文档视界 最新最全的文档下载
当前位置:文档视界 › 浅谈塑料功能改性用各类纳米材料

浅谈塑料功能改性用各类纳米材料

浅谈塑料功能改性用各类纳米材料
浅谈塑料功能改性用各类纳米材料

本文摘自再生资源回收-变宝网(https://www.docsj.com/doc/f415740718.html,)浅谈塑料功能改性用各类纳米材料

一、纳米材料的特性

纳米是一种长度计量单位,1纳米为十亿分之一米(10-9m)。纳米材料是指粒径范围在1~100nm内的添加剂,此粒径范围处于原子簇和宏观物体交界的过渡区域,是一种典型的介观系统。当材料的粒子尺寸进入纳米范围时,就具有普通粒子尺寸所不具有的特殊性能。这是因为纳米粒子的尺寸与物质的许多特征长度相当,如电子的德布洛意波长、超导相干长度、铁磁性临界尺寸等,从而导致纳米材料的物理、化学特性既不同于微观结构的原子、分子,也不同于宏观结构的物体,其性能介于两者之间。

(一)纳米粒子的综合效应

纳米粒子的结构为数目较少的原子或分子组成的原子群或分子群。其表面原子是既无长程有序又无短程有序的非结晶层;而在粒子的内部,则存在着结晶完好、周期性排布的原子。正是纳米粒子的此种特殊结构类型,导致其具有如下几种特殊的性能。

1、体积效应

体积效应又称为小尺寸效应。当纳米粒子的尺寸小到与光波波长、德布洛意波长、超导的相干长度或透射深度等特性尺寸相当或更小时,其晶体周期性的边界条件将被破坏,表层非晶体附近的原子密度减少,导致材料的声、光、电、磁、热、催化等特性与普通材料相比,发生巨大变化。

2、表面效应

表面效应又称为界面效应,它是指纳米粒子表面原子与总原子数之比随粒径的减小而急剧增大,并且在同一纳米晶粒内还存在各种缺陷(如孪晶界、层错、位错等),甚至还有不同的亚稳相共存,这种特殊结构导致性能上的变化,并由此派生出传统固体不具有的许多特殊性能。

3、量子隧道效应

微观粒子具有贯穿势垒的能力称为量子隧道效应。纳米粒子的磁化强度等也具有量子隧道效应,它们可以宏观系统的势垒而产生变化。这是由于粒子尺寸减小,粒子内原子减少而造成的。

(二)纳米粒子的特性

纳米粒子的特性可从两方面进行分析:表面特性和内在特性。

纳米粒子的许多良好性能都与表面特性有关,如低密度、低流动速率、高吸附性、高混合性及弱压缩性能等。从物理性质上来说,是由于其比表面积大:纳米粒子的许多特性都与其比表面积大有关,由于其表面结构特殊,在纳米粒子的表面产生了原子表面层,而且粒子越小,原子表面层的厚度越大。原子表面层内并非“气体状”自由结构层,而是与粒子粒径、制备方法相联系的高度对称、低密度的不稳定结构层。从物化性质上来说,其表面能高,吸附作用强,难以均匀分散。尤其是物理方法制备的纳米粒子,机械能很容易转变为表面能,使粒子间产生集聚。

纳米粒子的内在特性主要表现在如下几个方面:反应活性增大、高催化性能、熔点降低、电阻增大、磁性增强、光吸收性能强、光发射性能强、光电性能优良、硬度与可塑性并重、以及高比热、高热膨胀性及高扩散性等性能。

二、常用纳米材料

从理论上讲任何材料都可以成为纳米材料,产业化的纳米材料多有化学合成法为主,用物理法的目前只有石墨烯。

(一)纳米无机填充材料

1、纳米粘土

粘土是一类硅酸盐材料的总称,具体包括蒙脱土(MMT)、凹凸棒粘土(TA)、伊利石、海泡石、水云母及蛋白石等,其中以蒙脱土最为常用。

①蒙脱土(MMT)

蒙脱土是一种天然矿物质材料,其主要成分为SiO2(含量72%)、(Al2O3含量14%),可以用于塑料的阻隔改性。蒙脱土具有亲水疏油性能,与大多数树脂的相容性都比较差,要与树脂形成良好的复合材料,首先要对其进行疏水亲油改性处理,以提高与树脂的相容性。利用蒙脱土的良好插层性能可以进行长链有机化合物的层插,大幅度提高与各类树脂的相容性,制造多种纳米塑料填充材料,同时改善复合材料的拉伸强度、弯曲强度、弯曲模量和冲击强度,这正是目前纳米材料的研究重点。目前,已成功开发出如PA6/蒙脱土、PET/蒙脱土、PMMA/蒙脱土、PI/蒙脱土、EP/蒙脱土、PS/蒙脱土等复合材料。

②凹凸棒粘土(AT或ATP)

凹凸棒粘土为纳米粘土的一个品种,是一种水合镁铝硅酸盐非金属矿物。凹凸棒石呈水晶链层状结构,但与蒙脱土的层状结构明显不同,凹凸棒石为一种天然纤维状晶体形态结构的含水富镁的铝硅酸盐矿,典型的分子式为Si8Mg5O20[Al](OH)2(OH2)4。4H2O。由于纳米级的晶棒很容易聚集,因此凹凸棒石与聚合物的混合只能是微米级的混合,起到增量填充的作用。凹凸棒石表面大量的硅羟基与非极性聚合物相容性差,填充前要进行表面处理。目前凹凸棒石在塑料中应用主要集中在PET和PA成核剂和隔热材料。

③伊利石

伊利石是一种含钾铝硅酸盐云母族粘土矿物,又称为“水白云母”,其化学结构式为KAl2[(Al,Si)Si3O10](OH)2。nH2O。伊利石的成份比较复杂,其具体组成在一定范围内变化,因而其应用受到一定限制。

伊利石粉作为片状增强填充料兼有增量和改性双重效果。以在PVC中填充为例,加入量在3份左右时,拉伸强度、冲击强度都达到最大值,而弯曲强度、弯曲模量和热变形温度在10份以前都缓慢增加。伊利石在增强增韧的同时,可改善塑料的尺寸稳定性、耐蠕变性、气体阻隔性、绝缘性和防止翘曲性。

④海泡石

海泡石为含水的镁硅酸盐,具有链状和层状纤维的过渡结构,属于2:1层链结构粘土。结构式为(Si12)(Mg8)O30(OH)4(OH2)4。8H2O,由硅氧四面体和镁氧八面体组成。海泡石作为针状增强填充料兼有增量和改性双重效果,这一点同伊利石相似。以在PVC中填充为例,加入量在3份左右时,拉伸强度、冲击强度都达到最大值,弯曲强度下降,而弯曲模量和热变形温度在10份以前都缓慢增加,尤其是弯曲模量增加较快。

⑤蛋白石

蛋白石又称为蛋白土,是一种含水非结晶或胶质的活性二氧化硅,其化学组成为SiO2nH2O。蛋白石的外观为致密的玻璃状块状体,颜色有白色、灰色和淡蓝色多孔状,相对密度2。07,属于比较轻的无机填充材料。

蛋白石在聚乙烯中填充具有明显的刚韧改性作用,例如钛酸酯偶联剂处理的3000目蛋白石在HDPE中加入30%,拉伸强度基本持平,而冲击强度提高160%。加入ABS中也可以明显改善冲击强度。

2、纳米氧化锌

纳米氧化锌(ZnO)粒径介于1-100nm之间,是一种面向21世纪的新型高功能精细无机产品,表现出许多特殊的性质如非迁移性、荧光性、压电性、吸收和散射紫外线能力等,利用其在光、电、磁、敏感等方面的奇妙性能,可制造气体传感器、荧光体、变阻器、图像记录材料、压电材料、压敏电阻、高效催化剂、磁性材料和塑料薄膜等。纳米氧化锌可以用做绝缘导热材料,与高价格的金属氮化物、碳化物复合使用。纳米氧化锌还是很好抗菌材料,抗菌效率可以达到98%以上。纳米氧化锌还是很好的紫外线遮蔽材料。

3、羟基磷灰石

羟基磷灰石(HA)组成为磷酸钙的氢氧化合物,分子式Ca10(PO4)6(OH)2。羟基磷灰石是脊椎动物骨骼和牙齿的主要组成,人的牙釉质中羟基磷灰石的含量在96%以上。羟基磷灰石具有优良的生物相容性,是人体骨骼组织主要成分,多应用于骨组织修复。在塑料用于生产仿骨材料时加入适量的羟基磷灰石:可以提高复合材料的力学性能,使之与人骨匹配;可以提高复合材料与人体的生理相容性,甚至与人体实现有机结合。

4、气凝胶

气凝胶是一种固体物质形态,目前是世界上已知密度最小的人造物质,其固体相对密度可以低到0。003,素有“固体烟雾”的美称。气凝胶是一种新型轻质纳米多空性固体材料,被认为是目前最轻质、隔热性最好的固体新材料,为透明隔热材料。除了具有优秀的隔热性能外,还具有隔音、减震的性能,具有其它隔热材料不可比拟的性能,以用于光学器件、超级电容等领域。气凝胶的隔热包含三种热量传递机理,即热辐射、热对流和热传导,是一种适应面广泛的隔热材料。

5、纳米碳酸钙

纳米碳酸钙属于轻质碳酸钙的一种,是在生产轻质碳酸钙碳化的过程中通过控制碳化工艺条件和添加结晶导向剂控制而得到的。不同形状纳米碳酸钙的用途不同,针状和链状纳米碳酸钙可以实现补强目的,球形纳米碳酸钙可以实现增韧的目的,空芯球形纳米碳酸钙可以实现轻量化填充的目的,片状纳米碳酸钙可以提高复合材料的阻隔性,还可以利用其高遮盖力代替部分钛白粉。

6、纳米二氧化硅

纳米二氧化硅就是气相二氧化硅,是极其重要的高科技超微细无机新材料之一,由于其粒径很小,因此比表面积大、表面吸附力强、表面能大、化学纯度高、分散性能好以及在热阻和电阻等方面均具有优异的性能,以其优越的稳定性、补强性、增稠性和触变性,在众多学科及领域内独具特性,有着不可取代的作用。在塑料中,白炭黑是一种补强作用仅次于炭黑的填料,常用于和塑料形成复合塑料,加入量为3%~5%,并能提高复合塑料的性能。尤其是用白炭黑填充硅胶,是典型的增强复合材料。在PP/二氧化硅复合体系中,冲击强度可以达到3。7kJ/m2。用PP/二氧化硅复合材料进行微发泡,冲击强度可以达45。7kJ/m2。

(二)纳米碳类材料

1、石墨烯

石墨烯为碳的一种新的同素异构体,截止到目前已开发的各类碳材料的不同同素异构体如表1所示。

表1不同碳类材料结构介绍

石墨烯(Graphene)是一种由碳原子构成的单层片状结构的新材料。是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的平面薄膜,只有一个碳原子厚度的二维材料。传统的机械剥离法和氧化还原法生产的石墨烯是由石墨分离而来的。目前人们已经开发出很多种不用石墨为原料生产石墨烯的方法,主要有机械剥离法、氧化还原法、化学气相沉积法、溶剂法、溶液法等,大都已开始进行商业化生产。

基于它的化学结构,石墨烯具有许多独特的物理化学性质,如高比表面积、高导电性、高导热性、高阻隔性、高热稳定性、高磁性、高机械强度、透光性优良,且易于修饰及大规模生产等。目前制约石墨烯应用的最大瓶颈为分散性,为例提高其在聚合物中的分散性,常采用如下方法:混合添加,片状/球状复合混合利于分散;表面处理(表面接枝处理、表面等离子体处理、表面活性剂处理、表面硅烷偶联剂处理);添加相容剂,添加马来酸酐等功能官能团介质聚合物材料,可以有效提高与树脂的相容性。

目前制约石墨烯发展的两个痛点:一个是分散问题,目前只是在液体中分散问题基本解决,而在固体中进展缓慢,只是见到如前述的实验室报道;另一个是价格问题,目前石墨烯的价格很高,应用在普通塑料改性中难以承受。

2、碳纳米管

碳纳米管的英文名称为Carbonnantube,简称为CNTs,它是在一定条件下大量碳原子聚集在一起形成的同轴空心管状结构材料,径向尺寸为纳米级,轴向尺寸为微米级。虽然碳纳米管也属于碳材料家族中的同素异构体成员,但由于其作为一种由六边形结构完美连接的一维量子材料,具有十分优异力学、电学和化学性能。按结构不同,可以将碳纳米管以分成单壁和多壁两大类,目前应用的以单壁碳纳米管为主。

表2不同高强度材料性能比较

碳纳米管为黑色无味粉末,相对密度2。1,熔点3652-3687℃,其主要特性如下:

①高强度

碳纳米管是一种理想的一维模型材料,巨大的长径比使其具有类似碳纤维的性能,即高强度、高模量。其重量为钢的1/6,强度为钢的100倍,比强度为钢的600倍,具体见表2所示。

②高导电性能

碳纳米管上碳原子的P电子形成大范围的离域π键,由于共轭效应显著,碳纳米管具有很好的电学性能,其体积电阻率为0。09Ω。cm。理论预测其导电性能取决于其管径和管壁的螺旋角。当CNTs的管径大于6nm时,导电性能下降;当管径小于6nm时,CNTs可以被看成具有良好导电性能的一维量子导线。有报道说Huang通过计算认为直径为0。7nm的碳纳米管具有超导性,尽管其超导转变温度只有1。5×10-4K,但是预示着碳纳米管在超导领域的应用前景。

③高导热

碳纳米管具有良好的传热性能,CNTs具有非常大的长径比,因而其沿着长度方向的热交换性能很高,相对的其垂直方向的热交换性能较低,通过合适的取向,碳纳米管可以合成高各向异性的热传导材料。另外,碳纳米管有着较高的热导率,只要在复合材料中掺杂微量的碳纳米管,该复合材料的热导率将会可能得到很大的改善碳纳米管的导电和导热性能具体见表3所示。

表3碳纳米管的导电和导热性能

④其他性能

碳纳米管还具有光学和储氢等其他良好的性能,正是这些优良的性质使得碳纳米管被认为是理想的聚合物复合材料的增强材料,尤其是在氢燃料电池汽车中应用潜能巨大。

碳纳米开发多年来,因与聚合物的分散性没有解决,应用一直不广泛。近年来,碳纳米管的分散性问题得到解决,加之加工大幅度下降到每公斤百元级别,使得其应用如井喷式突破。例如,采用溶液共混超声波分散法在PMMA中加入4%的碳纳米管(用PVDF 表面改性),电导率为0。01S/cm,拉伸强度为80MPa,冲击强度为24。2kJ/m2。

三、纳米金属材料

近年来,开发出先进的纳米银、纳米铜纤维,广泛用于柔性透明导电高分子薄膜的制造,成为OLED中不可缺少的正极材料。

1、纳米银线

纳米银线是一种直径在纳米范围(一般在20-100纳米之间)、长度没有限制的金属银一维纤维。纳米银线具有体积小、比表面积大、良好化学性能和催性能、导电性能、抗菌性能和生理相容性,具体如表4所示。纳米银线的生产方法有:模板辅助、多元醇、光波辐射、软化学溶剂热等,多元醇法由于操作简单、生产效率高、成本低廉成为当前主流生产方法,缺点是产品浓度低。例如纳米银线可以生产透明柔软塑料导电膜,具体结构为基材为PET薄膜,涂覆层为纳米银线分散液,表层为丙烯酸保护涂层。基材为支撑层,中间涂层为透明导电层,保护层为保护银不被氧化降低导电性能,主要替代ITO 和金属网透明导电薄膜。

表4三种透明导电薄膜性能比较

2、纳米铜线

尺寸为直径150±50nm,长度10μm。具有高导电性能、降低摩擦、透明添加、耐磨损等性能,用于透明触摸屏薄膜、导电和抗静电涂料、粘合剂和油墨、自润滑聚合物增强复合材料。

结语

随着材料及物理等学科的快速发展,纳米粒子添加已成为一种塑料改性的优良方法,但塑料发展之路任重道远,还需业界同仁继续努力,以期利用纳米粒子加强改性塑料性能,为塑料开发更多新型应用领域。

本文摘自变宝网-废金属_废塑料_废纸_废品回收_再生资源B2B交易平台网站;

变宝网官网:https://www.docsj.com/doc/f415740718.html,/?qxb

买卖废品废料,再生料就上变宝网,什么废料都有!

2020年改性塑料行业分析报告

2020年改性塑料行业 分析报告 2020年1月

目录 一、行业与产品分析 (4) 1、改性塑料行业:快速发展 (4) (1)改性塑料行业简介 (4) (2)改性塑料主要发展方向 (5) 2、改性塑料产业链 (6) (1)我国塑料改性改性比率 (7) (2)塑钢比一直在提高 (8) (3)改性塑料行业需求与经济发展密切相关 (9) 3、改性塑料行业竞争结构分析:金发科技领先与细分领域的垄断竞争 (9) (1)竞争结构:金发科技领先与细分领域的垄断竞争 (10) (2)各细分行业盈利情况 (10) 4、汽车改性塑料行业:进口替代空间巨大 (11) (1)我国汽车改性塑料增长空间较大:2013年汽车改性塑料需求量会增长到320万吨 (13) (2)汽车改性塑料市场结构:外资天下,内资垄断竞争 (16) 5、特种工程塑料:热致性液晶高分子聚合物(TLCP) (18) (1)LCP简介:一种高性能工程塑料 (18) (2)特种工程塑料行业:代表发展方向 (19) (3)应用与市场空间:PPS量大,PEEK价值最高,LCP市场规模居中 (21) 二、标杆分析:普利特 (24) 1、公司简介 (24) (1)普利特简介:汽车改性塑料领先企业 (24) (2)股权结构:自然人实际控股 (24) (3)限售股解禁情况:短期限售压力一般 (25)

2、公司盈利路线 (26) (1)公司三大产品链 (26) (2)产能与产量统计 (26) (3)公司收入与盈利结构 (27) 3、公司发展战略:改性塑料做强、跨区域发展与新材料三条腿走路 (27) (1)汽车改性塑料主业:做强与做高毛利市场 (28) (2)重庆项目:通讯电子材料与跨区域发展 (28) (3)新材料TLCP:规划产能达13000吨 (29) 4、盈利预测 (29) 5、投资建议 (30) 6、风险因素 (31)

纳米技术在高分子材料改性中的应用

纳米技术在高分子材料改性中的应用 (南通大学化学化工学院高分子材料与工程132 朱梦成1308052064 ) [摘要] 纳米材料及其技术是随着科技发展而形成的新型应用技术。纳米材料的研究是从金属粉末、陶瓷等领域开始的,现已在微电子、冶金、化工、电子、国防、核技术、航天、医学和生物工程等领域得到广泛的应用。近年来将纳米材料分散于聚合物中以提高高分子材料性能的研究也日益活跃,并取得了许多可观的成果。 [关键词] 纳米技术;高分子材料;改性;应用 1纳米粒子的特性及其对纳米复合材料的性能影响 1.1纳米粒子的特性 纳米粒子按成分分可以是金属,也可以是非金属,包括无机物和有机高分子等;按相结构分可以是单相,也可以是多相;根据原子排列的对称性和有序程度,有晶态、非晶态、准晶态。由于颗粒尺寸进入纳米量级后,其结构与常规材料相比发生了很大的变化,使其在催化、光电、磁性、热、力学等方面表现出许多奇异的物理和化学性能,具有许多重要的应用价值。 1.1.1表面与界面效应 纳米微粒比表面积大,位于表面的原子占相当大的比例,表面能高。由于表面原子缺少邻近配位的原子和具有高的表面能,使得表面原子具有很大的化学活性,从而使纳米粒子表现出强烈的表面效应。利用纳米材料的这种特点,能与某些大分子发生键合作用,提高分子间的键合力,从而使添加纳米材料的复合材料的强度、韧性大幅度提高。 1.1.2小尺寸效应 当超细微粒的尺寸与传导电子的德布罗意波长相当或更小时,晶体周期性的边界条件将被破坏,导致其磁性、光吸收、热、化学活性、催化性及熔点等发生变化。如银的熔点为900℃,而纳米银粉的熔点仅为100℃(一般纳米材料的熔点为其原来块体材料的30%~50%)。应用于高分子材料改性,利用纳米材料的高流动性和小尺寸效应,可使纳米复合材料的延展性提高,摩擦系数减小,材料表面光洁度

改性塑料调研报告

改性塑料调研报告 一、概述 所谓改性塑料,是指通用塑料经过填充、共混、增强等方法加工,从而使它们具有阻燃、高抗冲等性能,它具有取代钢铁的功能。几乎所有塑料的性能都可通过改性方法得到改善。 改性塑料产品主要分为三大类, 一类是以粉体材料为主要原料 的填充改性塑料产品, 包括活性粉体、填充母料和粉体材料占20%-- 30%的改性塑料专用料;另一类是以不同类别的高分子材料经过共混制成的塑料合金专用料, 如ABS/聚碳酸酯( PC)合金、PA/ABS 合金、聚丙烯( PP)/PA 合金等; 第三类是为达到电、光、热、燃烧等方面的功能性, 综合使用功能性填料和不同类别的高分子材料, 以及适 量的相容剂、增韧剂而制成的功能性专用料, 如阻燃ABS、无卤阻燃PP、汽车保险杠、仪表板专用料等。三大类改性塑料产品的年总产量已超过3000kt , 三大类产品所占比例分别为50%、35% 和15%左右, 即1600kt、1000kt 和600kt左右。 行业内认为的改性塑料包括通用塑料中的PP、ABS、PS,工程塑料中的通用工程塑料(PC、PA、PBT、PPO 和POM)的树脂改性。经过改性以后,塑料的外观、透明性、密度、精度、加工性、机械性能、化学性能、电磁性能、耐腐蚀性能、耐老化性、耐磨性、硬度、热性能、阻燃性、阻隔性等某些方面有所改善或提高。 二、生产情况 根据2010 年中国改性塑料行业十佳企业评选活动中各改性塑料企业上报的数据分析, 全国已有以改性塑料产品为主营业务的企业近1000 家, 就业人数达十几万人,多数年产量在3000吨左右,超过3000吨的接近50家,万吨以上的屈指可数,而超过10万吨的仅

粉体表面改性复习要点(精简版)

第2章 纳米粉体的分散 1.粉体分散的三个阶段(名词解释) 润湿 是将粉体缓慢加入混合体系形成的漩涡,使吸附在粉体表面的空气或其它杂质被液体取代的过程。 ?解团聚 是指通过机械或超声等方法,使较大粒径的聚集体分散为较小颗粒。 ?稳定化 是指保证粉体颗粒在液体中保持长期的均匀分散 2.常用的分散剂种类 (1)表面活性剂 空间位阻效应 (2)小分子量无机电解质或无机聚合物 吸附--提高颗粒表面电势 (3)聚合物类(应用最多) 空间位阻效应、静电效应 (4)偶联剂类 3.聚电解质(名词解释) 是指在高分子链上带有羧基或磺酸基等可离解基团的水溶性高分子 4.对不同pH 值下PAA 在ZrO 2表面的吸附构型进行分析。 图.不同pH 值下PAA 在ZrO 2 表 面的吸附构型 a.当pH<4时,PAA 几乎不解离,以线团方式存在于固液界面上,吸附层很薄,几乎无位阻作用 δ δδ

b.随pH值增加,链节间静电斥力使其伸展开 c.ZrO2表面电荷减小直至由正变负,PAA的负电荷量增加,其间斥力增加, 使得PAA链更加伸展,可在较远范围提供静电位阻作用 5.用聚电解质分散剂分散纳米粉体时,影响浆料稳定性的各种因素有哪些? 1、聚电解质的分子量 当聚电解质分子量过小,在粉体表面的吸附较弱,吸附层也较薄,影响位阻作用的发挥。 分子量过大,易发生桥连或空位絮凝,使团聚加重,粘度增加。 2、分散剂用量 适宜的分散剂用量才可以使分散体系稳定。 用量过低,粉体表面产生不同带电区域,相邻颗粒因静电引力发生吸引,导致絮凝。 用量过高,离子强度过高,压缩双电层,减小静电斥力;同时,还易发生桥连或空缺絮凝,稳定性下降。 3、温度 研究表明,为了获得较好的分散效果(以最低粘度为衡量标准),随温度的升高,所需分散剂的用量随之增加 6.结合下图,分析煅烧为什么能够改善纳米Si3N4粉体的分散性? 煅烧改善纳米Si3N4粉体的可分散性 ?此前提到,球磨可有效降低粉体的粒度。但球磨过程可能造成分散介质与粉体发生化学反应。 ?以乙醇为介质球磨Si3N4粉体时,表面的Si-OH可能与乙醇反应生成酯。 ?酯基的生成对粉体的分散性影响很大: a、酯基是疏水基团 b、屏蔽负电荷,影响分散剂的吸附 ?采取煅烧去除酯基,可改善其分散性 第3章纳米粉体表面改性(功能化) 1.表面改性有哪些重要应用? 改善纳米粉体的润湿和附着特性。 改善纳米粉体在基体中的分散行为,提高其催化性能。 改善粉体与基体的界面结合能等。 2.纳米粉体的表面改性方法? 气相沉积法 机械球磨法 高能量法

改性塑料分析 产品与行业分析

?第一部分改性塑料行业研究...... ... ......... ...... (2) ?改性塑料概述... ... ... ... ... ...... ... ... ... ... ... ...... ...... (4) ?改性塑料应用广泛,发展迅速... ...... ... ...... ... (6) ?改性塑料行业的行业竞争情况......... ...... ... ...... ... (9) ?影响改性塑料行业发展的有利和不利因素... ... (13) ?改性塑料未来行业发展趋势.................. ...... ...... (15) ? ?第二部分相关上市公司介绍... ... ......... ...... ......... (19) ?(一)、改性塑料定义 改性塑料是指将通用高分子树脂通过物理的、化学的或两者兼有的方法,引入特定的添加剂,或改变树脂分子链结构,或形成互穿网络结构,或形成海岛结构等所获得的高分子树脂新材料。 ?(二)、改性塑料行业概况简介 ?(三)、主管部门及国家相关政策 改性塑料应用广泛,发展迅速 (一)、改性塑料是一种性能较优越的高分子树脂新材料 (二) 、中国已成为全球高分子改性塑料生产、消费大国之一 2009-2012 年世界改性塑料产量增长趋势2009 年-2012 年我国改性塑料产量增长趋势

3)、改性塑料行业下游应用广阔,市场需求快速增长,主要应用在以下几个领域: (一)、改性塑料行业的国内外市场状况: 主要跨国企业

国内主要生产改性塑料企业 (二)、改性塑料行业竞争特点 ?1、原材料成本决定比较优势 ?2、竞争关键在于改性技术配方 ?3、发展潜力与科研水平紧密联系 ?4、生产企业需对市场变化作出快速反应 ?5、须对客户提供全方位的服务 (三)、投入与产出 (四)、技术水平 (五)、行业发展趋势 ?1、高性能、高附加值产品成为市场发展的主导 ?2、改性塑料产品的应用领域进一步拓宽 ?3、功能型改性塑料迅速发展四、环保新材料的可降解塑料、高温尼龙、阻燃剂、碳纤维等领衔新材料,发展潜力大。

改性塑料市场前景评估分析

基于汽车行业改性塑料市场前景分析 目录 一、改性塑料行业的基本情况 (2) (一)行业管理情况 (2) (二)改性塑料简介 (3) (三)行业的技术水平及特点 (3) (四)行业生产特点 (3) (五)行业与上下游行业间的关联性 (4) (六)进入行业的主要壁垒 (4) 二、车用改性塑料行业竞争情况 (5) (一)行业的竞争格局及市场化程度 (5) (二)车用改性塑料的市场空间 (6) 三、车用改性塑料行业的主要经营特点 (7) 四、影响行业发展的有利因素和不利因素 (8)

安格特集团是一家专门从事高分子改性材料、无卤阻燃新技术研发、制造与销售的高新技术企业。安格特集团的主要产品为改性PP、改性HIPS、改性ABS、改性PC、改性PA、改性PPO、改性POM低烟无卤阻燃料等系列产品,主要应用于汽车、轨道交通、新能源、电子电气等领域。 依靠公司的技术研发实力和管理理念,安格特集团公司先后通过了ISO9001质量管理体系、ISO14001环境管理体系、ISO/TS16949体系认证。在集团内部成功推行ROHS管理体系,生产的相关产品拥有美国UL证书、德国TUV证书及世界通标SGS的检测确认,拥有了进入美国、欧盟市场的资质。公司生产的产品也先后通过了神龙汽车、东风伟世通、长春富维江森等汽车厂商和配件厂商的检测,拥有东风汽车、长春一汽等汽车厂商的准入资质,目前已经开始小批量供货。 一、改性塑料行业的基本情况 (一)行业管理情况 1、行业的主管部门及管理体制 改性塑料行业是塑料加工工业(行业代码:C29)的子行业,属于国家重点发展的新材料科技领域。塑料加工行业的行政主管部门是国家发展与改革委员会、工业和信息化部、科学技术部等部委。目前行政主管部门主要负责行业发展规划的研究、产业政策的制定和调整,中国塑料加工工业协会负责塑料行业的具体管理。 2、行业的法律法规及管理体制 改性塑料行业是我国重点支持的行业,近年来国家已经将其作为优先发展的重点领域,并制定了一系列扶持政策。 1997年、1999年,在中共中央、国务院、国家经贸委、国家计委下发的文件中,确定了“工程塑料生产技术及其装备和通用塑料高性能化”是我国今后几年高新技术发展的重点,并规定符合文件要求的产业化项目,可享受国家在项目资本金、进口设备减免税、贷款贴息、风险补助、开发资金投入等方面给予建设高新技术产业的优惠待遇。 2007年1月,国家发改委、科技部、商务部、国家知识产权局联合修订发布的《当前优先发展的高技术产业化重点领域指南(2007年度)》指出:“通用塑料(PP、PE、ABS、PS、PVC 等)的改性技术是当前高分子材料重点领域优先发展的高技术产业化项目。” 2010年10月,国务院办公厅发布的《关于加快培育和发展战略性新兴产业的决定》提出“积极发展高品质特殊钢、新型合金材料、工程塑料等先进结构材料,提升碳纤维、芳纶、超高分子量聚乙烯纤维等高性能纤维及其复合材料发展水平。” 2011年,国家发改委发布《产业结构调整指导目录(2011年本)》,目录指出:工程塑料生产以及共混改性、合金化技术开发和应用是当前国家鼓励发展的产业。 2012年01月04日,工业和信息化部根据《中华人民共和国国民经济和社会发展第十二个五年规划纲要》和《国务院关于加快培育和发展战略性新兴产业的决定》组织制定了《新材料产业——十二五发展规划》。《规划》在“区域布局”中指出要有序建设重点新材料产业基地,其中要重点建设江苏苏东、上海、河南平顶山工程塑料生产基地及广东改性材料加工基地。

2017年热塑性弹性体改性塑料行业分析报告

2017年热塑性弹性体改性塑料行业分析报告 2017年5月

目录 一、行业发展状况 (4) 1、热塑性弹性体(TPE) (4) 2、改性塑料 (5) 二、行业管理 (6) 1、行业主管部门 (6) 2、行业政策 (7) 三、行业上下游的关系 (8) 1、上游行业 (9) 2、下游行业 (9) 四、行业壁垒 (10) 1、技术壁垒 (10) 2、市场壁垒 (11) 3、资本壁垒 (11) 五、行业特点 (12) 1、行业周期性特征 (12) 2、具有明显的客户锁定效应 (12) 3、专业化开发和服务要求高 (13) 六、行业市场规模与发展趋势 (14) 1、市场规模 (14) (1)热塑性弹性体 (14) (2)改性塑料 (15) 2、发展趋势 (16) 七、行业风险特征 (17) 1、原材料价格波动风险 (17) 2、技术人员流失和技术泄密风险 (17)

3、市场竞争加剧风险 (18) 八、行业竞争格局 (18) 1、金发科技股份有限公司 (18) 2、广东银禧科技股份有限公司 (18) 3、深圳市富恒新材料股份有限公司 (19) 4、广东顺德顺炎新材料股份有限公司 (19)

一、行业发展状况 我国是世界高分子合成材料生产大国,以各类基础聚合物计,三大合成材料(合成树脂、合成橡胶、合成纤维)生产总规模已居世界首位;合成材料的成型加工总能力也已多年位居世界第一。 高分子材料是分子量极大的一类化合物构成的材料。高分子材料包括塑料、橡胶、纤维、胶粘剂及涂料等,其为石化基本原料所生产的石化中间原料合成,并可作为下游塑料、橡胶、树脂、纺织等制品产业的原料,因此其应用非常广泛,汽车、电子电器、纺织、建筑、医疗等日常生活所需的各行各业都需要用到高分子材料。 1、热塑性弹性体(TPE) 热塑性弹性体(Thermoplastic Elastomer)是一种既具有橡胶的特性(高弹性、压缩永久变形等),又有塑料加工特征(工艺简单)的环保低碳性高分子复合材料。 热塑性弹性体是新材料产业“十二五”重点产品,不但能够从根本上解决传统热固性橡胶难以回收再利用的问题,缓解石油资源危机和实现可持续发展的目标,还能够从很大程度上实现节能的目的。 自上世纪60年代,有远见的科学家就提出了热塑性弹性体的概念,并将热塑性弹性体称为“第三代橡胶”,期望制造出使用时是高弹橡胶态,但加工时是塑料态、并且无需硫化的高分子材料。这样的高分子材料不但能解决传统热固性橡胶难于回收再利用的问题,缓解石

纳米材料改性水性聚氨酯的研究进展

纳米材料改性水性聚氨酯的研究进展 综述了纳米材料改性水性聚氨酯几种常用方法的特点和研究进展,指出了纳米材料改性水性聚氨酯存在的问题。 标签:水性聚氨酯(WPU);纳米材料;方法;改性 1 前言 近年来,随着人们环保意识的增强,水性聚氨酯(WPU)受到越来越多学者的关注。WPU是以水为分散介质的二元胶态体系,具有不污染环境、VOC(有机挥发物)排放量低、机械性能优良和易改性等优点,使其在胶粘剂、涂料、皮革涂饰、造纸和油墨等行业中得到广泛应用[1~4]。但在制备WPU过程中由于引入亲水基团(如-OH、-COOH等),因此存在固含量低,耐水性、耐热性和耐老化性差等缺陷,从而限制了其应用范围。 纳米材料具有小尺寸效应、表面效应、量子尺寸效应及宏观量子隧道效应等特殊性质,为各种材料的改性开辟了崭新的途径。通过纳米材料改性的WPU,其成膜性、耐水性和耐磨性等性能均得到显著提高[5]。 2 纳米材料改性WPU的方法 2.1 共混法 共混法即纳米粒子在WPU中直接分散。首先是合成各种形态的纳米粒子,再通过机械混合的方法将纳米粒子加入到WPU中。但在该方法中,由于纳米粒子颗粒比表面积大,极易团聚。为防止纳米粒子团聚,科研工作者对纳米材料进行表面改性来提高其分散性,改善聚合物表面结构以提高其相容性。 李莉[6]等利用接枝改性后的纳米SiO2和TiO2与WPU共混,制备了纳米材料改性水性WPU乳液。研究发现,纳米粒子在乳液中分散均匀,无团聚现象;改性后的WPU乳液力学性能比未改性前得到改善和提高;当纳米粒子添加量为0.5%时,WPU乳液的力学性能最佳,吸水性降低了70%,添加的纳米粒子对波长290~400 nm的紫外光有吸收。 李文倩[7]等采用硅烷偶联剂(KH560)对纳米SiO2溶胶进行表面改性,然后将其与WPU共混制备出了WPU/SiO2复合乳液,考查了改性纳米溶胶含量对复合乳液及其涂膜性能的影响。结果表明,当纳米SiO2/KH560物质的量比为6:1时,改性后的纳米SiO2溶胶的粒径最小且分布较均一。KH560的加入使纳米SiO2粒子更均匀地分散在聚氨酯乳液中,且SiO2粒子与聚氨酯乳液之间存在一定键合作用,使涂层的耐热性得到显著增强。当改性SiO2溶胶添加量为5%~10%时,涂膜的硬度、耐磨性、耐划伤性、耐水性等性能明显提高。

聚乙烯的改性分析

聚乙烯的改性 聚乙烯虽然具有优良的电性能、机械性能和加工性能,但是它也有一些缺点,如软化点低,强度不高,耐大气老化性差,易应力开裂,不易染色及印刷等。为了进一步拓宽聚乙烯的应用领域,克腿这些缺点,可以采用聚乙烯改性来达到。 聚乙烯的改牲主要分为化学改性和物理改性。化学改性又分为接枝共聚改性、嵌段共聚改性、化学及辐射交联改性等;物理改性分为共混改性、填充改性(包括增强改性等)。 聚乙烯的化学交联主要是在聚乙烯树脂中加人有机化合物(常用过氧化二异丙苯)作为交联剂,然后在压力和175~200℃的温度下交联。 接枝聚合是最常用的改性聚合方法。所谓接校共聚反应是在聚乙烯的主链上将作为支链的不同种高分子结合上去的一种反应。当然也有采用过氧化物、放射辐照或其他有关方法进行反应。接枝方式的共聚合反应可以获得良好的混合状态,其分散界面是以化学方式结合在一起,具有良好的机械性能。同时又因为聚乙烯本身是无极性材料,和其他材料亲和性不好,如将具有极性的单体以接枝共聚合反应结合至聚乙烯分子主链上时则会增大这种亲和性,由此使可以改善其粘接性、印刷性、染色性等性能。例如,聚乙烯接枝丙烯酸单体所得产品则会改善其在铝箔上的粘合性;加入丁二烯单体接枝共聚合反应的制品,可以提高耐热性、耐应力开裂性。 聚乙烯的共混改性是聚乙烯与其他高聚物等物质进行共混,用挤出机、辊炼机等设备而制成新材料。共混过程中往往包含化学接枝或交联反应,以提高共混的改性效果。 聚乙烯的填充改性是在聚乙烯的成型加工过程中加入无机或有机填料,不仅能使制品价格大大降低,而且能显著改善材料的机械强度、耐摩擦性能、热性能及耐老化性能等,并改善聚乙烯的易膨胀性及易蠕变性等,所以填料既有增量作用,又有改性效果。常用的无机填料有碳酸钙(包括轻质碳酸钙和重质碳酸钙)、滑石粉、云母、高岭土、二氧化硅、硅藻土、硅灰石、炭黑等。 此外,聚乙烯可加人脂肪酸酰胺作表面润滑剂,以减少薄膜的粘附性;加入0.5%~2%的聚丙烯可提高其透明性;表面用电子冲击(使其表面氧化)处理,可改善其印刷性能。 1.交联聚乙烯 交联聚乙烯分为有机过氧化物交联聚乙烯、有机硅交联和辐照交联聚乙烯。 (1)有机过氧化物交联聚乙烯 结构式: 制法有机过氧化物交联聚乙烯是聚乙烯以有机过氧化物作为交联剂,在热的作用下分解而生成高度活泼的游离基。这些游离基使聚合物碳链上生成活性点,并产生碳-碳交联,形成交联聚乙烯。所用的有机过氧化物有过氧化二异丙苯、过氧化二叔丁基和2,5-二叔丁基-2,5-二甲基过氧化己烷等。根据被交联的聚乙烯品种和交联工艺设备的不同而选用不同的过氧化物。通常交联低密度聚乙烯时,采用在132℃时能起反应的过氧化二异丙苯;在交联高度填充的低密度聚乙烯和高密度聚乙烯时,可采用能在144℃下加工的2,5-二叔丁基-2,5-二甲基过氧化己烷作交联剂。将聚乙烯与合适的有机过氧化物、炭黑及其他无机填料等添加剂混合在一起,经混炼造粒后,用适宜的成型工艺将它加工成制品。然后再将制品经过一段时间的加热处理,使之发生交联,即可制得交联聚乙烯制品。此外,当采用压缩成型时,交联和成型可一步完成。 物化性质有机过氧化物交联聚乙烯结构上与热塑性塑料、热固性树脂和硫化橡胶都不同,它有体型结构却不是完全交联,交联区域很小,不像硫化橡胶那样有很大的交联网,因此在性能上它兼有三者的特点,即同时具有热可塑性、硬度、良好的耐溶剂性,高弹性和优良的耐低温性。无论是高密度聚乙烯还是低密度聚乙烯,通过交联后,其拉伸强度、耐热性、防老化性和耐候性、尺寸稳定性、耐应力开裂性,耐磨性和耐溶剂性均有提高,且耐蠕变性

改性塑料市场分析及大型厂家名称

改性塑料属于石油化工产品供应链中的一环,处在直接使用顾客和材料供应商之间,是材料供应链的最末端。近10年来,中国改性塑料行业随着国民经济的稳定健康发展而实现了跨越式发展,连续十年经济技术指标稳步大幅递增,全行业不断发展壮大,已成为中国国民经济持续繁荣的重要产业之一。中国改性塑料行业技术创新能力得到进一步增强,企业技术研发中心数量不断增多,已构建成若干个区域性高新技术产业群。产业结构、企业结构和产品结构不断调整,产业集约度逐步升级,改性塑料行业的整体优势得到进一步提升和加强,与国际上发达国家的差距正在逐渐缩小,某些方面已达到世界先进水平。 一、中国改性塑料行业的几个特点 在加工设备、改性技术不断发展成熟的今天,我国改性塑料工业体系也得到了逐步的完善。我国改性塑料产业发展呈现六大显著特点。 一是通用塑料工程化。尽管工程塑料新品种不断增加,应用领域也在不断拓展,并且由于生产装置的扩大,使得成本逐渐降低,但目前工程塑料的市场价格仍然远远高于通用塑料的价格,在产量上也远低于通用塑料。随着改性设备的发展、改性技术的进步,通用塑料如聚丙烯(PP)、丙烯腈-丁二烯-苯乙烯嵌段共聚物(ABS)等通过改性提升了强度,耐热性等性能指标,具备了某些工程塑料的特性,但价格却具有显著的优势,因此能够抢占部分传统工程塑料的应用市场。 二是工程塑料高性能化。随着国内汽车、电气、电子、通讯和机械工业的蓬勃发展,对现有的工程塑料品种如聚碳酸酯(PC)、尼龙(PA)、聚酯(PBT和PET)、聚苯醚(PPO)等提出了更高的性能要求,如用做节能灯底座的塑料要求耐高温、耐黄变,用做芯片托盘的塑料要求耐挠曲、抗静电,用做电子接插件的塑料要求高阻燃、高耐热、高流动,用做机械齿轮的塑料要求耐磨、高刚性、高尺寸稳定性等。 三是特种工程塑料低成本化。在150℃以上条件下能长期使用的塑料称为特种工程塑料。像聚苯硫醚(PPS)、聚酰亚胺(PIM)、聚醚醚酮(PEEK)、聚砜(PSF)等特种工程塑料,由于具有电性能好、耐高温和尺寸稳定等特性,有的还具有很好的阻燃性、耐放射性、耐化学性和机械性能,因此在电子电器、汽车、仪表、家电、航空、涂料行业、石油化工以及火箭、宇航等尖端科技领域具有越来越重要的应用。但特种工程塑料的市场价格往往是普通工程塑料价格的好几倍,在军工产品上尚能接受,用于民用产品,则需要既保持其高性能,又要有相对较低的价格。 四是纳米复合材料技术给改性塑料带来新机遇。纳米技术是20世纪90年代发展起来的新技术,利用纳米技术改性后的塑料具有很多独特性能,如用5%的有机蒙脱土改性的尼龙6(PA6)的热变形温度可以提高1.5倍,PET中加入纳米粘土后大幅降低材料的气体透过率,比纯PET的氧透过率小100倍。纳米塑料的无机纳米粒子加入量较小,一般为2%~5%,仅为通常无机填料改性时加入量的10%左右,因而复合材料的密度与原来树脂相比几乎不变或增加很小。因此,不会因密度增加过多而增加下游塑料加工厂的成本,也没有因填料过多导致其他性能下降的弊病。由于纳米粒子尺寸小,因此成型加工和回收时几乎不发生断裂破损,具有良好的可回收性。 五是改性塑料的环保意识越加凸显。随着全球环保意识的日益加强,人们对塑料制品的阻燃要求越来越高,无卤、低烟、低毒的环保型阻燃剂已成为人们追求的目标。目前国内塑料改

纳米粒子表面与界面改性

纳米粒子表面改性 摘要:本文介绍了纳米粒子的表面改性原理,对几种纳米粒子ZnO纳米粒子、Fe3O4纳米粒子、SiO2纳米粒子的表面改性方法进行了总结。 关键字:纳米材料;表面改性剂;改性机理 1 前言 在制备纳米材料的过程中,由于纳米粒子比表面积大,表面能高,纳米粒子很容易团聚;另一方面,纳米粒子与表面能比较低的基体的亲和性差,二者在相互混合时不能相溶,导致界面出现空隙,存在相分离现象。只有对纳米粒子在材料中的团聚问题解决得好,纳米粒子的特殊效应才会在材料中得到很好的体现,最终使材料的力学、光学、热学等方面的性能都有较大的提高[1]。 所谓纳米粒子的表面改性就是让纳米粒子表面与表面改性剂发生作用,以改善纳米粒子表面的可润湿性,增强纳米粒子在介质中的界面形容性,使纳米粒子容易在有机化合物或是水中分散。选用特殊的表面改性剂可以使纳米粒子获得特殊的性质。 2 表面改性剂 表面改性剂可以是无机化合物,比如通常采用Al2O3,SiO2,ZnO作为改性剂对纳米TiO2进行表面改性。经过处理后的锐钛矿型TiO2具有较强的紫外吸收能力,可安全地应用到化妆品、造纸、涂料等领域。用氟化物改性α-Al2O3,可制得分散均匀、平均粒径<50nm的氧化铝粉。 也可以是有机化合物,特别是聚合物。实际上有机化合物是主要的纳米粒子改性剂。上面提到在溶胶-凝胶法制备纳米SiO2过程中,用聚合物为表面活性剂对粒子进行改性的过程。实际上,聚合物对纳米粒子表面改性就是以聚合物网络稳定纳米粒子。在聚合物网络中引入羧基盐、磺酸盐等,经硫化氢气流处理成硫化物纳米粒子,粒径平均仅几个纳米,受聚合物网络的立体保护作用,提高了纳米粒子的稳定性,实现了纳米粒子特殊性质的微观调控,聚合物优异的光学性质及易加加工性,为纳米粒子的成型加工提供了良好的载体。

纳米材料

聚丙烯/无机纳米复合材料研究进展* 摘要少量纳米粒子可同时实现对聚丙烯(PP)基体的增强增韧并对其力学性能、结晶性能、抗老化及抗菌等性能均会产生一定的影响。用无机纳米粒子改性PP 可制备综合性能优异的聚丙烯/无机纳米复合材料, 是目前复合材料领域研究的热点。综述了无机纳米粒子改性聚丙烯的最新研究进展, 在介绍PP 纳米复合材料体系和制备方法的基础上重点对PP 纳米复合材料的微观结构、力学性能, 结晶和抗老化等性能进行了综述。研究表明少量纳米粒子可大幅度提升基体材料的综合性能, 但目前许多文献报道的表面改性和制备技术仍没有解决纳米团聚的难题, 特别是要实现工业生产则纳米粒子在PP 基体中的分散性尚需进一步改善。 关键词无机纳米粒子聚丙烯纳米复合材料 Latest Resear ch Development of Polypropylene/Inorganic Nanocomposites Abstract Small amount of nanoparticles can reinforce and toughen polypropylene (PP) and have much effect on the machanical properties, crystallization behavior, anti-aging and antibacterial properties of PP matrix. High performances andmultifunctional PP/inorganic nanocomposites can be prepared by modification of PP with nanoparticles, which is a new generation composite and has attached great interests. The newest developments, preparations, machanical properties, morphology, crystallization and anti-aging properties of PP/inorganic nanocomposites are summarized and discussed in this paper. Research results indicate that low loading of inorganic nanoparticles may lead to tremendous increase of comprehensive properties, but the surface-modification and preparation methods reported in many articles do not resolve the aggregation ofnanoparticles. The dispersion of nanoparticles in PP matrix needs to be improved

改性塑料行业分析报告文案

改性塑料行业分析报告

目录 一、行业与产品分析 (4) 1、改性塑料行业:快速发展 (4) (1)改性塑料行业简介 (4) (2)改性塑料主要发展方向 (5) 2、改性塑料产业链 (6) (1)我国塑料改性改性比率 (7) (2)塑钢比一直在提高 (8) (3)改性塑料行业需求与经济发展密切相关 (9) 3、改性塑料行业竞争结构分析:金发科技领先与细分领域的垄断竞争 (9) (1)竞争结构:金发科技领先与细分领域的垄断竞争 (10) (2)各细分行业盈利情况 (10) 4、汽车改性塑料行业:进口替代空间巨大 (11) (1)我国汽车改性塑料增长空间较大:2013年汽车改性塑料需求量会增长到320万吨 (13) (2)汽车改性塑料市场结构:外资天下,资垄断竞争 (16) 5、特种工程塑料:热致性液晶高分子聚合物(TLCP) (18) (1)LCP简介:一种高性能工程塑料 (18) (2)特种工程塑料行业:代表发展方向 (19) (3)应用与市场空间:PPS量大,PEEK价值最高,LCP市场规模居中 (21) 二、标杆分析:普利特 (24) 1、公司简介 (24) (1)普利特简介:汽车改性塑料领先企业 (24) (2)股权结构:自然人实际控股 (24) (3)限售股解禁情况:短期限售压力一般 (25) 2、公司盈利路线 (26) (1)公司三大产品链 (26) (2)产能与产量统计 (26)

(3)公司收入与盈利结构 (27) 3、公司发展战略:改性塑料做强、跨区域发展与新材料三条腿走路 (27) (1)汽车改性塑料主业:做强与做高毛利市场 (28) (2)项目:通讯电子材料与跨区域发展 (28) (3)新材料TLCP:规划产能达13000吨 (29) 4、盈利预测 (29) 5、投资建议 (30) 6、风险因素 (31)

纳米二氧化钛表面改性

第31卷第2期 唐山师范学院学报 2009年3月 Vol.31 No.2 Journal of Tangshan Teachers College Mar. 2009 ────────── 基金项目:河北省科学研究与发展计划项目(07215107) 收稿日期:2008-04-19 作者简介:刘立华(1969-),女,河北唐山人,硕士,唐山师范学院化学系副教授,研究方向为纳米复合材料制备和应用。 -31- 纳米二氧化钛表面改性 刘立华,刘会媛,张相平 (唐山师范学院 化学系,河北 唐山 063000) 摘 要:对纳米二氧化钛进行表面改性处理是钛白粉工业生产中必不可少的关键步骤,处理的方法和包覆的程度直接影响产品的应用范围。阐述了纳米二氧化钛的表面改性原理和化学表面改性的两种方法──无机包膜改性和有机包膜改性。无机包膜改性包括铝包膜改性、硅包膜改性、铁包膜改性和硅铝复合包膜改性;有机包膜改性主要是醇类化合物和羧酸类化合物对纳米二氧化钛的包覆改性。 关键词:二氧化钛;表面改性;纳米 中图分类号: O 621.4 文献标识码:A 文章编号:1009-9115(2009)02-0031-03 Surface Modification of Nano-Sized Titania LIU Li-hua, LIU Hui-yuan, ZHANG Xiang-pin (Department of Chemistry, Tangshan Teachers College, Hebei Tangshan 063000, China) Abstract: Surface modification of nano-sized titania is one of the key steps in commercial production of titania and it can directly effecte the application fields of titania powder. The principles of modification of nanoscale titania were introduced in this article. Coating a film of organic or inorganic compound on its surface which is two means of surface modification is reviewd in the paper. Inorganic surface modification includes surface modification with Aluminium, surface modification with silicon surface modification with iron and composite surface modification with silicon and aluminium. Organic surface modifications were mainly interpreted by the alcohol compounds and carboxylic acid compounds coating on the surface of titania. Key words: titania; surface modification; nano 纳米二氧化钛因具有光催化活性好、毒性低、稳定、价廉、易于回收等优势而倍受人们的关注。特别是随着环境污染的日益严重,纳米二氧化钛以其高效的光催化降解污染物的能力而成为当前最为活跃的研究热点之一[1]。纳米二氧化钛这种独特的性能主要取决于其粒度的大小。一般来说,粒径越小,比表面积越大,其光催化活性也就越高。 由于纳米二氧化钛表面极强的活性,使得它们很容易团聚,这大大降低了纳米二氧化钛的实际应用效果,同时由于纳米二氧化钛表面亲水疏油,在有机高分子树脂中难以均匀分散,界面上会出现空隙,当空气中的水分进入空隙中就会引起界面处高聚物的降解、脆化、导致材料性能下降。为了充分利用二氧化钛的优良性能,在表面包覆一层无机物或有机物膜对其进行表面改性。 1 表面改性原理 由溶胶稳定性的DLVO 理论可知,纳米级的二氧化钛细粉,单位面积的超额吉布斯自由能升高,表面张力变大,促使二氧化钛发生团聚,此时ζ电位比较高。若要使团聚体重新分散,首先应使表面充分润湿。判断固体能否在液体中润湿以及润湿程度的标准一般有两种。一是根据润湿热的大小,可以用润湿热来比较二氧化钛粉末在不同溶剂中的润湿程度。二氧化钛在水中的润湿程度比较好。实际上,在把二氧化钛粉末中加入水以后,由于颗粒外表面附着的空气与水的置换作用,使细小颗粒的润湿速度较慢。为了加大润湿程度,可以加入少量表面活性剂以降低其表面张力,提高润湿性。通常使用的表面活性剂有三乙醇胺、硅酸盐、烷基萘磺酸等。二是根据接触角的大小判断。二

2012年改性塑料行业分析报告

2012年改性塑料行业 分析报告 2012年2月

目录 一、行业管理情况 (4) 1、行业的主管部门及管理体制 (4) 2、行业的法律法规及政策 (4) 二、塑料改性的基本情况 (6) 三、行业的市场规模 (8) 1、汽车领域 (10) 2、家电领域 (11) 3、电子电气领域 (13) 4、其他领域 (14) 四、行业的竞争格局及市场化程度 (14) 五、进入行业的主要障碍 (16) 1、核心技术壁垒 (16) 2、专业认证壁垒 (17) 3、资本壁垒 (17) 六、行业利润水平及市场供求状况 (18) 七、行业的技术水平及特点 (19) 八、行业的经营模式及行业特征 (19) 1、行业的经营模式 (19) 2、行业的周期性、区域性和季节性特征 (20) 九、所处行业与上下游行业之间的关联性 (21) 十、行业主要企业简况 (22)

1、巴斯夫(BASF) (22) 2、莱昂德巴塞尔(L YONDELL B ASELL) (23) 3、杜邦公司(D UPONT) (23) 4、陶氏化学(DOW) (23) 5、沙特基础工业公司(SABIC) (24) 6、拜耳公司(B AYER) (24) 7、旭化成(A SAHI K ASEI) (24) 8、第一毛织(C HEIL I NDUSTRIES) (24) 9、金发股份 (25)

一、行业管理情况 1、行业的主管部门及管理体制 改性塑料行业,是塑料加工工业的子行业,属国家重点发展的新材料技术领域。塑料加工行业的行政主管部门是国家发展和改革委员会、工业和信息化部、科学技术部等部委。行政主管部门主要负责行业发展规划的研究、产业政策的制定,指导行业结构调整、行业体制改革、技术进步和技术改造等工作。 塑料加工行业的管理目前主要由中国塑料加工工业协会(CPPIA)负责,行政主管部门的部分职能逐渐由行业协会所代替。中国塑料加工工业协会是联系行业行政主管部门与企事业单位的桥梁和纽带,主要职责为:反映行业意愿、研究行业发展方向、协助编制行业发展规划和经济技术政策;协调行业内外关系、参与行业重大项目决策;组织科技成果鉴定和推广运用等。目前,行政主管部门和行业协会对本行业的管理仅限于宏观管理,企业具体的业务管理和产品的生产经营则完全基于市场化的方式进行。 2、行业的法律法规及政策 改性塑料行业是我国新材料领域重点支持的行业,近年来国家已将其作为优先发展的重点领域,并制定了一系列扶持政策,主要有:2007 年1 月,国家发改委、科技部、商务部、国家知识产权局联合修订发布的《当前优先发展的高技术产业化重点领域指南(2007

无机纳米材料表面改性的研究进展

无机纳米材料表面改性的研究进展 姓名:孙震 学号:9901090094 班级:粉冶工程试验班0901

无机纳米材料表面改性的研究进展 摘要:团聚是纳米粉体材料中首先要解决的问题,而表面改性是有效解决此问题的一种方法。本文介绍了纳米表面改性材料的一些基本方法,并介绍了国内外改性材料的一些实例,并对表面改性的前景作出了展望。 纳米粉体是指线度处于1~100nm之间的粒子聚合体, 包括金属、金属氧化物、非金属氧化物和其他各种各类的化合物。与普通纳米粉体相比, 纳米粉体的特异结构使其具有小尺寸效应、量子尺寸效应、表面效应及宏观量子隧道效应, 因而在催化、磁性材料、医学、生物工程、精细陶瓷、化妆品等众多领域显示出广泛的应用前景, 被誉为面向21世纪的高功能材料, 成为各国竞相开发的热点。近年来随着粉体制备技术的发展, 人们已经成功制备出各种纳米粉体, 制备方法多种多样, 如化学气相沉积法、等离子体法、物理气相沉积法、沉淀法、微乳液法、溶胶一凝胶法、高能球磨法等, 并且许多己经实现了工业化。我国现在已能生产铁、钻、镍、镁、银、铜、铝等金属纳米粉, 二氧化硅、二氧化铁、二氧化错、三氧化二铝、氧化钙、氧化锌等氧化物粉末, 以及碳化硅、氮化硅等陶瓷粉末川。但制备出纳米粉体还只是第一步, 最艰巨的一步是针对不同使用介质、不同使用场合的表面改性和处理。因为纳米粉体粒径小、比表面积和表面能极大极易团聚而不能发挥纳米粉体的优异特性, 纳米粉体团聚已经给粉体技术及相关工业领 域带来了很大的麻烦, 是其应用中首要解决的问题川。另 外, 纳米粉体与介质的不相容性导致界面出现空隙, 存在相分离现象, 所以必须对纳米粉体进行表面处理。 1纳米粉体团聚的原因 由于纳米粒子所具有的特殊的表面结构, 所以在粒子间存在着有别于常规粒子(颗粒)间的作用能,即纳米作用能(F n )。定性地讲, 这种纳米作用能就是纳米粒子的表面因缺少邻近配位的原子, 具有很高的活性, 而使纳米粒子彼此团聚的内在属性, 其物理意义应是单位比表面积纳米粒子具有的吸附力。它是纳米粒子几个方面吸附的总和: 纳米粒子间氢键、静电作用产生的吸附; 纳米粒子间

改性塑料成分检测 改性塑料配方分析 改性塑料性能检测

改性塑料成分检测改性塑料配方分析改性塑料性能检测 -----青岛东标检测中心 青岛东标检测中心专业提供改性塑料成分检测改性塑料配方分析改性塑料相关性能检测--黄变、耐老化等。 塑料及制品检测项目 一、机械性能:邵氏硬度、洛氏硬度、拉伸强度、断裂伸长率、拉伸模量、撕裂强度、穿刺强度、压缩强度、压缩模量、压缩变形、弯曲强度、弯曲模量、悬臂梁冲击强度、简支梁冲击强度、落锤冲击强度、薄膜落镖冲击强度、薄膜脆化温度、薄膜与片材动静态摩擦系数、磨具收缩率、密度、尺寸、面积重等。 二、光学性能:色差、光泽度、透光率、雾度等。 三、热学性能:熔融指数MFI/MFR、热变形温度HDT、维卡软化点VST等。 四、燃烧性能:极限氧指数LOI、垂直燃烧UL94 5V A,5VB、垂直燃烧;UL94 V0,V1,V2、垂直燃烧UL94 VTM0,VTM-1,VTM-2、水平燃烧UL94 HB、水平燃烧UL94 HBF,HF-1,HF-2、水平燃烧(车用内部材料)等。 五、电学性能:绝缘材料表面电阻率、绝缘材料体积电阻率、防静电材料表面电阻率、介电强度、耐电压等。 六、其他性能:吸水率、泡沫材料吸水率、薄膜水蒸气透过率(高中透)、玻纤含量、注塑样条等。 七、塑料成分分析 灰分分析(ASTM D2584-02, ASTM D5630-01, ASTM D4574-02, ASTM D5040-90, ISO 3451-1) 热分析(ISO 11357, GB/T 19466, ASTM E794, ASTM D3418, ASTM D3417, ASTM E1356) 红外光谱分析(塑料主成分分析、橡胶主成分分析、纺织纤维鉴别、PVC材料分析、塑料成分定量分析) 裂解GC-MS(橡胶聚合物的鉴定、裂解气相色谱法鉴定橡胶、裂解气相色谱法鉴定聚合物)

相关文档