文档视界 最新最全的文档下载
当前位置:文档视界 › 钢球磨煤机制粉系统

钢球磨煤机制粉系统

钢球磨煤机制粉系统
钢球磨煤机制粉系统

钢球磨煤机制粉系统

1.1.1单进单出钢球磨煤机制粉系统

钢球磨煤机制粉系统分为集中制和单元制两类。多台锅炉燃用的煤粉都集中在制粉车间或制粉工厂进行干燥和磨制,称为集中制粉系统。如果制粉系统直接与锅炉配套,并取用锅炉的热空气或热烟气作为干燥剂的输送介质,就称为单元制制粉系统。

单元制制粉系统又可分为直吹式和中间储仓式两种。在直吹式系统中,煤粉从磨煤机中出来,直接经燃烧器送入炉膛;在中间储仓式制粉系统中,煤粉被收集储存在煤粉仓中,燃用时再由煤粉仓下部的给粉机按锅炉负荷的需要调节给粉量,经排粉机或一次风机送入炉内。

单元制制粉系统中,如果干燥后的干燥剂连同燃料中蒸发出的水蒸气均送入锅炉的炉膛,则称为闭式单元制系统,一般适用折算水分M ZS<(0.04~0.05)kg/MJ,(折算水分是相对于每4190kJ/kg(1000kcal/kg)发热量的水分,即M ZS=M ar/Q net,,ar;如不送入炉膛,而直接排放到大气中或引风机前的烟道内,则称为开式单元制系统,适用于折算水分M ZS≥0.05kg/MJ。

⑴直吹式制粉系统

钢球磨直吹式制粉系统如图2-15所示。

直吹式制粉系统中,原煤的干燥可以利用热空气或热空气与炉烟的混合物。原煤干燥过程中在磨煤机前的下行干燥管内进行部分干燥。如原水分较低,就可不设前置干燥管,此时磨煤和干燥过程就全部在磨煤和内完成。为了对原煤有一定的适应能力,国内钢球磨煤和制粉系统全部装有一段前置下行干燥设备。

如果锅炉的热空气温度能满足原煤干燥的要求,那么采用热空气作为干燥剂是有利的。因为此时在炉膛的着火和燃烧区可以获得较高的温度,有益于稳定燃料的着火和燃烧。

现代锅炉设备热空气温度不会超过450℃。因而对个别水分较高的煤种,为提高干燥能力,有些国外电厂采用热空气与炉烟混合物作为干燥剂。国内钢球磨煤机制粉系统绝大多数采用热空气作干燥剂。

采用热空气干燥时,由于干燥剂内含氧量较高,增大了爆炸的危险性。制粉系统设计和运行中必须采取一定的防爆措施。采用烟气——空气混合物作干燥剂可降低系统爆炸的危险,而且实际上可

干燥任何水分的煤种。

图2-15 钢球磨煤机直吹式制粉系统

(a) 热空气干燥;(b)热空气-炉烟干燥

1—原煤斗;2—煤闸板;3,4—燃料量测量装置;5—给煤机;6—

落煤管;7—下行干燥管;

8—钢球磨煤机;9—冷风门;10—干燥剂流量计;11—回粉管;12—

粗粉分离器;

13—系统间联络管;14—排粉机;15—煤粉分配器;16—燃烧器;

17—二次风箱;18—锅炉;

19—送风机;20—空气预热器;21—热风管;22—抽炉烟管;23—

炉烟热空气混合室;24—防爆门

直吹式系统的优点是系统简单、部件少、管路短、维护容易、通风电耗低等。但也有一些不足之处。

①排粉机叶轮磨损严重。

②锅炉低负荷运行时,磨煤电耗和金属磨损量增大。

③由于磨煤机运行工况与锅炉的工作密切相关,因此当磨煤机检修、断煤或供煤不稳时,将直接影响锅炉的负荷,降低锅炉机组工作的可靠性。为提高锅炉运行可靠性,就要配置大出力磨煤机,无益的增大了制粉系统的裕度和初建投资。

④增大了向各燃烧器均匀分配煤粉的难度,对于大出力磨煤机及燃烧器数目多时,就愈加困难。

⑤没有可能采用干燥剂向磨煤机入口的再循环。

由于钢球磨煤机在低负荷下运行,会使磨煤电耗急剧加大,因此,只有带基本负荷的锅炉采用直吹式才是合理的。

⑵中间储仓式制粉系统

钢球磨煤机中间储仓式制粉系统如图2-16所示。

钢球磨煤机中间储仓式制粉系统在国内电厂中得到广泛的应用。采用热风作干燥剂时,有以下几种类型:热风加再循环,适用

于原煤水分M ar<12%;单纯热风作干燥剂适合于原煤水分M ar<15%的煤种;此外还有热风加冷风和热风加温风两种。其中以热风加再循环用得最多。干燥剂温度的调节大致有三种方式,就地冷风、压力冷风以及温风(引自空气预热器间),以采用就地冷风方式居多。

图2-16 钢球磨煤机中间储仓式制粉系统

6

炉磨煤机制粉专家控制系统工作总结

#5炉磨煤机制粉专家控制系统工作总结 台州发电厂 设备部 1 概述 我厂#5机组为国产135MW机组,其制粉系统采用2套中储式球磨机制粉系统。该机组于2004年底大修时安装和利时MACSII集散控制系统。但在DCS系统中没有成熟的 中储式球磨机制粉控制系统,制粉系统还是维持人工操作,制粉系统效率得不到提高。 而制粉系统如实现智能专家控制将能够自动寻找制粉系统最佳工况,它能保证制粉系统 最大化的迫近最佳工况,它能够在运行中根据煤质变化及各种参数的变化自动寻找制粉 系统的最佳差压,最佳出粉量(与给煤机给煤量对应,煤质等条件变化时此值会相应变 化)等,减轻人员劳动强度,并且使煤粉的细度均匀性提高,同时也使制粉效率大大高 于人工操作。 2005年5月份我们利用机组小修的机会,对制粉系统的控制进行了制粉系统专家控制系统的改造,将磨煤机的自动控制放在独立于DCS系统的专门控制站上实现,这样 在修改磨煤机控制方案及调试时丝毫不影响DCS系统的运行,经过近一个月的调试,系 统于七月十日投运,经与以前的统计数据比较,证明#5炉磨煤机系统在投入制粉专家 控制系统后各方面指标都有提高,特别是制粉出力大大高于人工操作。 2 磨煤机自动控制系统现状 我厂磨煤机制粉系统的控制一直采用人工手动控制,目前国内中储式制粉系统的制粉系统成功投入自动运行的案例不多,在省内更是没有。 3 磨煤机制粉专家控制系统改造方案 A)制粉系统控制存在的难点 自上世纪80年代起,国内许多单位即开始了对中储式制粉系统实施自动控制的研究工作,但进展缓慢。许多控制方案只能在短时间内实现自动控制,无法长期可靠运行。其难点主要表现为: a)多控制变量的强耦合特点:中储式制粉系统是由球磨机、粗粉分离器、细粉分离器、排粉机、和相应连接管道组成的复杂的气固二相流系统,其风压、风温、气流和煤流存在着强烈的耦合关系,对其任意参量的调节,都会对其它参量产生强烈的影响; b)有限的调节手段:制粉系统需要对磨煤机入图1:磨负荷与磨出入口差压关系曲线

钢球磨煤机运行的主要影响因素

钢球磨煤机运行的主要影响因素 [返回选矿技术目录页] 吉林石油集团有限责任公司热电厂(138006)付亚萍郭会昌郭会彦 【摘要】国内火力发电机组应用最多的是筒式钢球磨煤机,钢球磨煤机是储仓式制粉系统制粉系统中最重要、锅炉耗能较大的设备。保持磨煤机在最高出力下运行,对提高制粉系统的经济性作用最大。本文对影响钢球磨煤机运行的主要因素进行了分析,对提高制粉系统的经济性有一定指导意义。 【关键词】钢球磨煤机运行影响分析 1 前言 国内火力发电机组应用最多的是筒式钢球磨煤机,钢球磨煤机是储仓式制粉系统中最重要、锅炉耗能较大的设备。保持磨煤机在最高出力下运行,对提高制粉系统的经济性作用最大。 2 影响钢球磨煤机运行的主要因素 影响钢球磨煤机运行的主要因素有钢球磨煤机的工作转速、护甲的材质和结构形状、钢球充满系数与钢球直径、球磨机筒体通风量、球磨机载煤量、分离设备、煤粉特性、制粉系统漏风等。 2.1 球磨机的临界转速n ljt 和工作转速n 当球磨机的筒体转速发生变化时,筒中钢球和煤的运行特性也发生变化。当筒体转速很低 (n≤n lj )时,随着筒体转动,钢球被带到一定高度,钢球与煤随筒壁上升,在筒体内形成向筒的下部倾斜的状态,即形成一个斜面,当斜面的倾角等于或大于钢球的自然倾角时,钢球就沿着斜面滑落下来,撞击作用很小,这时球的运动对磨碎燃料的作用就很小,同时煤粉被压在钢球下面,很难将磨好的煤粉从钢球堆中分离出来,很难被气流带出,煤将被重复碾磨,以至磨得很细,降低了磨煤机出力,如图1(a)。 如筒体转速很高(n≥n lj),超过一定值后,由于作用到钢球及煤粒上的离心力很大,以致球与煤不再脱离筒壁,而随其一同旋转,如图1(c),产生这种状态的最低转速称为临界转速n lj。这时虽然使筒体旋转所耗能量很大,但钢球已没有撞击作用,煤只受到轻微的研磨,磨煤作用也很小。 图1 筒体转速对钢球和煤运动状况的影响 当筒体转速处于上述两者之间时,钢球被带到一定高度后,沿抛物线落下,如图1(b)。此时钢球对筒底的煤发生强烈的撞击作用。磨煤作用最大时的转速称为最佳工作转速n,它与临界转速n lj 间有一定的关系。 以紧贴筒壁的最外层钢球为例,假定钢球与筒壁间没有相对运动,根据在临界状态下钢球所受

HP1003中速磨煤机工作原理

HP1003中速磨煤机简介 上海重型机器厂八十年代初期从美国CE公司引进了碗式磨煤机制造技术。CE生产得磨煤机遍布全世界,用于电厂煤粉得制备与干燥,由于磨煤机内研磨表面形似深碟或碗,故称之为碗式磨煤机。HP碗式磨煤机就是继RP碗式磨煤机后新开发得产品,CE公司八十年代开发试验并投入使用。HP1003表示磨碗直径为100英寸(2540㎜)得浅碗磨。每台锅炉安装6台磨煤机,其中5台运行,一台备用。当磨制设计煤种时,5台磨得总出力不小于锅炉在B-MCR工况下燃煤量得110%。磨煤机设备得使用寿命不小于30年 1、2 HP1003磨煤机结构 沿磨煤机高度方向可分为传动装置、石子煤排出装置、侧机体、碾磨部件、加载装置、干燥分离空间、分离器及煤粉排出装置。另外在每一台磨煤机配置-套润滑系统。该系统包括电机驱动得润滑油泵泵(#1炉用得就是叶片泵,#2炉用得就是齿轮泵)、独立油箱、滤油器,冷油器与一些液压元件.此种磨煤机属于弹簧加载,依靠弹簧得预紧力保证磨辊得正常工作。 1、3 磨辊装置结构 1.3.1磨辊装置由磨辊头、磨辊轴、磨辊座、锥形磨辊套与轴承及油封组成.整个磨辊装置固定在分离器体得耳轴上,可以绕耳轴转动,并可以翻转到垂直位置进行检修与检查。磨辊轴得位置就是固定得,当磨碗转动时,靠煤得摩擦传递磨碗得转动力矩.使磨辊绕其磨辊轴转动。磨辊得行程等于磨碗得行程,磨辊得碾磨速度等于其本身得转动速度。 1.3.2磨辊衬套为双金属材料,里层就是高铬铸钢,表面就是用耐磨材料堆焊而成,厚度为50mm.磨辊头得作用就是传递弹簧加载装置施加得压力,使磨辊在磨煤时得到必要得碾磨力,磨辊加载形式为外置式弹簧加载。磨辊头与磨辊轴得连接采用法兰盘。1.3.3磨辊得上下轴承为两只大小相同得锥形滚柱轴承,磨辊内部有充足得润滑油,两组滚动轴承浸没在油中润滑。 1.3。4在耳轴中心开有孔道,把密封空气引向磨辊转动部件与静止部件之间得区域,防止煤粉等杂物进入润滑油。耳轴衬套为含有橡胶得材料,可以减少磨辊得振动. 1.3。5限位螺栓用来调节磨辊与磨碗衬板之间得间隙。当磨煤机启动时与空载运行时,磨辊与磨碗衬板不会直接接触,避免无谓得电能消耗,起动平稳无噪声,当辊套磨损后也可以利用限位螺栓来调整辊套与衬板之间得间隙。 1.3.6磨辊组件有3只唇形油封,其中2只就是用来防止煤粉进入,1只就是用来防止润滑油泄漏。3只油封安装在可更换得经过淬硬处理得耐磨圈上,以防止磨辊轴损伤. 1.1。4 加载装置结构 HP1003磨得加载装置为外置式弹簧加载.其弹簧加载装置主要由弹簧、弹簧座、弹簧杆、弹簧端盖等一些部件组成。整个组件为插袋式结构,在检修时可把整个组件进行拆卸。1.1.5 磨碗及叶轮装置结构 1。1。5、1整个磨碗装置主要包括磨碗、延伸环、磨碗耐磨盖板、磨碗壳盖板、夹紧环以及一组呈扇形状得衬板。 1.1.5、2磨碗衬板得一端被紧密地镶嵌在磨碗得凹槽内,另一端用楔形得夹紧环压紧.当拧紧环上得螺栓后,衬板就被牢牢地固定了。衬板得寿命比磨辊长,衬板得表面并不就是一平面,从衬板得截面瞧,其表面不就是一条斜直线,而就是一条折线,使磨辊小端与衬板得间隙比大端得间隙大,为喇叭状,有利于原煤进入。有若干块表面带有凸筋得衬板均匀地在这些衬板中间以增加煤与磨辊、衬板得摩擦力,防止磨辊打滑. 1。1.5、3在磨盘上得煤被磨成粉后由上升得气流抛至风环处进行第一级分离.其风环就是随磨碗一起转动得,因此,该装置也被称之为叶轮。 1.1。6传动装置结构 1。1。6、1传动装置为一个齿轮减速箱,相对于磨煤机得其它部件来讲就是独立得。维修时可将其移出进行检修或用备用齿轮箱进行更换,这样可缩短磨煤机得停机时间。齿轮箱得

影响钢球筒式磨煤机出力的因素有哪些

影响钢球筒式磨煤机出力的因素有哪些 钢球磨煤机的出力运行时会受众多条件的影响,主要的有: 1、护甲形状及磨损程度因为它影响到钢球的跌落高度,护甲磨损后,会使磨煤机出力下降。 2、钢球装载量及钢球尺寸钢球装载量过多或过少,都影响出力,因此,应保持合理的钢球充满系数;钢球尺寸要保持合理比例,要定期补入大球、清理出小球。 3、载煤量磨煤机内煤量过多或过少,都会使出力下降,磨煤电耗增大因此,应根据磨煤机出入口压差及时调节给煤量,以维持适当的载煤量。 4、通风量通风量影响煤沿筒体长度过的分布,风量大时煤粉粗,风量小时出力下降。因此,运行时应维持最佳通风量,以维持经济出力。 5、煤质变化原煤的水分、粒度增大,可磨性系数减小,都将使磨煤机出力下降。 6、制粉系统漏风漏风量大,减小了进入磨煤机的风量,磨煤机出力将降低。 7、干燥介质温度,入口风温越高出力越大,反之越小。 降低磨煤机耗电方法: 1、锅炉蒸发量越大,磨煤机耗电越小。 2、合理安排磨煤机运行方式,使磨煤机尽量减少双磨运行时间。 3、尽量使双磨煤机运行时蒸发量大的锅炉带大负荷,双磨煤机运 行负荷变化小的锅炉带小负荷。 影响排烟温度高的原因

1.受热面积灰、结渣及堵灰 由于炉膛受热面积灰结渣,影响传热效率, 使得受热面吸热量减少, 排烟温度升高.,排烟温度升高.通常受热面的积灰、结渣及堵灰可以使排烟温度升高10~20 ℃ 2.炉膛漏风的影响 炉膛的漏风参与炉内燃烧但不经过空气预热器,其主要指从炉底及炉膛的各门孔漏入的冷风,它也是引起排烟温度升高的原因之一炉膛出口过剩空气系数增加0.01,排烟温度升高约1.3℃.因此,在锅炉大、小修时,应安排进行锅炉本体的查漏堵漏工作,采用比较好的门、孔结构,运行时随时关闭各门、孔,减少锅炉漏风率对排烟温度的影响. 3.给水温度的影响 给水温度的变化影响省煤器的传热量,给水温度升高1℃,排烟温度升高0.31 ℃. 4.环境空气温度的影响冷空气温度变化明显影响空预器传热温压与传热量,经计算,在0~ 40℃变动范围内, 冷空气温度每变化1℃, 排烟温度同向变化约0.55℃. 5.煤质的影响 挥发分降低的影响.当燃煤的挥发分降低时,因煤的燃尽时间相应增加,使得炉膛出口温度升高,从而引起排烟温度的升高.煤的发热量和水分的影响.煤的低位发热量越低,收到基水分含量越多,则燃尽越约困难,要保证其燃烧完全所需的过剩空气系数越大,造成排烟温度越高.煤粉细度影响.煤粉细度越粗,燃尽越约困难,炉膛出口的烟气温度较高,造

磨煤机的工作原理及日常维护

磨煤机的工作原理及日常维护 (大唐珲春发电厂) 摘要:磨煤机是一种将煤块破碎并磨成煤粉的机械, 是电厂的重要辅机,近年来由于磨煤机故障造成电厂停机的事故屡见不鲜,究其原因是检修维护部门没有很好把握磨煤机故障出现的原因。本文以中速磨煤机为例,介绍了磨煤机的工作原理与日常维护,以此为检修维护部门提供更多可借鉴的资料。掌握磨煤机的设备劣化趋势,合理安排磨煤机的 计划性检修,防止设备“过维修、欠维修”,最终提高磨煤机的设备可靠性和设备利用率。 关键词: 磨煤机是一种将煤块破碎并磨成煤粉的机械,是电厂的 重要辅机,目前市场上所广泛应用的磨煤机一般都是中速辊盘式磨煤机,这种磨煤机的碾磨位置主要由两部分组成,即可以转动的磨环与三个能够自转的固定的磨辊。在碾磨过程中,在圆周作用下,平均分布于在磨盘滚道上的三个磨辊同时产生碾磨力,对原煤进行碾磨的同时强化其干燥操作。碾磨好的煤粉混合物经过烘干后输送至分离器,经过分离与筛选后获得合格的细粉。 近年来由于磨煤机故障造成电厂停机的事故屡见不鲜,

究其原因是检修维护部门没有很好把握磨煤机故障出现的原因。本文以中速磨煤机为例,介绍了磨煤机的工作原理与日常维护,以此为检修维护部门提供更多可借鉴的资料。掌握磨煤机的设备劣化趋势,合理安排磨煤机的计划性检修,防止设备“过维修、欠维修” ,最终提高磨煤机的设备可靠性和设备利用率。 、磨煤机的工作原理 磨煤机是将煤块破碎并磨成煤粉的机械,磨煤的过程是 煤被粉碎及其表面积不断增加的过程,主要通过压碎、击碎和研碎三种方式进行。磨煤机的型式很多,按磨煤工作部件的转速分为三类,转速为16-25r/min 是低速磨煤机,转速为 60-300r/min 是中速磨煤机,转速大于300r/min 即为高速磨煤 机, 中速磨煤机应用最广泛的是碗式磨煤机。 碗式磨煤机主要由台板基础、电动机、减速机、侧机体、 机座密封装置、磨碗及叶轮装置、刮板装置、磨辊装置、弹簧加载装置、铰轴装置、排渣装置、分离器等部件组成。磨煤机其碾磨部分是由传动的磨碗和三个沿磨碗滚动的固定且可自转的磨辊组成。原煤落入磨碗后,在离心力的作用下沿径向朝外移动至研磨环,由于径向和周向移动,煤在可绕轴转动的磨辊装置下通过,由此弹簧加载装置产生的研磨力通过转动的磨辊施压在煤上。磨辊装置使煤在磨辊下形成煤床,并在磨?h 与磨辊之间碾磨成粉。 碾磨压力由液压系统提供,可根据煤种进行调整。碾磨 压力及碾磨件的自重全部作用于减速机上,由减速机传至基础。三个磨辊均分布于磨盘辊道上,并铰固在加载架上。加 载架与磨辊支架通过滚柱可沿径向作倾斜12?15。的摆动,以适应物料层厚度的变化及磨辊与磨盘瓦磨损时所带来的角度变化。 用于输送煤粉和干燥原煤的热风由热风口进入磨煤机, 通过磨盘外侧的喷嘴环将静压转化为动压,并以75-90m/s

中速磨煤机改进方案-沈阳东北电力调节技术有限公司

中速磨煤机变加载液压系统 沈阳东北电力调节技术有限公司 二○○六年八月

中速磨煤机变加载液压系统 1. 概述 定压加载磨煤机加载力不可调整,机组在低负荷运行时,给煤量的减少,过高的加载力可导致磨煤机振动和发出强烈噪声,并易使磨煤机部件损坏;煤量的减少在同样加载力下被碾磨,煤粉的过分碾磨使磨煤机单位出力功耗显著增加;过细的煤粉会使炉膛燃烧更充分,但易使燃烧器喷嘴区域被烧坏或结焦,煤粉细度的反复变化,影响炉膛燃烧的稳定性;碾磨过细的煤粉,易产生煤粉爆炸的隐患。 为提高磨煤机运行的经济性、安全性和可靠性,研究开发了“中速磨煤机变加载液压系统”,该系统适用于中速磨煤机液压控制系统的设计和老系统的改造,目前已得到广泛应用。 2. 系统结构及工作原理 2.1 结构 中速磨煤机变加载液压系统由一台液压站、三台并联的液压缸和控制系统组成。 (1)液压站(见图1):由定载加压系统、变载加压系统、启闭排渣门液压系统组成;采用封闭式结构油箱。 (2)油缸:设有三台主加载油缸和上下插板油缸。油缸采用组合式的新型密封元件,具有补偿磨损功能、温度适应范围宽、速率高、易更换等特点。 (3)控制系统:采用PLC控制器,控制箱就地布置。 图1 中速磨煤机变加载液压站

2.2 工作原理 图2中速磨煤机变加载控制系统原理方框图 图2为中速磨煤机变加载控制系统原理方框图,采用以PLC控制器为控制核心,在DCS 操作员站设立独立的操作界面,PLC控制器接受DCS系统给煤量指令,通过处理单元运算,确定与给煤量相应的液压缸工作油压定值P1,根据液压缸工作油压定值P1与液压缸实际工作油压P2进行比较,输出控制信号,通过液压控制系统调整液压缸工作压力,并自动实施保压,使磨煤机加载力随煤量的变化而改变,控制磨煤机出口煤粉细度在较小范围内波动,实现磨煤机变加载运行。 3.主要技术参数 (1)额定工作压力:主泵双联叶片泵(加载泵) :小泵为11Mpa,大泵为4Mpa; 辅泵(渣门泵)为10MPa。 (2)额定工作流量:主泵双联叶片泵:小泵为8.5L/min,大泵为37 L/min; 辅泵为5.6L/min;手动泵为18ml/次。 (3)工作介质:YB-N46抗磨液压油,NAS 9级。 (4)电机:Y132M-4B57.5KW; Y90L-4B5 1.5KW。

钢球磨煤机临界转速

147 C H I N A V E N T U R E C A P I T A L TECHNOLOGY APPLICATION |科技技术应用 钢球磨煤机是以钢球为中介质的磨机,是依靠磨机衬板与介质的摩擦力和磨机旋转时所产生的离心力的作用,使钢球紧贴着筒体的内壁旋转和提升。在旋转和提升的过程中,往往又因各种条件的影响产生不同的工作状态。 1.泻落式运动状态:当磨机的工作转速较低时,整个粉磨体在磨机的旋转方向大约偏转40°—50°,并且经常保持粉磨体沿同心圆轨迹升高,然后一层层地泻落下来,这样周而复始的进行循环。此种状态如图2-6a 所示,称为泻落状态。这时物料主要是由介质的滑滚运动产生碾碎和研磨。 a)泻落状态 b)抛落状态 c)离心状态 2.抛落式运动状态:当破碎介质在高速旋转的筒体中运动时,任何一层介质的运动轨迹都可以分成两段:上升时,介质从落回点A 1到脱离点A 5是绕圆形轨迹A 1A 5运动,但从脱离点A 5到落回点A 1,则按抛物线轨迹A 5A 1下落,以后又沿圆形轨迹运动。在筒体内壁(衬板)与最外层介质之间的摩擦力作用下,外层介质沿圆形轨迹运动,摩擦力取决于摩擦系数和作用在筒体内壁(或相邻介质层)上的正压力。正压力是由重力的径向分力N 和离心力C 产生。重力的切向分力T 对筒体中心的力矩使介质产生于筒体旋转方向相反的转动趋势,如果摩擦力对筒体中心的力矩大于切向分力T 对筒体中心的力矩,那么介质与筒壁或介质层之间便不产生相对滑动,反之则存在相对滑动。 抛落式工作时,物料主要靠介质群落下时产生的冲击力而粉碎,同时也靠部分研磨作用。球磨机就是采用这种工作状态。 3.离心式运动状态:磨矿机构转速越高,介质也就随着筒壁上升得越高。超过一定速度时,介质就在离心力的作用下而不脱离筒壁。在实际操作中,如遇到这种情形时,即不发生磨矿作用。 球磨机工作状态钢球抛落式运动。研究球在球磨机内的运动规律时,我们是分析筒体内最外层的一个球的运动来说明筒体内全部钢球的运动。为了使讨论简化,现作如下假定: (1)在轴向各个不同的垂直断面上,钢球的运动状况完全相似; (2)球与筒壁及球与球间无相对滑动; (3)略去钢球的直径不计,因此外层球的回转半径可以 钢球磨煤机临界转速分析 北方重工集团有限公司电站设备分公司 李 强 张立志 欧阳维刚 用筒体的内半径表示。 任取一垂直断面,如图所示。当筒体回转时,筒体内的钢球在离心力C 和摩擦力的作用下,随着筒体作圆周运动,其运动方程式可写成: (2-1) 式中 R——筒体内半径,米。 当球随筒体沿圆形轨迹运行到A 点时,作用在球上的离心力C 等于球重G 的径向分力N,而且其切向分力T 被后面的一排球的推力作用所抵消。如球越过A 点,则球就以切线方向的速度v 离开筒壁沿抛物线轨迹下落。 球的运动轨迹 若以a 表示球脱离原轨迹的角度(脱离角),则在A 点(脱 离点)上保持下列关系: 式中,将C 值代入上式得: (2-2) 式中 m ——球的质量;v ——球的运动速度 米/秒;n ——筒体的转速,转/分;g ——重力加速度,米/秒2。将 代入公式(2-2)中,化简后得: (2-3) 公式(2-3)表示以原点O 为极点,oy 轴为极轴的圆的极坐标方程式。式中,R 表示从极点O 到圆周上任何一点的向量半径;a 表示向量半径与极轴的夹角; 表示圆的半径。若将极坐标方程式变换为以O 为原点的直角坐标方程式时,则在xoy 直角坐标系中,,并将此值和公式(2-1)代入(2-3)中即得: 公式(2-3a)表示筒体内各层球由圆运动转入抛物线运动时,脱离点的轨迹以o 1(o , )为圆心,半径为的圆的直角坐标方程式。由此可知,各球层脱离点的位置随筒体转速的不同而变化。当筒体转速不变,已知某球层的半径时,则该球层的脱离角为一定值。公式(2-3)或公式(2-3a)为球的脱离点的轨迹方程式。 装入球磨机中的钢球直径主要决定于给矿粒度、被破碎矿石物理机械性质以及磨矿细度等因素。给矿和磨矿细度愈大,矿石愈是坚硬,要求钢球的直径愈大;相反,给矿粒度和磨矿细度愈小,矿石愈是松脆,则要求钢球的直径愈小。 实际上,球磨机工作时,装入的钢球直径是不相等的。钢球中不但应有足够数量的磨碎粗粒物料的大球,同时也应有研磨细粒物料的中球和小球。为了提高球磨机的磨制效率,通常以某种适当的比例装入各种直径的钢球,该比例需根据具体生 产条件来确定。

中速磨煤机直吹式制粉系统运行特性分析

增 刊山西焦煤科技 Supple m ent 2008年7月 Shanx iC oking Coal Sc i e nce&Techno l o gy Ju.l2008 试验研究 中速磨煤机直吹式制粉系统运行特性分析 刘德来 (山西兴能发电有限责任公司) 摘 要 介绍了中速磨煤机工作原理和正压直吹式制粉系统组成,结合该系统在古交电厂1号、2号锅炉的成功应用情况,详细分析了该制粉系统的运行特性。 关键词 直吹式系统;中速磨煤机;运行特性;运行方式 古交发电厂一期2台锅炉是哈尔滨锅炉有限公司采用美国燃烧工程公司(CE)的引进技术设计和制造的HG-1025/17.5-YM17型锅炉。制粉系统为冷一次风正压直吹式,配备5台ZG M95G中速辊式磨煤机,燃用山西烟煤。 1 ZGM95中速磨煤机的工作原理及系统组成 ZGM95G中速辊盘式磨煤机,其碾磨部分是由转动的磨环和3个沿磨环滚动的固定且可自转的磨辊组成。原煤由给煤机送入中速辊式磨煤机,从中央落煤管落到磨环上,借助于旋转磨环离心力将原煤运动至碾磨滚道上,通过磨辊进行碾磨。原煤的碾磨和干燥同时进行,一次风通过喷嘴环均匀进入磨环周围,将经过碾磨从磨环上切向甩出的煤粉混合物烘干并输送至磨煤机上部的分离器,在分离器中进行分离,粗粉被分离出来返回磨环重磨,合格的细粉被一次风带出分离器送入炉膛燃烧。石子煤经喷嘴环落入石子煤箱。 2 中速磨正压冷一次风系统的特点 直吹式制粉系统的最大特点是保证磨煤机能根据锅炉负荷的需要,连续、均匀、有调节地供应炉膛质量合格的煤粉。这一性质使磨煤机及制粉系统的运行与锅炉的运行紧密地联系在一起,其运行性能必须综合考虑减少空气预热器漏风及保持稳定的一次风温和稳定的锅炉效率。因此,中速磨及其直吹式制粉系统已成为锅炉燃烧系统中不可分割的重要组成部分。目前,大型火电厂的中速磨直吹式制粉系统大多采用正压冷一次风机系统。在该系统中,一次风机只输送冷空气,这使风机可造得较小,通风电耗低且工作可靠性高。风机处于空气预热器之前,需在空气预热器中有独立的一次风通道,因而采用了三分仓回转式空气预热器,有利于初投资。由于风机的压头较高,无论对于总的一次风量,还是每台磨的空气流量,都可简单地用文氏管或其它方法方便地进行测量,这一点对提高锅炉燃烧自动化控制水平,从而提高锅炉燃烧经济性,也是不可忽视的有利条件。 3 影响中速磨工作的主要因素 评价中速磨煤机工作的指标有:磨煤出力、煤粉细度、与锅炉燃烧系统的配合、系统工作的安全性及运行电耗、碾磨部件的使用寿命等。磨煤出力随锅炉负荷而变化,其变化范围取决于磨煤机的型号、所磨制的燃料性质及所要求的煤粉细度,同时,还与碾磨部件的磨损情况及运行中碾磨压力的设置有关。 煤粉细度的确定取决于锅炉燃用燃料的性质,其应为使锅炉燃烧损失与运行电耗(包括磨煤电耗和通风电耗)及制粉金属损耗之和为最小的经济煤粉细度。 磨煤机与燃烧系统的配合反映在制粉系统的通风量与燃烧要求的一次风量是否匹配。制粉系统的最小通风量决定于两个条件:一是,在运行温度下,水平一次风管内的流速不应低于15m/s,以防止煤粉沉积;二是,保持中速磨煤机最低的风环风速,防止石子煤量骤增及保证必要的煤粉细度,两者中较高的一 作者简介:刘德来 男 1973年出生 1995年毕业于东北电力大学 助理工程师 古交 030206

中速磨煤机的工作原理及应用

中速磨煤机的工作原理及应用 各种中速磨煤机在结构上有一定差异,按其碾磨部件的形状可分为辊盘式和球环式两种。辊盘式磨煤机由于各制造厂家的不同设计,磨辊和磨盘的结构形式各不相同,又有平盘磨(Loesche磨)、斜盘磨(RP磨和HP磨)及辊环磨(MPS磨和Berz磨)等多种类型。球环中速磨又称E型磨。 由于驱动磨盘、磨碗或磨环的主轴都是垂直装设的,故中速磨又有立轴磨之称。 1.1.1 中速磨煤机的工作原理与结构 各种中速磨煤机的工作原理基本相似,如图2-20所示。原煤由落煤管进入两个碾磨部件的表面之间,在压紧力的作用下受到挤压和碾磨而被粉碎成煤粉。由于碾磨部件的旋转,磨成的煤粉被抛至风环处。装有均流导向叶片的环形热风道称为风环。热风以一定的速度通过风环进入干燥空间,对煤粉进行干燥,并将其带入碾磨上部的粗粉分离器中。经过分离,不符合燃烧要求的粗粉返回碾磨区重磨。合格的煤粉经煤粉分配器由干燥剂带出磨外,引至一次风

管。来煤中夹带的杂物(如石块、黄铁矿块和金属块等)被抛至风环处后,因由下而上的热风不足以阻止它们下落,故经风环落至杂物箱,上述的杂物亦称石子煤。 图2-20 中速磨煤机工作原理 (a) Loesche平盘磨;(b)Lopulco平盘磨;(c)RP碗式磨; (d) MPS磨;(e)E型磨 平盘磨、碗式磨(RP、HP型)、MPS磨和E型磨煤机结构见图4-2。

⑴平盘磨 平盘磨如图2-21(a)所示。平盘磨内,煤在平盘和锥形的辊子之间被碾磨成煤粉,压紧力由加压弹簧或液力一气动压紧装置来提供。磨辊与磨盘之间保持一定间隙,不直接接触。装有均流导向叶片的风环,一种是固定于磨煤机机壳上(如Leosche平盘磨);另一种是固定在转动的磨盘上,并随其一起转动(如Lopulco平盘磨)。

火电厂自动控制系统教程文件

火电厂自动控制系统 火电厂控制系统总体分为两部分:第一部分是主控部分,第二部分是副控部分。下面就这两部分具体内容做个介绍。 一、火电厂主控系统 火电厂主控系统是保证火电厂安全、稳定生产的关键,随着控制技术、网络技术、计算机技术和Web技术的飞跃发展,火电厂主控系统的控制水平和工程方案也在不断进步,火电厂的管理信息系统和主控系统的一体化无缝连接必将成为未来火电厂管控系统的发展趋势,传统火电厂的DCS系统也必将向这一趋势靠拢。火电厂主控系统以控制方式分类可分为:DAS、MCS、SCS、BMS及DEH等系统。 下面分别加以阐述: 1.数据采集系统-DAS: 火电厂的主控系统中的DAS(数据采集系统)主要是连续采集和处理机组工艺模拟量信号和设备状态的开关量信号,并实时监视,保证机组安全可靠地运行。 ■数据采集:对现场的模拟量、开关量的实时数据采集、扫描、处理。 ■信息显示:包括工艺系统的模拟图和设备状态显示、实时数据显示、棒图显示、历史趋势显示、报警显示等。 ■事件记录和报表制作/ 打印:包括SOE 顺序事件记录、工艺数据信息记录、设备运行记录、报警记录与查询等。 ■历史数据存储和检索 ■设备故障诊断 2.模拟量调节系统-MCS系统: ■机、炉协调控制系统(CCS) ● 送风控制,引风控制 ● 主汽温度控制 ● 给水控制 ● 主蒸汽母管压力控制 ● 除氧器水位控制,除氧器压力控制 ● 磨煤机入口负压自动调节,磨煤机出口温度自动调节 ■高加水位控制,低加水位控制 ■轴封压力控制 ■凝汽器水位控制 ■消防水泵出口母管压力控制 ■快减压力调节,快减温度调节 ■汽包水位自动调节

3.炉膛安全保护监控系统-BMS系统: BMS(炉膛安全保护监控系统)保证锅炉燃烧系统中各设备按规定的操作顺序和条件安全起停、切投,并能在危急情况下迅速切断进入锅炉炉膛的全部燃料,保证锅炉安全。包括BCS(燃烧器控制系统)和FSSS(炉膛安全系统)。 ■锅炉点火前和MFT 后的炉膛吹扫 ■油系统和油层的启停控制 ■制粉系统和煤层的启停控制 ■炉膛火焰监测 ■辅机(一次风机、密封风机、冷却风机、循环泵等)启、停和联锁保护 ■主燃料跳闸(MFT) ■油燃料跳闸(OFT) ■机组快速甩负荷(FCB) ■辅机故障减负荷(RB) ■机组运行监视和自动报警 4.顺序控制系统—SCS: ■制粉系统顺控 ■锅炉二次风门顺控 ■锅炉定排顺控 ■射水泵顺控 ■给水程控 ■励磁开关 ■整流装置开关 ■发电机灭磁开关 ■发电机感应调压器 ■备用励磁机手动调节励磁 ■发电机组断路器同期回路 ■其他设备起停顺控 5.电液调节系统—DEH: 该系统完成对汽机的转速调节、功率调节和机炉协调控制。包括:转速和功率控制;阀门试验和阀门管理;运行参数监视;超速保护;手动控制等功能。 ■转速和负荷的自动控制 ■汽轮机自启动(ATC) ■主汽压力控制(TPC) ■自动减负荷(RB) ■超速保护(OPC) ■阀门测试

制粉系统试验作业指导书

1 试验目的 通过制粉系统的调整试验,对其有目的地改变可调参数及控制方式,全面测量制粉系统的运行参数,从多方面比较试验结果,可以确定制粉系统的最佳经济运行方式以及最佳运行方式下制粉系统的技术经济特性,为运行调整提供参考,为电厂运行考核提供依据,从而切实保证制粉系统的安全、经济运行,提高锅炉机组运行的经济性。 2 试验范围 本作业指导书适用于中间储仓式制粉系统和直吹式制粉系统。 3 引用标准 3.1 DL/T 467-2004《电站磨煤机及制粉系统性能试验》 3.2 ASME PTC 4.2-1997《磨煤机试验规程》 4 工作程序 4.1 试验项目及测点布置 4.1.1 钢球磨煤机中间储仓式制粉系统 试验项目包括钢球装载量试验,分离器性能试验及磨煤机出力特性试验。 4.1.1.1 钢球装载量试验: 4.1.1.1.1 加煤前,测量不同钢球装载量下的磨煤机电流或功率,作为求得钢球补加量的依据; 4.1.1.1.2 加煤后,在不同钢球装载量下进行磨煤机的出力、电流、功率、煤粉细度及煤粉均匀性系数的测定,以求得在该煤种下最佳钢球装载量的数值。 4.1.1.2 分离器性能试验: 保持磨煤机出力和通风量不变,在分离器折向门挡板不同开度下测定煤粉细度、分离器阻力、分离器效率、循环倍率、煤粉细度调节系数、煤粉均匀性系数、磨煤机电耗等。用来判断分离器工作是否正常。 4.1.1.3 磨煤机出力特性试验: 在最佳钢球装载量下,保持合适的风煤比,在不同出力下测定制粉系统各运行参数。为合理运行方式提供依据。 4.1.2 中速磨煤机直吹式制粉系统 试验项目包括冷态风量调平试验,分离器性能试验、加载压力试验、磨煤机出力

MTZ3570型钢球磨煤机检修工艺规程

MTZ3570型钢球磨煤机检修工艺规程 1.1 制粉系统概述 1.2 简介 一台锅炉配4台钢球磨煤机。煤由原煤斗经给煤机送入磨煤机,送风机将冷空气送入空气预热器加热成热风后,一部分作为二次风,进入风箱,成为燃烧的辅助风。另一部分作为干燥剂送入磨煤机对煤进行干燥,同时携带磨成的煤粉离开磨煤机进入粗粉分离器。从粗粉分离器出来的不合格粗粉,经回粉管返回磨煤机中重新再磨。合格的煤粉被热风带入细粉分离器,将绝大部分煤粉从干燥剂中分离出来,煤粉通过切换挡板直接送入粉仓,或通过输粉机送入其他粉仓中,根据燃烧需要由给粉机把煤粉送入气粉混合器中,由一次风机经过加热后的热风通过气粉混合器时将煤粉送入燃烧器送入炉膛燃烧。由细粉分离器上部出来的热风(乏气),由排粉风机直接吹入燃烧器送入炉膛燃烧,此磨煤乏气称为三次风。每组燃烧器在燃烧器上面共布置二层三次风。 在排粉机出口至磨煤机进口之间设置有一根连接管称为再循环管。可以利用再循环管协调磨煤、干燥和燃烧所需的风量。当需要的磨煤机通风量较大而干燥出力较大时(煤挥发分高、水分较少时)可以打开再循环提高风量,调节磨煤机进口温度,提高磨煤出力。

为更好地控制磨煤机入口热风温度,磨煤机入口管道上设置有总风门、热风门和冷风门,以调节入口温度。同时在一次风机到空气预热器出口后设置有直通冷风管,以调节热风温度。 为配合燃烧煤种变化幅度较大的特点,保证锅炉运行安全可靠,燃烧器设计为4层煤粉喷嘴,两层三次风喷嘴,因此每个粉仓下面设置8台给粉机。每台锅炉设置两个粉仓,两台磨煤机共用一个粉仓。两个粉仓之间装设一台埋刮板式输粉机,可以通过它来实现两个粉仓之间煤粉的传送。 对于燃用挥发分较高的贫煤,煤粉的可燃性增加,适当考虑粉仓中灭火与消防措施。同时在粉仓与磨煤机出口管之间设置了吸潮管,保证粉仓内煤粉的水分,以防变潮结块。对整个制粉系统设置有蒸汽灭火消防系统。 本厂所用磨煤机为MTZ3570钢球磨煤机,厂家为洛阳矿山机器厂。每台炉配4台磨煤机。 1.3 组成 磨煤机由进料部、轴承部、传动部、筒体部和出料部等主部件与电动机、联轴器、减速器、防护罩及地基等其它辅助件组成。 1.3.1.1.1 进、出料部

中速磨煤机制粉系统运行优化试验

中速磨煤机制粉系统运行优化试验 发表时间:2017-01-19T11:07:17.057Z 来源:《基层建设》2016年32期作者:孙德强 [导读] 摘要:本文主要是针对平盘磨直吹式的制粉系统的煤粉细度大、煤粉的均匀性差、单耗高等问题,采用300MW机组制粉系统进行优化试验。 大唐七台河发电有限公司黑龙江省 154600 摘要:本文主要是针对平盘磨直吹式的制粉系统的煤粉细度大、煤粉的均匀性差、单耗高等问题,采用300MW机组制粉系统进行优化试验。充分地对平盘磨直吹式制粉系统进行分析,对磨煤机各参数开展一系列的优化试验,以求可以改善平盘磨直吹式的制粉系统运行的参数值。通过实验结果能够发现:制粉系统中单耗得到地下降,煤粉的粗细可以完全满足要求,飞灰、大渣的含碳量明显地降低,提高锅炉的运行经济性以及效率。 关键词:中速磨煤机;制粉系统;运行优化试验 1平盘磨直吹式制粉系统介绍 1.1制粉系统工作原理 平盘磨直吹式制粉系统按照平盘磨内气流正压或者负压的状态能够分成平盘磨直吹正压制粉系统以及平盘磨直吹负压制粉系统这两种。本文选择平盘磨直吹制粉系统,特指的是平盘磨直吹负压制粉方法,该系统的组成主要包括原煤仓、平盘磨、给煤机、排粉机、粗粉分离器、锅炉、燃烧器、空气预热器以及送风机,具体的系统图1能够得到充分体现。 图1 平盘磨直吹式制粉系统 平盘磨直吹制粉系统运行的过程: (1)原煤仓中原煤可以通过给煤机送于平盘磨当中。平盘磨当中,原煤需要做好平盘磨中央落煤管下落于磨环之上,利用转动的磨环离心力把原煤送到磨环的边缘磨盘的滚道中,然后经过若干的磨辊碾磨原煤,将原煤的碾磨为煤粉颗粒。 (2)利用送风机送入经过了空气预热器之后热空气干燥处理了煤粉,经过干燥后煤粉送风机中送入空气作用,输送到了平盘磨上粗粉的分离器之中。粗粉分离器当中,合格煤粉会被分离出,然后利用排粉机将其输送锅炉当中,同时在送风机中送入经过了空气的预热器之后热空气、燃烧器作用下做好燃烧;对于质量差的煤粉将被分离出,其中质量差的煤粉中粗粉颗粒将被分离出重新进入到平盘磨碾磨,对于难碾磨煤粉颗粒将被分离出进入到平盘磨下方排渣箱当中做好清理。 因为平盘磨直吹制粉系统中排粉机的安装是在平盘磨出口侧处,所以,平盘磨会在排粉机抽吸作用形成负压情况下运行。优点是平盘磨内煤粉不会轻易向空气当中泄露,环境的污染小并且不会产生污染;缺点是排粉机叶片容易受煤粉等流体磨损以及腐蚀,有着较高的维修频率。 1.2制粉系统各运行参数制约关系 (1)磨煤机通风量和煤粉细度、磨煤机单耗关系。如果磨煤机的通风升高时,碾磨后煤粉会向平盘磨上粗粉分离器的动能增加,导致有更多不合格的煤粉通过粗粉分离器,其中煤粉的细度会相应地变大;因为有更多不合格的煤粉通过了粗粉分离器,进而造成平盘磨重复碾磨率降低,磨煤机的单耗随之降低,不过如果磨煤机的通风量大,会导致磨煤机的碾磨原煤时压力增加,磨煤机的单耗随之而变大。 (2)分离器调节挡板开度同煤粉细度以及磨煤机单耗之间存在的关系。当增大分离器调节挡板开度时,完成碾磨工作之后的煤粉向平盘磨上方的粗粉分离器运动的阻力发生变小的趋势,使得有更多的质量不达标的煤粉通过粗粉分离器,相应的增大了煤粉细度;由于存在更多不合格的煤粉直接通过粗粉分离器,使得平盘磨重复碾磨率下降,随之造成磨煤机单耗变小。 (3)磨辊加载压力同煤粉细度以及磨煤机单耗之间存在的关系。通过增大磨辊加载压力时,原煤碾磨的能力也相应变大,进而就能够使原煤碾磨的更加细小,使得煤粉细度更小;但是增加原煤碾磨能力时,平盘磨电能的消耗明显升高,即磨煤机单耗变得更大。 2平盘磨直吹式制粉系统优化试验 为了将平盘磨直吹式制粉系统的优化试验过程展开具体的说明,文章选择某300MW机组为例展开说明。选择的平盘磨型号为 ZGM95。标准状况下,ZGM95的磨煤机出力为38t/h,转动速度为26.4r/min,气体流量为17.93kg/s,单耗量为6-l0kW?h/t,通风阻力在5740Pa以下。 2.1标定磨煤机的通风量 由磨煤机入口的测风原件测定磨煤机通风量,并准确的显示出风值。但在当前生产过程中,由于不合理的布局测风设备,使得前、后直管存在较短部分,风道转弯节和膨胀节影响了风速,所以表盘风量精确程度往往不够,因此一定要进行标定计算。在煤种稳定、复合稳定在290MW时进行标定试验,磨煤机通风量计算公式如下所示: (1) 公式中Q为磨煤机通风量标定值;K为通风量测量装置总系数(初始值设为66.438,最终值由冷态标定试验判定);t为风道管内温度*单位为℃;P为通风量检测装置输出压差;Px为风道管内总风量压力。 2.2煤粉分配状况及摸底测试 为了将煤粉的分配状况有效分析,在开展平盘磨直吹式制粉系统优化试验工作之前,必须测定该制粉系统的煤粉分配状况。在负荷为240MW下,当该制粉系统中磨煤机单耗为8.31kW?h/t、磨煤机出力为39t/h、磨煤机通风量为65000m3/h,分离器调节挡板开度调整到55°、磨辊加载压力调整到15MPa时,各处煤粉即各一次风道煤粉分配状况如表1所示。从煤粉分配状况可以有效判断出各角落的煤粉细度和煤粉均匀性系数还是比较一致的,说明煤粉能够合理分配。 2.3优化磨煤机通风量参数 在负荷为240MW下,由于不能调制过低的磨煤机通风量,因此应取通风量的数值大于55000m3/h。当调整磨煤机给煤量到39.2t/h、分离器调节挡板开度的大小调整至55°、磨辊加载压力调整至15MPa,磨煤机通风量分别取值为65000,60000,55000m3/h时,测试该制粉

冷炉制粉系统设计方案分析初稿

冷炉制粉系统设计方案分析 姚宪彬 在结合盘山电厂邻炉热风方案调研基础上,闫总带领各部门相关技术人员对我厂一、二号炉改造磨煤机微油点火加热方式进行了实地查勘。形成了三种方案,分别是邻炉热风系统、暖风器加热系统和#15磨、#21磨采用邻炉热风,#11磨、#25磨采用暖风器加热的综合方案(以下简称综合方案)。下面对三种方案进行简要分析: 一、方案简介 方案一、邻炉热风系统 由#1锅炉、#2锅炉两台一次风空预器出口热一次风联络风箱顶部垂直向上引出2根风管至空预器第二层平台约21米标高,沿平台南北向形成贯通#1锅炉、#2锅炉之间的热一次风联络风管,并在联络风管上合适位置分别引出去至#11磨、#15磨、#21磨、#25磨的分支管道。为了方便系统切换、系统隔绝,在#1锅炉、#2锅炉热一次风箱取风管处及两台锅炉间热一次风联络风道上各装一电动插板门,在#11磨、#15磨、#21磨、#25磨热一次风管道上各加一截止门;在去#11磨、#15磨、#21磨、#25磨的分支管道上各装一个门。具体改造系统流程图见下图: 方案二、暖风器加热系统

由辅助蒸汽1.6MPa,400℃母管,引出1根蒸汽母管至两台炉中间约17米标高处(此处母管有疏水),沿南北向分别引出2根蒸汽母管供#1炉、#2炉暖风器(此处母管有2路疏水),由这2根蒸汽母管在合适的位置分别引出去至#11磨、#15磨、#21磨、#25磨暖风器的分支管道。暖风器设置在#11磨、#15磨、#21磨、#25磨一次风母管旁路上,前后各有一电动截止门,为了方便系统切换、系统隔绝,在#11磨、#15磨、#21磨、#25磨热一次风管道上各加一截止门。各暖风器各加一个疏水门,所有疏水均回收至锅炉疏水扩容器。改造系统流程图见下图: 方案三、综合方案 由#1锅炉一次风空预器出口分至#15、#16、#17、#18磨热一次风联络风箱,#2锅炉一次风空预器出口分至#21、#22、#23、#24磨热一次风联络风箱,直接用管路连接形成#1锅炉、#2锅炉之间的热一次风联络风管,并由联络风管上在合适的位置分别引出去至#15磨、#21磨的分支管道。为了方便系统切换、系统隔绝,在#1锅炉、#2锅炉热一次风箱取风管处及两台锅炉间热一次风联络风道上各装一电动插板门,在#15磨、#21磨热一次风管道上各加一截止门;在去#15磨、#21磨的分支管道上各装一个门实现#15磨与#21磨之间邻炉热风联络;由辅助蒸汽1.6MPa,400℃母管,引出1根蒸汽母管至两台炉中间约17米标高处(此处母管有疏水),沿南北向分别引出2根蒸汽母管至#11磨、#25磨暖风器的分支管道(此

磨煤机钢球技术标准09.07.24

磨煤机钢球技术标准 Q/WQRD-00-102-003-09 批准: 复审: 审核: 编写: xx热电有限公司

Q/WQRD-00-102-003-09 磨煤机钢球技术标准 (暂行) 1 总则: 1.1本技术标准适用于xx热电有限公司所有锅炉用磨煤机钢球,包括性能、制造、运输和验收、试验等方面。 1.2本技术标准主要依据《磨煤机耐磨件技术条件》(DL/T 681-1999)、《铸造磨球》(GB/T 17445-1998)、《轧制钢球》(GB 8649-88)及《锻(轧)钢球》(YB/T091-2005)制定。 2 磨煤机用钢球技术要求 2.1生产方法 在保证性能的前提下,生产厂家应采用相应的熔炼、铸造、锻轧、热处理等方法进行生产。 2.2表面质量 2.2.1锻件表面不允许有裂纹、折叠和影响使用性能的飞边、毛刺等锻造缺陷。 2.2.2铸件表面应平整,浇口、冒口、毛刺、多肉、粘砂应清理干净,不允许有裂纹和影响使用性能的夹渣、砂眼、气孔、缩孔、缩松、冷隔等铸造缺陷。 2.3尺寸共差 磨煤机磨球的直径偏差应符合表1规定 表1 磨球规格与直径偏差 mm 2.4化学成分与力学性能 2.4.1锻造磨球的化学成分与力学性能见表2 表2 锻造磨球的化学成分与力学性能

2.4.2铸造磨球的化学成分与力学性能见表3 表3 铸造磨球的化学成分与力学性能

2.5磨球破碎率 磨球破碎率应小于或等于1% 2.6 金相组织见表4 表4 磨煤机磨球的金相组织和使用特性 3试验方法 3.1钢球表面质量用肉眼进行检查。 3.2尺寸公差用相应的检测工具和仪器进行。 3.3化学成分分析按GB223的规定进行,也可使用光谱分析法。

碗式中速磨煤机技术简介

一.HP碗式磨煤机发展史 碗式磨煤机发展史 HP型磨煤机是在RP磨煤机的基础上改进、发展起来的又一种新型中速磨煤机,它不仅革新和创造了新型部件结构,还吸收了其它中速磨煤机的优点,采用了当今世界上出现的一些成熟的先进技术,是具有90年代世界先进水平的中速磨煤机。 1989年上海重型机器厂在引进RP系列磨煤机基础上又向ABB-CE公司引进了全套HP系列碗式中速磨煤机设计和制造技术并按照质量不低于ABB-CE公司同类产品的标准的转化原则,对HP磨煤机进行国产化工程中,对于达不到ABB-CE 标准的零件仍然进口,例如行星减速器中的齿轮轴承,磨辊装置中的轴承和加载弹簧等,上海重型机器厂仍然进口,保证了国产HP磨煤机的质量。根据1999 年电力可靠性指标发布会公布的1998年中速磨煤机的运行可靠性指标,上海重型机器厂制造的HP磨煤机可用系数列国内磨煤机制造厂家第一名。 上海重型机器厂已完成了HP483、HP583、HP663、HP743、HP803、HP863、HP943、HP1003、HP1103、HP1203、HP1303共11大系列38个规格的HP磨煤机图纸和技术文件的转化和国产化工作,已具备了向用户提供用于50MW-1000MW级机组配套用HP磨煤机的能力。 碗式磨煤机的规格分类 三.HP碗式磨煤机的规格分类 HP碗式磨煤机的规格是用数字来表示的,个位数表示磨辊的个数,十位上的数和百位上的数联合组成的数表示磨碗的名义尺寸,如HP863碗式磨煤机,3表示有三个磨辊,86表示磨碗的名义尺寸为86英寸(2184mm),需要说明的是这里所指磨碗的名义尺寸仅仅是“名义”而已,由于磨煤机有30种规格,相互间出力仅相差2-3t/h,为了优化设计和制造,适当减少零件规格,相对增加零件的适用性和互换性,在设计时将30种规格的磨煤机分成9大系列,具体划分为: 483~523、583~663、683~743、763~803、823~863、883~943、963~1003、1023~1103、1163~1203、1263~1303。 同一系列中的磨煤机,其零件的机械尺寸完全相同,不同系列的,则相互不同。同一系列中的磨煤机,其基本出力变化在于进入磨煤机的最大空气流量(一次风)的不同和电动机的功率不同。 碗式磨煤机的组成 四.HP碗式磨煤机的组成

相关文档
相关文档 最新文档