文档视界 最新最全的文档下载
当前位置:文档视界 › 正态分布、T分布、F分布表

正态分布、T分布、F分布表

正态分布、T分布、F分布表
正态分布、T分布、F分布表

附表1. 标准正态分布表

x0.000.010.020.030.040.050.060.070.080.09

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.9

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

1.9

2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.90.500 0

0.539 8

0.579 3

0.617 9

0.655 4

0.691 5

0.725 7

0.758 0

0.788 1

0.815 9

0.841 3

0.864 3

0.884 9

0.903 2

0.919 2

0.933 2

0.945 2

0.955 4

0.964 1

0.971 3

0.977 2

0.982 1

0.986 1

0.989 3

0.991 8

0.993 8

0.995 3

0.996 5

0.997 4

0.998 1

0.504 0

0.543 8

0.583 2

0.621 7

0.659 1

0.695 0

0.729 1

0.761 1

0.791 0

0.818 6

0.843 8

0.866 5

0.886 9

0.904 9

0.920 7

0.934 5

0.946 3

0.956 4

0.964 8

0.971 9

0.977 8

0.982 6

0.986 4

0.989 6

0.992 0

0.994 0

0.995 5

0.996 6

0.997 5

0.998 2

0.508 0

0.547 8

0.587 1

0.625 5

0.662 8

0.698 5

0.732 4

0.764 2

0.793 9

0.821 2

0.846 1

0.868 6

0.888 8

0.906 6

0.922 2

0.935 7

0.947 4

0.957 3

0.965 6

0.972 6

0.978 3

0.983 0

0.986 8

0.989 8

0.992 2

0.994 1

0.995 6

0.996 7

0.997 6

0.998 2

0.512 0

0.551 7

0.591 0

0.629 3

0.666 4

0.701 9

0.735 7

0.767 3

0.796 7

0.823 8

0.848 5

0.870 8

0.890 7

0.908 2

0.923 6

0.937 0

0.948 4

0.958 2

0.966 4

0.973 2

0.978 8

0.983 4

0.987 1

0.990 1

0.992 5

0.994 3

0.995 7

0.996 8

0.997 7

0.998 3

0.516 0

0.555 7

0.594 8

0.633 1

0.670 0

0.705 4

0.738 9

0.770 3

0.799 5

0.826 4

0.850 8

0.872 9

0.892 5

0.909 9

0.925 1

0.938 2

0.949 5

0.959 1

0.967 2

0.973 8

0.979 3

0.983 8

0.987 4

0.990 4

0.992 7

0.994 5

0.995 9

0.996 9

0.997 7

0.998 4

0.519 9

0.559 6

0.598 7

0.636 8

0.673 6

0.708 8

0.742 2

0.773 4

0.802 3

0.828 9

0.853 1

0.874 9

0.894 4

0.911 5

0.926 5

0.939 4

0.950 5

0.959 9

0.967 8

0.974 4

0.979 8

0.984 2

0.987 8

0.990 6

0.992 9

0.994 6

0.996 0

0.997 0

0.997 8

0.998 4

0.523 9

0.563 6

0.602 6

0.640 4

0.677 2

0.712 3

0.745 4

0.776 4

0.805 1

0.835 5

0.855 4

0.877 0

0.896 2

0.913 1

0.927 9

0.940 6

0.951 5

0.960 8

0.968 6

0.975 0

0.980 3

0.984 6

0.988 1

0.990 9

0.993 1

0.994 8

0.996 1

0.997 1

0.997 9

0.998 5

0.527 9

0.567 5

0.606 4

0.644 3

0.680 8

0.715 7

0.748 6

0.779 4

0.807 8

0.834 0

0.857 7

0.879 0

0.898 0

0.914 7

0.929 2

0.941 8

0.952 5

0.961 6

0.969 3

0.975 6

0.980 8

0.985 0

0.988 4

0.991 1

0.993 2

0.994 9

0.996 2

0.997 2

0.997 9

0.998 5

0.531 9

0.571 4

0.610 3

0.648 0

0.684 4

0.719 0

0.751 7

0.782 3

0.810 6

0.836 5

0.859 9

0.881 0

0.899 7

0.916 2

0.930 6

0.943 0

0.953 5

0.962 5

0.970 0

0.976 2

0.981 2

0.985 4

0.988 7

0.991 3

0.993 4

0.995 1

0.996 3

0.997 3

0.998 0

0.998 6

0.535 9

0.575 3

0.614 1

0.651 7

0.687 9

0.722 4

0.754 9

0.785 2

0.813 3

0.838 9

0.862 1

0.883 0

0.901 5

0.917 7

0.931 9

0.944 1

0.953 5

0.963 3

0.970 6

0.976 7

0.981 7

0.985 7

0.989 0

0.991 6

0.993 6

0.995 2

0.996 4

0.997 4

0.998 1

0.998 6

x0.00.10.20.30.40.50.60.70.80.9 30.998 70.999 00.999 30.999 50.999 70.999 80.999 80.999 90.999 9 1.000 0

F分布表(Part II:alpha=0.025)

f(alpha,v1,v2), v1对应行坐标, v2对应列坐标.

1234567891012152024304060120i nfinity 1648 800 864 900 922 937 948 957 963 969 977 985 993 997 1001 1006 1010 1014 1018 238.51 39.00 39.17 39.25 39.30 39.33 39.36 39.37 39.39 39.40 39.41 39.43 39.45 39.46 39.46 39.47 39.48 39.49 39.50 317.44 16.04 15.44 15.10 14.88 14.73 14.62 14.54 14.47 14.42 14.34 14.25 14.17 14.12 14.08 14.04 13.99 13.95 13.90 412.22 10.65 9.98 9.60 9.36 9.20 9.07 8.98 8.90 8.84 8.75 8.66 8.56 8.51 8.46 8.41 8.36 8.31 8.26 510.01 8.43 7.76 7.39 7.15 6.98 6.85 6.76 6.68 6.62 6.52 6.43 6.33 6.28 6.23 6.18 6.12 6.07 6.02

68.81 7.26 6.60 6.23 5.99 5.82 5.70 5.60 5.52 5.46 5.37 5.27 5.17 5.12 5.07 5.01 4.96 4.90 4.85

78.07 6.54 5.89 5.52 5.29 5.12 4.99 4.90 4.82 4.76 4.67 4.57 4.47 4.42 4.36 4.31 4.25 4.20 4.14

87.57 6.06 5.42 5.05 4.82 4.65 4.53 4.43 4.36 4.30 4.20 4.10 4.00 3.95 3.89 3.84 3.78 3.73 3.67

97.21 5.71 5.08 4.72 4.48 4.32 4.20 4.10 4.03 3.96 3.87 3.77 3.67 3.61 3.56 3.51 3.45 3.39 3.33

10 6.94 5.46 4.83 4.47 4.24 4.07 3.95 3.85 3.78 3.72 3.62 3.52 3.42 3.37 3.31 3.26 3.20 3.14 3.08

11 6.72 5.26 4.63 4.28 4.04 3.88 3.76 3.66 3.59 3.53 3.43 3.33 3.23 3.17 3.12 3.06 3.00 2.94 2.88

12 6.55 5.10 4.47 4.12 3.89 3.73 3.61 3.51 3.44 3.37 3.28 3.18 3.07 3.02 2.96 2.91 2.85 2.79 2.72

13 6.41 4.97 4.35 4.00 3.77 3.60 3.48 3.39 3.31 3.25 3.15 3.05 2.95 2.89 2.84 2.78 2.72 2.66 2.60

14 6.30 4.86 4.24 3.89 3.66 3.50 3.38 3.29 3.21 3.15 3.05 2.95 2.84 2.79 2.73 2.67 2.61 2.55 2.49

15 6.20 4.77 4.15 3.80 3.58 3.41 3.29 3.20 3.12 3.06 2.96 2.86 2.76 2.70 2.64 2.59 2.52 2.46 2.40

16 6.12 4.69 4.08 3.73 3.50 3.34 3.22 3.12 3.05 2.99 2.89 2.79 2.68 2.63 2.57 2.51 2.45 2.38 2.32

17 6.04 4.62 4.01 3.66 3.44 3.28 3.16 3.06 2.98 2.92 2.82 2.72 2.62 2.56 2.50 2.44 2.38 2.32 2.25

18 5.98 4.56 3.95 3.61 3.38 3.22 3.10 3.01 2.93 2.87 2.77 2.67 2.56 2.50 2.44 2.38 2.32 2.26 2.19

19 5.92 4.51 3.90 3.56 3.33 3.17 3.05 2.96 2.88 2.82 2.72 2.62 2.51 2.45 2.39 2.33 2.27 2.20 2.13

20 5.87 4.46 3.86 3.51 3.29 3.13 3.01 2.91 2.84 2.77 2.68 2.57 2.46 2.41 2.35 2.29 2.22 2.16 2.09

21 5.83 4.42 3.82 3.48 3.25 3.09 2.97 2.87 2.80 2.73 2.64 2.53 2.42 2.37 2.31 2.25 2.18 2.11 2.04

22 5.79 4.38 3.78 3.44 3.22 3.05 2.93 2.84 2.76 2.70 2.60 2.50 2.39 2.33 2.27 2.21 2.14 2.08 2.00

23 5.75 4.35 3.75 3.41 3.18 3.02 2.90 2.81 2.73 2.67 2.57 2.47 2.36 2.30 2.24 2.18 2.11 2.04 1.97

24 5.72 4.32 3.72 3.38 3.15 2.99 2.87 2.78 2.70 2.64 2.54 2.44 2.33 2.27 2.21 2.15 2.08 2.01 1.94

25 5.69 4.29 3.69 3.35 3.13 2.97 2.85 2.75 2.68 2.61 2.51 2.41 2.30 2.24 2.18 2.12 2.05 1.98 1.91

26 5.66 4.27 3.67 3.33 3.10 2.94 2.82 2.73 2.65 2.59 2.49 2.39 2.28 2.22 2.16 2.09 2.03 1.95 1.88

27 5.63 4.24 3.65 3.31 3.08 2.92 2.80 2.71 2.63 2.57 2.47 2.36 2.25 2.19 2.13 2.07 2.00 1.93 1.85

28 5.61 4.22 3.63 3.29 3.06 2.90 2.78 2.69 2.61 2.55 2.45 2.34 2.23 2.17 2.11 2.05 1.98 1.91 1.83

29 5.59 4.20 3.61 3.27 3.04 2.88 2.76 2.67 2.59 2.53 2.43 2.32 2.21 2.15 2.09 2.03 1.96 1.89 1.81

30 5.57 4.18 3.59 3.25 3.03 2.87 2.75 2.65 2.57 2.51 2.41 2.31 2.20 2.14 2.07 2.01 1.94 1.87 1.79

40 5.42 4.05 3.46 3.13 2.90 2.74 2.62 2.53 2.45 2.39 2.29 2.18 2.07 2.01 1.94 1.88 1.80 1.72 1.64

60 5.29 3.93 3.34 3.01 2.79 2.63 2.51 2.41 2.33 2.27 2.17 2.06 1.94 1.88 1.82 1.74 1.67 1.58 1.48

120 5.15 3.80 3.23 2.89 2.67 2.52 2.39 2.30 2.22 2.16 2.05 1.94 1.82 1.76 1.69 1.61 1.53 1.43 1.31 infinity 5.02 3.69 3.12 2.79 2.57 2.41 2.29 2.19 2.11 2.05 1.94 1.83 1.71 1.64 1.57 1.48 1.39 1.27 1.00

t 分布表

n0.25 0.2 0.15 0.1 0.05 0.025 0.01 0.005 0.0025 1 1.000 1.376 1.963 3.078 6.314 12.71 31.82 63.66 127.3 20.816 1.061 1.386 1.886 2.920 4.303 6.965 9.925 14.09 30.765 0.978 1.250 1.638 2.353 3.182 4.541 5.841 7.453 40.741 0.941 1.190 1.533 2.132 2.776 3.747 4.604 5.598 50.727 0.920 1.156 1.476 2.015 2.571 3.365 4.032 4.773 60.718 0.906 1.134 1.440 1.943 2.447 3.143 3.707 4.317 70.711 0.896 1.119 1.415 1.895 2.365 2.998 3.499 4.029 80.706 0.889 1.108 1.397 1.860 2.306 2.896 3.355 3.833 90.703 0.883 1.100 1.383 1.833 2.262 2.821 3.250 3.690 100.700 0.879 1.093 1.372 1.812 2.228 2.764 3.169 3.581 110.697 0.876 1.088 1.363 1.796 2.201 2.718 3.106 3.497 120.695 0.873 1.083 1.356 1.782 2.179 2.681 3.055 3.428 130.694 0.870 1.079 1.350 1.771 2.160 2.650 3.012 3.372 140.692 0.868 1.076 1.345 1.761 2.145 2.624 2.977 3.326 150.691 0.866 1.074 1.341 1.753 2.131 2.602 2.947 3.286 160.690 0.865 1.071 1.337 1.746 2.120 2.583 2.921 3.252 170.689 0.863 1.069 1.333 1.740 2.110 2.567 2.898 3.222 180.688 0.862 1.067 1.330 1.734 2.101 2.552 2.878 3.197 190.688 0.861 1.066 1.328 1.729 2.093 2.539 2.861 3.174 200.687 0.860 1.064 1.325 1.725 2.086 2.528 2.845 3.153 210.686 0.859 1.063 1.323 1.721 2.080 2.518 2.831 3.135 220.686 0.858 1.061 1.321 1.717 2.074 2.508 2.819 3.119 230.685 0.858 1.060 1.319 1.714 2.069 2.500 2.807 3.104 240.685 0.857 1.059 1.318 1.711 2.064 2.492 2.797 3.091 250.684 0.856 1.058 1.316 1.708 2.060 2.485 2.787 3.078 260.684 0.856 1.058 1.315 1.706 2.056 2.479 2.779 3.067 270.684 0.855 1.057 1.314 1.703 2.052 2.473 2.771 3.057 280.683 0.855 1.056 1.313 1.701 2.048 2.467 2.763 3.047 290.683 0.854 1.055 1.311 1.699 2.045 2.462 2.756 3.038 300.683 0.854 1.055 1.310 1.697 2.042 2.457 2.750 3.030 400.681 0.851 1.050 1.303 1.684 2.021 2.423 2.704 2.971 500.679 0.849 1.047 1.299 1.676 2.009 2.403 2.678 2.937 600.679 0.848 1.045 1.296 1.671 2.000 2.390 2.660 2.915 800.678 0.846 1.043 1.292 1.664 1.990 2.374 2.639 2.887 1000.677 0.845 1.042 1.290 1.660 1.984 2.364 2.626 2.871 1200.677 0.845 1.041 1.289 1.658 1.980 2.358 2.617 2.860 infty0.674 0.842 1.036 1.282 1.645 1.960 2.326 2.576 2.807

(完整版)t分布的概念及表和查表方法.doc

t分布介绍 在概率论和统计学中,学生 t - 分布(t -distribution ),可简称为 t 分布,用于根据小样本来估计呈正态分布且方差未知的总体的均值。如果总体方差已知(例如在样本数量足够多时),则应该用正态分布来估计总体均值。 t 分布曲线形态与 n(确切地说与自由度 df )大小有关。与标准正态分布曲线相比,自由度df 越小, t 分布曲线愈平坦,曲线中间愈低,曲线双侧尾部翘得愈高;自由度 df 愈大, t 分布曲线愈接近正态分布曲线,当自由度 df= ∞时, t 分布曲线为标准正态分布曲线。 中文名t 分布应用在对呈正态分布的总体 外文名t -distribution 别称学生 t 分布 学科概率论和统计学相关术语t 检验 目录 1历史 2定义 3扩展 4特征 5置信区间 6计算 历史 在概率论和统计学中,学生 t -分布( Student's t-distribution )经常应用在对呈正态分布的总体的均值进行估计。它是对两个样本均值差异进行显著性测试的学生t 测定的基础。 t 检定改进了Z 检定(en:Z-test ),不论样本数量大或小皆可应用。在样本数量大(超过 120 等)时,可以应用Z 检定,但 Z 检定用在小的样本会产生很大的误差,因此样本很小的情况下得改用学生t 检定。在数据有三组以上时,因为误差无法压低,此时可以用变异数分析代替学生t 检定。 当母群体的标准差是未知的但却又需要估计时,我们可以运用学生t-分布。 学生 t-分布可简称为t 分布。其推导由威廉·戈塞于 1908 年首先发表,当时他还在都柏林的健力士酿酒厂工作。因为不能以他本人的名义发表,所以论文使用了学生(Student )这一笔名。之后t 检验以及相关理论经由罗纳德·费雪的工作发扬光大,而正是他将此分布称为学生分布。 定义

t分布和标准规定正态分布

数理统计实验 t分布与标准正态分布 院(系): 班级: 成员:

成员: 成员: 指导老师: 日期:

目录 t分布与标准正态分布的关系 (1) 一、实验目的 (1) 二、实验原理 (1) 三、实验内容及步骤 (1) 四、实验器材 (6) 五、实验结果分析 (6) 六、实验结论 (6)

t分布与标准正态分布的关系 一、实验目的 正态分布是统计中一种很重要的理论分布,是许多统计方法的理论基础。正态分布有两个参数,μ和σ,决定了正态分布的本质。为了应用和计算方便,常将一般的正态变量X通过μ变换[(X-μ)/σ]转化成标准正态变量μ,以使原来各种形态的正态分布都转换为μ=0,σ=1的标准正态分布,亦称μ分布。对于标准正态分布来说,μ是数据整体的平均值,σ是整体的标准差。但实际操作过程中,人们往往难以获得μ和σ。因此人们只能通过样本对这两个参数做出估计,用样本平均值和样本标准差代替整体的平均值和标准差,从而得出了t分布。另外从图像的层面说,正态分布的位置和形态只与μ和σ有关,而t分布不只与样本平均值和样本标准差有关,还与自由度相关。通过实验了解t分布与标准正态分布之间的关系。 二、实验原理 运用EXCEL软件验证t分布与标准正态分布的关系,绘制相应的统计图表进行分析。 三、实验内容及步骤 1.打开Excel文件,将“t分布与标准正态分布N(0,1)”合并并居中,黑体,20字号,红色;

2.选中文件,选项,自定义功能区,加载开发工具.在开发工具中插入滚动条,调节滚动条大小; 3.设置A2单元格格式,数字自定义区”!n=#,##0;[红 色]¥-#,##0”.然后左对齐,设置为红色;

正态概率图(normal probability plot)

正态概率图(normal probability plot) 方法演变:概率图,分位数-分位数图( Q- Q) 概述 正态概率图用于检查一组数据是否服从正态分布。是实数与正态分布数据之间函数关系的散点图。如果这组实数服从正态分布,正态概率图将是一条直线。通常,概率图也可以用于确定一组数据是否服从任一已知分布,如二项分布或泊松分布。 适用场合 ·当你采用的工具或方法需要使用服从正态分布的数据时; ·当有50个或更多的数据点,为了获得更好的结果时。 例如: ·确定一个样本图是否适用于该数据; ·当选择作X和R图的样本容量,以确定样本容量是否足够大到样本均值服从正态分布时;·在计算过程能力指数Cp或者Cpk之前; ·在选择一种只对正态分布有效的假设检验之前。 实施步骤 通常,我们只需简单地把数据输入绘图的软件,就会产生需要的图。下面将详述计算过程,这样就可以知道计算机程序是怎么来编译的了,并且我们也可以自己画简单的图。 1将数据从小到大排列,并从1~n标号。 2计算每个值的分位数。i是序号: 分位数=(i-0.5)/n 3找与每个分位数匹配的正态分布值。把分位数记到正态分布概率表下面的表A.1里面。然后在表的左边和顶部找到对应的z值。 4根据散点图中的每对数据值作图:每列数据值对应个z值。数据值对应于y轴,正态分位数z值对应于x轴。将在平面图上得到n个点。 5画一条拟合大多数点的直线。如果数据严格意义上服从正态分布,点将形或一条直线。将点形成的图形与画的直线相比较,判断数据拟合正态分布的好坏。请参阅注意事项中的典型图

形。可以计算相关系数来判断这条直线和点拟合的好坏。 示例 为了便于下面的计算,我们仅采用20个数据。表5. 12中有按次序排好的20个 值,列上标明“过程数据”。 下一步将计算分位数。如第一个值9,计算如下: 分位数=(i-0.5)/n=(1-0.5)/20=0.5/20=0.025 同理,第2个值,计算如下: 分位数=(i-0.5)/n=(2-0.5)/20=1.5/20=0.075 可以按下面的模式去计算:第3个分位数=2.5÷20,第4个分位数=3 5÷20 以此类推直到最后1个分位数=19. 5÷20。 现在可以在正态分布概率表中查找z值。z的前两 个阿拉伯数字在表的最左边一列,最后1个阿拉伯数 字在表的最顶端一行。如第1个分位数=0. 025,它位 于-1.9在行与0.06所在列的交叉处,故z=-1.96。 用相同的方式找到每个分位数。 如果分位数在表的两个值之间,将需要用插值法 进行求解。例如:第4个分位数为0. 175,它位于0.1736 与0.1762之间。0.1736对应的z值为-0.94,0.1762 对应的z值为-0.93,故 这两数的中间值为z=-0.935。 现在,可以用过程数据和相应的z值作图。图表5. 127显示了结果和穿过这些点的直线。注意:在图形的两端,点位于直线的上侧。这属于典型的右偏态数据。图表5.128显示了数据的直方图,可进行比较。 概率图( probability plot) 该方法可以用于检验任何数据的已知分布。这时我们不是在正态分布概率表中查找分位数,而是在感兴趣的已知分布表中查找它们。 分位数-分位数图(quantile-quantile plot) 同理,任意两个数据集都可以通过比较来判断是否服从同一分布。计算每个分布的分位数。一个数据集对应于x轴,另一个对应于y轴。作一条45°的参照线。如果这两个数据集来自同一分布,那么这些点就会靠近这条参照线。 注意事项 ·绘制正态概率图有很多方法。除了这里给定的程序以外,正态分布还可以用概率和百分数来表示。实际的数据可以先进行标准化或者直接标在x轴上。 ·如果此时这些数据形成一条直线,那么该正态分布的均值就是直线在y轴截距,标准差就是直线斜率。 ·对于正态概率图,图表5.129显示了一些常见的变形图形。 短尾分布:如果尾部比正常的短,则点所形成的图形左边朝直线上方弯曲,右边朝直线下方弯曲——如果倾斜向右看,图形呈S型。表明数据比标准正态分布时候更加集中靠近均值。 长尾分布:如果尾部比正常的长,则点所形成的图形左边朝直线下方弯曲,右边朝直线上方弯曲——如果倾斜向右看,图形呈倒S型。表明数据比标准正态分布时候有更多偏离的数据。

标准正态分布表

标准正态分布表 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

标准正态分布表

4432198653 1.80.964 1 0.964 8 0.965 6 0.966 4 0.967 2 0.967 8 0.968 6 0.969 3 0.970 0.970 6 1.90.971 3 0.971 9 0.972 6 0.973 2 0.973 8 0.974 4 0.975 0.975 6 0.976 2 0.976 7 20.977 2 0.977 8 0.978 3 0.978 8 0.979 3 0.979 8 0.980 3 0.980 8 0.981 2 0.981 7 2.10.982 1 0.982 6 0.983 0.983 4 0.983 8 0.984 2 0.984 6 0.985 0.985 4 0.985 7 2.20.986 1 0.986 4 0.986 8 0.987 1 0.987 4 0.987 8 0.988 1 0.988 4 0.988 7 0.989 2.30.989 3 0.989 6 0.989 8 0.990 1 0.990 4 0.990 6 0.990 9 0.991 1 0.991 3 0.991 6 2.40.991 8 0.992 0.992 2 0.992 5 0.992 7 0.992 9 0.993 1 0.993 2 0.993 4 0.993 6 2.50.993 8 0.994 0.994 1 0.994 3 0.994 5 0.994 6 0.994 8 0.994 9 0.995 1 0.995 2 2.60.995 3 0.995 5 0.995 6 0.995 7 0.995 9 0.996 0.996 1 0.996 2 0.996 3 0.996 4 2.70.996 5 0.996 6 0.996 7 0.996 8 0.996 9 0.997 0.997 1 0.997 2 0.997 3 0.997 4 2.80.997 4 0.997 5 0.997 6 0.997 7 0.997 7 0.997 8 0.997 9 0.997 9 0.998 0.998 1 2.90.998 1 0.998 2 0.998 2 0.998 3 0.998 4 0.998 4 0.998 5 0.998 5 0.998 6 0.998 6 x00.10.20.30.40.50.60.70.80.9 30.998 7 0.999 0.999 3 0.999 5 0.999 7 0.999 8 0.999 8 0.999 9 0.999 9 1.000 正态分布概率表 Φ( u ) =

t分布与t检验

t分布 从数理统计的理论上讲,并且上节的实例也已说明,在总体均数为μ,总体标准差为σ的正态总体中随机抽取n相等的许多样本,分别算出样本均数,这些样本均数呈正态分布。而当样本含量n不太小时,即使总体不呈正态分布,样本均数的分布也接近正态。在下式中, 由于μ与(样本均数的标准差)都是常量,又 X呈正态分布,所以u 也呈正态分布。但实际上总体标准差往往是不知道的,上式分母中的σ要由S替代,成为 ,那么由于样本标 准差有抽样波动,SX也有抽样波动,于是,在用S代替σ 后上式等号右边的变量便不呈正态分布而呈t分布,其定义公式是 (6.5)

t分布也是左右对称,但在总体均数附近的面积较正态分布的少些,两端尾部的面积则比正态分布的多些。t分布曲线随自由度而不同(如图6.1)。随着自由度的增大,t分布逐渐接近正态分布,当自由度为无限大时,t分布成为正态分布。 图6.1t分布(实线)与正态分布(虚线) 与正态分布相似,我们把t分布左右两端尾部面积之和α=0.05(即每侧尾部面积为0.025)相应的t值称为5%界,符号为t0.05,,,这里ν是自由度。把左右两端尾部面积之和α为0.01相应的t值称为1%界,符号为t0.01,,。t的5%界与1%界可查附表3,t值表。例如当自由度为10-1=9时,t0.05,9=2.262,t0.01,9=3.250。 可信区间的估计 一、参数估计的意义 一组调查或实验数据,如果是计量资料可求得平均数,标准差等统计指标,如果是计数资料则求百分率藉以概括说明这群观察数据的特征,故称特征值。由于样本特征值是通过统计求得的,所以又称为统计量以区别于总体特征值。总体特征值一般称为参数(总体量)。我们进行科研所要探索的是总体特征值即总体参数,而我们得到的却是样本统计量,用样本统计量估计或推论总体参数的过程叫参数估计。

t分布的概念及表和查表方法

t分布介绍 在概率论和统计学中,学生t-分布(t-distribution),可简称为t分布,用于根据小样本来估计呈正态分布且方差未知的总体的均值。如果总体方差已知(例如在样本数量足够多时),则应该用正态分布来估计总体均值。 t分布曲线形态与n(确切地说与自由度df)大小有关。与标准正态分布曲线相比,自由度df越小,t分布曲线愈平坦,曲线中间愈低,曲线双侧尾部翘得愈高;自由度df愈大,t分布曲线愈接近正态分布曲线,当自由度df=∞时,t分布曲线为标准正态分布曲线。 目录 1历史 2定义 3扩展 4特征 5置信区间 6计算 历史 在概率论和统计学中,学生t-分布(Student's t-distribution)经常应用在对呈正态分布的总体的均值进行估计。它是对两个样本均值差异进行显著性测试的学生t测定的基础

。t检定改进了Z检定(en:Z-test),不论样本数量大或小皆可应用。在样本数量大(超过120等)时,可以应用Z检定,但Z检定用在小的样本会产生很大的误差,因此样本很小的情况下得改用学生t 检定。在数据有三组以上时,因为误差无法压低,此时可以用变异数分析代替学生t检定。 当母群体的标准差是未知的但却又需要估计时,我们可以运用学生t-分布。 学生t-分布可简称为t分布。其推导由威廉·戈塞于1908年首先发表,当时他还在都柏林的健力士酿酒厂工作。因为不能以他本人的名义发表,所以论文使用了学生(Student)这一笔名。之后t检验以及相关理论经由罗纳德·费雪的工作发扬光大,而正是他将此分布称为学生分布。 定义 由于在实际工作中,往往σ是未知的,常用s作为σ的估计值,为了与u变换区别,称为t变换,统计量t 值的分布称为t分布。 假设X服从标准正态分布N(0,1),Y服从分布,那么的分布称为自由度为n 的t分布,记为。 分布密度函数, 其中,Gam(x)为伽马函数。

标准正态分布

标准正态分布 标准正态分布(英语:standard normal distribution,德语Standardnormalverteilung),是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。期望值μ=0,即曲线图象对称轴为Y轴,标准差σ=1条件下的正态分布,记为N(0,1)。 定义: 标准正态分布又称为u分布,是以0为均数、以1为标准差的正态分布,记为N(0,1)。标准正态分布曲线下面积分布规律是:在-1.96~+1.96范围内曲线下的面积等于0.9500,在-2.58~+2.58范围内曲线下面积为0.9900。统计学家还制定了一张统计用表(自由度为∞时),借助该表就可以估计出某些特殊u1和u2值范围内的曲线下面积。 正态分布的概率密度函数曲线呈钟形,因此人们又经常称之为钟形曲线。我们通常所说的标准正态分布是位置参数均数为0, 尺度参数:标准差为1的正态分布 特点: 密度函数关于平均值对称 平均值与它的众数(statistical mode)以及中位数(median)同一数值。 函数曲线下68.268949%的面积在平均数左右的一个标准差范围内。 95.449974%的面积在平均数左右两个标准差的范围内。 99.730020%的面积在平均数左右三个标准差的范围内。 99.993666%的面积在平均数左右四个标准差的范围内。 函数曲线的反曲点(inflection point)为离平均数一个标准差距离的位置。 标准偏差:

深蓝色区域是距平均值小于一个标准差之内的数值范围。在正态分布中,此范围所占比率为全部数值之68%,根据正态分布,两个标准差之内的比率合起来为95%;三个标准差之内的比率合起来为99%。 在实际应用上,常考虑一组数据具有近似于正态分布的概率分布。若其假设正确,则约68.3%数值分布在距离平均值有1个标准差之内的范围,约95.4%数值分布在距离平均值有2个标准差之内的范围,以及约99.7%数值分布在距离平均值有3个标准差之内的范围。称为“68-95-99.7法则”或“经验法则”

正态分布讲解(含标准表)

2.4正态分布 复习引入: 总体密度曲线:样本容量越大,所分组数越多,各组的频率就越接近于总体在相应各组取值的概率.设想样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,这条曲线叫做总体密度曲线. 总体密度曲线 b 单位 O 频率/组距 a 它反映了总体在各个范围内取值的概率.根据这条曲线,可求出总体在区间(a,b)内取值的概率等于总体密度曲线,直线x=a,x=b及x轴所围图形的面积. 观察总体密度曲线的形状,它具有“两头低,中间高,左右对称”的特征,具有这种特征的总体密度曲线一般可用下面函数的图象来表示或近似表示: 2 2 () 2 , 1 (),(,) 2 x x e x μ σ μσ ? πσ - - =∈-∞+∞ 式中的实数μ、)0 (> σ σ是参数,分别表示总体的平均数与标准差,, ()x μσ ? 的图象为正态分布密度曲线,简称正态曲线. 讲解新课:

一般地,如果对于任何实数a b <,随机变量X 满足 ,()()b a P a X B x dx μσ?<≤=?, 则称 X 的分布为正态分布(normal distribution ) .正态分布完全由参数μ和σ确定,因此正态分布常记作),(2 σ μN .如果随机变量 X 服从正态分布,则记为X ~),(2σμN . 经验表明,一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布.例如,高尔顿板试验中,小球在下落过程中要与众多小木块发生碰撞,每次碰撞的结果使得小球随机地向左或向右下落,因此小球第1次与高尔顿板底部接触时的坐标 X 是众多随机碰撞的结果,所以它近似服从正态分布.在现实生活中,很多随机变量都服从或近似地服从正态分布.例如长度测量误差;某一地区同年龄人群的身高、体重、肺活量等;一定条件下生长的小麦的株高、穗长、单位面积产量等;正常生产条件下各种产品的质量指标(如零件的尺寸、纤维的纤度、电容器的电容量、电子管的使用寿命等);某地每年七月份的平均气温、平均湿度、降雨量等;一般都服从正态分布.因此,正态分布广泛存在于自然现象、生产和生活实际之中.正态分布在概率和统计中占有重要的地位. 说明:1参数μ是反映随机变量取值的平均水平的特征数,可以用样本均值去佑计;σ是衡量随机变量总体波动大小的特征数,可以用样本标准差去估计. 2.早在 1733 年,法国数学家棣莫弗就用n !的近似公式得到了正态分布.之后,德国数学家高斯在研究测量误差时从另一个角度导出了它,并研究了它的性质,因此,人们也称正态分布为高斯分布. 2.正态分布),(2 σ μN )是由均值μ和标准差σ唯一决定的分布 通过固定其中一个值,讨论均值与标准差对于正态曲线的影响

正态分布、T分布、F分布表

附表1. 标准正态分布表 x0.000.010.020.030.040.050.060.070.080.09 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.90.500 0 0.539 8 0.579 3 0.617 9 0.655 4 0.691 5 0.725 7 0.758 0 0.788 1 0.815 9 0.841 3 0.864 3 0.884 9 0.903 2 0.919 2 0.933 2 0.945 2 0.955 4 0.964 1 0.971 3 0.977 2 0.982 1 0.986 1 0.989 3 0.991 8 0.993 8 0.995 3 0.996 5 0.997 4 0.998 1 0.504 0 0.543 8 0.583 2 0.621 7 0.659 1 0.695 0 0.729 1 0.761 1 0.791 0 0.818 6 0.843 8 0.866 5 0.886 9 0.904 9 0.920 7 0.934 5 0.946 3 0.956 4 0.964 8 0.971 9 0.977 8 0.982 6 0.986 4 0.989 6 0.992 0 0.994 0 0.995 5 0.996 6 0.997 5 0.998 2 0.508 0 0.547 8 0.587 1 0.625 5 0.662 8 0.698 5 0.732 4 0.764 2 0.793 9 0.821 2 0.846 1 0.868 6 0.888 8 0.906 6 0.922 2 0.935 7 0.947 4 0.957 3 0.965 6 0.972 6 0.978 3 0.983 0 0.986 8 0.989 8 0.992 2 0.994 1 0.995 6 0.996 7 0.997 6 0.998 2 0.512 0 0.551 7 0.591 0 0.629 3 0.666 4 0.701 9 0.735 7 0.767 3 0.796 7 0.823 8 0.848 5 0.870 8 0.890 7 0.908 2 0.923 6 0.937 0 0.948 4 0.958 2 0.966 4 0.973 2 0.978 8 0.983 4 0.987 1 0.990 1 0.992 5 0.994 3 0.995 7 0.996 8 0.997 7 0.998 3 0.516 0 0.555 7 0.594 8 0.633 1 0.670 0 0.705 4 0.738 9 0.770 3 0.799 5 0.826 4 0.850 8 0.872 9 0.892 5 0.909 9 0.925 1 0.938 2 0.949 5 0.959 1 0.967 2 0.973 8 0.979 3 0.983 8 0.987 4 0.990 4 0.992 7 0.994 5 0.995 9 0.996 9 0.997 7 0.998 4 0.519 9 0.559 6 0.598 7 0.636 8 0.673 6 0.708 8 0.742 2 0.773 4 0.802 3 0.828 9 0.853 1 0.874 9 0.894 4 0.911 5 0.926 5 0.939 4 0.950 5 0.959 9 0.967 8 0.974 4 0.979 8 0.984 2 0.987 8 0.990 6 0.992 9 0.994 6 0.996 0 0.997 0 0.997 8 0.998 4 0.523 9 0.563 6 0.602 6 0.640 4 0.677 2 0.712 3 0.745 4 0.776 4 0.805 1 0.835 5 0.855 4 0.877 0 0.896 2 0.913 1 0.927 9 0.940 6 0.951 5 0.960 8 0.968 6 0.975 0 0.980 3 0.984 6 0.988 1 0.990 9 0.993 1 0.994 8 0.996 1 0.997 1 0.997 9 0.998 5 0.527 9 0.567 5 0.606 4 0.644 3 0.680 8 0.715 7 0.748 6 0.779 4 0.807 8 0.834 0 0.857 7 0.879 0 0.898 0 0.914 7 0.929 2 0.941 8 0.952 5 0.961 6 0.969 3 0.975 6 0.980 8 0.985 0 0.988 4 0.991 1 0.993 2 0.994 9 0.996 2 0.997 2 0.997 9 0.998 5 0.531 9 0.571 4 0.610 3 0.648 0 0.684 4 0.719 0 0.751 7 0.782 3 0.810 6 0.836 5 0.859 9 0.881 0 0.899 7 0.916 2 0.930 6 0.943 0 0.953 5 0.962 5 0.970 0 0.976 2 0.981 2 0.985 4 0.988 7 0.991 3 0.993 4 0.995 1 0.996 3 0.997 3 0.998 0 0.998 6 0.535 9 0.575 3 0.614 1 0.651 7 0.687 9 0.722 4 0.754 9 0.785 2 0.813 3 0.838 9 0.862 1 0.883 0 0.901 5 0.917 7 0.931 9 0.944 1 0.953 5 0.963 3 0.970 6 0.976 7 0.981 7 0.985 7 0.989 0 0.991 6 0.993 6 0.995 2 0.996 4 0.997 4 0.998 1 0.998 6 x0.00.10.20.30.40.50.60.70.80.9 30.998 70.999 00.999 30.999 50.999 70.999 80.999 80.999 90.999 9 1.000 0

卡方分布概念及表和查表方法

若n个相互独立的随机变量ξ?,ξ?,...,ξn,均服从标准正态分布(也称独立同分布于标准正态分布),则这n个服从标准正态分布的随机变量的平方和构成一新的随机变量,其分布规律称为卡方分布(chi-square distribution)。 目录 1简介 2定义 3性质 4概率表 简介 分布在数理统计中具有重要意义。分布是由阿贝(Abbe)于1863年首先提出的,后来由海尔墨特(Hermert)和现代统计学的奠基人之一的卡·皮尔逊(C K·Pearson)分别于1875年和1900年推导出来,是统计学中的一个非常有用的著名分布。 定义 若n个相互独立的随机变量ξ?、ξ?、……、ξn ,均服从标准正态分布(也称独立同分布于标准正态分布),则这n个服从标准正态分布的随机变量的平方和构成一新的随机变量,其分布规律称为分布(chi-square distribution), 卡方分布是由正态分布构造而成的一个新的分布,当自由度很大时,分布近似为正态分布。

对于任意正整数x,自由度为的卡方分布是一个随机变量X的机率分布。 性质 1) 分布在第一象限内,卡方值都是正值,呈正偏态(右偏态),随着参数 的增大,分布趋近于正态分布;卡方分布密度曲线下的面积都是1。 2) 分布的均值与方差可以看出,随着自由度的增大,分布向正无穷方向延伸(因为均值越来越大),分布曲线也越来越低阔(因为方差越来越大)。 3)不同的自由度决定不同的卡方分布,自由度越小,分布越偏斜。 4) 若互相独立,则:服从分布,自由度为 。 5) 分布的均数为自由度,记为 E( ) = 。 6) 分布的方差为2倍的自由度( ),记为 D( ) = 。 概率表 分布不象正态分布那样将所有正态分布的查表都转化为标准正态分布去查,在 分布中得对每个分布编制相应的概率值,这通过分布表中列出不同的自由度来表示, 查分布概率表时,按自由度及相应的概率去找到对应的值。如上图所示的单侧概率(7)=的查表方法就是,在第一列找到自由度7这一行,在第一行中找到概率这一列,行列的交叉处即是。 表中所给值直接只能查单侧概率值,可以变化一下来查双侧概率值。例如,要在自由度为7的卡方分布中,得到双侧概率为所对应的上下端点可以这样来考虑:双侧概率指的是在

f分布t分布与卡方分布

f分布t分布与卡方分布Last revision on 21 December 2020

§ 常用的分布及其分位数 1. 卡平方分布 卡平方分布、t 分布及F 分布都是由正态分布所导出的分布,它们与正态分布一起,是试验统计中常用的分布。 当X 1、X 2、…、Xn 相互独立且都服从N(0,1)时,Z=∑i i X 2 的分布称为自由度等于n 的2χ分布,记作Z ~2χ(n),它的 分布密度 p(z )=??? ????>? ?? ??Γ--,,00 ,2212122其他z e x n z n n 式中的?? ? ??Γ2n =u d e u u n ?∞ +--01 2 ,称为Gamma 函数,且()1Γ=1, ? ? ? ??Γ21=π。2χ分布是非对称分布,具有可加性,即当Y 与Z 相互独立,且Y ~2χ(n ),Z ~2χ(m ),则Y+Z ~2χ(n+m )。 证明: 先令X 1、X 2、…、X n 、X n+1、X n+2、…、X n+m 相互独立且都服从N(0,1),再根据2χ分布的定义以及上述随机变量的相互独立性,令 Y=X 21+X 22+…+X 2n ,Z=X 21+n +X 22+n +…+X 2m n +, Y+Z= X 21+X 22+…+X 2n + X 21+n +X 22+n +…+X 2m n +, 即可得到Y+Z ~2χ(n +m )。 2. t 分布 若X 与Y 相互独立,且 X ~N(0,1),Y ~2χ(n ),则Z =n Y X 的分布称为自由度等 于n 的t 分布,记作Z ~ t (n ),它的分布密度 P(z)= )()(221 n n n ΓΓ+2121+- ???? ? ?+n n z 。 请注意:t 分布的分布密度也是偶函数,且当n>30时,t 分布与标准正态分布N(0,1)的密度曲线几乎重叠为一。这

正态分布概率表

参考医学 正态分布概率表 1 — f? 0( u )= t P⑴t F(t)t F(0t卩⑴0.00 0.000 00.230. 181 9 0.46 0.354 5 W9 0. 50 9 8 0.01 0.008 00.24 0. 1H9 70.47 0.361 6 0.70 0,516 1 0+02 0,0160 0. 25 0,197 4 0,48 0.368 80+71 0.522 3 0.03 0*023 9(1. 26 0.205 1 0.49 0.375 9 0.72 0. 52 8 5 044 0.031 9(1.27 0,212 8 0.50O.3R2 9 0.73 "4 6 0R5 0039 90.28 0.220 5 0,51 0.389 9 0.74 0.540 7 0.06 0.047 80.29 0.228 20.52 036 9 0.75 0*546 7 0+07 0 €55 g0,30 0,235 8 0,53 0.403 9 276 0.552 7 0+08 0.063 80 31 0.243 4 0.54 0.410 8 0+77 0.558 7 0+09 (1.(171 7(J. 32 0.251 00.55 0.417 70.78 0.564 6 0. 10 0.0797 fl. 33 0.258 6 0.56 0,424 50.79 0.570 5 0.110,(J87 60.34 0.266 1 0.57 0.431 3 0.B0 0.576 3 0.12 0.09$ 50. 35 0.273 7 0.5S 0.43S 10.S1 O.5S2 1 0+13 OJ03 40. 36 0.281 20.59 0.444 8 0+82 0.587 8 0+14 (1.111 3 0. 37 0.288 6 0.60 0.451 5 M3 0.593 5 0.15 0J19 2 0. 38 0.296 1 0.61 0.458 10.84 0.599 1 0+160.127 10.39 0. 303 50.62 0.464 7 0.85 0.604 7 0.17 0.135 0 040 0330 8 0.63 0.471 3 0.S6 0.610 2 0+18 0.142 S0.41 0.318 20,64 0.477 8 0.87 0.6157 0+19 0.150 7 0 42 0, 325 50.650.484 3 0.88 0.621 1 0,20 0J58 5(J. 43 0. 332 8 0.66 0.490 10.89 0 . 62 6 5 0,21 0J66 3(J.44 0,340 1 0.67 0.497 10.90 0.631 9 0 + 220.174 10.45 0347 3 0.68 0.503 50.91 0.637 2

标准正态分布表

标准正态分布表 x 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0 0.500 0 0.504 0 0.508 0 0.512 0 0.516 0 0.519 9 0.523 9 0.527 9 0.531 9 0.535 9 0.1 0.539 8 0.543 8 0.547 8 0.551 7 0.555 7 0.559 6 0.563 6 0.567 5 0.571 4 0.575 3 0.2 0.579 3 0.583 2 0.587 1 0.591 0 0.594 8 0.598 7 0.602 6 0.606 4 0.610 3 0.614 1 0.3 0.617 9 0.621 7 0.625 5 0.629 3 0.633 1 0.636 8 0.640 4 0.644 3 0.648 0 0.651 7 0.4 0.655 4 0.659 1 0.662 8 0.666 4 0.670 0 0.673 6 0.677 2 0.680 8 0.684 4 0.687 9 0.5 0.691 5 0.695 0 0.698 5 0.701 9 0.705 4 0.708 8 0.712 3 0.715 7 0.719 0 0.722 4 0.6 0.725 7 0.729 1 0.732 4 0.735 7 0.738 9 0.742 2 0.745 4 0.748 6 0.751 7 0.754 9 0.7 0.758 0 0.761 1 0.764 2 0.767 3 0.770 3 0.773 4 0.776 4 0.779 4 0.782 3 0.785 2 0.8 0.788 1 0.791 0 0.793 9 0.796 7 0.799 5 0.802 3 0.805 1 0.807 8 0.810 6 0.813 3 0.9 0.815 9 0.818 6 0.821 2 0.823 8 0.826 4 0.828 9 0.835 5 0.834 0 0.836 5 0.838 9 1 0.841 3 0.843 8 0.846 1 0.848 5 0.850 8 0.853 1 0.855 4 0.857 7 0.859 9 0.86 2 1 1.1 0.864 3 0.866 5 0.868 6 0.870 8 0.872 9 0.87 4 9 0.877 0 0.879 0 0.881 0 0.883 0 1.2 0.884 9 0.886 9 0.888 8 0.890 7 0.892 5 0.894 4 0.89 6 2 0.898 0 0.899 7 0.901 5 1.3 0.903 2 0.904 9 0.906 6 0.90 8 2 0.90 9 9 0.911 5 0.913 1 0.914 7 0.916 2 0.917 7 1.4 0.919 2 0.920 7 0.922 2 0.923 6 0.925 1 0.926 5 0.927 9 0.929 2 0.930 6 0.931 9 1.5 0.933 2 0.934 5 0.935 7 0.937 0 0.938 2 0.939 4 0.940 6 0.941 8 0.943 0 0.944 1 1.6 0.945 2 0.946 3 0.947 4 0.948 4 0.949 5 0.950 5 0.951 5 0.952 5 0.953 5 0.953 5 1.7 0.955 4 0.956 4 0.957 3 0.958 2 0.959 1 0.959 9 0.960 8 0.961 6 0.962 5 0.963 3 1.8 0.964 1 0.964 8 0.965 6 0.966 4 0.967 2 0.967 8 0.968 6 0.969 3 0.970 0 0.970 6 1.9 0.971 3 0.971 9 0.972 6 0.973 2 0.973 8 0.974 4 0.975 0 0.975 6 0.976 2 0.976 7 2 0.977 2 0.977 8 0.978 3 0.978 8 0.979 3 0.979 8 0.980 3 0.980 8 0.981 2 0.981 7 2.1 0.982 1 0.982 6 0.983 0 0.983 4 0.983 8 0.984 2 0.984 6 0.98 5 0 0.985 4 0.985 7 2.2 0.98 6 1 0.986 4 0.986 8 0.98 7 1 0.987 4 0.987 8 0.988 1 0.988 4 0.988 7 0.98 9 0 2.3 0.989 3 0.989 6 0.989 8 0.990 1 0.990 4 0.990 6 0.990 9 0.991 1 0.991 3 0.991 6 2.4 0.991 8 0.992 0 0.992 2 0.992 5 0.992 7 0.992 9 0.993 1 0.993 2 0.993 4 0.993 6 2.5 0.993 8 0.994 0 0.994 1 0.994 3 0.994 5 0.994 6 0.994 8 0.994 9 0.995 1 0.995 2 2.6 0.995 3 0.995 5 0.995 6 0.995 7 0.995 9 0.996 0 0.996 1 0.996 2 0.996 3 0.996 4 2.7 0.996 5 0.996 6 0.996 7 0.996 8 0.996 9 0.997 0 0.997 1 0.997 2 0.997 3 0.997 4 2.8 0.997 4 0.997 5 0.997 6 0.997 7 0.997 7 0.997 8 0.997 9 0.997 9 0.998 0 0.998 1 2.9 0.998 1 0.998 2 0.998 2 0.998 3 0.998 4 0.998 4 0.998 5 0.998 5 0.998 6 0.998 6 x 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 3 0.998 7 0.999 0 0.999 3 0.999 5 0.999 7 0.999 8 0.999 8 0.999 9 0.999 9 1.000 0

t分布和标准正态分布

数理统计实验 t 分布与标准正态分布 院(系): 班 级 : 成 员: 成 员 : 成 员 : 指导老师: 日 期:

目录 t分布与标准正态分布的关系 (1) 一、实验目的 (1) 二、实验原理 (1) 三、实验内容及步骤 (1) 四、实验器材 (5) 五、实验结果分析 (5) 六、实验结论 (6)

t分布与标准正态分布的关系 一、实验目的 正态分布是统计中一种很重要的理论分布,是许多统计方法的理 论基础。正态分布有两个参数,□和。,决定了正态分布的本质。为了应用和计算方便,常将一般的正态变量X通过□变换[(X-卩)/ (T ] 转化成标准正态变量卩,以使原来各种形态的正态分布都转换为口=0,0 =1的标准正态分布,亦称卩分布。对于标准正态分布来说,□是数据整体的平均值,。是整体的标准差。但实际操作过程中,人们往往难以获得口和°。因此人们只能通过样本对这两个参数做出估计,用样本平均值和样本标准差代替整体的平均值和标准差,从而得出了t分布。另外从图像的层面说,正态分布的位置和形态只与□和°有关,而t分布不只与样本平均值和样本标准差有关,还与自由度相关。通过实验了解t分布与标准正态分布之间的关系。 二、实验原理 运用EXCELS件验证t分布与标准正态分布的关系,绘制相应的统计图表进行分析。 三、实验内容及步骤 1. 打开Excel文件,将“ t分布与标准正态分布N (0, 1)”合并并居中,黑体,20字号,红色;

2. 选 中文件,选项,自定义功能区,加载开发工具.在开发工具中 插入滚动条,调节滚动条大小; 3. 设置A2单元格格式,数字自定义区” !n=#,##0;[红 色]¥#,##0 ” .然后左对齐,设置为红色; 4. 设置滚动条格式,单元格连接为$A$2; art j f S!SiT :.?? Ml !■,?*■ | Itc - ,|S 丄-.」 -」 t 介布Jj 标准正态分谢N(OJ r 烟甘请宜@1區 UM -£11 □ ” > QHE 行 A 时量时” Y ?/ I "” * ?* ■曲:j UdJ * f 帝科 ¥ lQ9 」d^W71 i | 辽昌 | ---- -~—H?- ■MMM1

t分布的概念及表和查表方法

t分布的概念及表和查 表方法 本页仅作为文档封面,使用时可以删除 This document is for reference only-rar21year.March

t分布介绍 在概率论和统计学中,学生t-分布(t-distribution),可简称为t分布,用于根据小样本来估计呈正态分布且方差未知的总体的均值。如果总体方差已知(例如在样本数量足够多时),则应该用正态分布来估计总体均值。 t分布曲线形态与n(确切地说与自由度df)大小有关。与标准正态分布曲线相比,自由度df越小,t分布曲线愈平坦,曲线中间愈低,曲线双侧尾部翘得愈高;自由度df愈大,t分布曲线愈接近正态分布曲线,当自由度df=∞时,t分布曲线为标准正态分布曲线。 目录 1历史 2定义 3扩展 4特征 5置信区间 6计算 历史 在概率论和统计学中,学生t-分布(Student's t-distribution)经常应用在对呈正态分布的总体的均值进行估计。它是对两个样本均值差异进行显著性测试的学生t测定的基础。t检定改进了Z检定(en:Z-test),不论样本数量大或小皆可应用。在样本数量大(超过120等)时,可以应用Z检定,但Z检定用在小的样本会产生很大的误差,因此样本很小的情况下得改用学生t检定。在数据有三组以上时,因为误差无法压低,此时可以用变异数分析代替学生t检定。 当母群体的标准差是未知的但却又需要估计时,我们可以运用学生t-分布。 学生t-分布可简称为t分布。其推导由威廉·戈塞于1908年首先发表,当时他还在都柏林的健力士酿酒厂工作。因为不能以他本人的名义发表,所以论文使用了学生(Student)这一笔名。之后t检验以及相关理论经由罗纳德·费雪的工作发扬光大,而正是他将此分布称为学生分布。

相关文档
相关文档 最新文档