文档视界 最新最全的文档下载
当前位置:文档视界 › 纳米材料对聚氨酯改性的研究现状

纳米材料对聚氨酯改性的研究现状

纳米材料对聚氨酯改性的研究现状
纳米材料对聚氨酯改性的研究现状

纳米材料对聚氨酯改性的研究现状Current Research on Polyurethane modi? ed by Nanomaterials

■乐志威1 吴 燕2 钟世禄3Le Zhiwei1 & Wu Yan2 & Zhong Shilu3

(1.2.3.南京林业大学家具与工业设计学院,江苏南京 210037)

摘 要:近年来,纳米改性已经成为聚合物改性的主要手段之一,它在聚氨酯中的改性研究也取得了重要进展。纳米微粒具有尺寸小、比表面积大、表面能和表面张力随粒径的下降急剧增大等特点。纳米材料可以表现出小尺寸效应、表面效应、子尺寸效应和宏观量子隧道效应等。因此,经过纳米材料改性的聚氨酯复合材料既保持了高分子材料的许多优异性能,又具有纳米材料的很多优点。本文着重讨论了常见的几种纳米材料对聚氨酯改性的研究现状及发展前景。

关键词:聚氨酯;纳米材料;改性;聚合物;现状

中图分类号:TS664 文献标识码:A 文章编号:1006-8260(2013)05-0090-03 Abstract: IIn recent years, nano-modification has become one of the primary means of polymer-modification, modified polyurethane has also made important progress. Nanoparticles with a small size, large surface area, surface energy and surface tension increases with particle size decreasing sharply. Nanomaterials can show the small size effect, surface effect, sub-size effect and macroscopic quantum tunneling effect. So after the nanomaterial modi? ed polyurethane composite material while maintaining many of the excellent properties of the polymer material also has many of the advantages of the nanomaterials. This paper focuses on the research situation and development prospects of polyurethane modi? ed by several common nanomaterials.

KeyWords: Polyurethane; Nanomaterials; Modi? cation; Polymer; Situation

聚氨酯(P U)称为聚氨基甲酸酯,它是由有机二异氰酸酯或多异氰酸酯与二羟基或多羟基化合物的聚合而成的。聚氨酯有多种产物,大致可分为热固性聚氨酯和热塑性聚氨酯两种,这只需通过调节配方中N C O/O H的比例就可制得不同产物,因为聚氨酯中含有强极性氨基甲酸酯基团。然而根据它的分子结构不同又可以分为线型和体型两种。其中体型结构可以制备出呈现硬的、软的或者介于软硬之间的产物,这是因为它的交联密度可控制在不同范围。聚氨酯具有很多优点,如高耐磨、高弹性、良好的挠曲性、较高的杨氏模量以及较好的耐候、耐油、耐脂、耐溶剂等特点。但其还是存在很多不足,如强度不高,耐热、耐水、抗静电等性能差。所以目前出现很多改性聚氨酯的方法,其中纳米改性已渐渐成为重要的改性手段之一,根据不同需求,学者们提出很多纳米材料对聚氨酯进行改性的方法,不同的材料对P U的改性也会出现不同的效果,本文就这些纳米材料把其分成无机纳

用,从而提高分子键合,且纳米S iO2比较容易

分布到高分子链空隙中,从而可以很大程度

上提高复合材料的强度、韧度以及延展性。纳

米SiO2还可以和聚氨酯中不饱和键的电子云

发生作用,从而提高聚氨酯材料的热稳定性、

化学稳定性及光稳定性,起到了提高产品的

抗老化性能和耐化学性等作用[1]。

黄国波等[2]先将纳米SiO2进行预分散处

理,在P U扩链阶段将其加入到反应体系中,进

行原位聚合制备了纳米S i O2/P U复合材料。他们

对材料进行S E M检测,照片显示纳米S i O2基本

上均匀分布在P U中,他们还对复合材料进行力

学检测,结果跟纯P U相比复合材料有较好的

力学性能。

P e t r o v i c a等[3]通过A F M及X射线分析等方

法对纳米SiO2对于P U形态结构影响进行了研

究。结果证明纳米S i O2对P U球晶结构有很大的

影响,由于纳米S i O2粒子均匀分散在P U的硬段

与软段中,从而破坏了P U原有的相分离结构,

抑制了在球晶内形成发散生长微纤,最后减弱米材料和有机纳米材料两部分,对纳米材料

改性聚氨酯进行综述。

1 无机类纳米材料改性聚氨酯的研究

现状

无机纳米微粒具有小尺寸效应、表面效

应、和宏观量子隧道效应等,因为无机纳米微

粒的尺寸较小,它的比表面积大,且随着粒径

的越来越小表面能和表面张力会越来越大。

所以当聚氨酯复合材料经过纳米无机材料

改性后,它既可以保持高分子材料的纵多优

异性能而且还会具有无机纳米材料的很多优

点。这些无机粒子是以纳米级的形式均匀的

分布在基体中的,所以这种复合材料往往在

热学、力学、电学等方面也具有一些特殊的性

能。

1.1S i O2/聚氨酯纳米复合材料

纳米S i O2的比表面积大,分散性也很好,

且具有较高的活性,表面缺氧而偏离稳态的

硅氧结构很容易和聚氨酯中的氧起键合作

专论与综述SEMINAR & SUMMARY

90

了硬段的结晶能力。

C h o[4]等采用正硅酸乙酯(T E O S)进行溶胶-凝胶反应生成T E O S质量分数为5%、10%、20%、30%的P U/S i O2,并研究了P U/S i O2的力学性能和形状记忆,发现P U/S i O2力学性能得到了提高,且形状恢复力和形状保持力都达80%以上,结果也显示了T E O S质量分数为10%的P U/S i O2有断裂伸长率、最大的断裂应力和模量。

1.2C a C O3/聚氨酯纳米复合材料

纳米CaC O3根据其粒度大小不同可以用于多种领域,目前已广泛应用在塑料、橡胶等方面。然而它与其它一般纳米粒子却有点不同,纳米CaC O3粒子没有量子效应、小尺寸效应,也没有纳米复合材料应该具备的如电学性质、光学性质、磁学性质等一些典型的特征。但其却可以增加聚合物基体的强度和韧性,因为它可以对基体产生很强的相互作用力[5]。

李丽霞等[6]采用原位聚合法一步制备了纳米C a C O3/P U复合材料。然后对其性能进行检测,结果表明,复合材料的硬度和耐撕裂强度有所提高。经过S E M测试和粒度分析发现,纳米C a C O3在基体中的分散性不好。而卢艾[7]等用多亚甲基多苯基异氰酸酯(P API)改性纳米C a C O3表面,并经过超声作用,最后制备出纳米C a C O3/P U复合材料,经过S E M测试结果表明,纳米C a C O3能较为均匀的分布在P U中,基本达到理想分散状态。

1.3玻璃纤维/聚氨酯纳米复合材料

玻璃纤维是由玻璃为原料经过熔制、拉丝、络纱、织布等工艺制造成的,它的种类有很多,也有很多特点如机械强度高、抗腐蚀性好、耐热性强、绝缘性好,但其耐磨性较差,且质地很脆。玻璃纤维是由一束束纤维原丝组成的,而每束纤维原丝是由几百根甚至几千根单丝组成,每个单丝的直径为几微米到二十几微米。玻璃纤维用在复合材料时,可以增加复合材料的机械强度,提高其抗腐蚀性和耐热性等。

卢子兴等[8]研究了不同密度玻璃纤维对聚氨酯的增强效果。实验结果表明,强度和压缩模量都有不同程度的提高,且聚氨酯中玻璃纤维含量相同时越高增强效果越好。

1.4T i O2/聚氨酯纳米复合材料

纳米T i O2也是较常见的纳米粒子。呈现白色固体或粉末状的两性氧化物,俗称钛白,是最好的白色颜料。它的粘附力强,不易起化学变化,永远是雪白的且无毒。纳米TiO2和树脂经过特殊复合后会具有水油双疏性特性,且它能靠紫外线消毒及杀菌,故如果用纳米Ti O2改性聚氨酯的话不但可以提高聚氨酯的强度、

所以当跟聚氨酯聚合时可以增强聚氨酯的韧

性、耐磨性、防火性能等。

陈县萍[15]等采用原位聚合法制备的A l2O3/

聚氨酯纳米复合材料,并对其进行了一系列测

试,结果显示,少量纳米A l2O3粒子加入聚氨酯

中,可以较好的增加聚氨酯的强度和韧性。结

果还显示纳米A l2O3在P U体系分散状态比较好,

而且与P U基体有较强的界面作用。

1.7粘土/聚氨酯纳米复合材料

粘土主要结构单元是铝氧八面体和硅氧

四面体进行二维排列形成,它的颗粒很小,一

般呈晶体或非晶体,尺寸在胶体范围内。粘土

大多属于2:1型的片状或层状的硅酸盐矿物,

少数为管状、棒状。因此一般用单体插层聚合

法制备纳米粘土复合材料,或者也可以用直

接共混的方法来制备。粘土的颗粒上带有负

电性,比表面积大,因此具有与其他阳离子交

换的能力和很好的物理吸附性及表面化学活

性,所以粘土纳米颗粒能以片层状分均匀的

布于基体中,所以它可以提高复合材料的硬

度、模量、阻隔性和耐热性能等[16]。

漆宗能等[17]采用插层聚合法合成了P U/蒙

脱土纳米复合材料。然后对其进行一系列测

试,结果表明,复合材料的耐热性有所提高,

且它的断裂伸长率和拉伸强度均增加两倍以

上,同时经过X射线衍射测试显示,复合材料

中粘土层之间的距离达到4.5n m。同时经过X射

线衍射测试显示,复合材料中粘土层之间的

距离达到4.5nm。

2 有机类纳米材料改性聚氨酯的研究

现状

有机纳米材料不但具备一般纳米材料

小尺寸效应、表面效应和量子隧道效应等特

点,它还具备了光学、电学、催化、药物、生物

等较新型的性能,且他比较绿色环保,所以受

到研究者们越来越多的关注,因此越来越多

的人开始研究纳米颗粒材料,美国、日本和西

方发达国家很早就涉及这领域,每年投入大

量的人力和财力,他们已取得了很多专利与成

果。近年来我国也有不少科研人员开始从事该

领域的工作,并取得了一定的基础研究成果,

但总的来说与国外相比仍有一定的差距。但

是常规的无机纳米材料的制备不能用在有机

纳米材料的制备,因为有机纳米材料的熔点

和沸点较低,所以制备纳米纤维素受到很大

的限制,但随着研究的不断深入近年来出现了

一些较可行的方法,并且技术趋于成熟。由于

有机纳米材料的技术不是非常成熟,所以

韧性、抗冲击性、耐老化性、耐热性、耐水性

和耐溶剂性等[1],而且还可以提高聚氨酯的抗

菌和自洁能力。

陈意[11]等将纳米TiO2用原位有机-无机杂

化技术加入革用聚氨酯膜,并对杂化薄膜行了

一系列的检测。结果表明:纳米TiO2的加入使

该杂化膜具有很好的防霉功能,且可以抑制

细菌生长;Ti O2还增加了聚氨酯薄膜的强度和

韧性,其在聚氨酯杂化膜中的分布状态比较

理想,并且Ti O2的含量多少会影响到聚氨酯杂

化膜的粒径。

C h e n[12]等采用了原位溶胶-凝胶法制备了

TiO2/聚氨酯薄膜。他们把二氧化钛加入树脂

与聚氨酯合成膜的,结果表明,这样提高了薄

膜的、耐磨性、机械强度、弹性模量、粘度及紫

外线吸收等一些物质的物理性能。

1.5纳米碳材料/聚氨酯纳米复合材料

纳米碳材料是指分散相尺度至少小于

100n m的碳材料。纳米碳材料主要包括三种类

型:碳纳米管,碳纳米纤维,纳米碳球。纳米碳

材料具有非常多优异性能,可以地球上所有

物质所具有的特性它都具有,碳素材料具有

优异的力学特性、导电性、光学特性、耐热性、

耐化学药品特性和电绝缘性等,所以可以使用

它来改性聚氨酯,并且纳米碳材料自身存在范

德华力可以大大降低其与聚氨酯的粘接力,

所以可以很均匀的分散在机体中。

Sahoo[13]等通过溶液共混法制得了聚氨

酯/碳纳米管复合材料。结果表明,对复合材

料力学性能和模量的提高起决定性作用的是

碳纳米管在聚氨酯基体中的分散程度;加入

碳纳米管会使复合材料的拉伸强度、模量和

结晶度增加,当碳纳米管的添加量为2.5wt%

时,复合材料的模量提高近37%,拉伸强度增加

了两倍之多。

C h e n等[14]通过两种不同工艺制得炭黑/聚

氨酯复合膜,并对其进行了电学性能及气敏性

能进行了表征,结果表明他们具有较低的渗

滤阀值,渗滤阀值分别为0.95%和0.7%;且不论

在极性还是非极性气体环境中它们都表现出

较高的气敏响应性,但在极性气体环境中,随

着炭黑百分含量的增加,符合膜气敏响应会

发生由负温度系数向正温度系数转变。

1.6A l2O3/聚氨酯纳米复合材料

氧化铝是白色晶状粉末,目前已经证实

氧化铝有α、β、γ等十一种晶体。不同的工艺

条件和制备方法可以制得不同的纳米氧化铝,

如γ-Al2O3显白色蓬松粉末状态,其比表面积

≥230m2/g,粒径是20n m;。且它还具有分散性

好、硬度高、多孔性、尺寸稳定性好等性能,

2013/05 家具与室内装饰F

+ID

91

用在改性聚氨酯仿木材料方面就比较少,有的材料甚至还没达到纳米级。

2.1 木粉改性聚氨酯仿木材料的性能研究

木粉就是木材打成的粉末,木粉用途非常广泛,是绿色节能环保原料。可作为蚊香、皮革、服装、造纸、电器、生活用品、涂料、猫砂、化工、绝缘材料、室外装饰材料、建筑材料等多种产品的原料。木粉不算纳米材料,但关于有机纳米材料改性聚氨酯复合材料的文献很少,所以把木粉改性聚氨酯的文献也摘录进来。

吴智慧[18]等把家具用木粉直接添加到聚氨酯中,然后研究分析了不同的木粉添加量,不同的木粉粒度,以及不同的材料密度等,对聚氨酯仿木材料的各性能的影响。结果表明:随着木粉添加量的增加,或木粉粒度的变大,即木粉尺寸变小,木粉沉降速度会下降[19],聚氨酯压缩强度会有所提高,但是表面硬度和弯曲强度和却有所下降;聚氨酯泡沫的弯曲强度、压缩强度和表面硬度则会随着它密度的变大而增大。

2.2 纤维素纳米材料改性聚氨酯仿木材料的研究

纤维素是地球上最古老、最丰富的天然高分子,是取之不尽用之不竭的,人类最宝贵的天然可再生资源。纤维素具有较高的模量和拉伸强度,把它降解到纳米级时,除了保持之前的性能外还具备纳米颗粒的一些特性,如巨大的比表面积、超强的吸附能力和高的反应活性,在和聚氨酯复合时还有较好的分散性和相容性。

丁友江等[20]制备了木质纤维增强硬泡聚氨酯复合材料是采以多次甲基多苯基异氰酸酯(MDI)、聚醚多元醇及木质纤维为原料采用一步法制得的。并分析了不同添加量的木质纤维素、不同长径比的木质纤维对复合材料性能的影响。结果表明,当添加量为10%、长径比为40:1时复合材料的拉伸强度为4.8M P a,比没有增强的材料提高了2.06倍,压缩强度分别为5.6M P a,比没有增强的材料增加了2.20倍。

3展望

目前,聚氨酯纳米复合材料已经取得了很多的研究成果,但大部分还处于研究阶段,很多问题还有待研究和解决,首先,由于纳米

力学,1995,10(1):16-19.

[9]王胜军,孙健,李再峰.OMMT/WPU复合

乳液的制备及其性能研究[J].聚氨酯工

业,2008,23(5):23-26.

[10]D e n g,X.H.,L i u,F.,L u o,Y.F,e t

al.Preparation structure and properties

o f c o m b-b r a n c h e d w a t e r b o r n e p o l y u r e t h a n e/

O M M T n a n o c o m p o s i t e s[J].P r o g r e s s i n O r g a n i c

C o a t i n g s,2007,(60):11-16.

[11]陈意,冯萍,范浩军,等.纳米TiO2原位杂

化聚氨酯及其抗菌防霉性能研究[J].皮革

科学与工程,2008,18(3):11-15.

[12]Chen,Y.C.,Zhou,S.X.,Gu,G.X.,et

al..Microstructure and properties of

polyester-based polyurethane/titania

hybrid films prepared by sol-gel process

[J].P o l y m.,2006,(47):1640-1648.

[13]Nanda,G.S.,Yong,C.J.,Yoo,H.J.,et

al. Influence of carbon nanotubes and

polypyrrole on the thermal mechanical and

electroactive shape-memory properties of

polyurethane nanocomposites[J].Comp. Sci.

T e c h.,2007,33(6):1920-1929.

[14]Chen, S.G.,, Hu, J.W., et al. Gas

sensitivity of carbon black /waterborne

polyurethane composites[J]. Carbon, 2004,

42(5):645-651.

[15]陈县萍,王贵友,徐强,等.聚氨酯/Al2O3

纳米复合材料的制备和性能[J].功能高分

子学报,2008,21(2):123-127.

[16]陈小金,陈宪宏.聚氨酯/纳米复合

材料的研究进展[J].材料科学与工程学

报,2005,23(6):930-932.

[17]马继盛,漆宗能,等.聚氨酯弹性体/蒙脱

土纳米复合材料的合成、结构与性能[J].

高分子学报,2001,3:325-328.

[18]吴智慧,商宝龙,徐伟.家具用木粉改性

聚氨酯仿木材料性能的研究[J].南京林业

大学学报,2011,35(3):93-96.

[19]吴智慧,商宝龙,徐伟.家具用聚氨酯

仿木材料中木粉的分散性研究[J].木材工

业,2011,25(3):4-6.

[20]丁友江,朱征,安淑英,蔡伦.聚氨酯泡

沫/木质纤维复合材料的制备及其性能初

探.[J].建筑节能,2010,38(11):38-22.

粒子粒径小、比表面积和表面能大,很容易形

成团聚而无法发挥他们的作用,所以必须解

决纳米粒子的团聚问题,让其在机体中均匀

分散充分发挥特性;另外,纳米粒子与机体的

相容性问题,两者不相容会导致界面出现空

隙,会存在相分离现象,从而影响到复合材料

的性能。其次,要解决聚氨酯纳米复合材料的

产业化问题,要清楚聚氨酯和纳米粒子的相

互作用机理,对其进行结构表征,了解结构与

物理性能之间的关系,还要完善聚氨酯纳米

复合材料的制备工艺等。最后,就是环保和成

本问题,目前对有机纳米材料改性聚氨酯的

研究较少,有机纳米粒子(纤维素类)取材绿

色又廉价,应该加强对其研究使聚氨酯纳米

复合材料更环保并可提高其生物降解性。因

此,选择价格低廉且环保的改性材料来生产

性能优异的聚氨酯复合材料是今后的研究趋

势。

(责任编辑:北方)

参考文献:

[1]郭睿,贾建民,季振清.聚氨酯/无

机纳米复合材料的研究[J].皮革与化

工,2010,27(1):15-17.

[2]黄国波,童筱莉,等.无机纳米粒子

原位复合聚氨酯研究[J].化工新型材

料,2003,31(1):12-14.

[3]Zoran,S. P.,Young,J.C.,et al.Effect

of silica nanoparticles on morphology

of segmented polyurethanes [J].

P o l y m e r,2004,4:1-11.

[4]Cho,J.W.,Lee,S.H.Influence of

silica on shapememory effect and

mechanical properties of polyure-

t h a n e-s i l i c a h y b r i d s[J].J.E u r o p.

P o l y m.2004,11(40):1343-1348.

[5]黄锐,王旭,李忠明.纳米塑料[M].北京:

中国轻工业出版,2002.

[6]李丽霞,吕志平,等.聚氨酯纳米碳酸钙弹

性体的制备与力学性能研究[J].太原理工

大学学报,2003,34(6):638-641.

[7]芦艾,黄锐,等.纳米碳酸钙对硬质聚氨

酯泡沫塑料力学性能的影响[J].中国塑

料,2001,15(8):25-31.

[8]卢子兴,田常津,王仁.玻璃纤维增强聚氨

醋泡沫塑料的压缩力学性能研究[J].实验

专论与综述SEMINAR & SUMMARY

92

水性聚氨酯树脂改性研究及应用进展1

水性聚氨酯树脂具有硬度高、附着力强、耐腐蚀、耐溶剂好、VOC 含量低等优点,符合发展涂料工业的“三前提”及“四E原则”。然而,一般的聚氨酯乳液的自增稠性差、固含量低、乳胶膜的耐水性差、光泽性较低,涂膜的综合性能较差,为了更好地提高水性聚氨酯涂料的综合性能,扩大应用范围,需对WPU乳液进行适当的改性。目前,其改性途径大致可分为四类:改进单体和合成工艺,添加助剂,实施交联,优化复合。本文主要介绍了环氧树脂改性、聚硅氧烷改性和丙烯酸复合改性、纳米改性、植物油改性、蒙脱土改性、有机氟改性等水性聚氨酯涂料的研究及在木器涂料、汽车涂料、建筑涂料、防腐涂料、织物涂料等方面应用进展。 1 水性聚氨酯树脂改性技术 1.1 传统三大改性方法 目前水性聚氨酯涂料最常见的三大改性方法是环氧树脂改性、有机硅改性、丙烯酸改性。近年来,这类方法已有大量报道。环氧树脂为多羟基化合物,在与聚氨酯反应中可以将支化点引入聚氨酯主链,使之形成部分网状结构而性能更为优异。通过环氧树脂和聚氨酯的接枝反应,制得环氧改性聚氨酯乳液,用其配制水性环氧改性聚氨酯涂料,可以提高化学稳定性、耐腐蚀性和漆膜附着力。 有机硅化合物分子结构中含有元素硅,是属于半有机、半无机结构的高分子化合物,它们兼具有机化合物和无机化合物的特性。用有机硅改性聚氨酯可以弥补水性聚氨酯耐水解性稍差的缺陷,使改性的水性聚氨酯涂料表现出良好的憎水性、表面富集 性、低温柔顺性和优良的生物相容性等。有机硅改性聚氨酯可以通过物理共混来进行,例如,利用水性聚氨酯和聚硅氧烷乳液进行物理共混改性。因此,有机硅改性聚氨酯最常用的方法是共聚改性。通过两端带有反应性官能团的聚硅氧烷低聚物(最常见的是聚二甲基硅氧烷PDMS,或部分甲基被取代后所得聚硅氧烷)与多异氰酸酯经逐步加成,聚合而制得嵌段共聚物。 丙烯酸酯与其他合成高分子树脂相比,具有许多突出的优点。将丙烯酸和聚氨酯两类聚合物在微观状态下制备得到的丙烯酸聚氨酯杂合水分散体,可以获得优势互补性能。水性聚氨酯/丙烯酸酯复合乳液可以将聚氨酯较高的拉伸强度和抗冲强度、优异的耐磨性与丙烯酸酯树脂良好的附着力、耐候性,较低的成本有机结合,制备出高固含量、低成本以及达到使用要求的水性树脂。 此外还可以将聚氨酯-丙烯酸酯-有机硅氧烷三元结合起来,制备水性涂料,它综合了丙烯酸酯、聚氨酯、有机硅三种树脂材料的优点,而且以水作分散介质符合了环保的要求。 1.2 纳米材料改性水性聚氨酯 纳米材料具有表面效应、小尺寸效应、光学效应、量子尺寸效应、宏观量子尺寸效应等特殊性质,可以使材料获得新的功能。 Hsu-Chiang Kuan等[1]合成了一种纳米碳管/水性聚氨酯纳米复合材料,这种水性聚氨酯乳液储存稳定,胶膜的热稳定性提高了26℃,拉伸强度提高了370%,拉伸模量提高了170.6%。胡津昕等[2]以水性聚氨酯为基体聚合物材料,利用高分子纳米微 鲍俊杰1,周海峰1,饶喜梅1,许戈文1,2 (1.安徽大学化学化工学院,合肥230039;2.安徽省绿色高分子重点实验室,合肥230039)摘要:综述了水性聚氨酯的纳米改性、植物油改性、蒙脱土改性、有机氟改性等几种常用的改性方法,指出了不同改性技术的特点、方法以及优势。同时介绍了水性聚氨酯树脂在木器涂料、汽车涂料、建筑涂料、防腐涂料、织物涂料等方面的应用研究进展。 关键词:水性聚氨酯树脂;改性;涂料;进展 中图分类号:TQ630.4+1 文献标识码:A 文章编号:1006-2556(2006)09-0045-04 水性聚氨酯树脂 改性研究及应用进展

水性聚氨酯

水性聚氨酯 引言 为了减少涂料对环境的污染和对消费者健康的损害, 许多国家对溶剂型涂料的限制越来越严格, 从而使涂料由溶剂型向水基型的转变成为必然。早在2005 年我国就已开始控制新的溶剂型涂料生产企业的审批, 到2008 年将对溶剂型涂料的生产和销售实行控制。低污染涂料的发展方向有水性化、高固体分化和粉末化三种。与其他两种涂料相比, 水性涂料因为具有来源方便、易于净化、成本低、黏度低、良好的涂布适应性、无毒性、无刺激及不燃性等特点, 已成为环境友好型涂料的主要发展方向。 一、水性聚氨酯涂料的性能 聚氨酯( PU) 涂料是涂料业中增长速度最快的品种之一。水性聚氨酯( WPU) 涂料是以水性聚氨酯树脂为基础, 以水为分散介质配制的涂料, 除具有水性涂料的特点以外, 它还有以下突出的优点: 1)涂膜对塑料、木材、金属及混凝土等表面的附着力好, 抗磨性、耐冲击性好。脂肪族聚氨酯水性涂料的户外耐久性好, 综合性能接近溶剂型聚氨酯涂料 2) 和其他乳胶涂料相比, 其低温成膜性好, 不需要成膜助剂, 也不需要外加增塑剂、乳化剂或分散剂。 3) 容易通过交联反应进行改性, 可提高耐溶剂性和抗化学性, 改进耐水性, 对颜料( 包括金属颜料) 有良好的适应性, 也可提供高光泽

涂膜。所含羟基可以适用一些交联剂和固化剂, 可进一步改进涂膜性能。 4) PU 分子具有可裁剪性, 结合新的合成和交联技术可有效控制涂料的组成和结构, 为改进其性能提供了更多的途径。WPU 诸多的优点, 使其成为目前发展最快的涂料品种之一。 2 水性聚氨酯涂料的研究进展WPU 分为单组分和双组分。单组分WPU 涂料聚合物的对分子质量较大, 成膜过程中一般不发生交联反应, 具有施工方便的优点; 双组分WPU涂料由含羟基的水性树脂和含异氰酸酯基的固化剂组成, 施工前将两者混合, 成膜过程中发生交联反应, 涂膜性能好。由于在水性聚氨酯分子中引入了亲水基团, 所以耐水性、耐溶剂性和耐候性等较差是WPU 涂料存在的主要问题, 为此, 近几年来国内外学者对WPU 的改性进行了大量研究, 并取得了很大进展。 2. 1. 1 制备方法 单组分聚氨酯水分散体涂料的制备方法通常有强制乳化法和自乳化法。强制乳化法是将PU 预聚物缓慢加入到含乳化剂的水中, 形成粗粒乳液, 再送入均化器形成粒径适当的乳液。该法制备的PU 乳液胶体稳定性较差, 一般适用于材料的表面处理。PU 乳液涂料的制备多采用聚合物自乳化法, 即在聚合物链上引入适量的亲水基团, 在一定条件下自发分散形成乳液[11]的方法。 2. 1. 2 交联改性

纳米材料的研究进展及其应用全解

纳米材料的研究进展及其应用 姓名:李若木 学号:115104000462 学院:电光院

1、纳米材料 1.1纳米材料的概念 纳米材料又称为超微颗粒材料,由纳米粒子组成。纳米粒子也叫超微颗粒,一般是指尺寸在1~100nm间的粒子,是处在原子簇和宏观物体交界的过渡区域,从通常的关于微观和宏观的观点看,这样的系统既非典型的微观系统亦非典型的宏观系统,是一种典型人介观系统,它具有表面效应、小尺寸效应和宏观量子隧道效应。当人们将宏观物体细分成超微颗粒(纳米级)后,它将显示出许多奇异的特性,即它的光学、热学、电学、磁学、力学以及化学方面的性质和大块固体时相比将会有显著不同。 1.2纳米材料的发展 自20世纪70年代纳米颗粒材料问世以来,从研究内涵和特点大致可划分为三个阶段: 第一阶段(1990年以前):主要是在实验室探索用各种方法制备各种材料的纳米颗粒粉体或合成块体,研究评估表征的方法,探索纳米材料不同于普通材料的特殊性能;研究对象一般局限在单一材料和单相材料,国际上通常把这种材料称为纳米晶或纳米相材料。 第二阶段(1990~1994年):人们关注的热点是如何利用纳米材料已发掘的物理和化学特性,设计纳米复合材料,复合材料的合成和物性探索一度成为纳米材料研究的主导方向。 第三阶段(1994年至今):纳米组装体系、人工组装合成的纳米结构材料体系正在成为纳米材料研究的新热点。国际上把这类材料称为纳米组装材料体系或者纳米尺度的图案材料。它的基本内涵是以纳米颗粒以及它们组成的纳米丝、管为基本单元在一维、二维和三维空间组装排列成具有纳米结构的体系。

2、纳米材料:石墨烯 2.1石墨烯的概念 石墨烯(Graphene)是从石墨材料中剥离出来、由碳原子组成的只有一层原子厚度的二维晶体。2004年,英国曼彻斯特大学物理学家安德烈·盖姆和康斯坦丁·诺沃肖洛夫,成功从石墨中分离出石墨烯,证实它可以单独存在,两人也因此共同获得2010年诺贝尔物理学奖。 石墨烯既是最薄的材料,也是最强韧的材料,断裂强度比最好的钢材还要高200倍。同时它又有很好的弹性,拉伸幅度能达到自身尺寸的20%。它是目前自然界最薄、强度最高的材料,如果用一块面积1平方米的石墨烯做成吊床,本身重量不足1毫克便可以承受一只一千克的猫。 石墨烯目前最有潜力的应用是成为硅的替代品,制造超微型晶体管,用来生产未来的超级计算机。用石墨烯取代硅,计算机处理器的运行速度将会快数百倍。 另外,石墨烯几乎是完全透明的,只吸收2.3%的光。另一方面,它非常致密,即使是最小的气体原子(氦原子)也无法穿透。这些特征使得它非常适合作为透明电子产品的原料,如透明的触摸显示屏、发光板和太阳能电池板。 石墨烯目前是世上最薄却也是最坚硬的纳米材料,它几乎是完全透明的,只吸收2.3%的光;导热系数高达5300 W/m·K,高于碳纳米管和金刚石,常温下其电子迁移率超过15000 cm2/V·s,又比纳米碳管或硅晶体(monocrystalline silicon)高,而电阻率只约10-6 Ω·cm,比铜或银更低,为目前世上电阻率最小的材料。 作为目前发现的最薄、强度最大、导电导热性能最强的一种新型纳米材料,石墨烯被称为“黑金”,是“新材料之王”,科学家甚至预言石墨烯将“彻底改变21世纪”。极有可能掀起一场席卷全球的颠覆性新技术新产业革命。

水性聚氨酯的合成

闫福安,陈俊 (武汉工程大学化工与制药学院,武汉430073) 摘要:对水性聚氨酯的合成单体、合成原理、合成工艺及改性方法作了介绍。水性聚氨酯合成技术不断完善,市场正在推进,国内相关企业和研究机构应加强合作,从分子设计出发,不断推进水性聚氨酯产业的技术进步和市场推广。 关键词:水性聚氨酯;合成;改性 0引言 聚氨酯是综合性能优秀的合成树脂之一。由于其合成单体品种多、反应条件温和、专一、可控,配方调整余地大及其高分子材料的微观结构特点,可广泛用于涂料、黏合剂、泡沫塑料、合成纤维以及弹性体,已成为人们衣、食、住、行必不可少的材料之一,其本身就已经形成了一个多品种、多系列的材料家族,形成了完整的聚氨酯工业体系,这是其它树脂所不具备的。据有关报道,在全球聚氨酯产品的消耗总量中,北美洲和欧洲占到70%左右。美国人均年消耗聚氨酯材料约5.5kg,西欧约4.5kg,而我国的消费水平还很低,年人均不足0.5kg。溶剂型的聚氨酯涂料品种众多、用途广泛,在涂料产品中占有非常重要的地位。水性聚氨酯的研究始自20世纪50年代,60、70年代,对水性聚氨酯的研究、开发迅速发展,70年代开始工业化生产用作皮革涂饰剂的水性聚氨酯。进入90年代,随着人们环保意识以及环保法规的加强,环境友好的水性聚氨酯的研究、开发日益受到重视,其应用已由皮革涂饰剂不断扩展到涂料、黏合剂等领域,正在逐步占领溶剂型聚氨酯的市场。在水性树脂中,水性聚氨酯仍然是优秀树脂的代表,是现代水性树脂研究的热点之一。 1水性聚氨酯的合成单体 1.1多异氰酸酯(polyisocynate) 多异氰酸酯可以根据异氰酸酯基与碳原子连接的部位特点,可分为四大类:芳香族多异氰酸酯(如甲苯二异氰酸酯,TDI)、脂肪族多异氰酸酯(六亚甲基二异氰酸酯,HDI)、芳脂族多异氰酸酯(即在芳基和多个异氰酸酯基之间嵌有脂肪烃基-常为多亚甲基,如苯二亚甲基二异氰酸酯,XDI)和脂环族多异氰酸酯(即在环烷烃上带有多个异氰酸酯基,如异佛尔酮二异氰酸酯,IPDI。芳香族多异氰酸酯合成的聚氨酯树脂户外耐候性差,易黄变和粉化,属于“黄变性多异氰酸酯”,但价格低,来源方便,在我国应用广泛,如TDI常用于室内涂层用树脂;脂肪族多异氰酸酯耐候性好,不黄变,其应用不断扩大,欧美发达国家已经成为主流的多异氰酸酯单体;芳脂族和脂环族多异氰酸酯接近脂肪族多异氰酸酯,也属于“不黄变性多异氰酸酯”。水性聚氨酯合成用的多异氰酸酯主要有TDI、IPDI、HDI、TMXDI(四甲基苯二亚甲基二异氰酸酯)。TMXDI可直接用于水性体系,或用于零VOC水性聚氨酯的合成。

聚氨酯_二氧化硅复合材料研究进展

聚氨酯/二氧化硅复合材料研究进展 刘 丹 曾少敏 姚 畅 徐祖顺* (湖北大学材料科学与工程学院 武汉430062) 摘 要:综述了二氧化硅的表面改性方法和聚氨酯/二氧化硅(PU/S i O2)复合材料的主要制备方法,讨论了不同粒径、不同形态的Si O2以及表面改性方法对P U/S i O2复合材料性能的影响,介绍了PU/S i O2复合材料的应用,并展望了其发展前景。 关键词:聚氨酯;二氧化硅;制备;性能;应用 中图分类号:TQ323.9 文献标识码:A 文章编号:1005-1902(2008)03-0005-05 聚氨酯(P U)以其优异的性能在涂料、胶粘剂及橡胶等领域获得了广泛应用,但P U存在不耐高低温及表面性能欠缺等缺点,使其在某些特定领域的应用受到限制。为满足不同的要求,就必须对PU 进行改性研究。二氧化硅(S i O2)兼具众多优点,如粒径小、比表面积大、表面有羟基等,在PU中引入S i O2,可有效地提高P U的耐热性、耐水性、力学性能等[1-3]。但不同的制备方法可得到不同粒径和形态的S i O2,对聚氨酯/二氧化硅(PU/S i O2)复合材料的性能有重要影响,S i O2的表面改性可改善S i O2与聚氨酯复合材料的相容性,提高复合材料的性能。 1 二氧化硅的表面改性方法 S i O2与有机体存在严重的相分离问题,且粒间存在隧道效应和分子间氢键等作用,粒子极易团聚。引入前对S i O2进行表面改性,可消除或减少表面羟基数,使粒子由亲水变为疏水,增强与介质相容性,提高复合材料的性能。S i O2表面改性有无机改性和有机改性两种,常用无机表面改性如用T i O2对S i O2表面进行包覆,Fe2O3对S i O2的表面进行包覆[4,5],而人们用的更多的是有机表面改性法,根据改性剂的不同,介绍几种最常用的有机表面改性方法。 1.1 硅烷偶联剂改性 硅烷偶联剂是一类最常用的能明显改善S i O2表面性能的双官能团改性剂。它的一端可以和S i O2进行水解缩聚,另一端可以和有机组分进行物理和化学作用[6,7]。引入偶联剂,不仅在S i O2表面接枝了有排斥效应的有机基团,减少Si O2的团聚,且偶联剂带有的功能性基团能与有机单体反应,进一步增加粒子亲油性,为P U/S i O2的功能化提供更多更好的途径。采用不同偶联剂处理S i O2对P U/S i O2性能会有不同影响。Chen S[8]采用3 氨基丙基三乙氧基硅烷(APTS)对纳米粉体Si O2进行改性,发现在Si O2表面引入APTS可减少无机 有机分子间反应,而且引入的氨基可以和NCO基化学键合,这样可以制得PU/Si O2。接着Chen G D[9]用甲基三乙氧基硅烷(M TES)和 (甲基丙烯酰氧)丙基三甲基氧硅烷(MAPTS)分别对Si O2进行改性,合成了PU/Si O2,发现这两种偶联剂有效地改善了S i O2和P U的反应,P U/S i O2膜的储能模量随S i O2的增加先增后减,而MAPTS改性效果要比MTES改性效果更好。 1.2 醇类改性 醇类改性的机理是在高温高压下使醇与S i O2表面的羟基发生反应,脱去H2O,用烷氧基取代S i O2表面的羟基。游波等[10]在纳米Si O2表面接枝多元醇,经化学键键合后,避免了粒子在树脂中团聚,醇改性Si O2优点在于醇价格低廉,易合成且结构易控制。 5 2008年第23卷第3期2008.V o.l23N o.3 聚氨酯工业POLYURETHANE I NDU S TRY *通讯联系人

水性聚氨酯涂料doc

水性聚氨酯涂料的特点及改性应用综述 学院:材料与化工学院 专业:高分子材料与工程 班级:110311班 姓名:李辽辽 学号:110311122 水性聚氨酯涂料的特点及改性应用综述 李辽辽 (班级:11班学号:110311122) 摘要:介绍水性聚氨酯涂料的分类、特点及其改性应用 关键字:水性聚氨酯涂料;改性;应用 0引言 聚氨酯(又称聚氨基甲酸酯)是指分子主链结构中含有氨基甲酸酯(-NH0COO-)重复单元的高分子聚合物,通常由多异氰酸酯与含活泼氢的聚多元醇反应生成。水性聚氨酯(WPU)是以水代替其他有机溶剂作为分散介质的聚氨酯体系,形成的WPU 乳液及其胶膜具有优异的机械性能、耐磨性、耐化学品性和耐老化性等特点,可广泛用于轻化纺织、皮革加工、涂料、建筑和造纸等行业。随着世界各国对环境保护的日益重视,越来越多的学者致力于水性聚氨酯涂料的开发,有效限制挥发性有机溶剂的毒害性。虽然水性聚氨酯具有一些优良的性能,但仍有许多不足之处。如硬度低、耐溶剂性差、表面光泽差、涂膜手感不佳等缺点。由于水性聚氨酯在实际应用中存在诸多问题,因此需要对其进行改性。其改性方法主要包括环氧树脂改性、丙烯酸酯改性、有机硅改性、多元改性等。 2水性聚氨酯涂料的特点与分类 2.1水性聚氨酯涂料的特点[1] 水性聚氨酯涂料是以水为介质的二元胶态体系。它不含或含很少量的有机溶剂,粒径小于0.1nm,具有较好的分散稳定性,不仅保留了传统的溶剂型聚氨酯涂料的一些优良性能,而且还具有生产成本低、安全不燃烧、不污染环境、不易损伤被涂饰表面、易操作和改性等优点,对纸张、木材、纤维板、塑料薄膜、金属、玻璃和皮革等均有良好的粘附性。 2.2水性聚氨酯涂料的分类 目前的水性聚氨酯主要包括单组分水性聚氨酯涂料、双组分水性聚氨酯涂料和特种涂料三大类。 2.2.1单组分水性聚氨酯涂料 单组分水性聚氨酯涂料是以水性聚氨酯树脂为基料并以水为分散介质的一类涂料。通过交联改性的水性聚氨酯涂料具有良好的贮存稳定性、涂膜机械性能、耐水性、耐溶剂性及耐老化性能,而且与传统的溶剂型聚氨酯涂料的性能相近,是水性聚氨酯涂料的一个重要发展方向。目前的品种主要包括热固型聚氨酯涂料和含封闭异氰酸酯的水性聚氨酯涂料等几个品种:a.热固型聚氨酯涂料。交联的聚氨酯能增加其耐溶剂性及水解稳定性。聚氨酯水分散体在应用时与少量外加交联剂混合组成的体系叫热固型水性聚氨酯涂料,也叫做外交联水性聚氨酯涂料。b.含封闭异氨酸酯的水性聚氨酯涂料。该涂料的成膜原料由多异氰酸酯组分和含羟基组分两部分组成。多异氰酸酯被苯酚或其它含单官能团的活泼氢原子的化合物所封闭,因此两部分可以合装而不反应,成为单组分涂料,并具有良好的贮藏稳定性。c.室温固化水性聚氨酯涂料。对于某些热敏基材和大型制件,不能采用加热的方式交联,必须采用室温交联的水性聚氨酯涂料。通过与水分散性多异氰酸酯结合,可以改进水性端羟基聚氨酯预聚物/丙烯

纳米复合材料最新研究进展与发展趋势

智能复合材料最新研究进展与发展趋势 1.绪论 智能复合材料是一类能感知环境变化,通过自我判断得出结论,并自主执行相应指令的材料,仅能感知和判断但不能自主执行的材料也归入此范畴,通常称为机敏复合材料。智能复合材料由于具备了生命智能的三要素:感知功能(监测应力、应变、压力、温度、损伤) 、判断决策功能(自我处理信息、判别原因、得出结论) 和执行功能(损伤的自愈合和自我改变应力应变分布、结构阻尼、固有频率等结构特性) ,集合了传感、控制和驱动功能,能适时感知和响应外界环境变化,作出判断,发出指令,并执行和完成动作,使材料具有类似生命的自检测、自诊断、自监控、自愈合及自适应能力,是复合材料技术的重要发展。它兼具结构材料和功能材料的双重特性。 在一般工程结构领域,智能复合材料主要通过改变自身的力学特性和形状来实现结构性态的控制。具体说就是通过改变结构的刚度、频率、外形等方面的特性,来抑制振动、避免共振、改善局部性能、提高强度和韧性、优化外形、减少阻力等。在生物医学领域,智能复合材料可以用于制造生物替代材料和生物传感器。在航空航天领域,智能复合材料已实际应用于飞机制造业并取得了很好的效果,航天飞行器上也已经使用了具有自适应性能的智能复合材料。智能复合材料在土木工程领域中发展也十分迅速。如将纤维增强聚合物(FRP)与光纤光栅(OFBG)复合形成的FRP—OFBG 复合筋大大提高了光纤光栅的耐久性。将这种复合筋埋入混凝土中,可以有效地检测混凝土的裂纹和强度,而且它可以根据需要加工成任意尺寸,十分适于工业化生产。本文阐述了近年来发展起来的形状记忆、压电等几种智能复合材料与结构的研究和应用现状,同时展望了其应用前景。 2.形状记忆聚合物(Shape-Memory Polymer)智能复合材料的研究 形状记忆聚合物(SMP)是通过对聚合物进行分子组合和改性,使它们在一定条件下,被赋予一定的形状(起始态),当外部条件发生变化时,它可相应地改变形状并将其固定变形态。如果外部环境以特定的方式和规律再次发生变化,它们能可逆地恢复至起始态。至此,完成“记忆起始态→固定变形态→恢复起始态”的循环,聚合物的这种特性称为材料的记忆效应。形状记忆聚合物的形变量最大可为200%,是可变形飞行器

纳米材料改性水性聚氨酯的研究进展

纳米材料改性水性聚氨酯的研究进展 综述了纳米材料改性水性聚氨酯几种常用方法的特点和研究进展,指出了纳米材料改性水性聚氨酯存在的问题。 标签:水性聚氨酯(WPU);纳米材料;方法;改性 1 前言 近年来,随着人们环保意识的增强,水性聚氨酯(WPU)受到越来越多学者的关注。WPU是以水为分散介质的二元胶态体系,具有不污染环境、VOC(有机挥发物)排放量低、机械性能优良和易改性等优点,使其在胶粘剂、涂料、皮革涂饰、造纸和油墨等行业中得到广泛应用[1~4]。但在制备WPU过程中由于引入亲水基团(如-OH、-COOH等),因此存在固含量低,耐水性、耐热性和耐老化性差等缺陷,从而限制了其应用范围。 纳米材料具有小尺寸效应、表面效应、量子尺寸效应及宏观量子隧道效应等特殊性质,为各种材料的改性开辟了崭新的途径。通过纳米材料改性的WPU,其成膜性、耐水性和耐磨性等性能均得到显著提高[5]。 2 纳米材料改性WPU的方法 2.1 共混法 共混法即纳米粒子在WPU中直接分散。首先是合成各种形态的纳米粒子,再通过机械混合的方法将纳米粒子加入到WPU中。但在该方法中,由于纳米粒子颗粒比表面积大,极易团聚。为防止纳米粒子团聚,科研工作者对纳米材料进行表面改性来提高其分散性,改善聚合物表面结构以提高其相容性。 李莉[6]等利用接枝改性后的纳米SiO2和TiO2与WPU共混,制备了纳米材料改性水性WPU乳液。研究发现,纳米粒子在乳液中分散均匀,无团聚现象;改性后的WPU乳液力学性能比未改性前得到改善和提高;当纳米粒子添加量为0.5%时,WPU乳液的力学性能最佳,吸水性降低了70%,添加的纳米粒子对波长290~400 nm的紫外光有吸收。 李文倩[7]等采用硅烷偶联剂(KH560)对纳米SiO2溶胶进行表面改性,然后将其与WPU共混制备出了WPU/SiO2复合乳液,考查了改性纳米溶胶含量对复合乳液及其涂膜性能的影响。结果表明,当纳米SiO2/KH560物质的量比为6:1时,改性后的纳米SiO2溶胶的粒径最小且分布较均一。KH560的加入使纳米SiO2粒子更均匀地分散在聚氨酯乳液中,且SiO2粒子与聚氨酯乳液之间存在一定键合作用,使涂层的耐热性得到显著增强。当改性SiO2溶胶添加量为5%~10%时,涂膜的硬度、耐磨性、耐划伤性、耐水性等性能明显提高。

有机硅改性水性聚氨酯

有机硅改性水性聚氨酯-聚丙烯酸酯乳液的研究 李伟,胡剑青,涂伟萍 (华南理工大学化工与能源学院,广州510640) 摘要:以聚酯多元醇、异佛尔酮二异氰酸酯、甲基丙烯酸甲酯等为原料,合成了水性聚氨酯丙烯酸乳液,加入含侧氨基和不饱和双键的有机硅氧烷进行扩链改性,得到了一系列有机硅改性的聚氨酯丙烯酸乳液。对得到的产物进行了表征,对改性前后的体系涂膜的性能进行了比较,结果表明,用有机硅改性的聚氨酯丙烯酸乳液形成的涂膜接触角更大、附着力更强、具有更好的耐水性,但硬度稍有下降。 关键词:水性聚氨酯;有机硅;接触角;耐水性;柔韧性 0引言 水性聚氨酯(WPU)涂料有良好的物理机械性能和优良的耐寒性。但是单一的PU乳液存在自增稠差、固含量低、耐水性差、机械强度不如丙烯酸树脂等缺点,且成本较高。而聚丙烯酸酯(PA)乳液在性能上能与聚氨酯乳液形成互补,所以将聚氨酯乳液和聚丙烯酸乳液复合制备水 性聚氨酯-丙烯酸酯(PUA)乳液,兼有聚氨酯和聚丙烯酸酯乳液的优点,有很好的应用前景。有机硅树脂表面能低,耐水性、耐候性以及透气性优良,已经广泛用于聚氨酯改性,采用合适化学方法用有机硅对水性聚氨酯-聚丙烯酸酯进行改性,可以得到有良好耐水性以及力学性能的涂膜。本文在聚氨酯链段上引入了几种有机硅氧烷,对得到的产物进行了表征及性能对比,制得了具有优良耐水性及力学性能的聚氨酯-聚丙烯酸酯乳液[1-2]。 1实验 1.1原料 异佛尔酮二异氰酸酯(IPDI)、己内酯二元醇(PCL)(M n=2000):工业品,拜耳公司;1,4-丁二醇(BDO):化学纯,上海凌峰化学试剂公司;二羟甲基丙酸(DMPA):工业品,进口;三羟甲基丙烷(TMP):试剂级,上海试剂一厂;N-甲基吡咯烷酮(NMP)、三乙胺(TEA)、乙二胺(EDA)、丙酮:分析纯,湖北大学化工厂;有机硅Z-6011、有机硅Z-6020、有机硅Z-6032:道康宁公司。 1.2合成工艺 1.2.1PU乳液的合成 将聚酯多元醇进行脱水处理后加入到装有搅拌器、冷凝管、温度计的四口烧瓶中,水浴升温到75~80℃后,加入IPDI,开动搅拌反应1.5~2h,后加入1,4-丁二醇,80℃反应1~1.5h,然后降温到70℃加入二羟甲基丙酸(溶于NMP中)和三羟甲基丙烷,反应2~3h,期间注意用丙酮调节黏度,后降温至50℃以下,加入有机硅后再加三乙胺中和15~20min,出料,在高速剪切下于去离子水中乳化分散,加入乙二胺扩链。减压脱去溶剂,最后得到半透明的带蓝光的PU乳液。 1.2.2PUA乳液的合成 将PU乳液、乳化剂、水混合后置于四口烧瓶中,搅拌加入含有引发剂AIBN的BA溶液,预乳化一段时间于80℃聚合3h,再升温至90℃反应1h,降至室温,出料,得到PUA乳液。 1.3乳液的成膜性能测试 (1)耐水性测试[3]:取适量的乳液涂在聚四氟乙烯板上,室温干燥7d成膜,将膜剪成 2cm×2cm的小块,称质量(m0),然后在水中浸泡一定时间,取出后吸干表面上的液体,称质量(m1)。计算膜的吸水率: 吸水率=(m1-m0)/m0×100% 用上海中晨数字技术设备有限公司JC2000C1型静滴接触角测量仪测量接触角; (2)硬度测试:根据GB/T1730—1993,使用QYB型漆膜摆杆硬度计测量; (3)附着力测试:根据GB1720—1979(1989)测量;

水性聚氨酯的合成与改性_闫福安

CHINA COATINGS 2008年第23卷第7期 15 0 引 言 聚氨酯是综合性能优秀的合成树脂之一。由于其合成单体品种多、反应条件温和、专一、可控,配方调整余地大及其高分子材料的微观结构特点,可广泛用于涂料、黏合剂、泡沫塑料、合成纤维以及弹性体,已成为人们衣、食、住、行必不可少的材料之一,其本身就已经形成了一个多品种、多系列的材料家族,形成了完整的聚氨酯工业体系,这是其它树脂所不具备的。 据有关报道,在全球聚氨酯产品的消耗总量中,北美洲和欧洲占到70%左右。美国人均年消耗聚氨酯材料约5.5 kg,西欧约4.5 kg,而我国的消费水平 还很低,年人均不足0.5 kg。 溶剂型的聚氨酯涂料品种众多、用途广泛,在涂料产品中占有非常重要的地位。水性聚氨酯的研究始自20世纪50年代,60、70年代,对水性聚氨酯的研究、开发迅速发展,70年代开始工业化生产用作皮革涂饰剂的水性聚氨酯。进入90年代,随着人们环保意识以及环保法规的加强,环境友好的水性聚氨酯的研究、开发日益受到重视,其应用已由皮革涂饰剂不断扩展到涂料、黏合剂等领域,正在逐步占领溶剂型聚氨酯的市场。在水性树脂中,水性聚氨酯仍然是优秀树脂的代表,是现代水性树脂研究的热点之一。 水性聚氨酯的合成与改性 □ 闫福安,陈 俊 (武汉工程大学化工与制药学院,武汉 430073) 摘要:对水性聚氨酯的合成单体、合成原理、合成工艺及改性方法作了介绍。水性聚氨酯合成技术不断完善,市场正在推进,国内相关企业和研究机构应加强合作,从分子设计出发,不断推进水性聚氨酯产业的技术进步和市场推广。 关键词:水性聚氨酯;合成;改性 中图分类号:TQ630 文献标识码:A 文章编号:1006-2556(2008)07-0015-08 Synthesis and modifi cation of water-borne PU Yan fuan, Chen jun (School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, Hubei Province) Abstract: This paper introduces water-borne PU about its monomers, synthesis mechanism, and synthesis technology and modifi cation methods. Relevant enterprises and research institutes China should strengthen the work cooperatively on molecule design, to promote the continuously progressing synthesis technology and the growing market of water-borne PU. Keywords: water-borne PU, synthesis, modifi cation 编者按:本文搜集了相关的情报资料,比较全面地阐述水性聚氨酯的合成技术。相应地,嘉宝莉朱延安、中国科技大章鹏进行了这方面的研发和实验实践。相比之下,为改善PUD分散体涂膜力学性能,选用聚碳酸酯型方向是可行的,但在水性木器涂料中的应用,应综合考虑制造成本、涂料使用范围、对涂膜光泽大小不同要求等方面因素;软段多元醇的选用不可能单一型,可以选用混合型,如PCD与PCL混合,或PCD与聚醚型混合,否则单用PCD,因价格太贵或存在功能过剩,影响水性聚氨酯涂料的推广应用与市场定位。 TECHNICAL PROGRESS DOI:10.13531/https://www.docsj.com/doc/ea4376790.html,ki.china.coatings.2008.07.007

纳米材料的发展及研究现状

纳米材料的发展及研究现状 在充满生机的21世纪,信息、生物技术、能源、环境、先进制造技术和国防的高速发展必然对材料提出新的需求,元件的小型化、智能化、高集成、高密度存储和超快传输等对材料的尺寸要求越来越小;航空航天、新型军事装备及先进制造技术等对材料性能要求越来越高。新材料的创新,以及在此基础上诱发的新技术。新产品的创新是未来10年对社会发展、经济振兴、国力增强最有影响力的战略研究领域,纳米材料将是起重要作用的关键材料之一。 纳米材料和纳米结构是当今新材料研究领域中最富有活力、对未来经济和社会发展有着十分重要影响的研究对象,也是纳米科技中最为活跃、最接近应用的重要组成部分。近年来,纳米材料和纳米结构取得了引人注目的成就。例如,存储密度达到每平方厘米400g的磁性纳米棒阵列的量子磁盘,成本低廉、发光频段可调的高效纳米阵列激光器,价格低廉高能量转化的纳米结构太阳能电池和热电转化元件,用作轨道炮道轨的耐烧蚀高强高韧纳米复合材料等的问世,充分显示了它在国民经济新型支柱产业和高技术领域应用的巨大潜力。正像美国科学家估计的“这种人们肉眼看不见的极微小的物质很可能给予各个领域带来一场革命”。 纳米材料和纳米结构的应用将对如何调整国民经济支柱产业的布局、设计新产品、形成新的产业及改造传统产业注入高科技含量提供新的机遇。研究纳米材料和纳米结构的重要科学意义在于它开辟了人们认识自然的新层次,是知识创新的源泉。由于纳米结构单

元的尺度(1~100urn)与物质中的许多特征长度,如电子的德布洛意波长、超导相干长度、隧穿势垒厚度、铁磁性临界尺寸相当,从而导致纳米材料和纳米结构的物理、化学特性既不同于微观的原子、分子,也不同于宏观物体,从而把人们探索自然、创造知识的能力延伸到介于宏观和微观物体之间的中间领域。在纳米领域发现新现象,认识新规律,提出新概念,建立新理论,为构筑纳米材料科学体系新框架奠定基础,也将极大丰富纳米物理和纳米化学等新领域的研究内涵。世纪之交高韧性纳米陶瓷、超强纳米金属等仍然是纳米材料领域重要的研究课题;纳米结构设计,异质、异相和不同性质的纳米基元(零维纳米微粒、一维纳米管、纳米棒和纳米丝)的组合。纳米尺度基元的表面修饰改性等形成了当今纳米材料研究新热点,人们可以有更多的自由度按自己的意愿合成具有特殊性能的新材料。利用新物性、新原理、新方法设计纳米结构原理性器件以及纳米复合传统材料改性正孕育着新的突破。1研究形状和趋势纳米材料制备和应用研究中所产生的纳米技术很可能成为下一世纪前20年的主导技术,带动纳米产业的发展。世纪之交世界先进国家都从未来发展战略高度重新布局纳米材料研究,在千年交替的关键时刻,迎接新的挑战,抓紧纳米材料和柏米结构的立项,迅速组织科技人员围绕国家制定的目标进行研究是十分重要的。纳米材料诞生州多年来所取得的成就及对各个领域的影响和渗透一直引人注目。进入90年代,纳米材料研究的内涵不断扩大,领域逐渐拓宽。一个突出的特点是基础研究和应用研究的衔接十分紧密,实验室成果的转化速度之快出乎人们预料,基

分子筛改性

分子筛改性- 沸石分子筛的改性方法 2沸石分子筛的结构及性能 2.1沸石分子筛的结构特点 沸石结构可以分为三个部分[3]:铝硅酸盐格架;格架中相互连结的孔隙(孔道和空穴):在孔道或空穴中的阳离子和水分子。在一般情况下,沸石的中心大空穴和孔道都充满水分子,这些水分子围绕着可交换阳离子形成水化球,通常在350℃或400℃下加热数小时或更长时间,沸石将失去水。这时,有效直径小到足以通过孔道的分子将易于被沸石吸附在脱水孔道和中心空穴中;而直径过大无法进入孔道的分子将被排斥,这就是大家所熟知的“分子筛”性质。 沸石的骨架中的每一个氧原子都为相邻的两个四面体所共用。构成沸石骨架的最基本的结构是硅氧(SiO4)四面体和铝氧(AlO4)四面体。几个硅(铝)氧四面体通过氧桥相互联结在一起,可以形成四元环、五元环、六元环、八元环、十二元环、十八元环等。而各种不同的多元环通过氧桥相互联结,又可形成具有三维空间的笼。由于铝原子是三价的,所以铝氧四面体中有一个氧原子的价电子没有得到中和,这样就使整个铝氧四面体带有一个负电荷,为了保持电中性,这个负电荷由处在骨架外的单价或多价阳离子来补偿。

沸石中的阳离子可被其它阳离子交换,并保持骨架结构不发生变化。由于阳离子的大小不同,以及在晶穴中位置的改变,可以影响沸石的孔径发生变化。另外,由于沸石中不同阳离子所产生的局部静电场不同,水合阳离子的离解度也不同,因而对吸附质分子的极化能的影响也不同,从而影响了沸石筛分分子的作用和吸附、催化性能,所以沸石的离子交换作用是沸石能够改性的原因之一。沸石中的阳离子位置可以发生改变,也可以被其它阳离子交换,并保持骨架结构不发生变化,这一点对沸石的应用是非常重要的。 沸石分子筛的结构特点归纳为以下几点: 1沸石分子筛具有高度有序的晶体结构和大量均匀的微孔,其孔径与一般物质的分子大小属同一数量级,空旷的骨架结构,使得晶穴体积约为总体积的40%~50%。 2分子筛具有很大的表面积,其表面积主要存在于晶穴内部,外表面积仅占总表面积的1%左右。 3明确的孔结构,对客体分子表现择形性。择形性是由反应物、产物或过渡态分子的扩散差别引起的,这方面已有大量的研究。沸石分子筛的这一性质可以通过孔道尺寸的剪裁来改变[4]。 4沸石呈现离子型电导性,这是由于阳离子可以通过孔道移动。阳离子携带电流的能力取决于离子的淌度、电荷大小和其在结构中的位置。 5沸石的酸碱稳定性各不相同,

水性聚氨酯树脂的改性研究进展

水性聚氨酯改性的研究进展 (马宁大连工业大学化工与材料学院116034) [摘要]: 详细叙述了水性聚氨酯的各种改性技术,如交联改性,聚丙烯酸酯,环氧树脂改性,有机硅改性,纳米技术改性,天然产物改性等,并对水性聚氨酯的发展前景进行了展望。[关键词]: 水性聚氨酯;改性技术;;展望;环氧树脂;;有机硅树脂 ResearchProgressinModificationTechonologyoftheWaterbornePolyurethane Abstract: The modifications techonology of waterborne polyurethane, such as the crosslinkin gpolyacrylates ,epoxyresin, organosilicon, hano-technology and natural product modifications arediscussed.The prospect of waterbome polyurethane for the future are put forward.; Key words: waterborne polyurethane ;modificationtechonologyprospect 为提高水性聚氨酯涂膜的耐水性和机械性能,可合成具有适度交联度的水性聚氨酯乳液。首先通过,如多元醇、多元胺扩链选用多官能度的合成原材料剂和多异氰酸酯交联剂等合成具有交联结构的水性聚氨酯分散体。然后添加内交联剂或外交联剂实现交,即内交联和外交联。 2.1内交联法 该法合成水性聚氨酯是在聚氨酯大分子中引入个或个以上官能团的单体,生成具有部分交含有联或者支化分子结构的聚氨酯胶束;另一种是在水性聚氨酯乳液中加入可以与乳液稳定共存的内交联剂而这些内交联剂只有在使用时由乳液体系的HLB值、温度、外部能量如紫外光辐射等因素的变化才与聚氨酯树脂中的官能团发生交联反应,生成具有网状个结构的热固性聚氨酯树脂。在大分子中引入含有3或3 个以上官能团的单体生成部分交联或支化结构,即将的聚氨酯树脂的合成一般是采用预聚体分散法交联单体如三聚体或三羟甲基丙烷等与低相对分子质量的聚氨酯预聚体充分混合,在水中分散后再加入扩链剂如乙二胺进行扩链反应。这种方法合成的具有部分交联结构的水性聚氨酯相比于丙酮法制备的水,具有不消耗溶剂(丙酮)且能同时获得高固性聚氨酯含量等优点。,还可采取丙酮法制备这类除预聚体分散法以外内交联型水性聚氨酯,即在预聚体分散前就用部分三官能度的单体如三羟甲基丙烷代替双官能团的单体,用少量丙酮为溶剂解决由于预聚体扩进行扩链反应链后相对分子质量增加而引起的黏度变大的问题,在分散形成乳液后再将丙酮等低沸点溶剂减压脱去,采用这种方法制备的水性聚氨酯具有相对分子质量分布窄、结构及粒径大小可变范围易控制、反应稳定性,但最大的缺点是制备的乳液的涂膜耐溶剂好等优点特别是耐丙酮性能差且工艺复杂,不利于工业化生产。 2.2外交联法 添加外交联剂的水性聚氨酯亦称为水性双组分聚氨酯,水性聚氨酯为一组分,交联剂为另一组分。在,将两组分混合均匀,成膜过程中发生化学反使用时应,形成交联结构。消除涂膜的亲水基团,可大幅度提高涂膜的耐水性,同时也适当提高了涂膜的力学性,聚氨能。水性聚氨酯的结构决定着外交联剂的组成酯分子中带羟基、氨基时,常用的外交联剂有水分散多异氰酸酯、氮杂环丙烷化合物、氨基树脂等;聚氨酯,常用的外交联剂有多元胺、环丙分子中带有羧基时烷的化合物及某些金属化合物,如Al(OH)3,Ca(OH)2等。为了更好地改善聚氨酯的性能,可同Mg(OOCH3)2时添加内交联剂和外交联剂,通过双重作用对聚氨酯进行交联改性。聚

沸石改性综述

L沸石的改性 一.引言 酸型沸石是一种广泛应用于石油精炼厂和石化生产过程的催化剂。由于沸石分子筛的酸强度及酸分布都会影响到沸石的稳定性和催化性能,因此沸石科学的早期人们就已经开始研究利用离子交换技术来改变沸石酸性质。例如,20世纪40 年代Barrer描述了丝光沸石的离子交换行为[i][ii]。Sherry[iii]和Breck [iv]已经总结出一套一般的离子交换方法[v],这种方法适用于分子筛离子交换已经得到证实[vi,vii]。接着,在20世纪六七十年代,焙烧作为一种主要的方法被用来研究Y(FAU)沸石[viii,ix]。沸石分子筛的催化性能受SiO2/Al2O3的影响,改变分子筛的SiO2/Al2O3也成了研究分子筛的重点,常常通过直接合成或者通过合成后处理的方法,得到高硅铝比的沸石分子筛,经脱铝处理的高稳定的USY分子筛为流化催化裂化奠定了基础,高硅铝比的丝光沸石也显示出了独特的催化性能。 分子筛的改性范围很广,从简单的离子交换直到结构完全崩塌的材料都属此范围。既包括对非骨架元素的改性也包括对骨架元素的改性。兰州炼油化工总厂石化研究院的高繁华等人总结了沸石改性的方法,主要包括三大类:一是结构改性,即改变沸石的SiO2/M2O3(M=Al或Fe,B,Ca等)从而达到改变沸石酸性的目的,水热脱铝是这类改性沸石的典型方法;二是沸石晶体表面改性,如加入不能进入沸石孔道的大分子金属有机化合物达到改性目的;三是内孔结构改性,即改变沸石的酸性位置或限制沸石的内孔的直径,例如金属阳离子交换。 目前工业上广泛应用的分子筛大多是需要提高其耐酸性能,分子筛骨架的酸碱性与分子筛骨架的硅铝比密切相关,所以往往需要对分子筛进行后处理来改变骨架的硅铝比,从而改变它的酸碱性和活性中心的数目和强度来适应催化反应的需要。改变分子筛的硅铝比,通常是在合成后对分子筛进行脱铝补硅处理,沸石分子筛脱铝补硅的方法很多[x,xi],主要有: (1)酸处理的方法可用无机酸或有机酸处理分子筛,使其骨架脱铝,可使用的酸有盐酸、硫酸、硝酸、甲酸[xii]、乙酸、柠檬酸[xiii]、乙二胺四乙酸(H4EDTA)等。根据分子筛耐酸性的差异,采用不同浓度的酸进行骨架脱铝。对于耐酸性好的高硅沸石多用盐酸漂法,以抽走骨架中的铝,结构仍保持完好。在骨架铝脱出的同时,孔道中非晶态物质也被溶解,这样减少了孔道阻力。对于耐酸性差的分

纳米材料研究进展

2011年第4期甘肃石油和化工2011年12月 纳米材料研究进展 李彦菊1,高飞2 (1.河北科技大学化学与制药工程学院,河北石家庄050018; 2.中核第四研究设计工程有限公司,河北石家庄050000) 摘要:纳米材料具有的独特的物理和化学性质,使人们意识到它的发展可能给物理、化学、材料、生物、医药等学科的研究带来新的机遇。纳米材料的应用前景十分广阔。综述了纳米材料 的分类、特性以及应用领域。 关键词:纳米材料;功能材料;复合材料 1前言 纳米(nm)是一个极小的长度单位,1nm=10-9m。当物质到纳米尺度以后,大约是在1~100nm 这个范围空间,物质的性能就会发生突变,呈现出特殊性能。这种既具有不同于原来组成的原子、分子,也不同于宏观物质的特殊性能构成的材料,即为纳米材料。如果仅仅是尺度达到纳米,而没有特殊性能的材料,也不能叫纳米材料。纳米技术正是利用纳米粒子这些特性实现其在各行各业中的特殊应用[1,2]。纳米技术和纳米材料的科学价值和应用前景已逐步被人们所认识,纳米科学与技术被认为是21世纪的三大科技之一。目前世界各国都对纳米材料和纳米科技高度重视,纷纷在基础研究和应用研究领域对其进行前瞻性的部署,旨在占领战略制高点,提升未来10~20年在国际上的竞争地位。我国政府对纳米科技十分重视,先进的纳米产业正在蓬勃发展[3,4]。 2纳米材料的分类 以“纳米”来命名的材料是在20世纪80年代,它作为一种材料的定义把纳米颗粒限制到1~100nm[5]。在纳米材料发展初期,纳米材料是指纳米颗粒和由它们构成的纳米薄膜和固体。广义而言,纳米材料是指在3维空间中至少有一维处于纳米尺度范围或由它们作为基本单元构成的材料。如果按维数[6],纳米材料的基本单元可以分为3类:①0维,指在空间3维尺度均在纳米尺度,如纳米尺度颗粒,原子团簇等;②1维,指在空间有两维处于纳米尺度,如纳米丝、纳米棒、纳米管等; ③2维,指在3维空间中有1维在纳米尺度,如超薄膜、多层膜、超晶格等。按化学组成可分为:纳米金属、纳米晶体、纳米陶瓷、纳米玻璃、纳米高分子和纳米复合材料[7,8]。按材料物性可分为:纳米半导体、纳米磁性材料、纳米非线性光学材料、纳米铁电体、纳米超导材料、纳米热电材料等。按应用可分为纳米电子材料、纳米光电子材料、纳米生物医用材料、纳米敏感材料、纳米储能材料等。纳米材料大部分都是人工制备的,属于人工材料,但是自然界中早就存在纳米微粒和纳米固体。例如天体的陨石碎片,人体和兽类的牙齿都是由纳米微粒构成的[9,10]。 3纳米材料的特性[11,12] 3.1表面效应 球形颗粒的表面积与直径的平方成正比,其体积与直径的立方成正比,故其比表面积(表面体 收稿日期:2011-07-05 作者简介:李彦菊(1981-),女,河北廊坊人,硕士,已发表论文10余篇,其中SCI2篇。主要从事纳米材料的研究工作。8

相关文档