文档视界 最新最全的文档下载
当前位置:文档视界 › 四川省太阳能资源分布特征及其开发利用建议_杨淑群

四川省太阳能资源分布特征及其开发利用建议_杨淑群

四川省太阳能资源分布特征及其开发利用建议_杨淑群
四川省太阳能资源分布特征及其开发利用建议_杨淑群

○气候资源分析 ○

收稿日期:2007-03-25作者简介:杨淑群,女,高级工程师,长期从事气候与长期天气预报方法的研究。

四川省太阳能资源分布特征

及其开发利用建议

杨淑群1,2 詹兆渝2 范 雄

2

(1.成都高原气象研究所;2.四川省气候中心,成都 610072)

摘要:本文利用四川省1971~2000年日照、水汽及太阳辐射观测资料,分别模拟计算了四川省高原和盆地太阳辐射值,分析了全省日照、太阳辐射及太阳能的分布特征。结果表明:四川省日照分布的基本特征是高原多、盆地少,高原冬春日照多于夏秋,盆地春夏日照多于秋冬;太阳辐射年总量呈

经向分布,其东西差异达一倍以上;盆地南部及西南部是四川省乃至全国太阳能资源贫乏区;川西高原是四川省太阳能资源最为丰富的地区,也是全国太阳能资源三级分布区之一,有很大的开发利用价值,对四川省能源的可持续发展有重要意义。

关键词:太阳能资源;分布特征;开发建议中图分类号:P 422.1文献标识码:B

文章编号:1003-7187(2007)02-0015-031 引言

人类的一切活动都与太阳活动息息相关,地球大气系统中的一切物理过程都伴随着能量的转换,而太阳辐射能是地球大气最重要的能量来源。一年中整个地球可以由太阳获得5.44×1024焦耳的辐射能量,地球和大气的其它能量来源同来自太阳的辐射能相比极其微小。由于地球上常规能源的储量被大量开发而迅速减少,促使人们更加重视太阳能的利用;我国于二十世纪七十年代,开始有计划有组织进行太阳能利用的研究工作,目前,太阳能已经得到实际应用并已形成有一定规模的产业,已有巨大的社会效益及经济效益。四川省太阳能的分布状况及开发利用的可行性即是我们本文讨论的问题。

太阳能一般以太阳总辐射和日照时数来综合表示,四川省太阳能资源的分布主要取决于云量、坡度、坡向、经纬度和海拔高度。本文通过分析日照、太阳总辐射以及太阳能等的时空特征,对四川省太阳能资源的分布状况及开发利用的可行性有比较清楚认识;对四川省西部地区太阳能的合理开发利用提出了建议。

2 四川太阳辐射的时空分布特征

下面通过模拟计算总辐射,分析日照及总辐射的时空分布,初步揭示四川省各地太阳能资源开发利用的潜力。2.1 四川太阳辐射的模拟计算

目前,四川省太阳辐射观测站很少(仅有7个),分布不

均匀,特别是盆地中东部和川西高原中部尚无观测站,如果仅依靠7个观测站的实测资料,根本无法满足太阳能资源普查和社会经济发展对新能源开发利用的实际需求。为此研制一种相对准确且能间接推算出四川各站太阳辐射有关数据的经验计算公式,是我们开展四川太阳能普查首先要解决的问题。

辐射一般涉及总辐射、直接辐射和散射辐射。其中:总辐射是指太阳射向水平地表面上的直接太阳辐射和天空散射辐射之和,表达式为:

Q =S 0(a+b s 1)

直接辐射是指太阳辐射方向垂直的平面上所接收到的,直接来自太阳的那一部分辐射量,表达式为:

S ′=S 0(a s 1+b s 21)

散射辐射是指经过大气散射的太阳辐射,表达式为:

D =S 0(

0.1+b n-c n 2)e x p (0.05(a /a *-1))。对四川地区太阳能辐射的计算方式,曾有一些研究。我们主要借鉴了上面所描述的总辐射、直接辐射和散射辐射的表达式和冯万瑞等编著的《四川辐射太阳能资源》一书中,关于旬辐射的经验计算公式,同时参考了王炳忠、李扬富、徐渝江、陈兵等的工作,结合四川的气候特点,采用把高原和盆地及四季分别计算的方式,再把计算月的系数范围放大,经过多次循环计算试验,分别得到经验系数以及对应的计算公式(略)。从模拟计算式可看出,高原和盆地、春夏秋冬各季的系数各不相同,且差异较大,7个辐射观测站的计算结果与其实际观测值基本吻合,初步得出了四川太阳辐射多年(1971~2000年)平均分布状况。2.2 总辐射

2.2.1 年总辐射的分布特征

由于四川省东西部海拔、地貌和环流特征的差异,使太阳总辐射的地带性规律受到影响,年总辐射量具有经向差异

·

15·杨淑群,詹兆渝,范雄:四川省太阳能资源分布特征及其开发利用建议

大的特点。从图1可见,四川省年总辐射基本分布形势是由东向西逐渐减少,其值的变化范围在3200~6390兆焦耳/米2之间。除盆地西北部和西南部的个别地方外,4000兆焦耳/米2等值线沿四川盆地西部边缘将四川省截然分为东西两部分,盆地西部边缘为等值线最为密集的地区

四川省东部盆地内各地的年总辐射差异不大。由于盆地内云雾多,连阴雨时间较长以及盆周地形等各种因素的共同影响,导致盆地大部分地区日照时数比高原少得多。盆地内除江油、平武、南江、汉源等少数县的年总辐射略大于4000兆焦耳/米2外,其余大部分地区的年总辐射介于3300~4000兆焦耳/米2之间,其中兴文、沐川、宝兴、荥经为低值区,基本在3350兆焦耳/米2以下,最低值中心在沐川,其年辐射量仅为3277兆焦耳/米2,是全省乃至全国相同纬度地区年总辐射的低值中心。

四川省西部的川西高原因云量较少,大部分地区总辐射在4500兆焦耳/米2~6400兆焦耳/米2之间。总辐射值变化

较大,等值线密集,基本呈经向分布,即由东向西增大较快,高值区分布在甘孜、石渠、理塘、巴塘以及攀枝花一带,最高值中心在甘孜高达6381兆焦耳/米2,次高值中心在攀枝花6338兆焦耳/米2

2.2.2 年总辐射的年变化特征

随着太阳高度由冬往夏升高,又由夏往冬降低的季节变化,太阳总辐射年变化趋势基本为夏多冬少。但四川省各地受天气条件特别是云量的影响,使太阳辐射的年变化具有不同的区域特征。全省总辐射年变化具有两种类型:四川盆地和盆周山区受太阳高度变化影响突出,各月云量最多、日照最少,辐射年变化一般呈单峰型(图2),最大值出现在7~8

月,一般为400~570兆焦耳/米2

,最小值出现在11~1月,变化范围在100~240兆焦耳/米2。四川省西部的川西高原受干雨季影响,云量差异较大,辐射年变化一般呈双峰型(图3),大部分地区的最低值出现在12月,变化范围在160~500兆焦耳/米2,次低值出现在10~11月,为360~550兆焦耳/米2;但最高值和次高值出现时间随地区而异,川西高原北部的阿坝州和甘孜州大部地区最高值出现在5月,为510~680兆焦耳/米2,次高值出现在7月,为440~610兆焦耳/米2;川西高原南部大部分地区最高值出现在4~5月,为520~690兆焦耳/米2,次高值出现在7~8月,为460~630兆焦耳/米2。

四川总辐射年振幅分布特征(图略),由西向东增大,年振幅最大出现在四川盆地东部达415兆焦耳/米2以上,年振幅最小出现在川西高原南部,基本在190兆焦耳/米2以下,其中个别地方仅有100兆焦耳/米2。

2.3 日照

2.3.1 年日照时数的分布特征

一地的日照时数是指太阳的实照时数,通常日照时数受云量、地理纬度、地形的影响,四川省年日照时数的地区分布与云量基本相反。我省东西地形地貌差异大,日照时数差别很大,其基本分布形势为高原多、东部少、西部远大于东部,即盆地(东部)和川西高原(西部)日照时数差异大,等值线梯度最大的地方是在高原到盆地的过渡带,最大梯度可达267小时/100K M 。四川盆地区属全国多云区,日照时数是全国最少区之一,全年日照时数均在750~1620小时。盆地东部大部分地区及南部的部分地区日照时数在1200小时以上,最大值在南江为1612小时;盆地西部、南部大部分地区在1000~1200小时,部分地区在900小时以下,全省最小值在宝兴为759小时。

川西高原大部分地区在2000~2680小时,高原西北部及巴塘、稻城、攀枝花高达2600小时以上,其中攀枝花为

2675小时,为全省之冠。高原地区日照时数比较接近我国西北的高光照地区,比日照最少的盆地区多两倍。2.3.2 年日照时数的变化特征

日照时数的年变化东西部存在明显差异(表1)。四川盆地区大于高原,盆地区夏多冬少,最多月与最少月差值达100~180小时,川西高原冬春日照多于夏秋,最多月与最少

·

16·总第100期2007年第2期 四川气象

J u n .N o .100

V o 1.27 N o .2

月差值一般在40~120小时。

表1 各月日照时数(小时)

地名123456789101112成都53518311412211713215577595751达县354775125140133189213111765835西昌235222257248222152167191133153181206甘孜220203221224236213212211199221233232阿坝219196215217212176191197157185223226

3 四川太阳能资源分布

四川太阳能资源分布极不平衡,大致以龙门山脉、邛崃山脉和大凉山为界,东部太阳能极少,川西高原是四川省乃至我国太阳能的主要分布区(图略)。

四川省太阳能资源最丰富的地区是石渠、色达至理塘、稻城、攀枝花一带,年总辐射量达6000兆焦耳/米2以上,年日照时数在2400~2600小时;太阳能较丰富的地区是川西高原大部地区,全区覆盖面较大,年总辐射量基本在5000兆焦耳/米2以上,大部分地区年日照时数在1800小时以上;太阳能较贫乏的地区主要是川西高原向盆地过渡山地区。年总辐射量4000~5000兆焦耳/米2,大部分地区年日照时数在1700小时以下;盆地区是四川省及我国太阳能最弱区,其总辐射量基本在4000兆焦耳/米2以下,日照时数也少,该区太阳能利用价值不大。

4 四川太阳能资源开发利用的初步建议

虽然我国在太阳能应用技术研究和产品开发方面已经取得了一定成就,但目前太阳能产品并没有走进千家万户,在常规能源短缺已经成为制约我国经济发展瓶颈的今天,清洁无穷的太阳能利用应有更大空间,太阳能产品也有更大的市场潜力可挖。目前,四川太阳能的利用,基本上仍以加热生活用水为主且主要集中在城市、中心乡镇,光伏电站还没有规模。四川西部地区是我省太阳能资源最为丰富的地区,也是风能最为丰富的地区,其地广人稀、交通不便,边远地区远离电网或短期内电网还难以达到,部分地方缺电明显。为此建议对川西地区,特别是边缘无电乡、村、户地域,加大、加快气候资源中太阳能、风能开发利用,不仅可以解决川西经济较为落后地区人民生产、生活所用能源,成为这些地区居民脱贫的前提,同时有利于经济可持续发展和环境保护,带动相关产业的崛起和发展;当然最为重要的是促进人类社会的发展和文明进步。

为此建议在四川西部地区、特别是交通不便,远离电网或短期内电网还难以达到的边远地区,开展利用太阳能进行光伏发电的工作。

5 结论

5.1 四川省日照的地区分布是高原多、盆地少;季节分配是高原冬春日照多于夏秋,盆地春夏日照多于秋冬。

5.2 四川省太阳辐射年总量呈经向分布,其东西差异达一倍以上。

5.3 四川盆地南部及西南部是四川省乃至全国太阳能贫乏区,川西高原是四川省太阳能资源最为丰富的地区,也是全国太阳能资源三级分布区之一。

5.4 建议在四川西部地区开展利用太阳能资源进行光伏发电的工作。

参考文献略

(上接第6页)

4 小结

4.1 “9.3”暴雨的降能过程主要发生在低层850h P a上,主要是青藏高压和西太平洋副热带高压之间的切变配合北方地面冷空气南下共同影响而产生的。

4.2 中尺度集合预报模式对暴雨过程的热力、动力、风场变化趋势等的预报结果达到了令人满意的效果,它从能量的突降、500h P a的低值系统、700h P a低涡、850h P a辐合区及低空急流等方面给出了产生暴雨的概念预报模型。

4.3 暴雨的降雨区与850h P a低空急流、700h P a低槽的空间配置关系符合系统发展的动力学原理,与500h P a副高的位置的配置反映了这次降水过程存在十分有利的水汽和能量输送。

4.4 集合预报模式对垂直速度场的预报,仅开始时在本区域上有所反映,但大雨持续过程中垂直速度场呈现下沉气流,与暴雨雨区维持所要求的上升运动基本原理不符。可见,垂直速度场对这次过程没有明显指示意义。

4.5集合预报模式对此次发生在四川东部包括自贡市的暴雨过程,无论是暴雨的系统能量预报,还是对雨区中心区域的移动趋势的预报,是基本成功的。

4.6 此次对单一预报模式中选取的8个物理因子为集合成员组成的成员组,对暴雨的预报与实况基本相符合。就这次暴雨过程而言,集合预报产品对暴雨的预报是可信的,它从一定程度上实际解决了数值预报的不确定性和可信度的问题。

从“9.3”暴雨个例对中尺度数值集合预报模式的检验知,多集合成员、多初值处理方式等所作的试验是可行的。集合预报产品对暴雨天气的预报将具有相当的指导能力,集合预报模式产品的研究、开发、利用将有深远意义。

参考文献

[1]袁重光,赵彦,李旭等.气候预测中的集合方法初探.大气科学,2000,24(2):207-214.

[2]王晨稀,端义宏。.短期集合预报技术在梅雨降水预报中的试验研究.应用气象学报,2003,14(1):68-78.

·

17

·

杨淑群,詹兆渝,范雄:四川省太阳能资源分布特征及其开发利用建议

中国太阳能资源分布

中国气象科学研究院根据20世纪末期最新研究数据又重新计算了中国太阳能资源分布。 太阳能资源的分布具有明显的地域性。这种分布特点反映了太阳能资源受气候和地理等条件的制约。根据太阳年曝辐射量的大小,可将中国划分为4个太阳能资源带,如图所示。 这4个太阳能资源带的年曝辐射量指标: Ⅰ资源丰富带6700MJ(m2.a)* Ⅱ资源较富带5400-6700MJ/(m2.a) Ⅲ资源一般带4200-5400MJ/(m2.a) Ⅳ资源贫乏带< 4200MJ/(m2.a) 20世纪80年代中国的科研人员根据各地接受太阳总辐射量的多少,将全国划分为如下5类地区: (1)一类地区 全年日照时数为3200~3300h。在每平方米面积上一年内接受的太阳辐射总量为 6680~8400M],相当于225~285kg标准煤燃烧所发出的热量。主要包括宁夏北部、甘肃北部、新疆东南部、青海西部和西藏西部等地。是中国太阳能资源最丰富的地区。 (2)二类地区 全年日照时数为3000~3200h。在每平方米面积上一年内接受的太阳能辐射总量为5852~6680 M],相当于200~225kg标准煤燃烧所发出的热量。主要包括河北西北部、山西北部、内蒙古南部、宁夏南部、甘肃中部、青海东部、西藏东南部和新疆南部等地。为中国太阳能资源较丰富区。 (3)三类地区 全年日照时数为2200~3OOOh。在每平方米面积上一年接受的太阳辐射总量为 5016~5852M] ,相当于170~200kg标准煤燃烧所发出的热量。主要包括山东东南部、河南东南部、河北东南部、山西南部、新疆北部、吉林、辽宁、云南、陕西北部、甘肃东南部、

广东南部、福建南部、江苏北部、安徽北部、天津、北京和台湾西南部等地。为中国太阳能资源的中等类型区。 (4)四类地区 全年日照时数为1400~2200h。在每平方米面积上一年内接受的太阳辐射总量为4190~5016 MJ,相当于140~170kg标准煤燃烧所发出的热量。主要包括湖南、湖北、广西、江西、浙江、福建北部、广东北部、陕西南部、江苏南部、安徽南部以及黑龙江、台湾东北部等地。是中国太阳能资源较差地区。 (5)五类地区 全年日照时数为1000~1400h。在每平方米面积上一年内接受的太阳辐射总量为3344~4190 MJ,相当于115~140kg标准煤燃烧所发出的热量。主要包括四川、贵州、重庆等地。此区是中国太阳能资源最少的地区。 从两次测得的数据来看,我发现80年代到世纪末仅仅十几年我国的太阳能资源由原来的5个分区变为现在的4个分区,而且每个分区的辐射值均有降低现象。从太阳本体发射出的太阳辐射是不会减少的,造成太阳辐射量减少是因为我们的大气质量在逐渐减少,环境质量在逐渐降低。可见我们的太阳能事业还需继续发展来缓解地球的环境危机!

我国太阳能资源分布概况

我国太阳能资源分布概况 北极星太阳能光伏网 我国幅员广大,有着十分丰富的太阳能资源。据估算,我国陆地表面每年接受的太阳辐射能约为50x1018kJ,全国各地太阳年辐射总量达335~837kJ/cm2·a,中值为586kJ/cm2·a。从全国太阳年辐射总量的分布来看,西藏、青海、新疆、内蒙古南部、山西、陕西北部、河北、山东、辽宁、吉林西部、云南中部和西南部、广东东南部、福建东南部、海南岛东部和西部以及台湾省的西南部等广大地区的太阳辐射总量很大。尤其是青藏高原地区最大,那里平均海拔高度在4000m以上,大气层薄而清洁,透明度好,纬度低,日照时间长。例如被人们称为“日光城”的拉萨市,1961年至1970年的平均值,年平均日照时间为3005.7h,相对日照为68%,年平均晴天为108.5天,阴天为98.8天,年平均云量为4.8,太阳总辐射为816kJ/cm2·a,比全国其它省区和同纬度的地区都高。全国以四川和贵州两省的太阳年辐射总量最小,其中尤以四川盆地为最,那里雨多、雾多,晴天较少。例如素有“雾都”之称的成都市,年平均日照时数仅为1152.2h,相对日照为26%,年平均晴天为24.7天,阴天达244.6天,年平均云量高达8.4。其它地区的太阳年辐射总量居中。 我国太阳能资源分布的主要特点有:太阳能的高值中心和低值中心都处在北纬22°~35°这一带,青藏高原是高值中心,四川盆地是低值中心;太阳年辐射总量,西部地区高于东部地区,而且除西藏和新疆两个自治区外,基本上是南部低于北部;由于南方多数地区云雾雨多,在北纬30°~40°地区,太阳能的分布情况与一般的太阳能随纬度而变化的规律相反,太阳能不是随着纬度的增加而减少,而是随着纬度的增加而增长。 按接受太阳能辐射量的大小,全国大致上可分为五类地区: 一类地区 全年日照时数为3200~330O小时,辐射量在670~837x104kJ/cm2·a。相当于225~285kg标准煤燃烧所发出的热量。主要包括青藏高原、甘肃北部、宁夏北部和新疆南部等地。这是我国太阳能资源最丰富的地区,与印度和巴基斯坦北部的太阳能资源相当。特别是西藏,地势高,太阳光的透明度也好,太阳辐射总量最高值达921kJ/cm2·a,仅次于撒哈拉大沙漠,居世界第二位,其中拉萨是世界著名的阳光城。 二类地区 全年日照时数为3000~3200小时,辐射量在586~670x104kJ/cm2·a,相当于200~225kg标准煤燃烧所发出的热量。主要包括河北西北部、山西北部、内蒙古南部、宁夏南部、甘肃中部、青海东部、西藏东南部和新疆南部等地。此区为我国太阳能资源较丰富区。 三类地区 全年日照时数为2200~3000小时,辐射量在502~586x104kJ/cm2·a,相当于170~200kg标准煤燃烧所发出的热量。主要包括山东、河南、河北东南部、山西南部、新

中国光资源分布

中国三北地区太阳能资源分布 按接受太阳能辐射量的大小,全国大致上可分为五类地区,如表1.1所示 五类地区分布图见图1.1

内蒙古太阳能资源状况: 内蒙古全区太阳能资源的分布自东部向西南增多,以巴彦淖尔市西部

及阿拉善盟最 多,太阳能总辐射量高达6490~6992兆焦耳/平方米,仅次于青藏高原,处我国的第二位。 一年之中,4~9月辐射总量与日照率都在全年的50%以上。特别是4~6月,东南季风还未推 进到内蒙古境内,所以空气干燥,阴云天气少,日照充足。内蒙古大部分年日照时数都大 于2700小时,其中: 1、巴彦淖尔市西部,日照时数为3100—3300小时。 巴彦淖尔市太阳能资源十分丰富,属我国太阳能资源富集区域。全市各地太阳年总辐 射量为198.8-208.5瓦/平方米之间,由东向西逐步增多。其中,杭锦后旗、五原为200-204 瓦/平方米之间,临河、乌中旗200瓦/平方米。各月总辐射的高值在5、6、7月,其次为8月 、4月和9月,其中5月达到极高值。5、6、7月的太阳高度角为一年中最高的时候,而5月是 降水量最少的月份,此时的云量少,晴天多,日照足,因而辐射强烈;6、7月份随云量和降 水天气的逐渐增多,总辐射量有所下降;8月为降水量多的时期,且日照时数也减少,辐射进一步减弱,其他月份由于太阳高度角低,日照时间短,比5月平均少30小时以上。

青海省位于青藏高原东北部,境内80%以上地区海拨高度3000m。大气层相对稀薄,目 光透过率高,加之气候干旱,降雨量少,无霜期长,云层遮蔽率低,故太阳能辐射资源十 分丰富。其特征为:一是年日照时间长,全省各地年日照时间达2300~3650h,年平均日照 率达60%~80%;二是光辐射强度大,省内各地的辐射总量达586×104~754×104kJ/m2·h。 三是直接辐射比例高。境内西、北部地区一般超过60%,全省直接辐射年平均值为419× 104kJ/m2·h以上。 新疆太阳能资源状况: 新疆水平表面太阳辐照度年总量为5×105~6.5×105 J / (cm2·a),年平均值为5.8 ×105J/(cm2·a),年总辐射量比同纬度地区高10%~15%,比长江中下游高15%~25%,仅次 于青藏高原,居全国第二位。太阳辐射峰值出现在东疆和南疆东部一带,最低值出现在博 州、阿尔泰和天山北麓部分地区,年总辐照度的区域分布大致是由东南向西北不均匀递减 。东南部太阳总辐照度多在5.8×105J/(cm2·a)以上,西北部均为5.2×105 J/(cm2·a)。

中国的太阳能资源分布状态

中国的太阳能资源分布状态 我国幅员广大,有着十分丰富的太阳能资源。据估算,我国陆地表面每年接受的太阳辐射能约为50x1018kJ,全国各地太阳年辐射总量达335~837kJ/cm2?a,中值为586kJ/cm2?a。从全国太阳年辐射总量的分布来看,西藏、青海、新疆、内蒙古南部、山西、陕西北部、河北、山东、辽宁、吉林西部、云南中部和西南部、广东东南部、福建东南部、海南岛东部和西部以及台湾省的西南部等广大地区的太阳辐射总量很大。尤其是青藏高原地区最大,那里平均海拔高度在4000m以上,大气层薄而清洁,透明度好,纬度低,日照时间长。例如被人们称为“日光城”的拉萨市,1961年至1970年的平均值,年平均日照时间为3005.7h,相对日照为68%,年平均晴天为108.5天,阴天为98.8天,年平均云量为4.8,太阳总辐射为816kJ/cm2?a,比全国其它省区和同纬度的地区都高。全国以四川和贵州两省的太阳年辐射总量最小,其中尤以四川盆地为最,那里雨多、雾多,晴天较少。例如素有“雾都”之称的成都市,年平均日照时数仅为1152.2h,相对日照为26%,年平均晴天为24.7天,阴天达244.6天,年平均云量高达8.4。其它地区的太阳年辐射总量居中。 我国太阳能资源分布的主要特点有:太阳能的高值中心和低值中心都处在北纬22°~35°这一带,青藏高原是高值中心,四川盆地是低值中心;太阳年辐射总量,西部地区高于东部地区,而且除西藏和新疆两个自治区外,基本上是南部低于北部;由于南方多数地区云雾雨多,在北纬30°~40°地区,太阳能的分布情况与一般的太阳能随纬度而变化的规律相反,太阳能不是随着纬度的增加而减少,而是随着纬度的增加而增长。 按接受太阳能辐射量的大小,全国大致上可分为五类地区: 一类地区 全年日照时数为3200~330O小时,辐射量在670~837x104kJ/cm2?a。相当于225~285kg标准煤燃烧所发出的热量。主要包括青藏高原、甘肃北部、宁

世界太阳能资源分布

世界太阳能资源分布 太阳向宇宙空间发射的辐射功率为 3.8x1023kW的辐射值,其中20亿分之一到达地球大 气层。到达地球大气层的太阳能,30%被大气层反射,23瀛大气层吸收。47喇达地球表面,其功率为800000亿kW也就是说太阳每秒钟照射到地球上的能量就相当于燃烧500万吨煤释放的热量。 全球人类目前每年能源消费的总和只相当于太阳在40分钟内照射到地球表面的能量。 国际太阳能资源分布 根据国际太阳能热利用区域分类,全世界太阳能辐射强度和日照时间最佳的区域包括北 非、中东地区、美国西南部和墨西哥、南欧、澳大利亚、南非、南美洲东、西海岸和中国西部地区等。根据德国航空航天技术中心(DLR)的推荐,不同地区太阳能热发电技术和经济潜 2 能数据及其技术潜能基于太阳年辐照量测量值大于6480MJ/m ,经济潜能基于太阳年辐照量 测量值大于7200MJ/m2。 北非地区是世界太阳能辐照最强烈的地区之一。 摩洛哥、阿尔及利亚、突尼斯、利比亚和埃及太阳能热发电潜能很大。阿尔及利亚的太 阳年辐照总量9720MJ/m2,技术开发量每年约169440TW?h。摩洛哥的太阳年辐照总量 9360MJ/m2,技术开发量每年约20151TW?h。埃及的太阳年辐照总量10080MJ/m2,技术开发 量每年约73656TW?h。太阳年辐照总量大于8280MJ/m2的国家还有突尼斯、利比亚等国。阿尔及利亚有2381.7km2的陆地区域,其沿海地区太阳年辐照总量为6120MJ/m2,高地和撒哈 拉地区太阳年辐照总量为6840?9540MJ/R?,全国总土地的82婀用于太阳能热发电站的建 设。

世界太阳能资源分布图 南欧的太阳年辐照总量超过7200MJ/m2。 这些国家包括葡萄牙、西班牙、意大利、希腊和土耳其等。西班牙太阳年辐照总量为 8100MJ/m2,技术开发量每年约1646TW h。意大利太阳年辐照总量为7200MJ/m2,技术开发 量每年约88TW h。希腊太阳年辐照总量为6840MJ/m2,技术开发量每年约44TW?h。葡萄牙 2 太阳年辐照总量为7560MJ/m,技术开发量每年约436TW?h。土耳其的技术开发量每年约 400TW h。西班牙的南方地区是最适合于建设太阳能能热发电站地区之一,该国也是太阳能 热发电技术水平最高、太阳能热发电站建设最多的国家之一。 中东几乎所有地区的太阳能辐射能量都非常高。 以色列、约旦和沙特阿拉伯等国的太阳年辐照总量8640MJ/m2。阿联酋的太阳年辐照总 量为7920MJ/m,技术开发量每年约2708TW?h。以色列的太阳年辐照总量为8640MJ/nf,技术开发量每年约318TWh。伊朗的太阳年辐照总量为7920MJ/m2,技术开发量每年约20PWh。 约旦的太阳年辐照总量约9720MJ/m2,技术开发量每年约6434TW?h。以色列的总陆地区域 是20330km2; Negev沙漠覆盖了全国土地的一半,也是太阳能利用的最佳地区之一,以色列的太阳能热利用技术处于世界最高水平之列。我国第1座70KWt阳能塔式热发电站就是利 用以色列技术建设的。 美国也是世界太阳能资源最丰富的地区之一。 根据美国239个观测站1961 —1990年30年的统计数据,全国一类地区太阳年辐照总量 为9198?10512MJ/m2, 一类地区包括亚利桑那和新墨西哥州的全部,加利福尼亚、内华达、 犹他、科罗拉多和得克莎斯州的南部,占总面积的9.36%。二类地区太阳年辐照总量为7884-9198MJ/m2,除了包括一类地区所列州的其余部分外,还包括犹他、怀俄明、堪萨斯、俄克拉荷马、佛罗里达、佐治亚和南卡罗来纳州等,占总面积的35.67%。三类地区太阳年辐照

我国太阳能资源分布概述

我国太阳能资源分布概述 编辑:sunny 作者:马月北京木联能软件技术有限公司高级工程师发表于:2014-04-09 来源:索比太阳能光伏网 摘要:根据过去一些太阳能辐射资源分布的相关研究,基于中国气象局及其下属单位、NREL和NASA 的研究成果,本文将对对我国太阳能资源分布情况进行描述。 Solarbe(索比)光伏太阳能网讯:摘要:根据过去一些太阳能辐射资源分布的相关研究,基于中国气象局及其下属单位、NREL和NASA的研究成果,本文将对对我国太阳能资源分布情况进行描述。 太阳能是一种清洁的、环保的可再生能源。太阳能发电成为目前备受关注的焦点之一。我国太阳能发电正处于蓬勃发展阶段,详细了解我国太阳能资源分布情况能够有效的指导宏观决策,对我国太阳能资源开发具有重要意义。 目前,一些机构已从事太阳辐射观测、数值模拟工作多年,并取得了重要成果。例如,中国气象局及其下属单位建立了多个太阳辐射观测站、气象站,组成了太阳能资源观测网,获取真实的观测资料,并结合气候统计和数值模拟等方法绘制我国太阳能资源气候分布图。美国可再生能源实验室(NREL)研发了太阳辐射气候模式(Climatological Solar Radiation (CSR) Model),结合云盖、水汽和示踪气体信息,并考虑气溶胶数量,计算得到分辨率为40km×40km的月平均太阳辐射数据,该数据免费对外开放。美国航空航天局(NASA)通过对卫星观测数据的反演,免费为用户提供分辨率为1°×1°的太阳辐射数据。 根据过去一些太阳能辐射资源分布的相关研究,基于中国气象局及其下属单位、NREL和NASA的研究成果,下面对我国太阳能资源分布情况进行描述。 一、我国太阳能资源分布概述 我国属太阳能资源丰富的国家之一,全国总面积2/3以上地区年日照时数大于2000小时,年辐射量在5000MJ/m2以上。据统计资料分析,中国陆地面积每年接收的太阳辐射总量为3.3×103~8.4×103MJ/m2,相当于2.4×104亿吨标准煤的储量。 根据国家气象局风能太阳能评估中心划分标准,我国太阳能资源地区分为以下四类: 一类地区(资源丰富带):全年辐射量在6700~8370MJ/m2。相当于230kg标准煤燃烧所发出的热量。主要包括青藏高原、甘肃北部、宁夏北部、新疆南部、河北西北部、山西北部、内蒙古南部、宁夏南部、甘肃中部、青海东部、西藏东南部等地。 二类地区(资源较富带):全年辐射量在5400~6700MJ/m2,相当于180~230kg标准煤燃烧所发出的热量。主要包括山东、河南、河北东南部、山西南部、新疆北部、吉林、辽宁、云南、陕西北部、甘肃东南部、广东南部、福建南部、江苏中北部和安徽北部等地。

各省太阳能资源

青海 面积约72万平方公里,人口550万。处青藏高原东北部,北纬31°40′至39°19′,全省平均海拔3000米以上,3000—5000米的地区占67%。高原大陆性气候,降水少、温差大、日照时间长。处中纬度地带,太阳辐射强度大,光照时间长,年总辐射量每平方厘米可达690.8—753.6千焦耳,直接辐射量占辐射量的60%以上,年绝对值超过418.68千焦耳,仅次于西藏,位居全国第二。 西藏 面积约120多万平方公里,人口280万。地处世界上最大最高的青藏高原西南部,北纬26°44′至36°32′之间,平均海拔4千米以上。独特的高原气候,空气稀薄,日照充足,气温较低。西藏是中国太阳辐射能最多的地方,比同纬度的平原地区多一倍或三分之一,日照时数也是全国的高值中心,拉萨市的年平均日照时数达3021小时,年辐射量为6000—8000兆焦尔/平方米,呈自东向西递增分布,此数值仅次于撒哈拉沙漠居世界第二。宁夏 面积6.6万平方公里,人口560万。位于北纬35°14~39°23,山地海拔多在1600~3000米。宁夏太阳能资源丰富,是我国太阳辐射的高能区之一。据1961-2004年宁夏太阳辐射资料统计表明,全区平均5781MJ/ m2.a其空间分布特征是北部多于南部,南北相差约1000MJ/m2.a,灵武、同心最大,达6100 MJ/ m2.a以上。且太阳辐射能直接辐射多、散射辐射少,对于太阳能利用十分有利。全年平均总云量低于5成,晴天多,阴天少,日照时数多达2835h,年日照百分率达64%,北部石嘴山地区年日照时数高达3100 h。 内蒙古 面积118万平方公里,人口2400万。太阳能资源也很丰富,总辐射量在每平方米4800-6400兆焦耳,年日照时数为2600-3200小时。其中巴彦淖尔

太阳能资源分布

太阳能资源分布 新闻日期:2008-01-31浏览次数:6368 中国地处北半球欧亚大陆的东部,主要处于温带和亚热带,具有比较丰富的太阳能资源。根据全国700多个气象台站长期观测积累的资料表明,中国各地的太阳辐射年总量大致在3.35×103~8.40×103MJ/m2之间,其平均值约为5.86×103MJ/m2。该等值线从大兴安岭西麓的内蒙古东北部开始,向南经过北京西北侧,朝西偏南至兰州,然后径直朝南至昆明,最后沿横断山脉转向西藏南部。在该等值线以西和以北的广大地区,除天山北面的新疆小部分地区的年总量约为 4.46×103MJ/m2外,其余绝大部分地区的年总量都超过 5.86×103MJ/m2。 太阳能的相关知识 新闻日期:2007-11-07浏览次数:1638 太阳能一般指太阳光的辐射能量。在太阳内部进行的由"氢"聚变成"氦"的原子核反应,不停地释放出巨大的能量,并不断向宇宙空间辐射能量,这种能量就是太阳能。到达地球大气层的太阳能,30%被大气层反射,23%被大气层吸收,其余的到达地球表面,其功率为800000亿kW,也就是说太阳每秒钟照射到地球上的能量就相当于燃烧500万吨煤释放的热量。 利用太阳能的历史 据记载,人类利用太阳能已有3000多年的历史。将太阳能作为一种能源和动力加以利用,只有300多年的历史。真正将太阳能作为"近期急需的补充能源","未来能源结构的基础",则是近来的事。20世纪70年代以来,太阳能科技突飞猛进,太阳能利用日新月异。近代太阳能利用历史可以从1615年法国工程师所罗门·德·考克斯在世界上发明第一台太阳能驱动的发动机算起。20世纪的100年间,太阳能科技发展历史大体可分为七个阶段。第一阶段(1900-1920)

国家标准太阳能资源方法

国家标准《太阳能资源评估方法》 编制说明 一、工作简况 1、任务来源 本标准题目为《太阳能资源评估方法》,项目编号20150587-T-416。 本标准由中国气象局公共气象服务中心、中国气象局风能太阳能资源中心联合编写。 本标准由全国气候与气候变化标准化技术委员会风能太阳能气候资源分技术委员会(SAC/TC540/SC2)归口。 2、编制目的 我国的太阳能资源十分丰富,大规模开发利用太阳能资源对于我国调整能源结构、改善环境质量、应对气候变化等均具有重要意义。 近年来我国太阳能开发利用开速发展,科学地评估太阳能资源是国家制定太阳能发展规划的基础,也是太阳能工程建设的基本前提。 随着太阳能资源数据的应用越来越深入,数据的来源和处理方法也越来越多元化,太阳能资源评估中,除涉及的气象部门实测的和基于日照百分率计算的太阳辐射数据之外,还有大量的太阳能电站现场短期实测数据,以及根据卫星反演或数值模拟等方法得到的长序列格点化数据,这些数据也可用于太阳能资源评估。在国内外太阳能资源评估相关的文献和实践中,上述数据的处理和使用方法并未形成规范

性文件,不利于对我国的太阳能资源形成客观、准确的认识。为适应太阳能资源开发利用的需要,规范我国太阳能资源评估工作,特制订本标准。 太阳能开发方式多种多样,每种方式利用的太阳辐射能量有差异,例如按照一定角度放置的平板式光伏组件利用的是倾斜面上接收到的总辐射,而光热发电则利用的是法向直接辐射,而不同辐射数据的来源、计算和处理方法均存在较大差异,很难在一项标准中给出符合所有利用方式的太阳能资源评估方法。因此,本标准以水平面总辐射为主要指标,对到达地球表面的太阳能资源进行评价,这样也使得不同地区的太阳能资源具有可比性。下一步,我们还将在此基础上,逐步制定针对光伏发电、光热发电以及其他利用方式的太阳能资源评估方法相关标准。 3、主要工作过程 (1)2015年8月中国气象局下发了气象标准研制通知《中国气象局政策法规司关于下达2015年~2016年气象标准制修订计划的通知(气法函[2015]36号)》,成立编写小组,明确了目标任务。 (2)2015年9月正式立项,项目编号为20150587-T-416,项目名称为《太阳能资源评估方法》。 (3)2016年7月,形成工作组讨论稿。 (4)2016年7月至2017年12月,充分研究现场短期实测数据、卫星反演及数值模拟等方法得到的长序列格点化数据在太阳能资源

中国太阳能资源分布表(分5类地区)

中国太阳能资源分布表 地区 类型年日照时数 (h/a) 年辐射总量 (MJ/m2·a) 包括的主要地区备注 一类3200-3300 6680-8400 宁夏北部,甘肃北部,新疆南部,青 海西部,西藏西部 太阳能资源最丰 富地区 二类3000-3200 5852-6680 河北西北部,山西北部,内蒙南部, 宁夏南部,甘肃中部,青海东部,西 藏东南部,新疆南部 较丰富地区 三类2200-3000 5016-5852 山东,河南,河北东南部,山西南部, 新疆北部,吉林,辽宁,云南,陕西 北部,甘肃东南部,广东南部 中等地区 四类1400-2000 4180-5016 湖南,广西,江西,浙江,湖北,福 建北部,广东北部,陕西南部,安徽 南部 较差地区 五类1000-1400 3344-4180 四川大部分地区,贵州最差地区 一类地区===全年日照时数为3200~330O小时,辐射量在670~837x104kJ /cm2?a。相当于225~285kg标准煤燃烧所发出的热量。主要包括青藏高原、甘肃北部、宁夏北部和新疆南部等地。这是我国太阳能资源最丰富的地区,与印度和巴基斯坦北部的太阳能资源相当。特别是西藏,地势高,太阳光的透明度也好,太阳辐射总量最高值达921kJ/cm2?a,仅次于撒哈拉大沙漠,居世界第二位,其中拉萨是世界著名的阳光城。 二类地区===全年日照时数为3000~3200小时,辐射量在586~670x104kJ/cm2?a,相当于200~225kg标准煤燃烧所发出的热量。主要包括河北西北部、山西北部、内蒙古南部、宁夏南部、甘肃中部、青海东部、西藏东南部和新疆南部等地。此区为我国太阳能资源较丰富区。 三类地区===全年日照时数为2200~3000小时,辐射量在502~586x104kJ /c m2?a,相当于170~200kg标准煤燃烧所发出的热量。主要包括山东、河南、河北东南部、山西南部、新疆北部、吉林、辽宁、云南、陕西北部、甘肃东南部、广东南部、福建南部、江苏北部和安徽北部等地。

中国太阳能资源分布表

中国太阳能资源分布表 一类地区===全年日照时数为3200~330O小时,辐射量在670~837x104kJ /cm2?a。相当于225~285kg标准煤燃烧所发出的热量。主要包括青藏高原、甘肃北部、宁夏北部和新疆南部等地。这是我国太阳能资源最丰富的地区,与印度和巴基斯坦北部的太阳能资源相当。特别是西藏,地势高,太阳光的透明度也好,太阳辐射总量最高值达921kJ/cm2?a,仅次于撒哈拉大沙漠,居世界第二位,其中拉萨是世界著名的阳光城。 二类地区===全年日照时数为3000~3200小时,辐射量在586~670x104kJ/cm2?a,相当于200~225kg标准煤燃烧所发出的热量。主要包括河北西北部、山西北部、内蒙古南部、宁夏南部、甘肃中部、青海东部、西藏东南部和新疆南部等地。此区为我国太阳能资源较丰富区。

三类地区===全年日照时数为2200~3000小时,辐射量在502~586x104kJ /c m2?a,相当于170~200kg标准煤燃烧所发出的热量。主要包括山东、河南、河北东南部、山西南部、新疆北部、吉林、辽宁、云南、陕西北部、甘肃东南部、广东南部、福建南部、江苏北部和安徽北部等地。 四类地区===全年日照时数为1400~2200小时,辐射量在419~502x104kJ /cm2?a。相当于140~170kg标准煤燃烧所发出的热量。主要是长江中下游、福建、浙江和广东的一部分地区,春夏多阴雨,秋冬季太阳能资源还可以。 五类地区===全年日照时数约1000~1400小时,辐射量在335~419x104kJ/cm2?a。相当于115~140kg标准煤燃烧所发出的热量。主要包括四川、贵州两省。此区是我国太阳能资源最少的地区。 一、二、三类地区,年日照时数大于2000h,辐射总量高于586kJ/cm2?a,是我国太阳能资源丰富或较丰富的地区,面积较大,约占全国总面积的2/3以上,具有利用太阳能的良好条件。四、五类地区虽然太阳能资源条件较差,但仍有一定的利用价值。

我国太阳能、风能资源分布

新能源行业形势及我国太阳能、风能资源分布情况 能源是国民经济重要的物质基础,也是人类赖以生存的基本条件。国民经济发展的速度和人民生活水平的提高都有赖于提供能源的多少。从历史上看,人类对能源利用的每一次重大突破都伴随着科技的进步,从而促进生产力大大发展,甚至引起社会生产方式的革命。如18世纪瓦特发明了蒸汽机,以蒸汽代替人力畜力,在一次能源的消费结构上转向以煤炭代替木柴的时代,开始了资本主义工业革命。从19世纪70年代开始,电力逐步代替蒸汽作为主要动力,从而实现了资本主义工业化。到了20世纪50年代,随着廉价石油、天然气大规模开发,世界能源的消费结构从以煤炭为主转向以石油为主,因而使西方经济在60年代进入了“ 黄金时代”。 据世界能源会议统计,世界已探明可采煤炭储量共计15980亿吨,预计还可开采200年。探明可采石油储量共计1211亿吨,预计还可开采30~40年。探明可采天然气储量共计119万亿立方米,预计还可开采60年。当今世界对能源的消费数量急剧增加,人们感到常规能源的开发和供应已难以满足社会对能源的需求,能源危机的阴影笼罩着整个世界。显然,如今能源不足对一个国家的国民经济发展的影响是很大的。赖以生存的主要能源供应不上,经济发展就要减慢,甚至停滞,人民生活也会受到严重影响。所以,能源是保证社会稳定和发展国民经济的重要物质基础。不仅如此,能源问题还是当今世界影响政治形势的一个重要问题,1990年的海湾战争就是一个典型。可见,能源问题已成为当今人类社会的热门话题之一。 上个世纪90年代以来,中国经济的持续高速发展带来了能源消费量的急剧上升。自1993年起,中国由能源净出口国变成净进口国,能源总消费已大于总供给,能源需求的对外依存度迅速增大。煤炭、电力、石油和天然气等能源在中国都存在缺口,其中,石油需求量的大增以及由其引起的结构性矛盾日益成为中国能源安全所面临的最大难题。面对日益紧迫的能源形势,寻求能源的可持续发展已成为大势所趋,而开发新能源和可再生能源则是能源可持续发展最为直接和有效的形式。2008年3月18日,国家发改委出台《可再生能源发展“十一五”规划》,提出到2010年,可再生能源消费占比将达10%,并采取财税等措施鼓励发展再生能源发展。根据我国的发展规划测算,可再生能源产业未来15年将培育近2万亿元的新兴市场。面对潜在的广阔市场,新能源产业未来发展无疑一片坦途。 太阳能:环保优势明显 太阳能在解决能源供应和环境保护上有明显优势。中国2/3以上国土的年日照大于2200小时,年辐射总量平均大于5900MJ百万焦尔/平方米,资源非常丰富,有必要和可能大力发展。太阳能的利用有两大方面 太阳能光热利用用太阳能热水器等装置把太阳能转化为热能。中国是世界上最大的太阳能光热利用国家,2003年太阳能热水器产量1200万平方米,使用量5200万平方米,占全世界的40%。北京2008年奥运村90%的洗浴热水将来自太阳能。 太阳能光电转换基于半导体材料的光电效应,用太阳能光电器件把太阳能转化为电能。2003年底,全国已安装的光伏电池容量约50MW(百万瓦)。广东深圳最近建成亚洲最大的

我国太阳能资源开发和利用现状

当电力、煤炭、石油等不可再生能源频频告急,能源问题日益成为制约国际社会经济发展的瓶颈时,越来越多的国家开始实行"阳光计划",开发太阳能资源,寻求经济发展的"新动力"。我国受地理位置的影响,蕴藏着丰富的太阳能资源,然而颇受"阳光"厚爱的中国,太阳能资源开发尚且滞后,如何把阳光留住,催生"阳光经济",是我国科学发展面临的一个严峻课题。 有着"世界屋脊"之称的青藏高原,地广人稀,在许多农牧区,电网无法延伸、水利资源紧缺,过去牧民们大多靠"酥油灯"照明。近年来,青海省积极开发新能源,他们利用高原上日照时间长,辐射强度大,太阳能资源丰富的优势,开发太阳能资源,在偏远地区建成多个太阳能光伏电站和风光互补电站,成为我国开发太阳能资源的排头兵。 目前,青海农牧区的112个无电乡全部建成太阳能光伏电站,解决了908个无电村农牧民的生活用电,覆盖农牧民人口50多万。青海全省人口550万,如今七分之一的人口靠太阳能告别无电时代。在推进太阳能光伏电站建设的同时,青海省政府制作太阳能灶66000台,全部免费发放给干旱山区的农牧民,使30万农牧民用上了太阳能灶。 青海省农村牧区能源办公室主任李世民介绍,太阳能灶操作简易,使用方便,清洁卫生,没有污染,使用年限一般可达15年。推广使用太阳能灶,大大减少了燃料短缺地区农牧民砍伐灌木林的数量,促进了环保工作。据测算,青海省利用太阳能发电所产生的电能相当于几个中型水电站的产量。太阳能的使用,为解决电网不能覆盖地区的农牧民用电问题开辟了新途径。 青海省新能源研究所所长、副研究员张治民说,太阳能产品最适合沟大山深的西部高原地区。青海一些地区从县到乡有50-200公里的远距,用常规电网建设供电,造价成本极高,运距长,电损大,加之使用用户少,很多高原地区多年来无法实现供电。海西州乌兰县赛什克乡托海村的93户农民,20多年尝尽了无电的苦头。2003年,这个村建起了一个太阳能光伏电站,解决了全村农民和村小学、卫生院、党员活动室、青年文化室的用电。村民张明成高兴地说:"我们点了20多年的煤油灯,如今有了电,家家户户都能看上电视了!" 当前,我国甘肃、新疆、青海、西藏、云南等省区,还有2万多个村落的700多万户农牧民过着无电生活。而大力推广实施的太阳能发电技术,则开始让无电的群众过上"光明"的日子。我国西部地区海拔高,光照丰富,有着利用太阳能进行光伏发电的优越条件,近年来,我国相继推行"光明工程"、"送电到乡工程",许多地方选择光伏发电技术,解决用电难问题。一块20瓦的太阳能电池板一天光照可供3个9瓦节能灯5个小时照明,采用太阳能发电是一种很有效的能源补充形式。用太阳能在边远地区分散供电,既环保又经济,比延伸电网或柴油发电有明显的优势。

中国太阳能资源分布表(分5类地区)

中国太阳能资源分布表 按接受太阳能辐射量的大小,全国大致上可分为五类地区: 一、二、三类地区,年日照时数大于2000h,辐射总量高于5000MJ/m2·a,是我国太阳能资源丰富或较丰富的地区,面积较大,约占全国总面积的2/3以上,具有利用太阳能的良好条件。四、五类地区虽然太阳能资源条件较差,但仍有一定的利用价值。

我国地处北半球,土地辽阔,幅员广大,国土总面积达960万平方公里。南从北纬4o 的曾母暗沙,北到北纬52.5o 的漠河,西自东经73o 的帕米耳高原,东至东经135o 的黑龙江与乌苏里江汇流处,距离都在5000公里以上。在我国广阔富饶的土地上,有着丰富的太阳能资源。全国各地的年太阳辐射总量为928-2333KWh/ m2,中值为1626kWh/ m2。 根据各地接受太阳总辐射量的多少,可将全国划分为五类地区。 一类地区为我国太阳能资源最丰富的地区,年太阳辐射总量6680-8400 MJ/m2,相当于日辐射量5.1-6.4KWh/m2。这些地区包括宁夏北部、甘肃北部、新疆东部、青海西部和西藏西部等地。尤以西藏西部最为丰富,最高达2333 KWh/ m2 (日辐射量6.4KWh/ m2 ),居世界第二位,仅次于撒哈拉大沙漠。 二类地区为我国太阳能资源较丰富地区,年太阳辐射总量为5850-6680 MJ/m2,相当于日辐射量4.5-5.1KWh/m2。这些地区包括河北西北部、山西北部、内蒙古南部、宁夏南部、甘肃中部、青海东部、西藏东南部和新疆南部等地。 三类地区为我国太阳能资源中等类型地区,年太阳辐射总量为5000-5850 MJ/m2,相当于日辐射量3.8-4.5KWh/m2。主要包括山东、河南、河北东南部、山西南部、新疆北部、吉林、辽宁、云南、陕西北部、甘肃东南部、广东南部、福建南部、苏北、皖北、台湾西南部等地。四类地区是我国太阳能资源较差地区,年太阳辐射总量4200-5000 MJ/m2,相当于日辐射量3.2-3.8KWh/m2。这些地区包括湖南、湖北、广西、江西、浙江、福建北部、广东北部、陕南、苏北、皖南以及黑龙江、台湾东北部等地。 五类地区主要包括四川、贵州两省,是我国太阳能资源最少的地区,年太阳辐射总量 3350-4200 MJ/m2,相当于日辐射量只有2.5-3.2KWh/m2。 太阳能辐射数据可以从县级气象台站取得,也可以从国家气象局取得。从气象局取得的数据是水平面的辐射数据,包括:水平面总辐射,水平面直接辐射和水平面散射辐射。 从全国来看,我国是太阳能资源相当丰富的国家,绝大多数地区年平均日辐射量在4 kWh/m2.天以上,西藏最高达7 kWh/m2.天。与同纬度的其它国家相比,和美国类似,比欧洲、日本优越得多。上述一、二、三类地区约占全国总面积的2/3以上,年太阳辐射总量高于5000 MJ/m2,年日照时数大于2000h,具有利用太阳能的良好条件。特别是一、二类地区,正是我国人口稀少、居住分散、交通不便的偏僻、边远的广大西北地区,经济发展较为落后。可充分利用当地丰富的太阳能资源,采用太阳光发电技术,发展经济,提高人民生活水平。

中国太阳能资源分布情况

中国太阳能资源的分布形势为西多东少,西部9省年平均总辐射量为5519.46MJ/m2,东部17省年平均总辐射量为4836.23MJ/m2。按区域划分共分为四个区域,丰富区包括甘肃、青海、西藏、宁夏,年日照时间超过3000小时;较丰富区涵盖内蒙古、东北、河北、山西、陕西等,年日照时间介于2000小时至3000小时之间;沿海地区则是一般区,年日照时间约为1000小时至2000小时;不丰富区的年日照时间则少于1000小时,如重庆、贵阳等。 如将政府补贴、固定资产运行费用、各省系统年满发小时数、增值税、贷款比、所得税、附加税、贷款利息都考虑进去,企业的可行税后内部收益率按8%计算,企业资金回收年限按15年计算的话,东部17省无一可以盈利,而西部仅有西藏、内蒙古、青海和宁夏4省可以盈利。 2011年年底实行的1.15元价格和2012年实行的1元价格,除了让光伏企业在西部省份能略有赚头之外,在东部省份“毫无收益可言”。 业内人士分析:以电站运行25年计,1.15元/千瓦时的电价在日照丰富的青海、宁夏等地可收回3倍以上投资,而在年日照时间不足2000小时的北京,只能收回1倍投资。企业如果要从事光伏电站投资,在西部地区可实现8%的内部收益率,但这已是公司从事项目投资的底线,低于此,就毫无价值可言。如果在东部地区执行上述价格,几乎没有内部收益率,分文不挣。以东部地区目前的日照条件和成本,补贴价格至少要在1.4元左右。 西部地区多为荒漠,建设成本低廉,而东部地区土地紧张,人工成本也高,日照更是只有西部地区的一半,因此应逐步提高东部地区的上网电价,以提高企业的积极性。 西北等日照丰富地区的用户电价较低,而阳光不充足的内陆地区用户电价更高。“除了西北地区可在七八年收回成本外,其他省份都没有太大优势。”业内专家建议,不妨像风电一样,将光伏上网电价划分为四个区域分别定价,参照物是这些地区的平均峰值用户电价。 江苏省曾在2009年出台了自己的上网电价补贴方案,即省里从每度电里抽取2厘钱进行支援,补贴时间为2009年到2011年,价格实行逐年递减,2011年为最后一年,补贴价格为1.4元/千瓦时。 目前公布的光伏上网电价标准下,东部建电站就意味着亏损,因此东部省市有必要出台新的补贴方案来支持光伏电站建设。“我们希望明年在江苏的上网电价补贴能由中央财政和地方财政共同承担,这对双方都有好处。 地方政府的补贴态度,将直接影响到企业的投资热情。企业都是逐利的,如果东部没有更具诱惑的电价出台,各大企业自然会向低成本的西部地区聚拢。但西部地区的光伏发电还面临着长距离输送的问题,如果企业都喜“西”厌“东”,会对我国整体光伏行业的发展格局不利。 没有对不同资源条件给出不同的补贴电价,而是以"一刀切"的方式,给出了一个统一价格。从盈利角度来讲,对于新项目,1元/度电的补贴更适合建立在西部日照资源条件较好的地区的光伏电站。

中国太阳能资源现状

中国太阳能资源现状 太阳能是一种取之不尽用之不竭的自然资源。我国幅员广大,有着十分丰富的太阳能资源。据估算,我国陆地表面每年接受的太阳辐射能约为50x1018kJ,全国各地太阳年辐射总量达335~837kJ/cm2a,中值为586kJ/cm2a。 从全国太阳年辐射总量的分布来看,西藏、青海、新疆、内蒙古南部、山西、陕西北部、河北、山东、辽宁、吉林西部、云南中部和西南部、广东东南部、福建东南部、海南岛东部和西部以及台湾省的西南部等广大地区的太阳辐射总量很大。尤其是青藏高原地区最大,那里平均海拔高度在4000m以上,大气层薄而清洁,透明度好,纬度低,日照时间长。例如被人们称为“日光城”的拉萨市,1961年至1970年的平均值,年平均日照时间为3005.7h,相对日照为68%,年平均晴天为108.5天,阴天为98.8天,年平均云量为4.8,太阳总辐射为816kJ/cm2a,比全国其它省区和同纬度的地区都高。全国以四川和贵州两省的太阳年辐射总量最小,其中尤以四川盆地为最,那里雨多、雾多,晴天较少。例如素有“雾都”之称的成都市,年平均日照时数仅为1152.2h,相对日照为26%,年平均晴天为24.7天,阴天达244 .6天,年平均云量高达8.4。其它地区的太阳年辐射总量居中。 我国太阳能资源分布的主要特点有:太阳能的高值中心和低值中心都处在北纬22°~35°这一带,青藏高原是高值中心,四川盆地是低值中心;太阳年辐射总量,西部地区高于东部地区,而且除西藏和新疆两个自治区外,基本上是南部低于北部;由于南方多数地区云雾雨多,在北纬30°~40°地区,太阳能的分布情况与一般的太阳能随纬度而变化的规律相反,太阳能不是随着纬度的增加而减少,而是随着纬度的增加而增长。 按接受太阳能辐射量的大小,全国大致上可分为五类地区: 一类地区全年日照时数为3200~330O小时,辐射量在670~837x104kJ/cm2a。相当于225~285kg标准煤燃烧所发 出的热量。主要包括青藏高原、甘肃北部、宁夏北部和新疆南部等地。这是我国太阳能资源最丰富的地区,与印度和巴基斯坦北部的太阳能资源相当。特别是西藏,地势高,太阳光的透明度也好,太阳辐射总量最高值达921kJ/cm2 a,仅次于撒哈拉大沙漠,居世界第二位,其中拉萨是世界著名的阳光城。 二类地区全年日照时数为3000~3200小时,辐射量在586~670x104kJ/cm2a,相当于200~225kg标准煤燃烧所发出的热量。主要包括河北西北部、山西北部、内蒙古南部、宁夏南部、甘肃中部、青海东部、西藏东南部和新疆南部等地。此区为我国太阳能资源较丰富区。 三类地区全年日照时数为2200~3000小时,辐射量在502~586x104kJ/cm2a,相当于170~200kg标准煤燃烧所发出的热量。主要包括山东、河南、河北东南部、山西南部、新疆北部、吉林、辽宁、云南、陕西北部、甘肃东南部、广东南部、福建南部、江苏北部和安徽北部等地。 四类地区全年日照时数为1400~2200小时,辐射量在419~502x104kJ/cm2a。相当于140~170kg标准煤燃烧所发出的热量。主要是长江中下游、福建、浙江和广东的一部分地区,春夏多阴雨,秋冬季太阳能资源还可以。

(整理)太阳能资源的概述和评价

太阳能资源的概述和评价 引言 目前,在能源日渐短缺和环境保护双重压力形势下,,各国政府都十分重视可再生能源的开发利用。在发电领域,资源消耗十分巨大。尤其是在我国,火电占据绝大部分的电能来源。开发使用新的能源迫在眉睫。太阳能光伏发电是解决当前能源危机的重要途径之一。 太阳能并网发电系统通过把太阳能转化为电能,不经过蓄电池储能,直接通过并网逆变器,把电能送上电网。太阳能并网发电代表了太阳能电源的发展方向,是21世纪最具吸引力的能源利用技术 并网发电系统组成包括太阳能电池组件,直交流逆变器,配电室,还有并网发电的防雷系统等等。太阳能并网发电系统优点是生产电能的过程清洁便利,并且太阳能资源丰富可再生。还有就是发电系统的装置可与建筑物完美结合,分布式的建设,进退电网灵活,可以有效改善符合平衡,降低损耗。此外还能起到调峰的作用。它的缺点就是受气候因素影响明显。这就导致了它的应用时间有间隙性和随机性,遇到阴雨天气无法正常发电。还有就是能量密度较低,发一定的电量需要很大的占地面积的接收太阳能的装置。此外太阳能发电装置造价很高,成本是很重要的一个问题。 虽说国内的光伏发电产业还处在发展的初期阶段,但是国家和地方也出台了相关的政策来推进的这一产业的快速发展。国家能源局于2013年11月26日发布有效期为3年的《光伏发电运营监管暂行办法》,规定电网企业应当全额收购其电网覆盖范围内并网光伏电站项目和分布式光伏发电项目的上网电量,明确了能源主管部门及其派出机构对于光伏发电并网运营的各项监管责任,光伏发电项目运营主体和电网企业应当承担的责任,从而推进光伏发电并网有序进行。此外甘肃省,河北省,安徽省等省份也相继出台了扶持光伏产业的相关政策。 中国2011年的光伏装机量高达2.9GW,同比2010年增长了500%。亚太地区仅第四季度就有2.8GW的装机量,全年装机量达到6GW,较前一年增长了165%。2012年中国光伏装机容量约为4.5GW,较之2011年的2.89GW增长55.7%,成为继德国之后的全球第二大光伏装机大国。不过,根据国家电监会的数据,2012年中国新增太阳能装机容量仅为1.19GW。在政策与补助的大力推动下,中国2013年的光伏装机量远多于各界预期,高达13GW。特别是中国西部地区,受利于年底并网即可获得优惠电价的刺激,第四季的光伏并网量暴增,且能量持续。今年全国光伏总装机量上看14GW。中国国家能源局及光伏业界原本估计去年全国光伏装机量约在8~9.5GW上下,但由于国家透过年底并网即可获得每千瓦时一元人民币上网优惠电价的刺激,光伏装机量于去年年末暴增,第四季的装机量超越前九个月的总和。去年新增光伏装机量最高者分别是甘肃省超过 2.6GW、新疆省1.82GW、青海省 1.67GW;而在此强大能量的推动下,国家能源局进一步将2014年的新增光伏装机量目标订在10~14GW,其中包括分布式光伏8GW和大型地面光伏电站6GW。 中国的光伏发电产业正在高速迈进。

相关文档