文档视界 最新最全的文档下载
当前位置:文档视界 › 求函数值域的几种常见方法

求函数值域的几种常见方法

求函数值域的几种常见方法
求函数值域的几种常见方法

求函数值域的几种常见方法

值域为

{y|y 0};

二次函数 当a>0时,值域为{ y|y_t 匕

4a

};当a<0时, 值域为 ①y=3x+2(-仁X —

1) ② f (x) = 2 .. 4 - x

f(x) [2,

求.函数值域的几种常见方法

1 ?直接法:利用常见函数的值域来求

一次函数y=ax+b(at)的定义域为R ,值域为R ;

反比例函数y 飞(k =0)的定义域为{x|x 0},

x

f (x) =ax 2bx c(a =0)

的定义域为R ,

2

{『叭叮}.

例1求下列函数的值域

解:①???-仁x_1,??? -3 3x 3,

???-仁3x+2兰5,即-仁尸5,???值域是[-1, 5]

4 —X [0,::) 即函数f (x )=2 4—x 的值域是{ y| y 2}

x 1 T ,

1 - x 1 x 1 x 1

求函数值域的几种方法

高中数学中求函数值域的几种方法 汝南双语学校赵保刚 函数的值域及其求法是近几年高考考查的重点内容之一.本节主要帮助考生灵活掌握求值域的各种方法,并会用函数的值域解决实际应用问题. 定义域、对应法则、值域是函数构造的三个基本“元件”。平时数学中,实行“定义域优先”的原则,无可置疑。然而事物均具有二重性,在强化定义域问题的同时,往往就削弱或谈化了,对值域问题的探究,造成了一手“硬”一手“软”,使学生对函数的掌握时好时坏,事实上,定义域与值域二者的位置是相当的,绝不能厚此薄彼,何况它们二者随时处于互相转化之中(典型的例子是互为反函数定义域与值域的相互转化)。如果函数的值域是无限集的话,那么求函数值域不总是容易的,反靠不等式的运算性质有时并不能奏效,还必须联系函数的奇偶性、单调性、有界性、周期性来考虑函数的取值情况。才能获得正确答案,从这个角度来讲,求值域的问题有时比求定义域问题难。实践证明,如果加强了对值域求法的研究和讨论,有利于对定义域内函数的理解,从而深化对函数本质的认识。 若有非空数集A到B的映射f:A→B,则函数:y=f(x)(x∈A,y∈B)的值域是自变量x在f作用 下的函数值y的集合C,很明显,C B,求函数值域的方法要随函数式的变化而灵活掌握,同时应注重数形结合,等价转换,分类讨论等重要数学思想的理解与运用。下面通过八个方面的例题来加以说明。 题型一定义法 要深刻领会映射与函数值域的定义。 例1.已知函数f:A→B(A,B为非空数集),定义域为M,值域为N,则A,B,M,N的关系:()。 A.M=A,N=B B.M N,N=B C.M=A,N B D.M A,N B 说明:函数的定义域是映射f:A→B中的原象集合A,而值域即函数值的集合是集合B的子集。 故:应有M=A,N B,选C。 例2.已知函数f(x)=2log2x的值域是[-1,1],求函数y=f-1(x)的值域。 分析:要求反函数的值域,只需求原函数的定义域。 解:由已知可得 f(x)∈[-1,1],,解之得,

高一数学求函数的定义域与值域的常用方法教案

一. 教学内容: 求函数的定义域与值域的常用方法 求函数的解析式,求函数的定义域,求函数的值域,求函数的最值 二. 学习目标 1、进一步理解函数的定义域与值域的概念; 2、会应用代换、方程思想求简单的函数解析式; 3、会求基本初等函数、简单的复合函数及含参变量函数的定义域、值域和最值; 4、会将求函数值域问题化归为求函数的最值问题,重视函数单调性在确定函数最值中的作用; 5、会求实际问题中的函数解析式、定义域、值域和最值问题; 6、会用集合、区间或不等式表示函数的定义域和值域。 三. 知识要点 (一)求函数的解析式 1、函数的解析式表示函数与自变量之间的一种对应关系,是函数与自变量建立联系的一座桥梁,其一般形式是y=f(x),不能把它写成f(x,y)=0; 2、求函数解析式一般要写出定义域,但若定义域与由解析式所确定的自变量的范围一致时,可以不标出定义域;一般地,我们可以在求解函数解析式的过程中确保恒等变形; 3、求函数解析式的一般方法有: (1)直接法:根据题给条件,合理设置变量,寻找或构造变量之间的等量关系,列出等式,解出y。 (2)待定系数法:若明确了函数的类型,可以设出其一般形式,然后代值求出参数的值; (3)换元法:若给出了复合函数f[g(x)]的表达式,求f(x)的表达式时可以令t=g (x),以换元法解之; (4)构造方程组法:若给出f(x)和f(-x),或f(x)和f(1/x)的一个方程,则可以x代换-x(或1/x),构造出另一个方程,解此方程组,消去f(-x)(或f(1/x))即可求出f(x)的表达式; (5)根据实际问题求函数解析式:设定或选取自变量与因变量后,寻找或构造它们之间的等量关系,列出等式,解出y的表达式;要注意,此时函数的定义域除了由解析式限定外,还受其实际意义限定。 (二)求函数定义域 1、函数定义域是函数自变量的取值的集合,一般要求用集合或区间来表示; 2、常见题型是由解析式求定义域,此时要认清自变量,其次要考查自变量所在位置,位置决定了自变量的范围,最后将求定义域问题化归为解不等式组的问题; 3、如前所述,实际问题中的函数定义域除了受解析式限制外,还受实际意义限制,如时间变量一般取非负数,等等;

求函数值域的常见方法大全教师版

第 1 页 共 6 页 求函数值域的几种常用方法 在函数的三要素中,定义域和值域起决定作用,而值域是由定义域和对应法则共同确定。研究函数的值域,不但要重视对应法则的作用,而且还要特别重视定义域对值域的制约作用。确定函数的值域是研究函数不可缺少的重要一环。对于如何求函数的值域,是学生感到头痛的问题,它所涉及到的知识面广,方法灵活多样,在高考中经常出现,占有一定的地位,若方法运用适当,就能起到简化运算过程,避繁就简,事半功倍的作用。本文就求函数值域的方法归纳如下,供参考。 一、直接观察法 这是最基本的方法,通过对函数的定义域及其对应关系的观察分析,求函数的值域。 例1 求函数y = x 1 的值域。 解: x ≠0 ,∴ x 1 ≠0 显然函数的值域是:( -∞,0 )∪(0 ,+∞). 例2 求函数y = 3 -x 的值域。 解: x ≥0 ∴- x ≤0 3 -x ≤3 故函数的值域是:(,3]-∞ . 二、反函数法 当一个函数存在反函数又便于求其反函数时,可以通过求原函数的定义域来确定反函数的值域。 例3 求函数y = 6 54 3++x x 值域。 解:由原函数式可得:x = 3 564--y y , 则其反函数为:4653x y x -= - 其定义域为:x ≠5 3 , 故所求函数的值域为:33 (,)(,)55 -∞?+∞. 注:本题还可以用分离系数法,把原函数式变形为:3252530 y x = ++同样达到目的。 例4 求函数11()211()2 x x y -= +值域。 解:由原函数式可得:1 21log 1y x y -=+, 则其反函数为:1 2 1log 1x y x -=+ 由 101x x ->+,知11x -<<, 故所求函数的值域为:(1,1)-. 注:本题还可以利用函数的有界性法,把原函数式变形为:11()02 1x y y -= >+同样达到目的 三、配方法 配方法是求二次函数(即形如2 ()()()f x ag x bg x c =++的函数)值域最基本的方法之一。 例5 求函数y =2 x -2x + 5,x ∈[-1,2]的值域。 解:将函数配方得:y =(x -1)2 + 4, x ∈[-1,2], 由二次函数的性质可知: 当x = 1时,min y = 4 , 当x = - 1,时max y = 8 , 故函数的值域是:[ 4 ,8 ]. 例6 求函数y = 的值域。 解: 将函数变形为:y =故函数的值域是:[ 0 , 3 2 ].

求三角函数值域及最值的常用方法+练习题

求三角函数值域及最值的常用方法 (一)一次函数型 或利用:=+ =x b x a y cos sin )sin(22?+?+x b a 化为一个角的同名三角函数形式,利用三角函数的有界性或单调性求解; (2)2sin(3)512 y x π =-- +,x x y cos sin = (3)函数x x y cos 3sin +=在区间[0,]2 π 上的最小值为 1 . (4)函数tan( )2 y x π =- (4 4 x π π - ≤≤ 且0)x ≠的值域是 (,1][1,)-∞-?+∞ (二)二次函数型 利用二倍角公式,化为一个角的同名三角函数形式的一元二次式,利用配方法、 换元及图像法求解。 (2)函数)(2cos 2 1 cos )(R x x x x f ∈- =的最大值等于43. (3).当2 0π <

(三)借助直线的斜率的关系,用数形结合求解 型如d x c b x a x f ++= cos sin )(型。此类型最值问题可考虑如下几种解法: ①转化为c x b x a =+cos sin 再利用辅助角公式求其最值; ②利用万能公式求解; ③采用数形结合法(转化为斜率问题)求最值。 例1:求函数sin cos 2 x y x = -的值域。 解法1:数形结合法:求原函数的值域等价于求单位圆上的点P(cosx , sinx )与定点Q(2, 0)所确定的直线的斜率的范围。作出如图得图象,当过Q 点的直线与单位圆相切时得斜率便是函数sin cos 2 x y x = -得最值,由几何知识,易求得过Q 的两切线得斜率分别为3 3 -、 33。结合图形可知,此函数的值域是33 [,]33 - 。 解法2:将函数sin cos 2x y x =-变形为cos sin 2y x x y -=,∴22s i n ()1y x y φ+= +由2 |2||sin()|11y x y φ+= ≤+22(2)1y y ?≤+,解得:3333 y - ≤≤,故值域是33 [,]33- 解法3:利用万能公式求解:由万能公式2 12sin t t x +=,221cos 1t x t -=+,代入sin cos 2x y x =-得到2 213t y t =--则有2 320yt t y ++=知:当0t =,则0y =,满足条件;当0t ≠,由2 4120y =-≥△,3333 y ?-≤≤,故所求函数的值域是33[,]33-。 解法4:利用重要不等式求解:由万能公式2 12sin t t x +=,221cos 1t x t -=+,代入sin cos 2x y x = -得到2 213t y t =--当0t =时,则0y =,满足条件;当0t ≠时, 22 113(3) y t t t t = =---+,如果t > 0,则2223113233(3)y t t t t ==-≥-=---+, x Q P y O

高中数学求值域的10种方法

求函数值域的十种方法 一.直接法(观察法):对于一些比较简单的函数,其值域可通过观察得到。 例1.求函数1y = 的值域。 【解析】0≥11≥,∴函数1y =的值域为[1,)+∞。 【练习】 1.求下列函数的值域: ①32(11)y x x =+-≤≤; ②x x f -+=42)(; ③1 += x x y ; ○ 4()112 --=x y ,{}2,1,0,1-∈x 。 【参考答案】①[1,5]-;②[2,)+∞;③(,1) (1,)-∞+∞;○4{1,0,3}-。 二.配方法:适用于二次函数及能通过换元法等转化为二次函数的题型。形如 2()()()F x af x bf x c =++的函数的值域问题,均可使用配方法。 例2.求函数242y x x =-++([1,1]x ∈-)的值域。 【解析】2242(2)6y x x x =-++=--+。 ∵11x -≤≤,∴321x -≤-≤-,∴21(2)9x ≤-≤,∴23(2)65x -≤--+≤,∴35y -≤≤。 ∴函数242y x x =-++([1,1]x ∈-)的值域为[3,5]-。 例3.求函数][)4,0(422∈+--=x x x y 的值域。 【解析】本题中含有二次函数可利用配方法求解,为便于计算不妨设: )0)((4)(2≥+-=x f x x x f 配方得:][)4,0(4)2()(2∈+--=x x x f 利用二次函数的相关知识得][4,0)(∈x f ,从而得出:]0,2y ?∈?。 说明:在求解值域(最值)时,遇到分式、根式、对数式等类型时要注意函数本身定义域的限制,本题为: 0)(≥x f 。 例4.若,42=+y x 0,0>>y x ,试求y x lg lg +的最大值。

高中数学求函数值域的方法十三种审批稿

高中数学求函数值域的 方法十三种 TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】

高中数学:求函数值域的十三种方法 一、观察法(☆ ) 二、配方法(☆) 三、分离常数法(☆) 四、反函数法(☆) 五、判别式法(☆) 六、换元法(☆☆☆) 七、函数有界性 八、函数单调性法(☆) 九、图像法(数型结合法)(☆) 十、基本不等式法 十一、利用向量不等式 十二、 十三、一一映射法 十四、 多 种 方 法 综 合 运 用 一、观察法:从自变量x 的范围出发,推出()y f x =的取值范围。 【例1】 求函数1y =的值域。 11≥, ∴函数1y =的值域为[1,)+∞。 【例2】求函数 x 1 y = 的值域。 【解析】∵0x ≠ ∴0 x 1≠ 显然函数的值域是: ),0()0,(+∞-∞ 【例3】已知函数()112--=x y ,{}2,1,0,1-∈x ,求函数的值域。

【解析】因为{}2,1,0,1- =f f,()1 1- f所以: = 2 0= f,()()0 ∈ 3 x,而()()3 -f = 1= {}3,0,1- ∈ y 注意:求函数的值域时,不能忽视定义域,如果该题的定义域为R x∈,则函数的值域为{}1 y。 y ≥ |- 二.配方法:配方法式求“二次函数类”值域的基本方法。形如2 =++的 F x af x bf x c ()()() 函数的值域问题,均可使用配方法。 【例1】求函数225,[1,2] y x x x =-+∈-的值域。 【解析】将函数配方得:∵由二次函数的性质可知:当x=1 ∈[-1,2]时,,当时,故函数的值域是:[4,8] 【变式】已知,求函数的最值。 【解析】由已知,可得,即函数是定义在区间上的二次函数。将二次函数配方得,其对称轴方程,顶点坐标,且图象开口向上。显然其顶点横坐标不在区间内,如图2所示。函数的最小值为,最大值为。 图2

人教版必修一求函数值域的几种常见方法

人教版必修一求函数值域的几种常见方法 1.直接法:利用常见函数的值域来求 一次函数y=ax+b(a ≠0)的定义域为R ,值域为R ; 反比例函数)0(≠= k x k y 的定义域为{x|x ≠0},值域为{y|y ≠0}; 二次函数)0()(2≠++=a c bx ax x f 的定义域为R , 当a>0时,值域为{a b ac y y 4)4(|2-≥};当a<0时,值域为{a b a c y y 4)4(|2 -≤}. 例1.求下列函数的值域 ① y=3x+2(-1≤x ≤1) ②x x f -+=42)( ③1 += x x y ④x x y 1 + = 解:①∵-1≤x ≤1,∴-3≤3x ≤3, ∴-1≤3x+2≤5,即-1≤y ≤5,∴值域是[-1,5] ②∵),0[4+∞∈-x ∴),2[)(+∞∈x f 即函数x x f -+=42)(的值域是 { y| y ≥2} ③1 111 111 +- =+-+= +=x x x x x y ∵ 01 1≠+x ∴1≠y 即函数的值域是 { y| y ∈R 且y ≠1}(此法亦称分离常数法) ④当x>0,∴x x y 1+ ==2)1(2 +- x x 2≥, 当x<0时,)1(x x y -+ --==-2)1(2 --- -x x 2-≤ ∴值域是 ]2,(--∞[2,+∞).(此法也称为配方法) 函数x x y 1+ =的图像为: 2.二次函数比区间上的值域(最值): 例2 求下列函数的最大值、最小值与值域: ①142+-=x x y ; ②]4,3[,142∈+-=x x x y ;③]1,0[,142∈+-=x x x y ; ④]5,0[,142∈+-=x x x y ; 4 3 21 -1-2-3 -4 -6 -4 -2 2 4 6 y=x o -2 -112 f x () = x+ 1x

高考求函数值域及最值得方法及例题_训练题

函数专题之值域与最值问题 一.观察法:通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域. 例1:求函数) + =的值域. y- 3x 3 2( 点拨:根据算术平方根的性质,先求出) -的值域. 3 2(x 解:由算术平方根的性质,知) 2(x -≥3。∴函数的值域为) 3 -≥0,故3+) 2(x 3 ,3[+∞ . 点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。本题通过直接观察算 术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。 练习:求函数y=[x](0≤x≤5)的值域。(答案:值域为:{0,1,2,3,4,5}) 二.反函数法:当函数的反函数存在时,则其反函数的定义域就是原函数的值域. 例2:求函数y=(x+1)/(x+2)的值域. 点拨:先求出原函数的反函数,再求出其定义域。 解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数, 故函数y的值域为{y∣y≠1,y∈R}。 点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。 这种方法体现逆向思维的思想,是数学解题的重要方法之一。 练习:求函数y=(10x+10-x)/(10x-10-x)的值域。(答案:函数的值域为{y∣y<-1或y>1})三.配方法:当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域. 例3:求函数y=√(-x2+x+2)的值域. 点拨:将被开方数配方成完全平方数,利用二次函数的最值求。 解:由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。 此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4] ∴0≤√-x2+x+2≤3/2,函数的值域是[0,3/2] 点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。 配方法是数学的一种重要的思想方法。 练习:求函数y=2x-5+√15-4x的值域.(答案:值域为{y∣y≤3}) 四.判别式法:若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法求函数的值域。 例4:求函数y=(2x2-2x+3)/(x2-x+1)的值域. 点拨:将原函数转化为自变量的二次方程,应用二次方程根的判别式,从而确定出原函数的值域。

求函数的定义域与值域的常用方法完整版

求函数的定义域与值域 的常用方法 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

求函数的定义域与值域的常用方法 引入: 自变量x 的取值范围为 定义域 因变量y 的取值范围为 值域 求函数的解析式、求函数的定义域、求函数的值域、求函数的最值? 一、求函数的解析式 (一)解析式的表达形式 (解析式的表达形式有一般式、分段式、复合式等。) 1、一般式 (是大部分函数的表达形式) 例:一次函数:b kx y +=)0(≠k 二次函数:c bx ax y ++=2 )0(≠a 反比例函数:x k y = )0(≠k 正比例函数:kx y = )0(≠k 2、复合式 若y 是u 的函数,u 又是x 的函数,即),(),(),(b a x x g u u f y ∈==,那么y 关于x 的函数[]()b a x x g f y ,,)(∈=叫做f 和g 的复合函数。 例1、已知3)(,12)(2+=+=x x g x x f ,则[]=)(x g f , []=)(x f g 。 解:[]721)3(21)(2)(22+=++=+=x x x g x g f (二)解析式的求法 (根据已知条件求函数的解析式,常用配凑法、换元法、待定系数法、赋值(式)法、方程法等。) 1. 配凑法 例1.已知 :23)1(2+-=+x x x f ,求f(x); 解:因为15)1(23)1(22+-+=+-=+x x x x x f 例2、已知:221)1(x x x x f +=+,求)(x f 。 解: 2)1(1)1(222-+=+=+x x x x x x f ∴ )22(2)(2-≤≥-=x x x x f 或 注意:使用配凑法也要注意自变量的范围限制。 2.换元法 例1.已知:x x x f 2)1(+=+,求f(x); 解:令2)1(,1,1-=≥=+t x t t x 即则 则1)1(2)1()(22-=-+-=t t t t f 所以)1(1)(2≥-=x x x f 例2、已知:11)11(2-=+x x f ,求)(x f 。

求函数的定义域与值域的常用方法

求函数的定义域与值域的常用方法 引入: 自变量x 的取值范围为 定义域 因变量y 的取值范围为 值域 求函数的解析式、求函数的定义域、求函数的值域、求函数的最值 一、 求函数的解析式 (一)解析式的表达形式 (解析式的表达形式有一般式、分段式、复合式等。) 1、一般式 (是大部分函数的表达形式) 例:一次函数:b kx y +=)0(≠k 二次函数:c bx ax y ++=2)0(≠a 反比例函数:x k y = )0(≠k 正比例函数:kx y =)0(≠k 2、复合式 若y 是u 的函数,u 又是x 的函数,即),(),(),(b a x x g u u f y ∈==,那么y 关于x 的函数[]()b a x x g f y ,,)(∈=叫做f 和g 的复合函数。 例1、已知3)(,12)(2+=+=x x g x x f ,则[]=)(x g f ,[]=)(x f g 。 解:[]721)3(21)(2)(22+=++=+=x x x g x g f [][]4443)12(3)()(222 ++=++=+=x x x x f x f g (二)解析式的求法 (根据已知条件求函数的解析式,常用配凑法、换元法、待定系数法、赋值(式)法、方程法等。) 1. 配凑法 例1.已知 :23)1(2 +-=+x x x f ,求f(x); 解:因为15)1(23)1(22+-+=+-=+x x x x x f 65)(6)1(5)1(22+-=++-+=x x x f ,x x 所以 例2、已知:221)1(x x x x f +=+,求)(x f 。 解: 2)1(1)1(222-+=+=+x x x x x x f ∴ )22(2)(2-≤≥-=x x x x f 或 注意:使用配凑法也要注意自变量的范围限制。

求值域的几种常用方法

求值域的几种常用方法 (1)配方法:对于(可化为)“二次函数型”的函数常用配方法,如求函数 ,可变为解决 (2)基本函数法:一些由基本函数复合而成的函数可以利用基本函数的值域来求,如函数 就是利用函数和的值域来求。 (3)判别式法:通过对二次方程的实根的判别求值域。如求函数的值域 由得,若,则得,所以是函数值域中的一个值;若,则由得 ,故所求值域是 (4)分离常数法:常用来求“分式型”函数的值域。如求函数的值域,因为 ,而,所以 ,故 (5)利用基本不等式求值域:如求函数的值域 当时,;当时,,若,则 若,则,从而得所求值域是 (6)利用函数的单调性求求值域:如求函数的值域 因,故函数在上递减、 在上递增、在上递减、在上递增,从而可得所求值域为 4cos 2sin 2+--=x x y 2)1(cos 4cos 2sin 22+-=+--=x x x y )32(log 22 1++-=x x y u y 2 1log =322++-=x x u 2 21 22+-+= x x x y 2 2122+-+= x x x y 0 12)1(22 =-++-y x y yx 0=y 21-=x 0=y 0≠y 0)12(4)]1(2[2 ≥--+-=?y y y 021332133≠+≤≤-y y 且]2 13 3,2133[+-1 cos 3 cos 2+-= x x y 1cos 521cos 3cos 2+-=+-= x x x y ]2,0(1cos ∈+x ]2 5 ,(1cos 5--∞∈+-x ]2 1,(--∞∈y 4 32+= x x y 0=x 0=y 0≠x x x y 43+ = 0>x 44 24=?≥+ x x x x 0

最全函数值域的12种求法(附例题,习题)[1]

高中函数值域的12种求法 一.观察法 通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。 例1求函数y=3+√(2-3x) 的值域。 点拨:根据算术平方根的性质,先求出√(2-3x) 的值域。 解:由算术平方根的性质,知√(2-3x)≥0, 故3+√(2-3x)≥3。 ∴函数的知域为. 点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。 本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。 练习:求函数y=[x](0≤x≤5)的值域。(答案:值域为:{0,1,2,3,4,5}) 二.反函数法 当函数的反函数存在时,则其反函数的定义域就是原函数的值域。 例2求函数y=(x+1)/(x+2)的值域。 点拨:先求出原函数的反函数,再求出其定义域。 解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为{y∣y≠1,y∈R}。 点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。这种方法体现逆向思维的思想,是数学解题的重要方法之一。 练习:求函数y=(10x+10-x)/(10x-10-x)的值域。(答案:函数的值域为{y∣y<-1或y>1}) 三.配方法 当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域 例3:求函数y=√(-x2+x+2)的值域。 点拨:将被开方数配方成完全平方数,利用二次函数的最值求。 解:由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4] ∴0≤√-x2+x+2≤3/2,函数的值域是[0,3/2] 点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。配方法是数学的一种重要的思想方法。 练习:求函数y=2x-5+√15-4x的值域.(答案:值域为{y∣y≤3}) 四.判别式法 若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法求函数的值域。 例4求函数y=(2x2-2x+3)/(x2-x+1)的值域。 点拨:将原函数转化为自变量的二次方程,应用二次方程根的判别式,从而确定出原函数的值域。 解:将上式化为(y-2)x2-(y-2)x+(y-3)=0 (*) 当y≠2时,由Δ=(y-2)2-4(y-2)x+(y-3)≥0,解得:2<x≤10/3 当y=2时,方程(*)无解。∴函数的值域为2<y≤10/3。 点评:把函数关系化为二次方程F(x,y)=0,由于方程有实数解,故其判别式为非负数,可求得函数的值域。常适应于形如y=(ax2+bx+c)/(dx2+ex+f)及y=ax+b±√(cx2+dx+e)的函数。 练习:求函数y=1/(2x2-3x+1)的值域。(答案:值域为y≤-8或y>0)。 五.最值法 对于闭区间[a,b]上的连续函数y=f(x),可求出y=f(x)在区间[a,b]内的极值,并与边界值f(a).f(b)作比较,求出函数的最值,可得到函数y的值域。 例5已知(2x2-x-3)/(3x2+x+1)≤0,且满足x+y=1,求函数z=xy+3x的值域。 点拨:根据已知条件求出自变量x的取值范围,将目标函数消元、配方,可求出函数的值域。 解:∵3x2+x+1>0,上述分式不等式与不等式2x2-x-3≤0同解,解之得-1≤x≤3/2,又x+y=1,将y=1-x代入z=xy+3x 中,得z=-x2+4x(-1≤x≤3/2), ∴z=-(x-2)2+4且x∈[-1,3/2],函数z在区间[-1,3/2]上连续,故只需比较边界的大小。 当x=-1时,z=-5;当x=3/2时,z=15/4。 ∴函数z的值域为{z∣-5≤z≤15/4}。 点评:本题是将函数的值域问题转化为函数的最值。对开区间,若存在最值,也可通过求出最值而获得函数的值

高考数学函数求值域的十二种方法

高考数学函数求值域的十二种方法 出国留学高考网为大家提供高考数学函数求值域的十二种方法,更多高考资讯请关注我们网站的更新! 高考数学函数求值域的十二种方法 一.观察法 通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。 例1求函数y=3+√(2-3x)的值域。 点拨:根据算术平方根的性质,先求出√(2-3x)的值域。 解:由算术平方根的性质,知√(2-3x)≥0,故3+√(2-3x)≥3。∴函数的值域为{y∣y≥3}. 点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。 本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。练习:求函数 y=[x](0≤x≤5)的值域。(答案:值域为:{0,1,2,3,4,5}) 二.反函数法 当函数的反函数存在时,则其反函数的定义域就是原函数的值域。 例2求函数y=(x+1)/(x+2)的值域。 点拨:先求出原函数的反函数,再求出其定义域。 解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定 义域为y≠1的实数,故函数y的值域为{y∣y≠1,y∈R}。 点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。

这种方法体现逆向思维的思想,是数学解题的重要方法之一。练习:求函数y=(10x+10-x)/(10x-10-x)的值域。(答案:函数的值域 为{y∣y1}) 三.配方法 当所给函数是二次函数或可化为二次函数的复合函数时,可以利 用配方法求函数值域 例3:求函数y=√(-x2+x+2)的值域。 点拨:将被开方数配方成完全平方数,利用二次函数的最值求。 解:由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。此时- x2+x+2=-(x-1/2)2+9/4∈[0,9/4]∴0≤√-x2+x+2≤3/2,函数的值 域是[0,3/2] 点评:求函数的值域不但要重视对应关系的应用,而且要特别注 意定义域对值域的制约作用。 配方法是数学的一种重要的思想方法。练习:求函数y=2x- 5+√15-4x的值域.(答案:值域为{y∣y≤3}) 四.判别式法 若可化为关于某变量的二次方程的分式函数或无理函数,可用判 别式法求函数的值域。 例4求函数y=(2x2-2x+3)/(x2-x+1)的值域。 点拨:将原函数转化为自变量的二次方程,应用二次方程根的判别式,从而确定出原函数的值域。 解:将上式化为(y-2)x2-(y-2)x+(y-3)=0(*)当y≠2时,由 Δ=(y-2)2-4(y-2)x+(y-3)≥0,解得:2当y=2时,方程(*)无解。 ∴函数的值域为2点评:把函数关系化为二次方程F(x,y)=0,由于 方程有实数解,故其判别式为非负数,可求得函数的值域。常适应 于形如y=(ax2+bx+c)/(dx2+ex+f)及y=ax+b±√(cx2+dx+e)的函数。

最全函数值域的12种求法(附例题,习题)

通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。 例1求函数y=3+√(2-3x)的值域。 点拨: 根据算术平方根的性质,先求出√(2-3x)的值域。 解: 由算术平方根的性质,知√(2-3x)≥0, 故3+√(2-3x)≥3。 ∴函数的知域为. 点评: 算术xx具有双重非负性,即: (1)被开方数的非负性, (2)值的非负性。 本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。 练习: 求函数y=[x](0≤x≤5)的值域。( 答案: 值域为: {0,1,2,3,4,5}) 二.反函数法 当函数的反函数存在时,则其反函数的定义域就是原函数的值域。

例2求函数y=(x+1)/(x+2)的值域。 点拨: 先求出原函数的反函数,再求出其定义域。 解: 显然函数y=(x+1)/(x+2)的反函数为: x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为 {y∣y≠1,y∈R}。 点评: 利用反函数法求原函数的定义域的前提条件是原函数存在反函数。这种方法体现逆向思维的思想,是数学解题的重要方法之一。 练习: 求函数y=(10x+10-x)/(10x-10-x)的值域。( 答案: 函数的值域为{y∣y<-1或y>1}) 三.配方法 当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域 例3:求函数y=√(-x+x+2)的值域。 点拨: 将被开方数配方成完全平方数,利用二次函数的最值求。 解: 由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。此时-x2

求函数的定义域与值域的常用方法

函数的定义域与值域的常用方法 (一)求函数的解析式 1、函数的解析式表示函数与自变量之间的一种对应关系,是函数与自变量建立联系的一座桥梁,其一般形式是y=f(x),不能把它写成f(x,y)=0; 2、求函数解析式一般要写出定义域,但若定义域与由解析式所确定的自变量的范围一致时,可以不标出定义域;一般地,我们可以在求解函数解析式的过程中确保恒等变形; 3、求函数解析式的一般方法有: (1)直接法:根据题给条件,合理设置变量,寻找或构造变量之间的等量关系,列出等式,解出y。 (2)待定系数法:若明确了函数的类型,可以设出其一般形式,然后代值求出参数的值; (3)换元法:若给出了复合函数f[g(x)]的表达式,求f(x)的表达式时可以令t=g(x),以换元法解之; (4)构造方程组法:若给出f(x)和f(-x),或f(x)和f(1/x)的一个方程,则可以x代换-x(或1/x),构造出另一个方程,解此方程组,消去f(-x)(或f(1/x))即可求出f(x)的表达式; (5)根据实际问题求函数解析式:设定或选取自变量与因变量后,寻找或构造它们之间的等量关系,列出等式,解出y的表达式;要注意,此时函数的定义域除了由解析式限定外,还受其实际意义限定。 (二)求函数定义域 1、函数定义域是函数自变量的取值的集合,一般要求用集合或区间来表示; 2、常见题型是由解析式求定义域,此时要认清自变量,其次要考查自变量所在位置,位置决定了自变量的范围,最后将求定义域问题化归为解不等式组的问题; 3、如前所述,实际问题中的函数定义域除了受解析式限制外,还受实际意义限制,如时间变量一般取非负数,等等; 4、对复合函数y=f[g(x)]的定义域的求解,应先由y=f(u)求出u的范围,即g(x)的范围,再从中解出x的范围I1;再由g(x)求出y=g(x)的定义域I2,I1和I2的交集即为复合函数的定义域; 5、分段函数的定义域是各个区间的并集; 6、含有参数的函数的定义域的求解需要对参数进行分类讨论,若参数在不同的范围内定义域不一样,则在叙述结论时分别说明; 7、求定义域时有时需要对自变量进行分类讨论,但在叙述结论时需要对分类后求得的各个集合求并集,作为该函数的定义域;(三)求函数的值域 1、函数的值域即为函数值的集合,一般由定义域和对应法则确定,常用集合或区间来表示; 2、在函数f:A→B中,集合B未必就是该函数的值域,若记该函数的值域为C,则C是B的子集;若C=B,那么该函数作为映射我们称为“满射”; 3、分段函数的值域是各个区间上值域的并集; 4、对含参数的函数的值域,求解时须对参数进行分类讨论;叙述结论时要就参数的不同范围分别进行叙述; 5、若对自变量进行分类讨论求值域,应对分类后所求的值域求并集; 6、求函数值域的方法十分丰富,应注意总结; (四)求函数的最值 1、设函数y=f(x)定义域为A,则当x∈A时总有f(x)≤f(x o)=M,则称当x=x o时f(x)取最大值M;当x∈A时总有f(x)≥f(x1)=N,则称当x=x1时f(x)取最小值N; 2、求函数的最值问题可以化归为求函数的值域问题; 3、闭区间的连续函数必有最值。

【学生用】求函数值域的几种常见方法

求函数值域(最值)的几种常见方法 1.直接法:利用常见函数的值域来求 一次函数y=ax+b(a ≠0)的定义域为R ,值域为R ; 反比例函数)0(≠= k x k y 的定义域为{x|x ≠0},值域为{y|y ≠0}; 二次函数)0()(2≠++=a c bx ax x f 的定义域为R , 当a>0时,值域为{a b ac y y 4)4(|2-≥};当a<0时,值域为{a b a c y y 4)4(|2 -≤}. 例1.求下列函数的值域 ① y=3x+2(-1≤x ≤1) ②x x f -+=42)( ③1+=x x y ④x x y 1 += 2.二次函数必区间上的值域(最值): 例2 求下列函数的最大值、最小值与值域: ①142+-=x x y ; ②]4,3[,142∈+-=x x x y ;

③]1,0[,142∈+-=x x x y ; ④]5,0[,142∈+-=x x x y ; 3.判别式法(△法): 判别式法一般用于分式函数,其分子或分母只能为二次式,解题中要注意二次项系数是否为0的讨论 例3.求函数6 6 522-++-=x x x x y 的值域 4.换元法 例4.求函数x x y -+=142的值域 5.分段函数 例5.求函数y=|x+1|+|x-2|的值域.

练习 1 553--=x y ; 2 3 425 2+-=x x y 3、x x y -+=2; 4、242x x y --= 5、y=1 1 22+++-x x x x 6、12-=x x y

7、1 24 2+-=x x y 8、243+-=x x y 9、])3,1((342-∈-+-=x x x y 10、x x y 233-+-= 11、x x y 23-+= 12、2 21 322+---+=x x x x y

几种常用的求值域方法

求函数值域的方法 求函数值域的方法有图象法,函数单调性法,配方法,平方法,换元法,反函数法(逆求法),判别式法,复合函数法,三角代换法,基本不等式法等。 这些解题思想与方法贯穿了高中数学的始终。 1、求13+--=x x y 的值域 解法一:(图象法)可化为 ?? ? ??>-≤≤---<=3,431,221,4 x x x x y 观察得值域{}4 4≤≤-y y 解法三:(利用绝对值不等式) 4 14114)1(134 )1()3(13-=+--+≥+--+=+--=+--≤+--x x x x x x x x x x 所以同样可得值 域 2、求函数[]5,0,522∈+-=x x x y 的值域 解: 对称轴 []5,01∈=x [] 20,420,54 ,1max min 值域为时时∴====∴y x y x 3、求函数x x y -+=12 的值域 解:(换元法)设t x =-1,则)0(122≥++-=t t t y [)(] 4,41,01max ∞-∴==∴+∞∈=值域为,时当且开口向下 ,对称轴y t t

4、求函数[])1,0(239∈+-=x y x x 的值域 解:(换元法)设t x =3 ,则 31≤≤t 原函数可化为 [][]8,28,3;2,13,12 1 ,2m a x m i n 2值域为 时时对称轴∴====∴?= +-=y t y t t t t y 5、求函数x x y -+-=53 的值域 解:(平方法)函数定义域为:[]5,3∈x [][][] [] 2 ,24,21,0158,5,315 82)5()3(2 222原函数值域为得由∴∈∴∈-+-∈-+-+-+-=y x x x x x x x y 6、求函数 )0(2≤=x y x 的值域 解:(图象法)如图,值域为(]1,0 7、求函数x x y 2231+-? ? ? ??= 的值域 解:(复合函数法)令1)1(22 2 +--=+-=x x x t 3?? ? 由指数函数的单调性知,原函数的值域为?? ? ???+∞,31 8、求函数2 1 +-= x x y 的值域 解法一:(反函数法){}1121,≠-+= y y y y x x 原函数值域为观察得解出 解法二:(利用部分分式法)由12 3 1232≠+-=+-+= x x x y ,可得值域{}1≠y y

高中数学求函数值域的类题型和种方法

求函数值域的 7类题型和16种方法 一、函数值域基本知识 1.定义:在函数()y f x =中,与自变量x 的值对应的因变量y 的值叫做函数值,函数值的集合叫做函数的值域(或函数值的集合)。 2.确定函数的值域的原则 ①当函数()y f x =用表格给出时,函数的值域是指表格中实数y 的集合; ②当函数()y f x =用图象给出时,函数的值域是指图象在y 轴上的投影所覆盖的实数y 的集合; ③当函数()y f x =用解析式给出时,函数的值域由函数的定义域及其对应法则唯一确定; ④当函数()y f x =由实际问题给出时,函数的值域由问题的实际意义确定。 二、常见函数的值域,这是求其他复杂函数值域的基础。 函数的值域取决于定义域和对应法则,不论采用什么方法球函数的值域均应考虑其定义域。 一般地,常见函数的值域: 1.一次函数()0y kx b k =+≠的值域为R. 2.二次函数()2 0y ax bx c a =++≠,当0a >时的值域为24,4ac b a ?? -+∞?? ?? ,当0a <时的值域为24,4ac b a ?? --∞ ???., 3.反比例函数()0k y k x = ≠的值域为{}0y R y ∈≠. 4.指数函数()01x y a a a =>≠且的值域为{}0y y >. 5.对数函数()log 01a y x a a =>≠且的值域为R. 6.正,余弦函数的值域为[]1,1-,正,余切函数的值域为R. 三、求解函数值域的7种题型 题型一:一次函数()0y ax b a =+≠的值域(最值) 1、一次函数:()0y ax b a =+≠当其定义域为R ,其值域为R ;

求值域的方法大全及习题

求值域方法 常用求值域方法 (1)、直接观察法:利用已有的基本函数的值域观察直接得出所求函数的值域 对于一些比较简单的函数,如正比例,反比例,一次函数,指数函数,对数函数,等等, 其值域可通过观察直接得到。 例1、求函数 1 ,[1,2]y x x = ∈的值域。 例2、 求函数x 3y -=的值域。 【同步练习1】函数2 21x y += 的值域. (2)、配方法:二次函数或可转化为形如c x bf x f a x F ++=)()]([)(2 类的函数的值域问题,均可用配方法,而后一情况要注意)(x f 的范围;配方法是求二次函数值域最基本的方法之一。 例1、求函数 225,y x x x R =-+∈的值域。 例2、求函数 ]2,1[x ,5x 2x y 2-∈+-=的值域。 例3、求()()22log 26log 62log 22 222 2-+=++=x x x y 。(配方法、换元法) 例4、设02x ≤≤,求函数1 ()4321x x f x +=-+的值域. 例5、求函数13432-+ -=x x y 的值域。(配方法、换元法) 例6、求函数x x y 422+--=的值域。(配方法) 【同步练习2】 1、求二次函数2 42y x x =-+-([]1,4x ∈)的值域. 2、求函数342-+-=x x e y 的值域. 3、求函数4 21,[3,2]x x y x --=-+∈-的最大值与最小值. 4、求函数])8,1[(4 log 2log 22∈?=x x x y 的最大值和最小值. 5、已知[]0,2x ∈,求函数1 2 ()4 325x x f x -=-?+的值域. 6、若,42=+y x 0,0>>y x ,试求y x lg lg +的最大值。 (3)、换元法:(三角换元法)有时候为了沟通已知与未知的联系,我们常常引进一个(几个)新的量来代替原来的量,实行这种“变量代换”往往可以暴露已知与未知之间被表面形式掩盖着的实质,发现解题方向,这就是换元法.在求值域时,我们可以通过换元将所给函数化成值域容易确定的另一函数,从而求得原函数的值域.

相关文档
相关文档 最新文档