W=hY1/2U e/W (2-9) 式中A——色谱峰面积(cm2); C1——记录纸单位宽度所代表的mV数(mV/cm); C2——记录纸速度的倒数(min/cm); U e——在室温和常压下柱出口处载气流速(mL/min)此值按本章中式(2-2)或(2-3)计算; W——样品质量(mg);

气相色谱仪由哪几部分组成

气相色谱仪由哪几部分 组成 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

1、气相色谱仪由哪几部分组成 答:基本包括六个基本单元:气源系统、进样系统、柱系统、检测系统、数据采集及处理系统、温控系统。 2、在环已烯成分检测的实验中,我们所使用的气相色谱仪的固定相和流动相分别是什么? 答:固定相为:PEG毛细管柱。流动相为:氮气 3、在环已烯成分检测的实验中,我们所使用的液相色谱仪的检测器是什么检测器 答:为氢火焰离子化检测器。 4、气相色谱仪的适用范围是什么 答:气相色谱仪可以应用于分析气体试样,也可分析易挥发或可转化为易挥发的液体和固体。如:环境检测,食品检测,有机化合物的质量检测等范围。 5、高效液相色谱仪由哪几部分组成 答:主要包括:高压泵、进样阀、色谱柱、检测器、数据采集和处理系统等部分。 6、在反相高效液相色谱法分离芳香烃化合物的实验中,我们所使用的液相色谱仪的固定相和流动相分别是什么 答:固定相为:十八烷烃;流动相为:80%甲醇和20%水的混合溶液。 7、在反相高效液相色谱法分离芳香烃化合物的实验中,我们所使用的液相色谱仪的检测器是什么检测器 答:紫外吸收检测器。 8、什么叫反向高效液相色谱仪,什么叫正向液相色谱仪

答:固定相的极性小于流动相的极性叫做反向高效液相色谱仪;固定相的极性大于流动相的极性叫做正向高效液相色谱仪。 9、液相色谱仪的适用范围是什么 答:只要被分析物在流动相溶剂中有一定的溶解度,便可以分析。特别适合于那些沸点高、极性强、热稳定性差的化合物。如:环境检测,食品检测,有机化合物的含量检测等范围。 10、色谱仪进行定性分析和定量分析的依据分别为什么 答:定性分析的依据为:各检测物的保留时间;定量分析的依据为:峰面积与浓度成正比。 实验操作部分: 1、该实验中气相色谱仪的操作步骤是什么 打开氮气阀门——打开主机电源——设置温度(气化室150℃、色谱柱室75℃、检测器180℃)——打开空压机开关——打开氢气阀门——点火——待基线稳定后——进样——分析结束后读取数据。 2、在反相高效液相色谱法分离芳香烃化合物的实验中的操作步骤是什么 答:流动相的配制(超声脱气过滤);开机预热30分钟;进样(以微量注射器吸取适量试样并排气泡——将微量注射器插入六通阀——旋转六通阀——注入试样——旋转六通阀——拔出微量注射器);在计算机上读取数据——关机(先关泵后关电源)。

气相色谱仪由哪几部分组成

1、气相色谱仪由哪几部分组成? 答:基本包括六个基本单元:气源系统、进样系统、柱系统、检测系统、数据采集及处理系统、温控系统。 2、在环已烯成分检测的实验中,我们所使用的气相色谱仪的固定相和流动相分别是什么? 答:固定相为:PEG毛细管柱。流动相为:氮气 3、在环已烯成分检测的实验中,我们所使用的液相色谱仪的检测器是什么检测器? 答:为氢火焰离子化检测器。 4、气相色谱仪的适用范围是什么? 答:气相色谱仪可以应用于分析气体试样,也可分析易挥发或可转化为易挥发的液体和固体。如:环境检测,食品检测,有机化合物的质量检测等范围。 5、高效液相色谱仪由哪几部分组成? 答:主要包括:高压泵、进样阀、色谱柱、检测器、数据采集和处理系统等部分。 6、在反相高效液相色谱法分离芳香烃化合物的实验中,我们所使用的液相色谱仪的固定相和流动相分别是什么? 答:固定相为:十八烷烃;流动相为:80%甲醇和20%水的混合溶液。 7、在反相高效液相色谱法分离芳香烃化合物的实验中,我们所使用的液相色谱仪的检测器是什么检测器? 答:紫外吸收检测器。 8、什么叫反向高效液相色谱仪,什么叫正向液相色谱仪? 答:固定相的极性小于流动相的极性叫做反向高效液相色谱仪;固定相的极性大于流动相的极性叫做正向高效液相色谱仪。 9、液相色谱仪的适用范围是什么? 答:只要被分析物在流动相溶剂中有一定的溶解度,便可以分析。特别适合于那些沸点高、极性强、热稳定性差的化合物。如:环境检测,食品检测,有机化合物的含量检测等范围。 10、色谱仪进行定性分析和定量分析的依据分别为什么? 答:定性分析的依据为:各检测物的保留时间;定量分析的依据为:峰面积与浓度成正比。 实验操作部分: 1、该实验中气相色谱仪的操作步骤是什么? 打开氮气阀门——打开主机电源——设置温度(气化室150℃、色谱柱室75℃、检测器180℃)——打开空压机开关——打开氢气阀门——点火——待基线稳定后——进样——分析结束后读取数据。 2、在反相高效液相色谱法分离芳香烃化合物的实验中的操作步骤是什么? 答:流动相的配制(超声脱气过滤);开机预热30分钟;进样(以微量注射器吸取适量试样并排气泡——将微量注射器插入六通阀——旋转六通阀——注入试样——旋转六通阀——拔出微量注射器);在计算机上读取数据——关机(先关泵后关电源)。 8

气相色谱仪对仪器的一般要求

气相色谱仪对仪器的一般要求 一、载气源 气体氦、氮和氢可用作气相色谱法的流动相,可根据供试品的性质和检测器种类选择载气,除另有规定外,常用载气为氮气。 二、进样部分 进样方式一般可采用溶液直接进样或顶空进样。采用溶液直接进样时,进样口温度应高于柱温30~50℃。顶空进样适用于固体和液体供试品中挥发性组分的分离和测定。 三、色谱柱 根据需要选择。新填充柱和毛细管柱在使用前需老化以除去残留溶剂及低分子量的聚合物,色谱柱如长期未用,使用前应老化处理,使基线稳定。 四、柱温箱 柱温箱温度的波动会影响色谱分析结果的重现性,因此柱温箱控温精度应在±1℃,且温度波动小于每小时0.1℃。 五、检测器 适合气相色谱法的检测器有火焰离子化检测器(FID)、热导检测器(TCD)、氮磷检测器(NPD)、火焰光度检测器(FP D)、电子捕获检测器(ECD)、质谱检测器(MS)等。火焰离子化检测器对碳氢化合物响应良好,适合检测大多数的药物;氮磷检测器对含氮、磷元素的化合物灵敏度高;火焰光度检测器对含磷、硫元素的化合物灵敏度高;电子捕获检测器适于含卤素的化合物;质谱检测器还能给出供试品某个成分相应的结构信息,可用于结构确证。除另有规定外,火焰离子化检测器一般用氢气作为燃气,空气作为助燃气。在使用火焰离子化检测器时,检测器温度一般应高于柱温,并不得低于150℃,以免水汽凝结,通常为250~350℃。 六、数据处理系统 目前多用计算机工作站。药典规定,各品种项下规定的色谱条件,除载气、检测器、固定液品种及特殊指定的色谱柱材料不得改变外,其余如色谱柱内径、长度、载体牌号、粒度、固定液涂布浓度、载气流速、柱温、进样量、检测器的灵敏度等,均可适当改变,以适应具体品种并符合系统适用性试验的要求。一般色谱图约于30min内记录完毕。

气相色谱仪有哪些检测器

气相色谱仪有哪些检测器Last revision on 21 December 2020

1、氢火焰离子化检测器(FID)用于微量有机物分析 2、热导检测器(TCD)用于常量、半微量分析,有机、无机物均有响应 3、电子捕获检测器(ECD)用于有机氯农药残留分析 4、火焰光度检测器(FPD)用于有机磷、硫化物的微量分析 5、氮磷检测器(NPD)用于有机磷、含氮化合物的微量分析 6、催化燃烧检测器(CCD)用于对可燃性气体及化合物的微量分析 7、光离子化检测器(PID)用于对有毒有害物质的痕量分析 FID(氢火焰检测器)居多。 它几乎对所有的有机物都有响应,而对无机物、惰性气体或火焰中不解离的物质等无响应或响应很小,它的灵敏度比热导检测器高100-10000倍,检测限达10-13g/s,对温度不敏感,响应快,适合连接开管柱进行复杂样品的分离,线性范围为10的7次方 是气体色谱检测仪中对烃类(如丁烷,己烷)灵敏度最好的一种手段,广泛用于挥发性碳氢化合物和许多含炭化合物的检测。 TCD(热导池检测器); 热导池检测器(TCD)是一种结构简单、性能稳定、线性范围宽、对无机、有机物质都有响应、灵敏度适宜的检测器。其与FID、ECD、FPD等检测器并列为色谱法中最常用的检测器。 FPD (火焰光度检测器) FPD的原理是基于样品在富氢火焰中燃烧,使含硫、磷的化合物经燃烧后又被氢还原,产生激发态的S2*(S2的激发态)和 HPO*(HPO的激发态),这两种受激物质反回到基态时幅射出400nm和550nm左右的光谱,用光电倍增管测量这一光谱的强度,光强与样品的质量流速成正比关系。FPD是灵敏度很高的选择性检测器,广泛地用于含硫、磷化合物的分析。

气相色谱仪的常见检测器

气相色谱仪的常见检测器 气相色谱仪在火灾调查、石油、化工、生物化学、医药卫生、食品工业、环保等方面应用很广。它除用于定量和定性分析外,还能测定样品在固定相上的分配系数、活度系数、分子量和瑞盛比表面积等物理化学常数。一种对混合气体中各组成成分进行分析检测的仪器。 常见检测器 1、热导检测器 热导检测器(TCD、属于浓度型检测器,即检测器的响应值与组分在载气中的浓度成正比。它的基本原理是基于不同物质具有不同的热导系数,几乎对所有的物质都有响应,是目前应用广泛的通用型检测器。由于在检测过程中样品不被破坏,因此可用于制备和其他联用鉴定技术。 2、氢火焰离子化检测器 氢火焰离子化检测器(FID、利用有机物在氢火焰的作用下化学电离而形成离子流,借测定离子流强度进行检测。该检测器灵敏度高、线性范围宽、操作条件不苛刻、噪声小、死体积小,是有机化合物检测常用的检测器。但是检测时样品被破坏,一般只能检测那些在氢火焰中燃烧产生大量碳正离子的有机化合物。 3、电子捕获检测器 电子捕获检测器(ECD、是利用电负性物质捕获电子的能力,通过测定电子流进行检测的。ECD具有灵敏度高、选择性好的特点。它是一种专属型检测器,是目前分析痕量电负性有机化合物有效的检测器,元素的电负性越强,检测器灵敏度越高,对含卤素、硫、氧、羰基、氨基等的化合物有很高的响应。电子捕获检测器已广泛应用于有机氯和有机磷农药残留量、金属配合物、金属有机多卤或多硫化合物等的分析测定。它可用氮气或氩气作载气,常用的是高纯氮。 4、火焰光度检测器 火焰光度检测器(FPD、对含硫和含磷的化合物有比较高的灵敏度和选择性。其检测原理是,当含磷和含硫物质在富氢火焰中燃烧时,分别发射具有特征的光谱,透过干涉滤光片,用光电倍增管测量特征光的强度。 5、质谱检测器

气相色谱仪的检测器

气相色谱检测器(Gaschromatographicdetector),系指用于反映色谱柱后流出物成分和浓度变化的装置。检测作用的基本原理是利用样品组分与载气的物化性能之间的差异,当流经检测器的组分及浓度发生改变时,检测器立即产生了相应的信号。 用于气相色谱分析的检测器已有数十种之多,其中既有为气相色谱分析而专门研制的检测器(例如:氢焰检测器),也有利用原来分析化学中的测试装置作为检测器(例如:热导检测器),还有把其他大型分析仪器与气相色谱仪联用(例如:气相色谱-质谱联用仪)。 (一)热导检测器 热导检测器(Thermalconductivitydetector,TCD),属于多用型微分检测器,不论对有机物还是无机物一般都能响应,因此,热导检测器在分析工作中得到广泛的应用。 热导检测器的最小检出量达10-8g,线性范围为105。 1.检测机理 热导检测器是根据载气中混入其他气态物质时热导率发生变化的原理而制成的,它主要利用以下的三个条件来达到检测之目的。 ①欲测物质具有与载气物质不同的热导率。 ②热敏元件阻值与温度之间存在一定关系。 ③利用惠斯登电桥原理检测流经物质变化。 2.基本构造 热导检测器的热导池构造如图2-12所示,敏感元件安装于金属(或玻璃)所制的圆筒形的池腔中,池中的敏感元件称为热导检测器的臂。利用一个或二个臂作参考臂,而另一个或两个臂作测量臂。在图2-13所示的惠斯登电桥中,利用二个臂作参考臂,而另两个臂作测量臂。 3.检测过程 热导检测器的检测过程如下:在恒温的检测室中,通恒定的工作电流和通恒定的载气流速时,热敏元件的发热量和载气所带走的热量也均恒定,故使热敏元件的温度恒定,也即其电阻值保持不变,电桥保持平衡,此时无变化信号产生;当被测物质与载气一道进入热导池测量臂时,由于混合气体的热导率与纯载气不同(往往低于纯载气的热导率),因而带走的热量也就不同,使得热敏元件的温度发生改变,其电阻值也就随之改变,故使电桥产生不平衡电位,输出信号至记录设备(记录仪、色谱数据处理机或色谱工作站等),进行数据处理、图象显示、打印图谱和打印分析结果等。 4.相关事宜

气相色谱仪ECD检测器的操作流程(1)

气相色谱仪ECD检测器的操作流程 一.色谱仪启动步骤(ECD检测器型号为4) 11,如果分离不好,可调节【柱前压】把流量调小,可看柱前压表 22,样品量大小可调分流, 33, 打开氮气使其输出在0.4-0.5MPA 2.设置温度: 查看柱前压表是否有压力,如有才可以开机 在开机后,开始设置温度。(恒温设置) 【柱箱】→【初温】→【230 】→【置入】 【进样】→【280】→【置入】 【换挡】→【热导】→【300】→【置入】 完成后,按下【起始】键(显示为**时)。查看当时温度: 如果设置程序升温 1 【柱箱】→【初温】→【】→【置入】(设置初始温度) 2 【柱箱】→【初时】→【时间】→【置入】(设置维持时间) 3 【柱箱】→【升速】→【】→【置入】(设置升温速度) 4 【柱箱】→【终温】→【】→【置入】(设置终止温度) 5 【柱箱】→【终时】→【时间】→【置入】(设置维持时间) 【进样】→【】→【置入】 【换挡】→【热导】→【】→【置入】 完成后,按下【起始】键(显示为**时)。查看当时温度: 【显示】→【柱箱】 (显示柱箱当前温度) 【显示】→【进样】 (显示进样器当前温度) 【显示】→【换挡】→【热导】 (显示检测器当前温度) 【量程】→【0/1】→【置入】(量程正常为1) 【电流】→【0.5/1/2】→【置入】(电流正常为1) 【电流衰减】→【0.1/1】→【置入】(电流衰减正常为1) 调零旋钮-调节基线位置 二.进样 打开电脑,找到电脑界面上的N2000在线工作站,点击打开 选择【通道1】,在【数据采集】中点击查看基线,工作站左下角出现红色的电压值和时间值,正常。 等待基线平稳后,即可进样。进样后点击工作站采集数据。 三关闭步骤 1.设置温度 【柱箱】→【初温】→【50】→【置入】 等柱箱降至50℃。 2.关闭机器,关闭气体发生器。

气相色谱仪有哪些检测器

气相色谱仪有哪些检测 器 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

1、氢火焰离子化检测器(FID)用于微量有机物分析 2、热导检测器(TCD)用于常量、半微量分析,有机、无机物均有响应 3、电子捕获检测器(ECD)用于有机氯农药残留分析 4、火焰光度检测器(FPD)用于有机磷、硫化物的微量分析 5、氮磷检测器(NPD)用于有机磷、含氮化合物的微量分析 6、催化燃烧检测器(CCD)用于对可燃性气体及化合物的微量分析 7、光离子化检测器(PID)用于对有毒有害物质的痕量分析 FID(氢火焰检测器)居多。 它几乎对所有的有机物都有响应,而对无机物、惰性气体或火焰中不解离的物质等无响应或响应很小,它的灵敏度比热导检测器高100-10000倍,检测限达10-13g/s,对温度不敏感,响应快,适合连接开管柱进行复杂样品的分离,线性范围为10的7次方 是气体色谱检测仪中对烃类(如丁烷,己烷)灵敏度最好的一种手段,广泛用于挥发性碳氢化合物和许多含炭化合物的检测。 TCD(热导池检测器); 热导池检测器(TCD)是一种结构简单、性能稳定、线性范围宽、对无机、有机物质都有响应、灵敏度适宜的检测器。其与FID、ECD、FPD等检测器并列为色谱法中最常用的检测器。 FPD (火焰光度检测器) FPD的原理是基于样品在富氢火焰中燃烧,使含硫、磷的化合物经燃烧后又被氢还原,产生激发态的S2*(S2的激发态)和 HPO*(HPO的激发态),这两种受激物质反回到基态时幅射出400nm和550nm左右的光谱,用光电倍增管测量这一光谱的强度,光强与样品的质量流速成正比关系。FPD是灵敏度很高的选择性检测器,广泛地用于含硫、磷化合物的分析。

气相色谱仪器故障排除方法氢火焰离子化检测器

气相色谱仪器故障排除方法(氢火焰离子化检测器) 1、点火前不能调零 放大器预热之后,氢焰尚未点燃,基线应能被调节到记录仪的零点,此时改变放大器上的衰减比,基线应无偏离,如果在上述操作中发现,无论怎样调节微电流放大器旋钮,都不能使记录仪上的基线回到零位,则认为就是不能调零故障。 点火前不能调零故障的发生原因有以下几个:接线错误;离子室绝缘不良;引线电缆有短路;微电流放大器损坏;记录仪故障。 2、点火故障 在色谱仪正常操作的条件下,按动点火器按钮,片刻后应能听到氢氧混合气点燃时的爆鸣声,此时将会观察到基线的偏移。点火后,用凉爽的玻璃片或表面光亮的金属片等物品放于火焰正上方气路出口处,片刻可观察到玻璃片或金属片表面上水蒸气冷凝的痕迹。如果出现上述现象,说明仪器点火正常。如果在点火过程中无上述点燃迹象,应再次尝试点火,若多次点火仍无反应,可认为发生了不能点火故障。 发生不能点火故障的原因有以下几个:点火组件故障;点火电源无输出;点火前后气路配比不当;漏氢气;气路中有堵塞;点火电路连线、接头断路。 不能点火故障具体按下面步骤检查排除: (1)点火丝发亮状态的检查:点火丝应呈现较明亮的黄红色,如瞧到点火丝能点亮,说明点火电路基本正常;如果点丝毫不反应则说明点火电路有问题,此时应转入(7)作进一步检查。(2)气路中气流配比检查:正常点火时应增大氢气流量,适当减少空气流量,载气或尾吹气应调到很小或关死,如各流量操作不对,应进行调整。 (3)氢气漏气检查:停电后,关闭除氧气以外的各路流量控制阀,用硅橡胶垫或干净的软橡皮头堵住氢火焰离子室喷嘴,并稍向下用力,以阻断从喷嘴流出的氢气,此时氢气一路转子流量计中的转子应慢慢降到零。如转子不下降或虽然下降但降不到零,则说明氢气一路有漏气,按(4)处理;如果转子可降为零,转入(5)进行处理。 (4)消除漏气:试漏,找出漏气点,必要时也可对气路管线分段处理试漏。找到泄漏处之后应根据具体情况适当处理,详细方法见气路泄漏的检查与排除所述。在消除氢气漏气故障时有一点需给予注意,那就就是载气气路下游的泄漏也会导致氢气气路转子降不到零位,这就是由于载气与氢气两路在喷嘴前相互连通的缘故。 (5)气路中有堵塞:气路堵塞,特别就是喷嘴处的气路堵塞,就是造成不能点火或点火后又灭的一个常见原因。排除堵塞方法可见气路部件的清洗部分所述。 (6)气路配比的调整:不能点火或不易点火往往与点火状态时气路各流量配比有关。在点火状态时氢气流量应加大几倍,而空气可略微降低,用作载气的氮气应减少甚至关断,在点火后再缓缓增大。此项调整可反复做几次,直到能点着火为止。 (7)点火组件接触良好性检查。 (8)点火电路输出电压检查:直接测量点火电源的输出电压就是否为额定值,便可知点火电源有否故障。 (9)连线与插头有断路。 (10)检测器接触不良。 3、点火后不能调零 氢火焰离子化检测器在点火前可以将基线调到零点,但点火后却不能将基线调到点火前的位置,这种现象即为点火不能调零故障。 点火后不能调零故障的原因有:离子室积水;极化电压接反;气路、检测器污染;柱流失严重;气流调节不当;基线补偿无作用。

气相色谱仪检测知识试卷

气相色谱仪检测知识试卷 一、填空题 1、气相色谱仪用于蔬菜和水果中()、()、()、和()农药多残留的测定。 2、气相色谱仪检测有机磷类农药前处理分为()、()、()、()。 3、试样制备中抽取蔬菜、水果样品,取可食部分,经缩分后,将其切碎,充分混匀,加工粉碎后,制成待测样,装入容器在()—()条件下保存,备用。 4、气相色谱仪检测有机磷类农药,在前处理的测定步骤中,第二步提取时加入()和()进行提取。 5气相色谱仪检测各类农药时,应该准确称取()克试样。 6、气相色谱仪器用哪两种气体,分别是()和()。 7、气相色谱仪器开机时先开(),再开()最后开(),关机时顺序正好相反。 8、、气相色谱仪检测有机氯类、拟除虫菊酯类农药,在前处理的测定步骤中,第三部净化处理时,将弗罗里矽柱依次用()+()预淋洗,条件化。 9、用气相色谱仪检测各类农药时,在前处理的净化过程中,将盛有溶液的烧杯放在()℃水浴锅上加热。 10、气相色谱仪检测实验中混合溶液定容至一定刻度数后,应在()上混匀。

二、单选题 1、在进行气相色谱仪检测有机磷、有机氯类、拟除虫菊酯类农药的实验中,应使用()的纯净水。 A 一级 B 二级 C 三级 2、依照国家标准GB/T5009.199—2003气相色谱仪检测有机氯类、拟除虫菊酯类农药时可测定出()种。 A 40 B 41 C 38 D 20 3、依照国家标准GB/T5009.199—2003气相色谱仪检测有机磷类农药时有()种。 A 54 B 41 C 45 D 48 4、样品的制备是指对样品的()等过程。 A 粉碎 B 混匀C缩分 D 以上三项都正确 5、用气相色谱仪检测各类农药时,需用的试剂是() A 优级纯 B 分析纯 C 以上两类均可 三、多选题。 1、检测有机氯类、拟除虫菊酯类农药时,需要的试剂与材料有哪些?() A 乙腈 B 丙酮C正己烷D氯化钠 E 固相萃取柱F 弗罗里矽柱G铝箔 3、检测有机磷类农药时,需要的试剂与材料有哪些?() A 乙腈 B 丙酮 C 氯化钠 D 滤膜 E 铝箔

气相色谱仪TCD检测器灵敏度

气相色谱仪TCD 检测器灵敏度 测量结果不确定度的评定 一、概述 1.1 测量依据:JJG700-1999《气相色谱仪检定规程》,JJF1059-1999《测量不确定度评定与表示》。 1.2 环境条件:要求 室温(5~35)o C, 相对湿度(20~85)%。 1.3 测量标准:检定气相色谱仪的标准物质GBW(E)130101,不确定度3%(k=2) 。 1.4 测量对象:实验室用气相色谱仪GC1690的TCD 检测器。 1.5 测量方法:在仪器正常工作条件下,对于TCD 检测器,先用流量计对载气流量进行校正,然后用标准气体对仪器的灵敏度进行校准。 二、数学模型 TCD 检测器: W AFc S = TCD 式中:S TCD –TCD 的灵敏度,mV·ml/mg ; A----标准物质中溶质的峰面积,mV·min ; F C -校准后的载气流速,ml/min ; W----标准物质的进样量,mg 。 三、输入量的标准不确定度的分析和评定 根据传递由上式得出: 2222??? ??+??? ??+??? ??=??? ??W S Fc S A S S S W Fc A S 1、不确定度的来源分析 A S A 为峰面积测量的不确定度A u ; Fc S Fc 为流速测量的不确定度,其中包括皂膜流量计检定的不确定度FC1u 和载气流速测量的不确定度FC2u ,柱箱温度稳定性对载气流速影响引起的相对不确定度FC3u ; W S W 为标准物质进样量的不确定度,其中包括标准物质的不确定度W1u 和微量注射器校准的不确定度W2u 。 其中还有取样时的目视误差,检定员经培训后可忽略不计。 2、不确定度来源的评定 (1)峰面积的测量不确定度A u :采用B 类不确定度。 根据检定规程:峰面积或峰高测量不确定度主要为进样的重复性,规程规定进样6次,合格的色谱仪(6次进样)定量重复性不大于3%,取最大3% 。

气相色谱仪有哪些检测器

气相色谱仪有哪些检测 器 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

1、氢火焰离子化检测器(FID)用于微量有机物分析 2、热导检测器(TCD)用于常量、半微量分析,有机、无机物均有响应 3、电子捕获检测器(ECD)用于有机氯农药残留分析 4、火焰光度检测器(FPD)用于有机磷、硫化物的微量分析 5、氮磷检测器(NPD)用于有机磷、含氮化合物的微量分析 6、催化燃烧检测器(CCD)用于对可燃性气体及化合物的微量分析 7、光离子化检测器(PID)用于对有毒有害物质的痕量分析 FID(氢火焰检测器)居多。 它几乎对所有的有机物都有响应,而对无机物、惰性气体或火焰中不解离的物质等无响应或响应很小,它的灵敏度比热导检测器高100-10000倍,检测限达10-13g/s,对温度不敏感,响应快,适合连接开管柱进行复杂样品的分离,线性范围为10的7次方 是气体色谱检测仪中对烃类(如丁烷,己烷)灵敏度最好的一种手段,广泛用于挥发性碳氢化合物和许多含炭化合物的检测。 TCD(热导池检测器); 热导池检测器(TCD)是一种结构简单、性能稳定、线性范围宽、对无机、有机物质都有响应、灵敏度适宜的检测器。其与FID、ECD、FPD等检测器并列为色谱法中最常用的检测器。 FPD (火焰光度检测器) FPD的原理是基于样品在富氢火焰中燃烧,使含硫、磷的化合物经燃烧后又被氢还原,产生激发态的S2*(S2的激发态)和 HPO*(HPO的激发态),这两种受激物质反回到基态时幅射出400nm和550nm左右的光谱,用光电倍增管测量这一光谱的强度,光强与样品的质量流速成正比关系。FPD是灵敏度很高的选择性检测器,广泛地用于含硫、磷化合物的分析。

气相色谱检测器(精)

第四章气相色谱检测器 例题 例1 求热导检测器的灵敏度。巳知记录仪量程为5mV ,满量程为25cm , 以N 2为载气 柱前表压读数为0.098Mpa , 柱前流量为30m1/min , 记录仪纸速为600mm / h , 大气压为0.1013Mpa , 衰减置于1/2 , 进苯样1μl(苯比重o .88 , 测得色谱峰高 10.0cm , 半峰宽6mm(载气流速不要求进行柱温柱压力的校正 . 解: S=μ1F 0A/μ2m 根据质量守恒定律 , 柱出口载气流量为 F 0= FP/P0=30(0.098+.01013/0.1013=59.1(ml/min 记录仪灵敏度μ1=5mV/25cm=0.2mV/cm 记录仪转速μ2=600mm/h=1cm/min 衰减置于1/2 , 表明记录信号为原信号的1/2 。 S=1.065*0.2*59.1*2*10.0*0.6/1*1*0.88=171.7(mV·m1/min 例2 巳知记录仪灵敏度为0.2mV /cm ,记录纸速为1200mm /h ,注入含0.05%苯的CS 2溶液1μ1,苯的色谱峰高12.0cm ,半峰宽10mm ,仪器噪声 0.01mV , 求氢焰检测器的灵敏度和检测限。 解S=μ1A60/μ2m m=0.0005*0.88*10-3=4.4*10-7g μ2=1200mm/h=2cm/min

S=1.065*0.2*12.0*1.0*60/2*4.4*10-7=1.74*108mV*s/mg D=2RN /S=2*0.01/1.74*108=1.15*10-10g/s 思考题与习题 1.检测器的性能指标S 、D 、Mmin 、Cmu99物理意义是什么? 列出它们的 计算式和单位. 2.灵坡敏度和检测限有何区别? 3.检测限和最小检知量在概念上有何不同? 各受什么因素制约? 4.仪器出厂指标为什么不用最小检知量和最小检知浓度? 5.相同操作条件下 , 甲检测器的灵敏度是乙的两倍 , 而它的噪声也是乙的两 倍 , 问甲检测器的最小检知量是乙的几倍? 6.载气流速对浓度型和质量型检测器的响应值影响有何不同? 7.TCD 的结构、检测原理是什么? 8.热导检测器的灵敏度受哪些因素影响? 9.选择桥电流的依据是什么? 选择原刚是什么? 10.氢焰检测器的结构、检测原理是什么? 其操作条件的选择与TCD 有何不同? 11.氢焰离子化检测器响应特性是什么? 12.采用热导检测器时有进样信号,使用氢焰检测器时有否进样信号? 为什么? 13.简述电子捕获检测器的结构、检测原理. 14.脉冲型电子捕获检测器的主要优点是什么?

气相液相色谱仪最常见的检测器

气相色谱仪最常见的检测器 1)热导检测器 热导检测器(TCD)属于浓度型检测器,即检测器的响应值与组分在载气中的浓度成正比。它的基本原理是基于不同物质具有不同的热导系数,几乎对所有的物质都有响应,是目前应用最广泛的通用型检测器。由于在检测过程中样品不被破坏,因此可用于制备和其他联用鉴定技术。 2)氢火焰离子化检测器 氢火焰离子化检测器(FID)利用有机物在氢火焰的作用下化学电离而形成离子流,借测 定离子流强度进行检测。该检测器灵敏度高、线性范围宽、操作条件不苛刻、噪声小、死体积小,是有机化合物检测常用的检测器。但是检测时样品被破坏,一般只能检测那些在氢火焰中燃烧产生大量碳正离子的有机化合物。 3)电子捕获检测器 电子捕获检测器(ECD)是利用电负性物质捕获电子的能力,通过测定电子流进行检测的。ECD具有灵敏度高、选择性好的特点。它是一种专属型检测器,是目前分析痕量电负性有 机化合物最有效的检测器,元素的电负性越强,检测器灵敏度越高,对含卤素、硫、氧、羰基、氨基等的化合物有很高的响应。电子捕获检测器已广泛应用于有机氯和有机磷农药残留量、金属配合物、金属有机多卤或多硫化合物等的分析测定。它可用氮气或氩气作载气,最常用的是高纯氮。 4)火焰光度检测器 火焰光度检测器(FPD)对含硫和含磷的化合物有比较高的灵敏度和选择性。其检测原理是,当含磷和含硫物质在富氢火焰中燃烧时,分别发射具有特征的光谱,透过干涉滤光片,用光电倍增管测量特征光的强度。 5)质谱检测器 质谱检测器(MSD)是一种质量型、通用型检测器,其原理与质谱相同。它不仅能给出一般GC检测器所能获得的色谱图(总离子流色谱图或重建离子流色谱图),而且能够给出每个色谱峰所对应的质谱图。通过计算机对标准谱库的自动检索,可提供化合物分析结构的信息,故是GC定性分析的有效工具。常被称为色谱-质谱联用(GC-MS)分析,是将色谱的高分离能力与MS的结构鉴定能力结合在一起。

Agilent 7890A气相色谱仪FPD检测器性能测试

Chromatographic Checkout : To Verify FPD Performance (Sample 5188-5245) To Verify FPD Performance (Sample 5188-5245) To verify FPD performance, first check the phosphorus performance, then the sulfur performance. Preparation Phosphorus performance 1 Gather the following: ? Evaluation column, DB5 15 m × 0.32 mm × 1.0 μm (123-5513) ? FPD performance evaluation (checkout) sample (5188-5245) ? Phosphorus filter ? Sulfur filter and filter spacer ? 4-mL solvent and waste bottles or equivalent for autoinjector. ? 2-mL sample vials or equivalent for sample. ? Chromatographic-grade isooctane for syringe wash solvent. 2 Verify the following: ? Capillary column adapter installed. If not, install it. ? Chromatographic-grade gases plumbed and configured: helium as carrier gas, nitrogen, hydrogen, and air. ? Empty waste vials loaded in sample turret. ? 4-mL vial with diffusion cap filled with isooctane and inserted in Solvent A injector position. 3 Verify the lit offset is set appropriately. Typically, it should be about 2.0 pA for the checkout method. 4 Install the evaluation column. (See the procedure for the SS , PP , COC , or PTV in the Maintenance manual.) ? Set the oven, inlet, and detector to 250 °C and bake out for at least 15 minutes. (See the procedure for the SS , PP , COC , or PTV in the Maintenance manual.) ? Configure the column. 5 If it is not already installed, install the phosphorus filter . 6 Create or load a method with the parameter values listed in Table 15. Table 15 FPD Phosphorus Checkout Conditions Column and sample Type DB -5MS, 15 m × 0.32 mm × 1.0 μm (123- 5513) Sample FPD checkout (5188-5245) Column mode Constant flow Column flow 7.5 mL/min Split/splitless inlet Temperature 250 °C Mode Splitless Total purge flow 69.5 mL/min Purge flow 60 mL/min

相关文档
相关文档 最新文档