文档视界 最新最全的文档下载
当前位置:文档视界 › 谱线加宽和线型函数

谱线加宽和线型函数

谱线加宽和线型函数

谱线加宽是指在光谱图上,对于具有一定宽度的谱线进行可视化处理,以使其看起来更宽。谱线加宽的目的是为了更好地表示谱线的形状和分布,并提供更准确的数据分析。在实际应用中,谱线加宽常常与线型函数相结

合使用。

线型函数是用数学方法表示谱线的形状和分布的函数。不同的谱线具

有不同的线型函数,常见的有高斯型、洛伦兹型等。线型函数的参数可以

用于描述谱线的峰值位置、峰值强度、峰宽等特征。

在光谱分析中,谱线加宽和线型函数是不可或缺的工具。首先,谱线

加宽可以通过增加谱线的宽度,提高谱线的稳定性和可视化效果。这对于

谱线弱或者峰位模糊的情况特别有用。其次,线型函数可以用于对谱线进

行数学拟合,以获得更准确的参数估计。线型函数的选择要结合谱线的实

际情况,比如高斯型适用于对称峰,洛伦兹型适用于非对称峰。

对于谱线加宽,常用的方法有直接加宽和卷积加宽。直接加宽是在谱

线的两侧增加一定宽度的矩形区域。这样可以在光谱图上清晰地显示出谱

线的分布范围,但是无法提供对谱线形状的详细描述。卷积加宽是将谱线

与一个适当的函数进行卷积,使谱线的宽度得到增大。这样可以更好地反

映出谱线的实际形状,但是过于复杂的卷积算法会增加计算量。

线型函数的选择应考虑谱线的实际形状和分布特点。常见的线型函数

有高斯型函数和洛伦兹型函数。高斯型函数适用于对称峰,其形式为

e^(-(某-μ)^2/2σ^2),其中μ和σ分别是高斯峰的均值和标准差。洛

伦兹型函数适用于非对称峰,其形式为1/(1+((某-μ)/σ)^2),其中μ

和σ分别是洛伦兹峰的中心位置和半峰宽。

线型函数参数的估计可以采用最小二乘法或最大似然估计等方法。最小二乘法通过最小化观测值与线型函数之间的差异来估计参数,最大似然估计则通过最大化观测值的可能性来估计参数。这些方法可以给出关于谱线的位置、强度和宽度的估计值。

总之,谱线加宽和线型函数是光谱分析中常用的工具。谱线加宽可以改善光谱图的可视化效果,线型函数可以用于对谱线进行数学拟合。这些工具的合理应用可以提高光谱分析的准确性和可靠性。

激光原理复习知识点

一 名词解释 1. 损耗系数及振荡条件: 0)(m ≥-=ααS o I g I ,即α≥o g 。α为包括放大器损耗和谐振腔损耗在内 的平均损耗系数。 2. 线型函数:引入谱线的线型函数p v p v v )(),(g 0~ = ,线型函数的单位是S ,括号中的0v 表示线型函数的中心频率,且有 ?+∞∞-=1),(g 0~v v ,并在0v 加减2v ?时下降至最大值的一半。按上式定义的v ?称为谱线宽度。 3. 多普勒加宽:多普勒加宽是由于做热运动的发光原子所发出的辐射的多普勒频移所引起的加宽。 4. 纵模竞争效应:在均匀加宽激光器中,几个满足阈值条件的纵模在震荡过程中互相竞争,结果总是 靠近中心频率0v 的一个纵模得胜,形成稳定振荡,其他纵模都被抑制而熄灭的现象。 5. 谐振腔的Q 值:无论是LC 振荡回路,还是光频谐振腔,都采用品质因数Q 值来标识腔的特性。定义 p v P w Q ξπξ 2==。ξ为储存在腔内的总能量,p 为单位时间内损耗的总能量。v 为腔内电磁场 的振荡频率。 6. 兰姆凹陷:单模输出功率P 与单模频率q v 的关系曲线,在单模频率等于0的时候有一凹陷,称作兰 姆凹陷。 7. 锁模:一般非均匀加宽激光器如果不采取特殊的选模措施,总是得到多纵模输出,并且由于空间烧 孔效应,均匀加宽激光器的输出也往往具有多个纵模,但如果使各个振荡的纵模模式的频率间隔保持一定,并具有确定的相位关系,则激光器输出的是一列时间间隔一定的超短脉冲。这种使激光器获得更窄得脉冲技术称为锁模。 8. 光波模:在自由空间具有任意波矢K 的单色平面波都可以存在,但在一个有边界条件限制的空间V 内,只能存在一系列独立的具有特定波矢k 的平面单色驻波;这种能够存在腔内的驻波成为光波模。 9. 注入锁定:用一束弱的性能优良的激光注入一自由运转的激光器中,控制一个强激光器输出光束的 光谱特性及空间特性的锁定现象。(分为连续激光器的注入锁定和脉冲激光器的注入锁定)。 10. 谱线加宽:实际中的谱线加宽由于各种情况的影响,自发辐射并不是单色的,而是分布在中心频率 /)(12E E -附近一个很小的频率范围内。这就叫谱线加宽。 11. 频率牵引:在有源腔中,由于增益物质的色散,使纵模频率比无源腔纵模频率更靠近中心频率,这 种现象叫频率牵引。 12. 自发辐射:处于高能级E2的一个原子自发的向E1跃迁,并产生一个能量为hv的光子 13. 受及辐射:处于高能级E2的一个原子在频率为v的辐射场作用下,向E1跃迁,并产生一个能量 为hv的光子 14. 激光器的组成部分:谐振器,工作物质,泵浦源 15. 腔的模式:将光学谐振腔内肯能存在的电磁场的本征态称为‘’。 16. 光子简并度:处于同一光子态的光子数。含义:同态光子数、同一模式内的光子数、处于相干体积 内的光子数、处于同一相格内的光子数 17. 激光的特性:1.方向性好,最小发散角约等于衍射极限角2.单色性好3.亮度高4.相干性好 18. 粒子数反转:在外界激励下,物质处于非平衡状态,使得n2>n1 19. 增益系数:光通过单位长度激活物质后光强增长的百分数 20. 增益饱和:在抽运速率一定的条件下,当入射光的光强很弱时,增益系数是一个常数;当入射光的 光强增大到一定程度后,增益系数随光强的增大而减小。 21. Q 值:是评定激光器中光学谐振腔质量好坏的指标——品质因数。 22. 纵模:在腔的横截面内场分布是均匀的,而沿腔的轴线方向即纵向形成驻波,驻波的波节数由q 决 定将这种由整数q 所表征的腔内纵向场分布称为纵模 23. 横模:腔内垂直于光轴的横截面内的场分布称为横模 24. 菲涅尔数:N,即从一个镜面中心看到另一个镜面上可划分的菲涅尔半波带的数目。表征损耗的大小。 衍射损耗与N 成反比。

激光原理与技术

激光的特性:方向性好、单色好、相干性好、亮度高。由于谐振腔对 光振荡方向的限制,激光只有沿腔轴方向受激辐射才能振荡放大,所以激光具有很高的方向性。半导体激光器的方向性最差。衍射极限θm≈1.22λ D (λ为波长,D为光束直径);激光是由原子受激辐射而产生,因而谱线极窄,所以单色性极好。单模稳频气体激光器的单色性最好,半导体激光器的单色性最差;激光是通过受激辐射过程形成的,其中每个光子的运动状态(频率、相位、偏振态、传播方向)都相同,因而是最好的相干光源。激光是一种相干光这是激光与普通光源最重要的区别;激光的高方向性、单色性等特点,决定了它具有极高的单 色定向亮度。相干性包括时间相干和空间相干,有时用相干长度L C=C ?V 来表示相干时间。自发辐射:处于高能级E2的原子自发地向低能级跃迁,并发射出一个能量为hv=E2?E1的光子,这个过程称为自发跃迁。 自发辐射跃迁概率(自发跃迁爱因斯坦系数)A21=(dn21 dt ) sp 1 n2 = ?1 n2dn2 dt (n2为E2能级总粒子数密度;dn21为dt时间内自发辐射跃迁 粒子数密度);受激辐射:在频率为v=(E2?E1)/h的光照激励下,或在能量为hv=E2?E1的光子诱发下,处于高能级E2上的原子可能跃迁到低能级E1,同时辐射出一个与诱发光子的状态完全相同的光子,这 个过程称为受激辐射跃迁W21=(dn21 dt ) st 1 n2 =?1 n2 dn2 dt 。受激辐射跃 迁与自发辐射跃迁的区别在于,它是在辐射场(光场)的激励下产生的,因此,其月前概率不仅与原子本身的性质有关,还与外来光场的单色能量密度ρv成正比,W21=B21ρv,B21称为爱因斯坦系数;受激吸收:处于低能级E1的原子,在频率为v的光场作用(照射)下,吸收

多普勒谱线展宽.

2. 多普勒谱线展宽 谱线展宽主要有自然展宽、碰撞展宽和多普勒展宽。多普勒展宽直接于气体分子速度分布律有关,这一效应首先被里普奇(Lippich)在1870年提出,瑞利经过多年研究得到定量公式。下面就导出多普勒谱线型函数。 假设发出激光的原子静止时其发光频率为,当原子以vx的速度沿x轴向“接受器”运动时,由于多普勒效应使得“接受器”收到的频率为: (14) c 由于不同原子的vx不同,所以“接受器”收到的是不同频率的光,使得激光谱线以为中心被展宽。由麦克斯韦速度分量分布律可以得到,速度x分量在vx—的分子数比率为: (15) 令代表其辐射频率落在附近单位频率间隔内的发光原子数比率,则有 与辐射强度成正比。将和代入(15)式,可得 式中就是多普勒展宽的线型函数。 下面看一个例子。 例1:试由来自星体的光谱线或多普勒宽度确定星体的温度。 解:静止原子由激发态回到基态发出的光波的频率决定于两个态的能级差:为普朗克常数。由于原子在运动,因而发射出来的光的频率不再是而是一个分布,也就是谱线增宽了。一个以速度v运动的原子,沿x轴发射的光的频率与及vx的关系为 , 式中c为光速。横向产生的多普勒效应比纵向小得多而可以忽略。由于在 之间的光强与速度分量在之间的原子数目dNX 成正比,即 dNx 由麦氏分布律 因而

上式表示原子发光的强度,由于多普勒效应引起的谱线强度按频率的分布,分布函数随频率变化的曲线如图1所示, 图1 原子光谱中谱线的多普勒加宽 它是对v0的一个对称分布曲线。物理上定义与谱线极大值I0的一半相对应的两个频率v2与v1之差称为谱线的宽度这里也称为多普勒线宽。由 解得 所以 2ln2kT)1/2 2mc 由上式可知,多普勒宽度与原子的质量m及原子所处系统的温度T有关。若由实验测得了来自星体原子光谱的多普勒宽度及原子的质量m就可知道星体的温度T:

激光原理第六版思考题

激光原理第六版思考题 《激光原理》复习思考题 第一章: 1、 LASER英文名称的含义是什么,激光是何时发明的, 受激发射实现光放大(激光)。1960年梅曼世界上第一台红宝石激光器 2、激光的基本特性是什么, 单色性: 指光强按频率的分布状况,激光的频谱宽度非常窄。相干性:时间相干性和空间相干性都很好。方向性:普通光向四面八方辐射,而激光基本沿某一直线传播,激光束的发散角很小。高亮度:在单位面积、单位立体角内的输出功率特别大 3、激光器主要由哪些部分组成,各部分的作用是什么, 激光器基本组成包括:工作物质、谐振腔和泵浦系统三大部分。工作物质是激光器的核心。谐振腔的作用:模式选择、提供轴向光波模的反馈。泵浦系统为实现粒子数反转提供外界能量 4、什么是黑体辐射,写出Planck公式,并说明它的物理意义。 黑体辐射是黑体温度T和辐射场频率,的函数,用单色能量密度,ν来描述:在单位体积内,频率处于,附近的单位频率间隔中的电磁辐射能量(J,m-3,s)。黑体辐射的普朗克公式 3 81,,h,,En,,,h,3 ckTb,e1 5、什么是光波模式和光子态, 在自由空间,具有任意波矢的单色平面波都可以存在。但在一个有边界条件限制的空间V内,只能存在一系列独立的具有特定波矢k的平面单色驻波。这种能够

存在于腔内的驻波(以某一波矢k为标志)称为电磁波的模式或光波模。一个光波模在相空间也占有一个相格。因此,一个光波模等效于一个光子态 6、如何理解光的相干性,何谓相干时间、相干长度、相干面积和相干体积, 光的相干性(在不同的空间点上、在不同时刻的光波场的某些特性的相关性。光场的相干函数来度量)。如果在空间体积Vc内各点的光波场都具有明显的相干性,则Vc称为相干体积。 Vc=AcLc,Ac--相干面积,Lc--相干长度,相干时间,c 是光沿传播方向通过相干长度Lc所需的时间。 Lc=c,c 7、什么是光子简并度, 处于同一光子态的光子数称为光子简并度。具有以下几种相同的含义:同态光子数、同一模式内的光子数、处于相干体积内的光子数、处于同一相格内的光子数。 8、激光的基本物理基础是什么, 光与物质的共振相互作用,特别是其中的受激辐射是激光器的物理基础 9、描述能级的光学跃迁的三大过程,并写出它们的特征和跃迁几率。 光跃迁中将同时存在着光的自发辐射、受激吸收和受激辐射三个过程。,自发辐射过程:特点:1)自 dn1发产生;2)辐射是独立的。自发跃迁几率 21A,()21sp dtn2 2受激吸收过程:特点:非自发的,有外来光照射;减弱光的强度。受激吸收跃迁几率 dn1 12W(),st12 dtn1 3受激辐射过程:特点:非自发的,有外来光照射;增强光的强度;与原光子性质、状态完全相同。受 dn1激辐射跃迁几率 21W,()21st dtn2 10、 Einstein系数有哪些,他们之间的关系是什么,

激光原理名词解

激光原理名词解

————————————————————————————————作者:————————————————————————————————日期:

一 名词解释 1. 损耗系数及振荡条件: 0)(m ≥-=ααS o I g I ,即α≥o g 。α为包括放大器损耗和谐振腔损耗在内的平均损耗 系数。 2. 线型函数:引入谱线的线型函数p v p v v )(),(g 0~= ,线型函数的单位是S ,括号中的0v 表示线型函数的中心频率,且有 ?+∞∞-=1),(g 0~v v ,并在0v 加减2v ?时下降至最大值的一半。按上式定义的v ?称为谱线宽度。 3. 多普勒加宽:多普勒加宽是由于做热运动的发光原子所发出的辐射的多普勒频移所引起的加宽。 4. 纵模竞争效应:在均匀加宽激光器中,几个满足阈值条件的纵模在震荡过程中互相竞争,结果总是靠近中心频 率0v 的一个纵模得胜,形成稳定振荡,其他纵模都被抑制而熄灭的现象。 5. 谐振腔的Q 值:无论是LC 振荡回路,还是光频谐振腔,都采用品质因数Q 值来标识腔的特性。定义 p v P w Q ξπξ 2==。ξ为储存在腔内的总能量,p 为单位时间内损耗的总能量。v 为腔内电磁场的振荡频率。 6. 兰姆凹陷:单模输出功率P 与单模频率q v 的关系曲线,在单模频率等于0的时候有一凹陷,称作兰姆凹陷。 7. 锁模:一般非均匀加宽激光器如果不采取特殊的选模措施,总是得到多纵模输出,并且由于空间烧孔效应,均 匀加宽激光器的输出也往往具有多个纵模,但如果使各个振荡的纵模模式的频率间隔保持一定,并具有确定的相位关系,则激光器输出的是一列时间间隔一定的超短脉冲。这种使激光器获得更窄得脉冲技术称为锁模。 8. 光波模:在自由空间具有任意波矢K 的单色平面波都可以存在,但在一个有边界条件限制的空间V 内,只能存 在一系列独立的具有特定波矢k 的平面单色驻波;这种能够存在腔内的驻波成为光波模。 9. 注入锁定:用一束弱的性能优良的激光注入一自由运转的激光器中,控制一个强激光器输出光束的光谱特性及 空间特性的锁定现象。(分为连续激光器的注入锁定和脉冲激光器的注入锁定)。 10. 谱线加宽:实际中的谱线加宽由于各种情况的影响,自发辐射并不是单色的,而是分布在中心频率 η/)(12E E -附近一个很小的频率范围内。这就叫谱线加宽。 11. 频率牵引:在有源腔中,由于增益物质的色散,使纵模频率比无源腔纵模频率更靠近中心频率,这种现象叫频 率牵引。 12. 自发辐射:处于高能级E2的一个原子自发的向E1跃迁,并产生一个能量为hv的光子 13. 受激辐射:处于高能级E2的一个原子在频率为v的辐射场作用下,向E1跃迁,并产生一个能量为hv的光 子 14. 激光器的组成部分:谐振器,工作物质,泵浦源 15. 腔的模式:将光学谐振腔内肯能存在的电磁场的本征态称为‘’。 16. 光子简并度:处于同一光子态的光子数。含义:同态光子数、同一模式内的光子数、处于相干体积内的光子数、 处于同一相格内的光子数 17. 激光的特性:1.方向性好,最小发散角约等于衍射极限角2.单色性好3.亮度高4.相干性好 18. 粒子数反转:在外界激励下,物质处于非平衡状态,使得n2>n1 19. 增益系数:光通过单位长度激活物质后光强增长的百分数 20. 增益饱和:在抽运速率一定的条件下,当入射光的光强很弱时,增益系数是一个常数;当入射光的光强增大到 一定程度后,增益系数随光强的增大而减小。

激光原理复习知识点

一 名词解释 1. 损耗系数及振荡条件: 0)(m ≥-=ααS o I g I ,即α≥o g 。α为包括放大器损耗和谐振腔损耗在内的平均损耗系数。 2. 线型函数:引入谱线的线型函数p v p v v )(),(g 0~=,线型函数的单位是S ,括号中的0v 表示线型函数的中心频率,且有?+∞ ∞-=1),(g 0~v v ,并在0v 加减2 v ?时下降至最大值的一半。按上式定义的v ?称为谱线宽度。 3. 多普勒加宽:多普勒加宽是由于做热运动的发光原子所发出的辐射的多普勒频移所引起的加宽。 4. 纵模竞争效应:在均匀加宽激光器中,几个满足阈值条件的纵模在震荡过程中互相竞争,结果总是靠近中心频 率0v 的一个纵模得胜,形成稳定振荡,其他纵模都被抑制而熄灭的现象。 5. 谐振腔的Q 值:无论是LC 振荡回路,还是光频谐振腔,都采用品质因数Q 值来标识腔的特性。定义 p v P w Q ξπξ 2==。ξ为储存在腔内的总能量,p 为单位时间内损耗的总能量。v 为腔内电磁场的振荡频率。 6. 兰姆凹陷:单模输出功率P 与单模频率q v 的关系曲线,在单模频率等于0的时候有一凹陷,称作兰姆凹陷。 7. 锁模:一般非均匀加宽激光器如果不采取特殊的选模措施,总是得到多纵模输出,并且由于空间烧孔效应,均 匀加宽激光器的输出也往往具有多个纵模,但如果使各个振荡的纵模模式的频率间隔保持一定,并具有确定的相位关系,则激光器输出的是一列时间间隔一定的超短脉冲。这种使激光器获得更窄得脉冲技术称为锁模。 8. 光波模:在自由空间具有任意波矢K 的单色平面波都可以存在,但在一个有边界条件限制的空间V 内,只能存 在一系列独立的具有特定波矢k 的平面单色驻波;这种能够存在腔内的驻波成为光波模。 9. 注入锁定:用一束弱的性能优良的激光注入一自由运转的激光器中,控制一个强激光器输出光束的光谱特性及 空间特性的锁定现象。(分为连续激光器的注入锁定和脉冲激光器的注入锁定)。 10. 谱线加宽:实际中的谱线加宽由于各种情况的影响,自发辐射并不是单色的,而是分布在中心频率 /)(12E E -附近一个很小的频率范围内。这就叫谱线加宽。 11. 频率牵引:在有源腔中,由于增益物质的色散,使纵模频率比无源腔纵模频率更靠近中心频率,这种现象叫频 率牵引。 12. 自发辐射:处于高能级E2的一个原子自发的向E1跃迁,并产生一个能量为hv的光子 13. 受及辐射:处于高能级E2的一个原子在频率为v的辐射场作用下,向E1跃迁,产生一个能量为hv的光子 14. 激光器的组成部分:谐振器,工作物质,泵浦源 15. 腔的模式:将光学谐振腔内肯能存在的电磁场的本征态称为‘’。 16. 光子简并度:处于同一光子态的光子数。含义:同态光子数、同一模式内的光子数、处于相干体积内的光子数、 处于同一相格内的光子数 17. 激光的特性:1.方向性好,最小发散角约等于衍射极限角2.单色性好3.亮度高4.相干性好 18. 粒子数反转:在外界激励下,物质处于非平衡状态,使得n2>n1 19. 增益系数:光通过单位长度激活物质后光强增长的百分数 20. 增益饱和:在抽运速率一定的条件下,当入射光的光强很弱时,增益系数是一个常数;当入射光的光强增大到 一定程度后,增益系数随光强的增大而减小。 21. Q 值:是评定激光器中光学谐振腔质量好坏的指标——品质因数。 22. 纵模:在腔的横截面内场分布是均匀的,而沿腔的轴线方向即纵向形成驻波,驻波的波节数由q 决定将这种由 整数q 所表征的腔内纵向场分布称为纵模 23. 横模:腔内垂直于光轴的横截面内的场分布称为横模 24. 菲涅尔数:N,即从一个镜面中心看到另一个镜面上可划分的菲涅尔半波带的数目。表征损耗的大小。衍射损耗 与N 成反比。 25. 自在现模:把开腔镜面上经一次往返能再现的稳态场分布称为自在现模或横模。 26. 损耗系数:光通过单位距离后光强衰减的百分数 27. 自激振荡:不管初始光强多微弱,只要放大器足够长,就总能形成确定大小的光强Im ,满足振荡条件。 28. 多普勒效应:设一发光原子(光源)的中心频率为ν0,当原子相对于接收器以速度v z 运动时,接收器测得的光波 频率变为(略); 29. 多普勒加宽:由于作热运动的发光原子(分子)所发出的辐射的多普勒频移引起的加宽 30. 谱线加宽:由于各种因素的影响,自发辐射并不是单色的,而是分布在中心频率附近一个很小的频率范围内。 31. 谱线宽度:线型函数在ν0时有最大值,下降至最大值的一半,对应得宽度。 32. 线性函数:归归一化的自发辐射光功率,描述单色辐射功率随频率变化的规律,定义为分布在某一频率附近单 位频率间隔内的自发辐射功率与整个频率范围内的自发辐射总功率之比。用于表示谱线的形状。 33. 均匀加宽:引起加宽的物理因素对每个原子都是等同的,包括自然加宽、碰撞加宽及晶格振动加宽每个发光原

谱线加宽和线型函数

谱线加宽和线型函数 谱线加宽和线型函数是光谱学中常用的两个概念,用于描述光谱线的性质和形状。谱线加宽指的是光谱线的宽度增加,而线型函数是描述光谱线形状的数学函数。在本文中,我们将讨论谱线加宽和线型函数的相关参考内容,包括其定义、应用和重要性。值得注意的是,文中不提供外部链接,所有内容均基于已知的知识和概念。 谱线加宽是指由于多种因素引起的光谱线的宽度增加。光谱线本质上是由原子或分子的能级跃迁引起的,在理想情况下,谱线应该是非常尖锐和窄的。然而,实际中存在多种因素导致谱线加宽,例如自然增宽、多普勒增宽、碰撞增宽等。 自然增宽是由于量子力学的不确定性原理导致的。根据不确定性原理,能级的能量和寿命有一个不确定值,因此能级跃迁的能量也具有一定的不确定性。这导致了光谱线的宽度增加,即自然增宽。 多普勒增宽是由于原子或分子的热运动引起的。根据多普勒效应,物体的运动会导致其发射或吸收的光的频率发生变化。因此,在气体中,原子或分子的热运动会导致它们发出的光的频率发生扩散,从而导致谱线加宽。 碰撞增宽是由于原子或分子之间的碰撞引起的。碰撞会改变能级的能量和寿命,导致能级跃迁发生在更多的能量和时间范围内。这也会导致光谱线的宽度增加。

线型函数是用来描述光谱线形状的数学函数。它通过曲线的形状、宽度和峰值位置等参数来描述光谱线。常见的线型函数包括高斯函数、洛伦兹函数和峰形函数等。 高斯函数是一种常用的线型函数,其数学表达式为: f(x) = A * exp(-(x - x0)^2 / (2 * σ^2)) 其中,A表示峰值的高度,x0表示峰值的位置,σ表示标准差,反映了线宽的大小。高斯函数在很多领域都有广泛的应用,例如光谱分析、信号处理和图像处理等。 洛伦兹函数是另一种常用的线型函数,其数学表达式为: f(x) = A / (1 + (x - x0)^2 / γ^2) 其中,A表示峰值的高度,x0表示峰值的位置,γ表示半峰宽,反映了线宽的大小。洛伦兹函数在描述一些特殊的光谱现象和谱线形状时比较适用。 除了高斯函数和洛伦兹函数,还有其他一些峰形函数可以用来描述特定的光谱线形状。例如Voigt函数是高斯函数和洛伦兹 函数的卷积,可用于描述同时存在多种谱线加宽机制的光谱线。 线型函数在光谱分析和光谱定量中起着重要作用。通过拟合实验数据和线型函数,可以获得光谱线的各项参数,并进行谱线的定量分析。此外,线型函数还可用于解析复杂的光谱现象,并提取有用的信息。因此,了解和掌握线型函数的性质和应用

激光原理复习知识点

激光原理复习知识点 一名词解释 1. 损耗系数及振荡条件: 0)(m ≥-=ααS o I g I ,即α≥o g 。α为包括放大器损耗和谐振腔损耗在内 的平均损耗系数。2. 线型函数:引入谱线的线型函数p v p v v )(),(g 0~ = ,线型函数的单位是S ,括号中的0v 表示线型函数的中心频率,且有 +∞∞-=1),(g 0~v v ,并在0v 加减2v ?时下降至最大值的一半。按上式定义的v 称为谱线宽度。 3. 多普勒加宽:多普勒加宽是由于做热运动的发光原子所发出的辐射的多普勒频移所引起的加宽。 4. 纵模竞争效应:在均匀加宽激光器中,几个满足阈值条件的纵模在震荡过程中互相竞争,结果总是 靠近中心频率0v 的一个纵模得胜,形成稳定振荡,其他纵模都被抑制而熄灭的现象。 5. 谐振腔的Q 值:无论是LC 振荡回路,还是光频谐振腔,都采用品质因数Q 值来标识腔的特性。定义 p v P w Q ξπξ 2==。ξ为储存在腔内的总能量,p 为单位时间内损耗的总能量。v 为腔内电磁场 的振荡频率。 6. 兰姆凹陷:单模输出功率P 与单模频率q v 的关系曲线,在单模频率等于0的时候有一凹陷,称作兰 姆凹陷。 7. 锁模:一般非均匀加宽激光器如果不采取特殊的选模措施,总

是得到多纵模输出,并且由于空间烧 孔效应,均匀加宽激光器的输出也往往具有多个纵模,但如果使各个振荡的纵模模式的频率间隔保持一定,并具有确定的相位关系,则激光器输出的是一列时间间隔一定的超短脉冲。这种使激光器获得更窄得脉冲技术称为锁模。 8. 光波模:在自由空间具有任意波矢K 的单色平面波都可以存在,但在一个有边界条件限制的空间V 内,只能存在一系列独立的具有特定波矢k 的平面单色驻波;这种能够存在腔内的驻波成为光波模。 9. 注入锁定:用一束弱的性能优良的激光注入一自由运转的激光器中,控制一个强激光器输出光束的 光谱特性及空间特性的锁定现象。(分为连续激光器的注入锁定和脉冲激光器的注入锁定)。 10. 谱线加宽:实际中的谱线加宽由于各种情况的影响,自发辐射并不是单色的,而是分布在中心频率 /)(12E E -附近一个很小的频率范围内。这就叫谱线加宽。 11. 频率牵引:在有源腔中,由于增益物质的色散,使纵模频率比无源腔纵模频率更靠近中心频率,这 种现象叫频率牵引。 12. 自发辐射:处于高能级E2的一个原子自发的向E1跃迁,并产生一个能量为hv的光子 13. 受及辐射:处于高能级E2的一个原子在频率为v的辐射场作用下,向E1跃迁,并产生一个能量 为hv的光子 14. 激光器的组成部分:谐振器,工作物质,泵浦源 15. 腔的模式:将光学谐振腔内肯能存在的电磁场的本征态称为‘’。 16. 光子简并度:处于同一光子态的光子数。含义:同态光子数、同一模式内的光子数、处于相干体积 内的光子数、处于同一相格内的光子数

谱线加宽和线型函数

谱线加宽和线型函数 在原子光谱学中,谱线加宽是指光谱线在频率、波长或能量方面的展宽,是由多种因素造成的。这些因素包括:粒子的速度分布、粒子的碰撞效应、电子和离子的相互作用、自然展宽和仪器分辨率等。 粒子的速度分布对谱线加宽的影响十分重要,它是因为大多数的粒子不是静止的,而是运动着的。这些运动导致谱线加宽,因为由于多个速度的贡献,光谱线不再是单个频率,而是一系列频率分量。这是因为,如果速度分布较广,则每个速度都会导致相应的谱线分量,这些分量在谱线的两边形成尾状结构,形成了谱线加宽。 另一个重要因素是粒子之间的碰撞效应。当两个或更多的原子或分子碰撞时,它们会扰动彼此,这也会导致谱线加宽。这是因为,在碰撞后,分子或原子把能量传递给其他分子,从而产生各种能量状态,导致谱线加宽。这种加宽被称为压力致宽。 电子和离子的相互作用也会导致谱线加宽,因为它们可以在原子内部引起激发、电离、抵消等效应。当这些效应发生时,原子能级之间的跃迁会产生多个频率组件,从而导致谱线加宽。 自然展宽是另一个可能导致谱线加宽的因素,这是由于量子力学的基本原理引起的。它可以由一个例子来解释:在氢原子中,电子可以处于不同的能级。当电子从一个能级跃迁到另一个能级时,它会辐射出一个光子。根据波粒二象性,光子的波长(或频率)是由电子跃迁之间的能量差确定的。由于这个能量

差在原子内部具有不确定性,因此谱线就会加宽。 线型函数是描述谱线形状的数学函数。在谱线加宽的情况下,谱线的形状变得更复杂,需要使用适当的线型函数进行拟合。线型函数通常是高斯、洛伦兹、吉布斯等函数之一。 高斯函数通常用于拟合性能很好的光谱,如雷曼或反斯托克斯线。高斯函数呈正态分布,即在光谱线的中间达到最大值,而两端逐渐下降。洛伦兹函数适用于拟合弱的光谱和分子吸收线。洛伦兹线型在谱线顶部较宽、两端较狭窄,呈现慢慢递减的形式。吉布斯线型常用于近红外区域的强谱线,特别是由于反熵效应导致的谱线对比过度强的情况。吉布斯线型在谱线顶部非常宽,直到边缘处消失。 总之,谱线加宽和线型函数是原子光谱学中非常重要的概念。了解这些概念有助于我们理解谱线的形状及背后的物理原因,也有助于我们准确地拟合和分析光谱数据。

激光原理复习题重点难点

《激光原理》复习 第一部分知识点 第一章激光的基本原理 1、自发辐射受激辐射受激吸收的概念及相互关系 2、激光器的主要组成部分有哪些?各个部分的基本作用。激光器有哪些类型?如何对激光器进行分类。 3、什么是光波模式和光子状态?光波模式、光子状态和光子的相格空间是同一概念吗?何谓光子的简并度? 4、如何理解光的相干性?何谓相干时间,相干长度?如何理解激光的空间相干性与方向性,如何理解激光的时间相干性?如何理解激光的相干光强? 5、EINSTEIN系数和EINSTEIN关系的物理意义是什么?如何推导出EINSTEIN 关系? 4、产生激光的必要条件是什么?热平衡时粒子数的分布规律是什么? 5、什么是粒子数反转,如何实现粒子数反转? 6、如何定义激光增益,什么是小信号增益?什么是增益饱和? 7、什么是自激振荡?产生激光振荡的基本条件是什么? 8、如何理解激光横模、纵模? 第二章开放式光腔与高斯光束 1、描述激光谐振腔和激光镜片的类型?什么是谐振腔的谐振条件? 2、如何计算纵模的频率、纵模间隔? 3、如何理解无源谐振腔的损耗和Q值?在激光谐振腔中有哪些损耗因素?什么是腔的菲涅耳数,它与腔的损耗有什么关系? 4、写出(1)光束在自由空间的传播;(2)薄透镜变换;(3)凹面镜反射 5、什么是激光谐振腔的稳定性条件? 6、什么是自再现模,自再现模是如何形成的? 7、画出圆形镜谐振腔和方形镜谐振腔前几个模式的光场分布图,并说明意义 8、基模高斯光束的主要参量:束腰光斑的大小,束腰光斑的位置,镜面上光斑的大小?任意位置激光光斑的大小?等相位面曲率半径,光束的远场发散角,模体积 9、如何理解一般稳定球面腔与共焦腔的等价性?如何计算一般稳定球面腔中高斯光束的特征 10、高斯光束的特征参数?q参数的定义? 11、如何用ABCD方法来变换高斯光束? 12、非稳定腔与稳定腔的区别是什么?判断哪些是非稳定腔。 第三章电磁场与物质的共振相互作用 1、什么是谱线加宽?有哪些加宽的类型,它们的特点是什么?如何定义线宽和线型函数?什么是均匀加宽和非均匀加宽?它们各自的线型函数是什么? 2、自然加宽、碰撞加宽和多普勒加宽的线宽与哪些因素有关? 3、光学跃迁的速率方程,并考虑连续谱和单色谱光场与物质的作用和工作物质的线型函数。 4、画出激光三能级和四能级系统图,描述相关能级粒子的激发和去激发过程。建立相应能级系统的速率方程。 5、说明均匀加宽和非均匀加宽工作物质中增益饱和的机理。 6、描述非均匀加宽工作物质中增益饱和的“烧孔效应”,并说明它们的原理。

相关文档