文档视界 最新最全的文档下载
当前位置:文档视界 › 年产5万吨硫酸生产工艺

年产5万吨硫酸生产工艺

年产5万吨硫酸生产工艺
年产5万吨硫酸生产工艺

年产5万吨硫酸生产工艺

)

目录

第一章 (1)

概述 (1)

硫酸的性质 (1)

第二章 (1)

硫酸的生产方法 (1)

接触法制造硫酸 (2)

接触法生产硫酸由下列四个工序组成 (2)

接触法的优缺点 (3)

硝化法制造硫酸 (3)

硝化法制造硫酸可归纳为三个重要过程 (4)

硝化法的优缺点 (4)

第三章硫酸生产全工段工艺简介 (4)

SO2气体的制取 (4)

炉气的净化 (5)

SO2气体的转化 (5)

一次转化一次吸收 (5)

二次转化二次吸收 (6)

沸腾转化 (6)

SO3气体的吸收 (7)

尾气的处理 (7)

氨法 (7)

碱法 (7)

金属氧化物法 (8)

活性炭法 (8)

控制SO2排放的其他方法 (8)

第四章 (9)

两次吸收法生产硫酸的流程图 (9)

流程说明 (9)

干燥系统流程说明 (9)

一吸系统流程说明 (9)

二吸系统流程说明 (10)

第一章

概述

硫酸是一种普通的化工产品,也是一种古老的化学品,据了解,早在17世纪就有化学家利用“铅室法”将燃烧硫磺所得的二氧化硫和进行反应而生产出约70%左右的稀硫酸,到18世纪又有化学家利用铂催化剂(今用钒催化剂)与较高浓度的二氧化硫空气中的氧气反应而生产出浓度达98%的硫酸。由于硫酸在工业上有广泛的用途,因此它被号称为“工业之母”,硫酸的产量也常用来作为评定一个国家工业经济发展水平的重要指标。

硫酸的性质

硫酸是(SO 3)和水(H 2O )化合而成。化学上一般把一个分子的三氧化硫与一个分子的水相结合的物质称为无水硫酸。无水硫酸就是指的100%的硫酸(又称纯硫酸)。纯硫酸的化学式用“H 2SO 4”来表示,分子量为。

硫酸是基础化学工业中重要的产品之一。硫酸的性质决定了它用途的广泛性,硫酸主要用于生产化学肥料、合成纤维、涂料、洗涤剂、致冷剂、饲料添加剂和石油的精炼、有色金属的冶炼,以及钢铁、医药和化学工业。

第二章

硫酸的生产方法

生产硫酸最古老的方法是用绿矾(FeSO 4·7H 2O )为原料,放在蒸馏釜中锻烧而制得硫酸。在煅烧过程中,绿矾发生分解,放出二氧化硫和三氧化硫,其中三

氧化硫与水蒸气同时冷凝,便可得到硫酸。

2(FeSO 4·7H 2O )

煅烧???→Fe 2O 3+SO 2+SO 3+14H 2O

在18世纪40年代以前,这种方法为不少地方所采用。古代称硫酸为“绿矾油”,就是由于采用了这种制造方法的缘故。二氧化硫氧化成三氧化硫是制硫酸的关键,但是,这一反应在通常情况下很难进行。后来人们发现,借助于催化剂的作用,可以使二氧化硫氧化成三氧化硫,然后用水吸收,即制成硫酸。根据使用催化剂的不同,硫酸的工业制法可分为接触法和硝化法。

接触法制造硫酸

现代硫酸生产常用的两次转化工艺,是使经过两层或三层催化剂的气体,先进入中间吸收塔,吸收掉生成的三氧化硫,余气再次加热后,通过后面的催化剂层进行第二次转化,然后进入最终吸收塔再次吸收。由于中间吸收移除了反应生成物,提高了第二次转化的转化率,故其总转化率可达%以上。部分老厂仍采用传统的一次转化工艺,即气体一次通过全部催化剂层,其总转化率最高仅为98%左右。在以硫化氢为原料时,进转化器的气体中含有大量水蒸气,二氧化硫在水蒸气存在下进行转化,故又称之为湿接触法。将二氧化硫与氧化合成为三氧化硫的反应式是:2SO2+O2 = 2SO3+Q,这个反应在常温下没有触媒存在时,实际上不能进行。为了使这一反应加快,必须提高温度并且采用触媒催化(也叫触媒氧化)。这便是接触法制造硫酸名称的由来。目前可作为制造硫酸原料的含硫资源除硫磺外,主要有:硫铁矿、硫精砂(尾砂)、有色金属冶炼气、焦炉气、天然气、石油气中的硫化氢也可作为制取二氧化硫气体的原料。

接触法生产硫酸由下列四个工序组成

①制备二氧化硫气体;

②精制二氧化硫以除去其中的杂质;

③二氧化硫氧化成三氧化硫;

④三氧化硫被吸收而变成硫酸。

接触法的优缺点

接触法制造硫酸主要有以下优点:

①产品纯度高,且产品种类多;

②设备腐蚀较轻,容易维护而且维护费用也较小,设备寿命比较长,管理

也比较容易;

③生产比较平稳,指标波动范围小。

接触法的缺点主要有:

投资较大、建造速度慢、采酸率较低等。

硝化法制造硫酸

硝化法(包括铅室法和塔式法)是借助于氮的氧化物使二氧化硫氧化制成硫酸。其中铅室法在1746年开始采用,反应是在气相中进行的。由于这个方法所需设备庞大,用铅很多,检修麻烦,腐蚀设备,反应缓慢,成品且为稀硫酸,所以,这个方法后来逐渐地被淘汰。

在铅室法的基础上发展起来的塔式法,开始于本世纪初期。1907年在奥地利建成了世界上第一个塔式法制硫酸的工厂,其制造过程同样是使氮的氧化物起氧的传递作用,从而氧化二氧化硫,再用水吸收三氧化硫而制成硫酸,不同的是该过程在液相中进行,生产成本及产品质量都大大优于铅室法。塔式法制出的硫酸浓度可达76%左右,目前,我国仍有少数工厂用塔式法生产硫酸。目前我国硫酸生产接触法占绝大部分,塔式法已很少,但是硝化法还具有它一定的优点。虽然它产酸的浓度为76%左右,该浓度的酸适合制造过磷酸钙,另外此种生产方法设备简单,建厂快,硫的利用率比较高,可以用杂质比较高的原料,其缺点是必须消耗硝酸。

硝化法制造硫酸可归纳为三个重要过程

①二氧化硫与氮氧化物的作用。反应结果,二氧化硫被

氧化成硫酸,高级的氮氧化物转变为低级氮氧化物(NO

②一氧化氮的氧化。目的在于使其变为高级的氮氧化物,

并再次参与二氧化硫的氧化反应。

③氮氧化物的回收。以硫酸吸收高级氮氧化物使之与尾气分

离回收。

硝化法的优缺点

硝化法制造硫酸主要有如下优点:

①投资小,建设速度快;

②采酸率高,可达92%以上,电的消耗比较少。

硝化法的缺点:

①一般只能生产稀硫酸;

②设备腐蚀较重,维护也比较困难,维护费用也较高;

③生产操作比较不稳定,指标波动大。

第三章硫酸生产全工段工艺简介

SO2气体的制取

制取SO2气体是制取硫酸的第一步,也是制取硫酸的重要一步。现今制取SO2气体的方法主要有,燃烧硫铁矿,燃烧硫磺,还原硫酸盐,冶炼烟气以及各种含硫工业废料再次利用等方法。但现今采用最多的还是硫铁矿与硫磺的燃烧这两种方式。

炉气的净化

进入净化系统的炉气含有~30g/cm3的矿尘。矿尘积累起来不仅堵塞管道设备,而且其中的氧化铁能与酸雾形成硫酸铁,覆盖在二氧化硫催化剂的表面,既降低催化剂的活性,又增加了床层的阻力。此外,硫铁矿中所含的砷,硒,氟等杂质,分别以不同的形式进入到炉气中,其中的一部分或大部分随炉气带入净化系统。砷能使催化剂中毒,氟能腐蚀设备。进入转化器后,还能侵蚀催化剂载体,引起粉化,使催化床阻力上涨。随同炉气带入净化系统的还有水蒸气和少量三氧化硫气体,二者结合可形成酸雾。酸雾在洗涤塔中较难吸收,带入转化系统会降低二氧化硫的转化率,腐蚀系统设备和管道。因此,炉气必须进行一部的进化和干燥,方可进行二氧化硫的催化氧化。炉气的净化可用干法或湿法进行。目前普遍采用的是湿法净化。

炉气净化技术随着净化设备的进步而提高。初始,由简单的重力沉降室和惯性除尘室、旋风除尘器等所组成,净化效率低下。自1960年美国科学家.科特雷尔发明了高压静电除尘、除雾设备后,加快了炉气净化技术的发展步伐。高效旋风除尘器、文式管、泡沫塔、新型填料塔、星形铅间冷器、板式冷却器、冲击波洗涤器、高密度聚乙烯泵、耐稀酸合金泵等高效耐磨蚀设备的出现,使净化设备的选型范围扩大了,寿命延长了,促进了炉气净化工艺方法更加合理、完善。

SO2气体的转化

一次转化一次吸收

为了使转化器中的SO2催化氧化过程尽可能地遵循最佳温度曲线进行,随着转化率的提高,必需从反应系统中除去多余的热量,是温度相应地降低。按照换热方式不同,转化器可以分为多段换热式和连续换热式两类。由于SO2最终转化率很高,反应前期与后期单位时间内单位体积催化床的反应热相差倍数很大,用一般的连续换热式转化器时,过程难以遵循最佳温度曲线;而且温度调节也很困难,对于气体组成和空速的变化适应性也很差;再加上结构复杂,催化剂装填系数较小,设备的生产能力也低。所以现在普遍采用多段换热式转化器。一次转化一次吸收工艺可能达到的最佳最终转化率是~98%如果要得到更高的转化率,将使所需的催化剂用量大幅度增加,这是不经济的,而且还受到平衡转化率的限制。如果将尾气直接排入大气,将造成严重的大气污染。

二次转化二次吸收

两次转化两次吸收工艺与一次转化一次吸收工艺相比,能用较少的催化剂而获得很高的最终转化率,关键在于将整个转化过程分为两次进行。第一次使大部分SO2得到转化,一般控制转化率在90%左右,然后进入第一吸收塔(或称中间吸收塔)将SO2吸收,再进行第二次转化。此时由于反应混合物中不含SO3,而且SO2浓度很低,O2/SO2比值较一次转化要高得多,在这种情况下,平衡转化率高,反应速度快,用较少的催化剂就能保证转化率达到95%左右。两次转化的最终转化率因工艺条件而异,一般在~%范围内。根据设计要求及工艺条件,本次设计拟采用两转两吸工艺。

沸腾转化

传统上,二氧化硫的催化氧化过程都是采用固定床转化器。这种转化器的生产强度受到多种因素的限制:

①催化剂颗粒不能太小,否则反应气体通过催化床的流体阻力太大;

② 钒催化剂的导热系数小,不能采用换热管将固定床中的热量除去; ③ 不能采用高浓度的二氧化硫气体。

为了克服这些缺点,可采用沸腾转化。沸腾转化能从催化床中非常有效地除去热量,能够使用小颗粒催化剂和采用高浓度二氧化硫气体。而且,采用沸腾床转化器可以降低工厂投资,提高蒸汽回收量。硫酸厂使用这种转化器的主要障碍是催化剂的磨损问题。

SO 3气体的吸收

气体中的二氧化硫经催化氧化形成三氧化硫后,即送入到吸收系统用发烟硫酸或浓硫酸吸收,形成不同规格的产品硫酸。吸收过程可用下式表示:

32243()nSO +H O =H SO +n-1SO ((液液)液)()

改变上式中的n 值,便形成相应浓度的产品硫酸。当n>1时,形成发烟硫酸;n=1时,形成无水硫酸;n<1时,则为含水硫酸,即硫酸和水的溶液。要求生产发烟硫酸时,可采用两端吸收流程。转化气一次通过发烟硫酸吸收塔和浓硫酸吸收塔,分别为发烟硫酸和%硫酸吸收SO 3气体后,气相中的SO 3含量可降至~%,然后由浓硫酸吸收塔出口引至尾气处理部分,或直接经过捕沫后放空。 尾气的处理

硫酸厂尾气中的有害物,主要是SO 2(约%~%),少量的SO 3和酸雾。因此,减少尾气中的有害物的排放,主要应该是提高SO 2的转化率及SO 3的吸收率。提高SO 2的最终转化率,使之达到%,就符合目前的排放标准。采用两转两吸流程时,在正常的条件下,是可以达到的。故在新建的硫酸厂中,这种流程以得到广泛的采用。但是,在早期建成的硫酸装置中,绝大多数为一转一吸流程,对尾气及含低浓度SO 2气体的处理方法甚多,且各具特色。

氨法

用氨水或铵盐溶液吸收形成亚硫酸铵—亚硫酸氢铵吸收液。连续引出部分吸

收液进行处理,随着处理方法的不同,所获得的产品异不同。其中应用最广的是氨—碱法。

碱法

用各种碱液吸收尾气中的SO2,可以免除氨法中氨的损失和雾沫。常用的碱吸收液有碳酸钠溶液,氢氧化镁溶液及石灰乳等。其共同的优点是:脱除率高,工艺简单。其中,石灰乳吸收法的突出优点是石灰来源方便,价格低廉,投资和操作费用较低。

金属氧化物法

金属氧化物所形成的碱性溶液,亦可作为SO2的吸收剂。主要有碱性硫酸铝—石膏法;氧化锌溶液吸收法;氧化锰法等。

活性炭法

活性炭通常具有较大的内表面积,是一种良好的吸收剂。当尾气中的SO2在一定条件下通过活性炭层时,被活性炭表面吸附。在100℃以下主要为物理吸附,提高温度后,从物理吸附转向化学吸附。在活性炭表面,吸附态的SO2和吸附态的氧作用,形成吸附态SO3,有水存在时,便形成硫酸。

控制SO2排放的其他方法

这类方法主要有稀释法,CIL法,调节供气法等。

第四章

两次吸收法生产硫酸的流程图

两次吸收法生产硫酸工艺流程图

1 焚硫炉

2 废热锅炉

3 转化器

4 蒸汽过热器

5 蒸发器

6 锅炉给水预热器

7 换热器8 中间吸收塔9 最终吸收塔10过滤器11 空气干燥器12鼓风机13 泵

流程说明

干燥系统流程说明

由净化工段来的炉气,从干燥塔的底部进入,与塔顶喷淋的浓硫酸逆流接触,被吸收了水的硫酸从塔底引出进入酸循环槽,且其浓度降低,为了维持酸浓,由吸收工段引来98%H2SO4,串入酸循环槽中。喷淋酸由于吸水放热,酸温上升。酸循环液由酸泵打出,一部分引入酸冷却排管,经冷却后作为喷淋酸,一部分串入吸收工段的酸循环槽。

一吸系统流程说明

吸收酸由塔顶进入,与来自下部的转化器逆流接触,吸收了SO3的硫酸从塔

底引出时,其浓度提高了。为了维持入塔喷淋酸浓度的稳定,在干燥塔与吸收塔之间串酸,并加入补充水。

随着SO3吸收的进行,释放出大量的反应热和溶解热,同时,还进行着汽、液两相之间的传热,使塔内酸温提高。在串酸过程中,酸温亦有变化。故吸收塔在入塔前必须经过冷却。吸收了SO3的酸被引入酸循环槽。再由泵抽出,一部分串入干燥系统,一部分作为吸收酸。另外还有一部分酸直接从酸循环槽引出作为成品酸到酸贮槽。

二吸系统流程说明

二次转化炉来的转化气进入第二吸收塔底,与下降的吸收酸形成逆流,其中SO3基本被吸收完全,则SO3的利用率可达%。

硫酸生产工艺流程知识分享

硫酸生产工艺流程简述 本项目采用以硫铁矿为原料的接触法硫酸生产工艺。它的主要工序包括硫铁矿的焙烧、炉气的净化、气体的干燥、二氧化硫的转化和三氧化硫的吸收。基本工艺流程图如下: 1-沸腾焙烧炉;2-空气鼓风机;3-废热锅炉;4-旋风除尘器;5-文氏管;6-泡沫塔;7-电除雾器;8-干燥塔;9-循环槽及酸泵;10-酸冷却器;11-二氧化硫鼓风机;12,13,15,16-气体换热器;14-转化器;17-中间吸收塔;18-最终吸收塔;19-循环槽及酸泵;20-酸冷却器 经过破碎和筛分的硫铁矿或经过干燥的硫铁矿,送入沸腾焙烧炉l下部的沸腾床内,与经空气鼓风机2从炉底送人的空气进行焙烧反应。生成的二氧化硫炉气从沸腾炉顶部排出,进入废热锅炉3。矿渣则从沸腾床经炉下部的排渣口排除。

炉气在废热锅炉内冷却到约3500C,用以生产3.82Mpa、450摄氏度的过热蒸汽。主要的蒸汽蒸发管束设在废热锅炉内。装设在焙烧炉沸腾床内的冷却管也作为废热锅炉热力系统的一部分,与锅炉的汽包连接,用以回收部分焙烧反应热。 从废热锅炉出来的炉气,还含有相当数量的矿尘,经旋风除尘器4初步除尘后,进入净化系统。废热锅炉、旋风除尘器除下的矿尘,与沸腾焙烧炉排出的矿渣一起送往堆渣场,等待进一步处理或出售。净化系统包括文氏管5、泡沫塔6和电除雾器7。文氏管对炉气进行除尘和降温,炉气经文氏管后,其中绝大部分矿尘被除去。泡沫塔对炉气进一步除尘、降温。在文氏管和泡沫塔中,炉气中所含的微量三氧化硫,从硫酸蒸汽形态转变成酸雾;砷、硒和其他一些金属的氧化物则成为固态粒子,从气相中分离出来;它们一部分与炉气中残存的微量矿尘一起被洗涤除去,另一部分随气体进入电除雾器,在高压静电作用下被清除干净。 通常,控制出净化系统的炉气温度在400C以下,以保证干燥-吸收系统的水平衡。 净化系统中排出的高含尘的稀酸送入污水处理系统,经CN 过滤器处理后抽回系统循环使用。 经过净化的气体,在干燥塔8中被循环淋洒的浓硫酸干燥。干燥酸的浓度一般维持在93%左右。由于在气体被浓硫酸干燥的过程中放出大量热量,所以在干燥塔硫酸循环系统中设有酸冷却器10,用冷却水把热量移走,为了减少气体夹带硫酸雾沫对

年产5万吨硫酸生产工艺

年产5万吨硫酸生产工艺 )

目录 第一章 (1) 概述 (1) 硫酸的性质 (1) 第二章 (1) 硫酸的生产方法 (1) 接触法制造硫酸 (2) 接触法生产硫酸由下列四个工序组成 (2) 接触法的优缺点 (3) 硝化法制造硫酸 (3) 硝化法制造硫酸可归纳为三个重要过程 (4) 硝化法的优缺点 (4) 第三章硫酸生产全工段工艺简介 (4) SO2气体的制取 (4) 炉气的净化 (5) SO2气体的转化 (5) 一次转化一次吸收 (5) 二次转化二次吸收 (6) 沸腾转化 (6) SO3气体的吸收 (7) 尾气的处理 (7) 氨法 (7) 碱法 (7) 金属氧化物法 (8) 活性炭法 (8) 控制SO2排放的其他方法 (8) 第四章 (9) 两次吸收法生产硫酸的流程图 (9) 流程说明 (9)

干燥系统流程说明 (9) 一吸系统流程说明 (9) 二吸系统流程说明 (10)

第一章 概述 硫酸是一种普通的化工产品,也是一种古老的化学品,据了解,早在17世纪就有化学家利用“铅室法”将燃烧硫磺所得的二氧化硫和进行反应而生产出约70%左右的稀硫酸,到18世纪又有化学家利用铂催化剂(今用钒催化剂)与较高浓度的二氧化硫空气中的氧气反应而生产出浓度达98%的硫酸。由于硫酸在工业上有广泛的用途,因此它被号称为“工业之母”,硫酸的产量也常用来作为评定一个国家工业经济发展水平的重要指标。 硫酸的性质 硫酸是(SO 3)和水(H 2O )化合而成。化学上一般把一个分子的三氧化硫与一个分子的水相结合的物质称为无水硫酸。无水硫酸就是指的100%的硫酸(又称纯硫酸)。纯硫酸的化学式用“H 2SO 4”来表示,分子量为。 硫酸是基础化学工业中重要的产品之一。硫酸的性质决定了它用途的广泛性,硫酸主要用于生产化学肥料、合成纤维、涂料、洗涤剂、致冷剂、饲料添加剂和石油的精炼、有色金属的冶炼,以及钢铁、医药和化学工业。 第二章 硫酸的生产方法 生产硫酸最古老的方法是用绿矾(FeSO 4·7H 2O )为原料,放在蒸馏釜中锻烧而制得硫酸。在煅烧过程中,绿矾发生分解,放出二氧化硫和三氧化硫,其中三 氧化硫与水蒸气同时冷凝,便可得到硫酸。 2(FeSO 4·7H 2O ) 煅烧???→Fe 2O 3+SO 2+SO 3+14H 2O

发烟硫酸生产工艺及市场分析3

发烟硫酸生产工艺及市场分析1 产品概述 发烟硫酸,即三氧化硫的硫酸溶液,化学式:H 2SO 4 〃xSO 3 。无 色至浅棕色粘稠发烟液体,其密度、熔点、沸点因SO 3 含量不同而异。 当它暴露于空气中时,挥发出来的SO 3 和空气中的水蒸汽形成硫酸的细小露滴而冒烟,所以称之为发烟硫酸。 发烟硫酸中的物质成分复杂,除了硫酸和三氧化硫外,还有 焦硫酸(H 2S 2 O 7 )、二聚硫酸(H 4 S 2 O 8 )、三聚硫酸(H 6 S 3 O 12 ) 及H 4S 3 O 15 、H 2 S 3 O 10 、(H 2 SO 4 ) 4~20 等各种各样的硫酸聚合物。 1.1 物化性质(从《化工百科全书》硫酸中摘录) 第一部分:化学品名称 化学品中文名称:发烟硫酸 化学品英文名称:sulphuric acid fuming;Oleum 技术说明书编码:934 CAS No.:8014-95-7 [RTECS号] :WS5605000 [UN编号] :1831 [危险货物编号] :81006 [IMDG规则页码] :8231 第二部分:成分/组成信息 有害物成分:发烟硫酸 CAS No. 8014-95-7 第三部分:危险性概述 危险性类别:第8类腐蚀品第1项酸性腐蚀品(《常用危险化学品的分类及标志》(GB13690-92)) 侵入途径:经呼吸道吸入,经食道食入,或身体接触。 健康危害:对皮肤、粘膜等组织有强烈的刺激和腐蚀作用。蒸气或雾可引起结膜炎、结膜水肿、角膜混浊,以致失明;引起呼吸道刺激症状,重者发生呼吸困难和肺水肿;高浓度引起喉痉挛或声门水肿

而死亡。口服后引起消化道的灼伤以致溃疡形成;严重者可能有胃穿孔、腹膜炎、肾损害、休克等。皮肤灼伤轻者出现红斑,重者形成溃疡,愈后瘢痕收缩影响功能。溅入眼内可造成灼伤,甚至角膜穿孔、全眼炎以至失明。慢性影响:牙齿酸蚀症、慢性支气管炎、肺气肿和肺硬化。 环境危害:对环境有危害,对水体和土壤可造成污染。 燃爆危险:本品不燃,具强腐蚀性、强刺激性,可致人体灼伤。 第四部分:急救措施 皮肤接触:立即脱去污染的衣着,用大量流动清水冲洗至少15 分钟。尽快就医。 眼睛接触:立即提起眼睑,用大量流动清水或生理盐水彻底冲洗至少15分钟。尽快就医。 吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。尽快就医。 食入:用水漱口,给饮牛奶或蛋清。尽快就医。 第五部分:消防措施 危险特性:遇水大量放热, 可发生沸溅。与易燃物(如苯)和可燃物(如糖、纤维素等)接触会发生剧烈反应,甚至引起燃烧。遇电石、高氯酸盐、雷酸盐、硝酸盐、苦味酸盐、金属粉末等猛烈反应,发生爆炸或燃烧。能与普通金属发生反应, 放出氢气而与空气形成爆炸性混合物。有强烈的腐蚀性和吸水性。属于乙类火灾源物质。 有害燃烧产物:三氧化硫。 灭火方法:消防人员必须穿全身耐酸碱消防服。灭火剂:干粉、二氧化碳、砂土。避免水流冲击物品,以免遇水会放出大量热量发生喷溅而灼伤皮肤。 第六部分:泄漏应急处理 应急处理:迅速撤离泄漏污染区人员至安全区,并立即隔离150m,严格限制出入。建议应急处理人员戴自给正压式呼吸器,穿防酸碱工作服。不要直接接触泄漏物。尽可能切断泄漏源。小量泄漏:将地面

硫酸培训

概述一.我公司硫酸工艺流程 水、选矿药剂

二.当代硫酸生产发展的特点 1.硫酸产量的增长 因为硫酸用途的扩大。 2.原料结构的发展 硫磺、硫铁矿、冶炼烟气、石膏及磷石膏。 3.规模大型化 经济与技术的进步与发展,促进了化工装置规模大型化。也是降低建设投资的最科学的办法。 4.热能的利用与回收 一次转化工艺的气体中的余热。循环酸中余热。 5.强化设备 提高设备单位面积或容积的生产强度(体现在操作气速的提高和停留时间的缩短)。同样产量下降低了设备造价(典型的强化设备有:沸腾炉、填料塔、列管换热器、电除雾器)。 6.新技术的开发 当代新技术开发的前沿课题: ●开发与应用非稳态二氧化硫转化工艺(优势是流程简化、节约钢材、降低阻力、 适宜低二氧化硫气浓的转化及操作简单等) ●开发富氧空气氧气焙烧硫铁矿或硫化矿,制取高浓度二氧化硫炉气。 ●研制高活性、低阻力、高强度的钒催化剂,降低阻力,提高转化率。 ●研制耐腐蚀、耐热的材料(合金和非金属材料) 三.硫酸的性质 1.硫酸 ●强氧化性 ●强脱水性 ●强酸性 ●强吸水性 当硫酸在设备或管线内腐蚀金属产生的氢气蓄积,并达到爆炸范围时遇明火即会产生爆炸。因此在酸罐附近及上面严禁吸烟。 2.常用硫酸的结晶温度 3.三氧化硫 在潮湿气体环境下,接触三氧化硫气体或硫酸雾,都会引起皮肤、眼睛、粘膜尤其是喉咙的发炎和烧伤。 四.硫酸系统控制四要点 温度、浓度、阻力、泄漏

第一章大炉 一、岗位任务 将硫铁矿沸腾焙烧制二氧化硫炉气。 二、硫酸化沸腾焙烧的工艺原理 1、什么是沸腾焙烧: 鼓风机将气体鼓进沸腾炉固定物料层,物料的状态随气流速度的变化而变化,随着气流速度的增高,当气流速度继续增大超过临界值时,物料粒子作紊乱运动,物料粒子就在一定高度范围内翻动,象液体沸腾一样,称之为“流态化床”,也就是沸腾状态度。 2、什么是硫酸化焙烧: 形成硫酸盐的焙烧叫硫酸化焙烧。 通过选择性地控制沸腾炉内的反应温度和气氛,在流态化床中,含硫金精矿与气体进行充分的接触,迅速进行以下化学反应: 4FeS2+11O2=2Fe203+8S02↑如氧不足则进行3FeS2+802=Fe304+6S02 2FeAsS+502=As203 +Fe203+2S02 4CuFeS2+1502=4CuS04+2Fe203+4S02 PbS+202=PbS04 ZnS+202=ZnS04 C+02=C02 (非石墨性) 通过反应,金精矿中的硫、炭、砷氧化成S02、CO2、As203进入烟气, 同时便精矿颗粒的孔隙性变得非常好,被包裹的金暴露出来,利于下一步氰化浸出时与氰化物充分接触,提高金的氰化浸出率,铜、铅、锌转化成硫酸盐,进一步用稀酸浸出给以除去,减轻或消除了对氰化提金过程的不良影响。铁最大限度地转变成不参与氰化反应的Fe203滞留于渣中,达到焙烧脱硫,杂质金属转态的目的。 渣尘中铁的氧化物包含有三氧化二铁和四氧化三铁,它们之间的 比例随炉内空气过剩量的多少而相应变化:当空气过剩量多时,渣尘中的Fe203就多,焙砂是红色,炉气中的S02浓度相应较低,S03浓度较高,也就是原始酸雾的含量较高;当空气过剩量少时,渣尘中的Fe204就多,焙砂呈黑色,炉气中的S02浓度很高,且容易生成升华硫堵塞管道和设备。 矿粉中除铁的硫化物外,还包含有铜、铅、锌等其它元素的硫化物,为了彻底打破它们对金的包裹,促使它们进行完全的氧化和硫酸盐化,要求炉气中空气过剩量要尽可能的多。这就是说,在焙烧过程中,既要较高的S02,又要保证金属硫化物的充分反应。这就要求沸腾炉内操作范围较为狭窄,只有在这狭窄的适宜区进行操作,才能保持系统

硫酸庆大霉素生产工艺流程图

硫酸庆大霉素生产工艺 一、硫酸庆大霉素产品说明 1、产品名称及化学结构 1.1产品名称:硫酸庆大霉素(Gentamycin sulfate ) 1.2化学结构: 1. 2.1结构式: ·2H 2SO 4 C 1: R 1=R 2=CH 3 C 2: R 1=CH 3 R 2=H C 1a : R 1=R 2=H 1.2.2分子式: C 1: C 21H 43N 5O 7=477.61 C 2: C 20H 41N 5O 7=463.58 C 3: C 19H 39N 5O 7=449.55 1.2.3分子量: C 1: 477.61 C 2: 463.58 C 3: 449.55 C 1、C 2、C 1a 为硫酸庆大霉素的三个组分,各组分与2个分子的硫酸相结合,其成分折干效价为590μ/ml 以上。 2、理化性质 2.1性状:白色或类白色粉末,吸水性强,稳定性高,易溶于水,不溶于乙醇、丙酮、氯仿等有机溶剂。 2.2比旋度:+1070~ +1210 3、产品质量标准 (查药典) 二、原材料、包装材料质量标准及规格 1、发酵部分 O O N H R 1R 2N H 2O O O H N H O H C H 3N H 2O H N H 3

三、生产方法及原理简介 硫酸庆大霉素的生产是以绛红色小单孢菌()2号作为庆大霉素生产用菌种,在蒸汽消毒的培养基中不断扩大培养、发酵,通过菌种的次级代谢分泌出具有抑菌活性的庆大霉素。用离子交换树脂提取出菌分泌的活性物质,经精制、转盐生产出硫酸庆大霉素原料药。用以制成各种硫酸庆大霉素制剂,应用于临床治疗。 四、硫酸庆大霉素生产工艺流程图及操作条件 硫酸庆大霉素的生产过程主要包括以下四个部分:发酵生产、提取、精制、无菌压缩空气、无菌喷雾干燥。

硫酸生产工艺

二、二氧化硫催化氧化制硫酸 1. 生产方法和工艺过程 在硫酸生产历史上,出现过三种生产方法,即塔式法、铅室法和接触法。 (1)塔式法和铅式法是古老的生产方法。在中间装填瓷圈的塔型结构的设备或中空的铅室中进行,所用催化剂是二氧化氮,氧化过程可用下列反应式表示: SO2+NO2+H2O=H2SO4+NO SO2+N2O3+H2O=H2SO4+2NO 2NO+O2=2NO2 NO2+NO=N2O3

由此制得的硫酸浓度只有65%~75%,仅用作生产肥料(如过磷酸钙等),工业应用因浓度不高而受到限制。而且含硝化物硫酸对设备的腐蚀相当严重。 (2)接触法在20世纪50年代后建厂,现在基本上取代了塔式法和铅室法。该法是将焙烧制得的SO2与固体催化剂(开始是铂,后改用V2O5,现为含铯钒催化剂)接触,在焙烧炉气中剩余氧的参与下(通常还需配入适当空气或富氧以控制O2/SO2值恒定),SO2被氧化成SO3,后者与水作用可制得浓硫酸(98.5%)和发烟硫酸(含游离SO3 20%左右)。 接触法生产硫酸经过以下四个工序。 A 焙烧矿石(或硫磺)制备SO2化学反应式如下: 4FeS2+11O2=2Fe2O3+8SO2(硫铁矿焙烧) S+O2→SO2↑(硫磺焙烧)

硫铁矿分普通硫铁矿(其中大部分为黄铁矿,亦含有白铁矿、磁铁矿,含硫量在25%~53%之间)、浮选硫铁矿(与有色金属伴生,含硫量32%~40%)和含煤硫铁矿(是煤矿的杂质,含硫量达40%)三种,主要成分有FeS,FeS2,Fe2O3,Fe3O4和FeO等,矿物中还含有铅、镁、钙、钡的碳酸酸,砷、硒、铜、银、金等化合物。在氧量过剩的情况下,为使矿物中的硫全部转化成SO2,焙烧温度需在600℃以上,此时烧渣中,铁主要以Fe2O3存在(尚有少量Fe3O4)。 上述碳酸盐分解生成氧化物后又与炉气中SO3反应生成硫酸盐。砷和硒化合物转化为氧化物,在高温下升华逸入炉气中成为对制酸有害的杂质。矿石中的氟化物在焙烧过程中转变成气态SiF4,也进入炉气中。 B 炉气精制目的是除去各种杂质,如三氧化二砷、二氧化硒、氟化氢、矿尘、水蒸气和酸雾等。其中三氧化二砷使钒催化剂中毒和催化剂中的钒逃逸,二氧化硒使钒催化剂中毒和使成品酸带色,氟化氢(由SiF4水解产生)则会腐蚀设备。它们在低温下(30~60℃)很容易用水或酸洗涤炉气而除去。

制作硫酸的工艺流程

二、工艺流程说明 本生产装置为50kt/ a硫铁矿制酸,封闭酸洗净化,(3+2)二次转化二次吸收。硫铁矿经原料工段、焙烧工段、净化工段、转化工段、干吸工段等工序,其工艺流程详尽介绍如下: (一)原料岗位 在原料厂房内,经料斗至1#皮带入破碎机后经2#皮带至筛分,筛分后经3#皮带至大倾角皮带再至供料皮带进入沸腾炉料斗,料再由沸腾大炉料斗喂入沸腾炉。 (二)焙烧岗位 硫铁矿在沸腾炉内与空气鼓风机鼓入的空气在进行沸腾焙烧,焙烧出的高温炉气含SO2在12-13%,由炉顶侧向引出,沸腾层温度控制在800-850℃,经炉气冷却器冷却,沉降部分粉尘后再进入旋风除尘器进行除尘,同时SO2炉气降温至350℃左右再进入电除尘器进行除尘。 (三)电除尘器 来自焙烧工段的炉气,炉气温度约在350℃左右,含尘量约在30g/NM3,进入电除尘器,炉气中的微小尘粒受电场力的作用,经电离、荷电分别向阴极,阳极移动,并沉积于放电极线上和集尘极板上,通过振打,掉落至集灰斗,由溢流螺旋排灰机排出,炉气净化到含尘0.2g/NM3。进入净化工段。 (四)净化工段 净化采用内喷文氏管——泡沫塔——间冷器——电除雾器封闭稀酸洗净化流程。 来自电除尘器的炉气,炉气温度约在300℃左右,含尘量约在0.2g/NM3,首先进入内喷文氏管,炉气在喉管内以50米/秒气速冲击送入稀酸,使稀酸雾化,气体与液体充分接触,炉气温度降到65℃左右,炉气中大部分灰尘、砷、氟等杂质被除去。经增湿后的炉气进入泡沫塔进一步洗涤、冷却,炉气温度降至50℃左右,进入间冷器。炉气在间冷器内与水间接冷却,换热使炉气温度降至35℃以下,炉气中的热量绝大部分在此设备移出系统。进入电除雾器进一步除去残余的灰尘和酸雾,使炉气中酸雾<0.03g/NM3,砷<1.0mg/NM3,氟<3.0mg/NM3,净化后的炉气进入干燥塔。 由内喷文氏管流出的洗涤稀酸,温度60-65℃进入斜管沉降器,进行固液分离,清液回循环槽,斜管沉降器底部定期排出的酸泥及少量稀酸流至中和槽用石灰中和处理。 出泡沫塔的稀酸经脱气塔,回循环槽,循环使用。间冷器循环酸泵,根据间冷器降温情况间断启用。 因炉气带走的水份及排出的少量稀酸,所以净化工序应相应的补充水量,以保持净化系统的水平衡。(五)转化工段 转化采用(3+2)式,ⅢⅠ-ⅤⅣⅡ换热流程。从净化岗位经干燥塔,干燥塔除沫器的SO2炉气进入转化工段SO2风机,依次进入Ⅲa,Ⅲb,I换热器管间换热升温,再进入电炉,到转化器一段催化剂层进行反应,控制一段进口温度在415-420℃,反应后SO2、SO3高温炉气进入第I换热器管内与来自第Ⅲb的换热器管间的SO2炉气换热降温,控制二次进口炉气温度为455-460℃之间,入二段催化剂层进行反应,反应后的SO2,SO3转化气进入Ⅱ换热器管内与来自Ⅳb换热器管间二次转化炉气进行换热,降温,控制三段进口炉气温度在435-440℃之间,进转化器三段催化剂层进行反应。反应后SO2,SO3转化气经第Ⅲb,Ⅲa换热器管内与管外来自SO2风机出口炉气进行换热,降温至160℃左右进入第一吸收塔进行吸收。吸收SO3后的炉气经一吸塔金属丝网除沫器,依次进入Ⅴa,ⅤbⅣ换热器,进入Ⅱ换热器管间换热升温,再进入二转电炉,到转化器第四段催化剂层进行反应,控制四段进口温度415-420℃,反应后的SO3炉气进入第Ⅳ换

硫酸生产工艺培训资料(

第一章、本部工艺技术规程概述 1、概述本部复合肥厂有20万吨/年S-NPK复合肥装置与15万吨转鼓氨化复合肥装置,由南化设计,配套装 置由四部分组成。 1.1磷酸装置设计能力生产五氧化二磷(100%)7万吨/年,包括磷矿湿磨、萃取及过滤。 1.2 氯化钾转化装置设计能力40万吨硫酸氢钾溶液,装置包括氯化钾转化、氯化氢吸收。 1.3 S-NPK复合肥装置包括料浆中和,复肥的造粒、尾气洗涤。 1.4氨化复合肥装置包括料浆中和,复肥的造粒、干燥、尾气洗涤。 2.产品的性能及用途 S-NPK复合肥是一种新型、多元素、无氯高效复合肥。不但含有植物所需的氮、磷、钾三大元素,还含有硫、铝、镁等其它元素,其组成稳定,物理性质优良。 S-NPK复合肥可直接施用于大棕作物,特别适用于水果、蔬菜、烟草、茶叶等忌氯作物。 3、生产原理 3.1磷酸的制备 硫酸分解磷矿浆得到磷酸溶液与二水硫酸钙晶体,同时逸出氟化氢气体经洗涤处理后排空,反应料浆经过滤分离出二水硫酸钙晶体(磷石膏),得到磷酸溶液。 Ca5F(PO4)3 + 5H2SO4 +H2O=3H3PO4 + 5CaSO4·2H2O +H F↑ 3.2氯化钾的转化及混酸配制 氯化钾与浓硫酸在一定温度下进行置换反应,得到硫酸氢钾溶液及氯化氢气体。硫酸氢钾与磷酸溶液按比例配制就得混酸。KCl + H2SO4 = KHSO4 + HCl 3.3料浆的中和 混酸与气氨的中和过程中,随着PH值的提高,不断形成结构稳定的硫基氮磷钾复合肥。 4.流程简述 4.1 球磨 外购磷矿石,分组存放,按一定比例配矿石送至破碎机。两级破碎后,经皮带送至球磨机内进行研磨,得到细度-100目大于85%,含水量约27%-32%的磷矿浆。 4.2 萃取 经计量的硫酸和矿浆进入萃取槽,来自滤洗液中间槽的淡磷酸亦加入萃取槽。硫酸和磷矿反应生成磷酸和二水硫酸钙结晶;萃取料浆由1号反应槽溢流到2号反应槽,由料浆泵送运至过滤机;萃取槽产生的水蒸汽及含氟气体去氟吸收岗位。 4.3过滤 磷酸料浆由泵送至盘式过滤机的加料区,随盘式过滤机的运转,完成过滤、一洗、二洗等过程。滤液及洗水经气液分离器分离后送入滤洗液中间槽,成品酸送至磷酸沉清池沉清后送到磷酸贮槽,洗液槽中的淡酸返回反应

硫酸生产工艺

硫酸生产工艺简介 硫酸生产工艺简介 摘要:硫酸是一种重要化工原料,在工业生产中有着举足轻重的作用,硫酸工业生产在我国也日臻完善,本文主要对工业中以硫铁矿、硫磺、冶炼烟气为原料生产硫酸的工艺流程简介。 硫酸是一种重要的基本化工原料,广泛使用于各工业部门,硫酸的产量常常被用作衡量一个国家工业发展水平的标志。硫酸主要用于生产磷肥。合成纤维、涂料、洗涤剂、制冷剂、饲料添加剂、石油精炼、有色金属冶炼,钢铁、医药和化学工业等,也都离不开硫酸。[1] 我国的硫酸工业起始于19世纪70年代,当时产量很少。新中国建立后,尤其是20世纪80年代以后,硫酸工业获得了快速地发展。根据1999年底的不完全统计,我国现有硫酸生产厂家632家,生产能力为32 500 kt/a。20世纪50年代以后逐步推广接触法,取代铅室法和塔式法,20世纪80年代后全部采用接触法。生产原料有硫铁矿、硫磺、冶炼烟气、磷石膏和硫化氢等。在接触法硫酸工艺生产过程中,有三个基本的化学反应和与之相联系的工序:SO2气体的制取;SO2的转化;SO3的吸收。[2] 1、硫铁矿制酸工艺流程(江西铜业集团公司硫铁矿制酸工艺为例)[3] 焙烧净化干吸转化

经过原料工段处理过的硫铁矿原料,送入焙烧工序进行硫铁矿的沸腾焙烧,气体经废热锅炉回收热量再经旋风除尘器和电除尘器送入气体净化工序,经净化工序的气体进入干燥塔对气体进行干燥后送入转化工段,进行SO2的催化氧化,反应生成的SO3气体送吸收塔吸收产出硫酸。[1] (a)焙烧工序 由原料工序送来的硫精矿在沸腾炉内与来自空气鼓风机的空气混合,在800℃下沸腾焙烧。焙烧产生的50:浓度13%,温度约800一950℃的高温炉气,经废热锅炉回收部分热能温度降至340℃后,依次通过旋风除尘器和电除尘器,使尘含量小于或等于0.20g/Nm3、温度降至320℃后进人净化工序。 (b)净化工序 净化工序采用了先进的动力波洗涤技术,烟气首先在动力波洗涤器中被绝热冷却和洗涤除杂质,通过动力波气液分离槽进行气液分离,分离后的气体进人气体冷却塔进一步冷却及除杂。从气体冷却塔出来的烟气绝大部分烟尘、砷及氟等杂质已被清除,同时烟气温度降至40℃左右,然后进人两级管式电除雾除酸雾,使烟气中的酸雾含量降至<5mg/Nm3.烟气中夹带的少量砷、氟、尘等杂质也进一步被清除,净化后的烟气送往干吸工段。 (c)干吸、转化工序 净化出来的烟气,在淋洒96%硫酸的干燥塔中脱除烟气中所含的水分,干燥后含水<0.1g/Nm3的烟气经S02鼓风机送往转化工段,转

硫酸生产工艺技术标准

大冶有色金属公司企业标准 Q/DYJ.J.04.20-2002 硫酸生产工艺技术标准

2002-12-02-发布2002-12-10实施大冶有色金属公司发布

大冶有色金属公司企业标准 硫酸生产工艺技术标准 Q/DYJ.J.04.20-2002 1 主题内容与适用范围 本标准规定了利用转炉烟气和诺兰达炉烟气生产硫酸原、燃料的要求,主要设备、工艺及操作要点。 本标准适用于硫酸三系列(二工段)、硫酸四系列(一工段)及污酸处理(污酸工段)生产管理。 2原料及主要材料质量标准 2.1 含二氧化硫烟气 2.1.1 硫酸四系列烟气量和烟气成分(设计值)见表1。 表 1 烟气量和烟气成份(净化入口) 烟气流量/m3.h-1(含量Ψ%) 成份 SO2SO3O2CO2N2H2O ∑(湿) 最大值13232(8.27) 341(0.21) 16960(10.60) 800(0.5) 11857(74.12) 100080(6.30) 160000(100) 最小值8932(6.38) 175(0.12) 14280(10.20) 700(0.5) 106393(76.00) 9520(6.80) 140000(100) 其他条件: (1)烟气含尘0.5g/m3 (2)烟气含砷87.5mg/m3(设计考虑短时间最大400mg/m3)(3)烟气含氟43.75mg/m3(设计考虑短时间最大200mg/m3)(4)烟气含氯25mg/m3(设计考虑短时间最大100mg/m3)2.1.2 硫酸三系列(设计值) a)进空塔烟气成分(V%)(平均) SO2 SO3 O2 CO2 N2H2O 7.06 0.28 11.15 4.8 65.3 11.2 b)进空塔烟气中含尘总量<0.95g/m3,As<0.40g/m3,

稀土分离冶炼工艺流程图

白云鄂博矿床的物质成分 白云鄂博矿床物质成分极为复杂,已查明有73种元素,170多种矿物。其中,铌、稀土、钛、锆、钍及铁的矿物共近60种,约占总数的35%。主要矿石类型有块状铌稀土铁矿石、条带状铌稀土铁矿石、霓石型铌稀土铁矿石、钠闪石型铌稀土铁矿石、白云石型铌稀土铁矿石、黑云母型铌稀土铁矿石、霓石型铌稀土矿石、白云石型铌稀土矿石和透辉石型铌矿石。 稀土生产工艺流程图

钐铕钆富集物 氧化钕 少钕碳酸稀土 分组氯化稀土 碳酸铈 酸铈 石油催化裂化剂 汽车催化净化剂剂 氧化镧 氧化铈 氧化镨 氧化钕 氧化镝 氧化铕 氧化釓 氧化铽 氧化钐 重稀土富集物 矿石粉碎 铁精矿 稀土精矿 氯化稀土 萃取稀土 碳酸稀土 硫酸体系萃取 稀土合金 稀土硅铁 盐酸体系萃取 转型 钍产品 金属镧 金属铈 金属镨 金属钕 金属镝 金属钐 熔盐电解 电池级 混合稀 土金属 钕铁硼永磁体 抛光粉 荧光粉 磁致冷材料 存贮光盘 稀土玻璃 镍氢 电池 钐钴永磁体 汽车尾气净化器 永磁电机 节能灯 风力发电机 各种发光标牌 电动汽车 电动 核磁共振 自 行车 磁悬浮 磁选机

稀土精矿硫酸法分解(decomposition of rare earth concentrate by suIphuric acid method) 稀土精矿用硫酸处理、生产氯化稀土或其他稀土化合物的稀土精矿分解方法。本法具有对原料适应性强、生产成本低等优点,是稀土精矿工业上常用的分解方法,广泛用于氟碳铈矿精矿、独居石精矿和白云鄂博混合型稀土矿精矿的分解。主要有硫酸化焙烧一溶剂萃取法、硫酸分解一复盐沉淀法、氧化焙烧一硫酸浸出法三种工艺。 硫酸化焙烧-溶剂萃取主要用于分解白云鄂博混合型稀土矿精矿生产氯化稀土。白云鄂博混合型稀土矿精矿成分复杂,属于难处理矿,其典型的主要成分(%)为: RE2O350~55,P2.5~3.5,F7~9,Ca7~8,Ba1~4,Fe3~4,ThO2约0.2。精矿中放射性元素钍和铀含量低,冶炼的防护要求不高,适于用硫酸化焙烧法分解。 原理经瘩细的稀土精矿与浓硫酸混合后加热焙烧到423~673K温度时,稀土和钍均生成水溶性的硫酸盐。氟碳铈矿与硫酸的主要反应为: 2REFCO3+3H2SO4=RE2(SO4)3+3HF↑+2CO2+2H2O 独居石与硫酸的主要反应是: 2REPO4+3H2SO4=RE2(SO4)3+2H3PO4 Th3(PO4)4+6H2SO4=3Th(SO4)2+4H3PO4 铁、钙等杂质也生成相应的硫酸盐。分解产物用精矿质量12倍的水浸出,获得含稀土、铁、磷和钍的硫酸盐溶液。控制不同的焙烧温度、硫酸用量和水浸出的液固比,即可改变分解效果。当硫酸与稀土精矿的量比为1.5~2.5、分解温度503~523K、水浸出液含RE2O350~70g/L时,钍、稀土、磷、铁等同时进入溶液。上述焙烧和浸出条件主要用于独居石精矿和白云鄂博混合型稀土矿精矿的分解。当硫酸与稀土精矿的量比为1.2~1.4、分解温度 413~433K、水浸出溶液含游离硫酸50%时,主要是钍进入溶液,大部分稀土则留在渣中。当硫酸与稀土精矿的量比为1.2~1.4、分解温度573~623K、水浸出液含RE2O350g/L时,则稀土进入溶液,钍和铁等留在渣中。通过控制焙烧和浸出条件,就可使稀土与主要伴生元素得以初步分离。 工艺过程从稀土精矿到获得氯化稀土,主要经过硫酸化焙烧、浸出除杂质和溶剂萃取转型等过程。 (1)硫酸化焙烧。白云鄂博混合型稀土矿精矿粉与浓硫酸在螺旋混料机内混合后,送入回转窑进行硫酸化焙烧分解。控制进料端(窑尾)炉气温度493~,523K,焙烧分解过程中炉料慢慢移向窑前高温带,氟碳铈矿和独居石与硫酸作用生成可溶性的硫酸稀土。铁、磷、钍等则形成难溶于水的磷酸盐。炉料随着向高温带移动温度不断升高,过量的硫酸逐渐被蒸发掉。当炉料运行到炉气温度为11’73K左右的窑前出料端时,炉料温度达到623K左右,并形成 5~10mm的小粒炉料,称为焙烧料,从燃烧室侧端排出。 (2)浸出除杂质。焙烧料含硫酸3%~7%,直接落入水浸槽中溶出稀土,而杂质几乎全部留在渣中与稀土分离。制得纯净的硫酸稀土溶液含RE2O340g/L、Fe0.03~0.05g/L、P约0.005g/L、Th<0.001g/L,酸0.1~0.15mol/L。用此溶液生产氯化稀土。 (3)溶剂萃取转型。用溶剂萃取法使硫酸稀土转变成为氯化稀土的过程。这种工艺已用于取代传统的硫酸复盐沉淀、碱转化等繁琐转型工艺。这是中国在20世纪80年代稀土提取流程的一次重大革新。溶剂萃取转型采用羧酸类(环烷酸、脂肪酸)萃取剂,预先用氨皂化,然后直接从硫酸稀土溶液中萃取稀土离子,稀土负载有机相用含 HCl6mol/L溶液反萃稀土,制得氯化稀土溶液。萃取和反萃取过程采用共流萃取(见溶剂革取)方式。萃余液pH为 7.5~8.0,含RE2O310mg/L左右,稀土萃取率超过99%。盐酸反萃液含RE2O3250~270g/L,含游离酸 0.1~0.3mol/L。采用减压浓缩方式将反萃液浓缩制成氯化稀土。氯化稀土的主要成分(质量分数ω/%)为:RE2O3约46,Fe0.01,P0.003,Th0.0002,SO42-<0.01,Ca1.25,NH4+1~2。1982年中国用上述流程在甘肃稀土公司建成一条年

硫酸钾生产工艺操作规程

硫酸钾生产工艺操作规程 第一部分硫酸钾生产工艺规程 一、制造硫酸钾的原料: 本公司制造硫酸钾的原料是氯化钾(KCL)其K2O≥60%,目前依赖进口。(国产KCL目前尚不能满足质量标准)98%硫酸来源于本公司硫酸车间。 该生产工艺过程中制取盐酸系统用水为清净自来水。燃料采用煤气,来自本厂煤气站。 二、硫酸钾的性质和用途: 分子式:K2SO4分子量:174.24 物化性质:无色或白色晶体或粉末,味苦而咸。密度:2.662。 熔点:1069℃溶于水,不溶于乙醇,丙酮和二氧化碳,其水溶性略呈酸性。 用途:1、农业用肥料,用于烟草、甘蔗、果木树、马铃薯、蔬菜等。 2、用作药物(缓泄剂)并用于制明矾、玻璃和碳酸钾等。 三、硫酸钾及盐酸的质量规格: (一)硫酸钾 外观:无色或白色结晶体或粉末。 农业用硫酸钾技术指标[HG/T3279——89] (二)盐酸: 工业盐酸技术指标(GB320—93) 四、硫酸钾生产基本原理和工艺流程: 采用固定床【酸 [液] 盐 [固] 】复分解反应法。固态的氯化钾与98%硫酸按一定的投料比连续加入反应室,在高于500℃高温(一般控制在540——560℃)推动耙齿推料

(搅拌混合作用)的条件下进行反应。在维持正常床面的条件下原料连续投入,成品硫酸钾则不断由反应室出口(对称二处)排入成品推料机,经冷却伴有搅拌粉碎的条件下经气封输送器进入皮带机,再经过筛粉碎机粉碎入成品料仓。反应中产生之氯化氢气体用水吸收制取盐酸装入储罐。尾气在符合国家废气排放标准的前提下排入大气。 反应式:H2SO4+2KCL→K2SO4+2HCL——Q (副反应) H2SO4→SO3+H2O——Q HCL+H2O→HCL?H2O+Q (副反应) SO3+H2O→H2SO4+Q 〔附工艺流程图〕 现将本公司硫酸钾生产工艺流程简述如下: 〔一〕生产装置 1、硫酸钾反应炉 反应炉主要由燃烧室〔上部〕反应室〔中部〕烟道室〔下部〕组成,并配有加料及机械搅拌推料装置。 (1)燃烧室:处于反应室内顶,入口为空气进口、煤气进口,空气量及煤气量均可调。所用煤气来自煤气站,经计量后进入烧嘴燃烧,燃烧室 维持680—730℃以供给反应室之热量。燃烧气经烟道进入烟道室,空 气由送风机经复热器与烟道气换热后送至燃烧室,部分冷空气送至主 机系统以起风冷之效力。 (2)烟道室:处于反应室底部,高温烟道气自燃烧室来由烟道室经烟道及烟道气管道送至复热器与冷空气换热后经引风机、烟囱排入大气,高 温烟气在烟道室继续提供反应室所需热量以保证其正常动作及热量的 充分利用。 (3)反应室:处于燃烧室与烟道室之环抱中间,下部为反应床约28平方米,顶部为耐高温圆穹型黑矽砖。反应床上部配有旋转耙齿,以电机传动 经减速机齿轮边速,有主机轴带动其转速约1.1r/min,作为物料搅拌、 混合、粉碎、成品转移,维持料床高度。主轴顶部依上而下分别装有 硫酸及氯化钾分布器,硫酸分布器配有导槽一只,氯化钾分布器配有 两只流槽,加料分布器上部装有加料套筒,套筒穿燃烧室自炉顶而下, 硫酸及氯化钾加料管自反应炉顶外部经套筒分别引入两分布器之上 端。反应室配置对称硫酸钾成品出料口分布两侧,经导筒与推料机相 连。反应炉顶上部分别设有氯化钾及硫酸加料计量装置以维持硫酸钾 生产过程中控制合理的投料比,保证该产品高品质,低消耗及反应床 耙齿之较长使用寿命。反应室正常作业时控制微负压。 2、反应炉系统附属设备概况: (1)复热器:∮800*4000[H2505*DI,一组55根S≈12.3m2]冷空气与烟道气换热交换,预热回收。 (2)主机(附大型减速机与马达带动主轴)提供布料、混料、产品移出之效能。 (3)硫酸钾成品推料机:推料机筒体拌有冷却用夹套,该机作用为成品破

制作硫酸的工艺流程

制作硫酸的工艺流程公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

二、工艺流程说明 本生产装置为50kt/ a硫铁矿制酸,封闭酸洗净化,(3+2)二次转化二次吸收。硫铁矿经原料工段、焙烧工段、净化工段、转化工段、干吸工段等工序,其工艺流程详尽介绍如下: (一)原料岗位 在原料厂房内,经料斗至1#皮带入破碎机后经2#皮带至筛分,筛分后经3#皮带至大倾角皮带再至供料皮带进入沸腾炉料斗,料再由沸腾大炉料斗喂入沸腾炉。 (二)焙烧岗位 硫铁矿在沸腾炉内与空气鼓风机鼓入的空气在进行沸腾焙烧,焙烧出的高温炉气含SO2在12-13%,由炉顶侧向引出,沸腾层温度控制在800-850℃,经炉气冷却器冷却,沉降部分粉尘后再进入旋风除尘器进行除尘,同时SO2炉气降温至350℃左右再进入电除尘器进行除尘。 (三)电除尘器 来自焙烧工段的炉气,炉气温度约在350℃左右,含尘量约在30g/NM3,进入电除尘器,炉气中的微小尘粒受电场力的作用,经电离、荷电分别向阴极,阳极移动,并沉积于放电极线上和集尘极板上,通过振打,掉落至集灰斗,由溢流螺旋排灰机排出,炉气净化到含尘NM3。进入净化工段。 (四)净化工段 净化采用内喷文氏管——泡沫塔——间冷器——电除雾器封闭稀酸洗净化流程。 来自电除尘器的炉气,炉气温度约在300℃左右,含尘量约在NM3,首先进入内喷文氏管,炉气在喉管内以50米/秒气速冲击送入稀酸,使稀酸雾化,气体与液体充分接触,炉气温度降到65℃左右,炉气中大部分灰尘、砷、氟等杂质被除去。经增湿后的炉气进入泡沫塔进一步洗涤、冷却,炉气温度降至50℃左右,进入间冷器。炉气在间冷器内与水间接冷却,换热使炉气温度降至35℃以下,炉气中的热量绝大部分在此设备移出系统。进入电除雾器进一步除去残余的灰尘和酸雾,使炉气中酸雾

硫酸生产工技能笔试复习参考题库复习课程

四厂技能题库 (共50题) 1、叙述焚硫岗位的工艺流程? 答:用精硫泵将精硫槽内液体硫磺经磺枪呈雾状喷入焚硫炉。在焚硫炉内液硫与干燥空气中的氧气燃烧生成SO2炉气,同时放出大量的热。这些余热被锅炉吸收利用产生蒸汽,供汽机发电。 干燥空气是由鼓风机将经过过滤器净化后的空气送至干燥塔后送至焚硫炉。干燥塔内是用93%的硫酸与空气对流吸收空气中的水份实现干燥目的。 2、简述熔硫岗位的工艺流程? 答:经传送带将固体硫磺加入熔硫槽中熔化为液硫,然后流至液硫地槽,再用地槽泵打入液硫过滤机。经过滤后的液硫进入澄清池进一步净化,然后用粗硫泵打入精硫槽,以被焚硫工序使用。 3、熔硫岗位的岗位任务是什么?

答:给焚硫岗位提供合格的液硫,满足生产需要。 4、锅炉岗位工艺流程? 工艺流程叙述:锅炉给水是经除氧器除氧后经省煤Ⅰ、省煤Ⅱ与炉气换热产生的240oC左右的水。在废热锅炉内炉水与从焚硫炉来的高温气体换热产生中压饱和蒸汽进入过热Ⅰ。此饱和蒸汽在过热Ⅰ内与转化四段出来的气体换热进入过热Ⅱ再与一段出来的气体换热产生中压过热蒸汽供汽机发电使用。 5、干吸岗位的工艺流程? 答:由干燥和两个吸收塔流出的酸分别注入各自的循环槽。再用各自的酸泵将酸经酸冷却器冷却后打入各自的塔内进行干燥空气或吸收SO3。干燥和吸收循环槽相互串酸并加适量的水,保持各自的酸浓。 6、简述转化岗位生产原理及方程式? 将焚硫炉送来的炉气中的SO2在转化器中转化生成SO3,并生成大量的反应热。 SO2+1/2O2==催化剂===SO3+Q 7、锅炉岗位开车需做哪些准备工作? 答:1、锅炉通过水压试验合格。 2、焚硫炉开车准备工作全部就绪。 8、简述干吸岗位生产原理并写出反应方程式? 答:将SO3用98%浓硫酸吸收,与水反应生成硫酸。SO3+H2O==H2SO4

硫酸庆大霉素生产工艺流程图

硫酸庆大霉素生产工艺 一、硫酸庆大霉素产品说明 1、产品名称及化学结构 1.1产品名称:硫酸庆大霉素(Gentamycin sulfate ) 1.2化学结构: 1. 2.1结构式: ·2H 2SO 4 C 1: R 1=R 2=CH 3 C 2: R 1=CH 3 R 2=H C 1a : R 1=R 2=H 1.2.2分子式: C 1: C 21H 43N 5O 7=477.61 C 2: C 20H 41N 5O 7=463.58 C 3: C 19H 39N 5O 7=449.55 1.2.3分子量: C 1: 477.61 C 2: 463.58 C 3: 449.55 C 1、C 2、C 1a 为硫酸庆大霉素的三个组分,各组分与2个分子的硫酸相结合,其成分折干效价为590μ/ml 以上。 2、理化性质 2.1性状:白色或类白色粉末,吸水性强,稳定性高,易溶于水,不溶于乙醇、丙酮、氯仿等 O O N H R 1R 2N H 2O O O H N H O H C H 3N H 2O H N H 3

2.2比旋度:+1070~+1210 3、产品质量标准 (查药典) 二、原材料、包装材料质量标准及规格 1、发酵部分

三、生产方法及原理简介 硫酸庆大霉素的生产是以绛红色小单孢菌()2号作为庆大霉素生产用菌种,在蒸汽消毒的培养基中不断扩大培养、发酵,通过菌种的次级代谢分泌出具有抑菌活性的庆大霉素。用离子交换树脂提取出菌分泌的活性物质,经精制、转盐生产出硫酸庆大霉素原料药。用以制成各种硫酸庆大霉素制剂,应用于临床治疗。 四、硫酸庆大霉素生产工艺流程图及操作条件 硫酸庆大霉素的生产过程主要包括以下四个部分:发酵生产、提取、精制、无菌压缩空气、无菌喷雾干燥。

相关文档