文档视界 最新最全的文档下载
当前位置:文档视界 › 动态规划算法原理与的应用

动态规划算法原理与的应用

动态规划算法原理与的应用
动态规划算法原理与的应用

动态规划算法原理及其应用研究

系别:x x x 姓名:x x x 指导教员:x x x

2012年5月20日

摘要:动态规划是解决最优化问题的基本方法,本文介绍了动态规划的基本思想和基本步骤,并通过几个实例的分析,研究了利用动态规划设计算法的具体途径。关键词:动态规划多阶段决策

1.引言

规划问题的最终目的就是确定各决策变量的取值,以使目标函数达到极大或极小。在线性规划和非线性规划中,决策变量都是以集合的形式被一次性处理的;然而,有时我们也会面对决策变量需分期、分批处理的多阶段决策问题。所谓多阶段决策问题是指这样一类活动过程:它可以分解为若干个互相联系的阶段,在每一阶段分别对应着一组可供选取的决策集合;即构成过程的每个阶段都需要进行一次决策的决策问题。将各个阶段的决策综合起来构成一个决策序列,称为一个策略。显然,由于各个阶段选取的决策不同,对应整个过程可以有一系列不同的策略。当过程采取某个具体策略时,相应可以得到一个确定的效果,采取不同的策略,就会得到不同的效果。多阶段的决策问题,就是要在所有可能采取的策略中选取一个最优的策略,以便得到最佳的效果。动态规划是一种求解多阶段决策问题的系统技术,可以说它横跨整个规划领域(线性规划和非线性规划)。在多阶段决策问题中,有些问题对阶段的划分具有明显的时序性,动态规划的“动态”二字也由此而得名。动态规划的主要创始人是美国数学家贝尔曼(Bellman)。20世纪40年代末50年代初,当时在兰德公司(Rand Corporation)从事研究工作的贝尔曼首先提出了动态规划的概念。1957年贝尔曼发表了数篇研究论文,并出版了他的第一部著作《动态规划》。该著作成为了当时唯一的进一步研究和应用动态规划的理论源泉。在贝尔曼及其助手们致力于发展和推广这一技术的同时,其他一些学者也对动态规划的发展做出了重大的贡献,其中最值得一提的是爱尔思(Aris)和梅特顿(Mitten)。爱尔思先后于1961年和1964年出版了两部关于动态规划的著作,并于1964年同尼母霍思尔(Nemhauser)、威尔德(Wild)一道创建了处理分枝、循环性多阶段决策系统的一般性理论。梅特顿提出了许多对动态规划后来发展有着重要意义的基础性观点,并且对明晰动态规划路径的数学性质做出了巨大的贡献。

动态规划问世以来,在工程技术、经济管理等社会各个领域都有着广泛的应用,并且获得了显著的效果。在经济管理方面,动态规划可以用来解决最优路径

问题、资源分配问题、生产调度问题、库存管理问题、排序问题、设备更新问题以及生产过程最优控制问题等,是经济管理中一种重要的决策技术。许多规划问题用动态规划的方法来处理,常比线性规划或非线性规划更有效。特别是对于离散的问题,由于解析数学无法发挥作用,动态规划便成为了一种非常有用的工具。

动态规划可以按照决策过程的演变是否确定分为确定性动态规划和随机性动态规划;也可以按照决策变量的取值是否连续分为连续性动态规划和离散性动态规划。虽然动态规划主要用于求解以时间划分阶段的动态过程的优化问题,但是一些与时间无关的静态规划(如线性规划、非线性规划),只要人为地引进时间因素,把它视为多阶段决策过程,也可以用动态规划方法方便地求解。

2.动态规划的基本思想

一般来说,只要问题可以划分成规模更小的子问题,并且原问题的最优解中包含了子问题的最优解,则可以考虑用动态规划解决。动态规划的实质是分治思想和解决冗余,因此,动态规划是一种将问题实例分解为更小的、相似的子问题,并存储子问题的解而避免计算重复的子问题,以解决最优化问题的算法策略。由此可知,动态规划法与分治法和贪心法类似,它们都是将问题实例归纳为更小的、相似的子问题,并通过求解子问题产生一个全局最优解。其中贪心法的当前选择可能要依赖已经作出的所有选择,但不依赖于有待于做出的选择和子问题。因此贪心法自顶向下,一步一步地作出贪心选择;而分治法中的各个子问题是独立的(即不包含公共的子子问题),因此一旦递归地求出各子问题的解后,便可自下而上地将子问题的解合并成问题的解。但不足的是,如果当前选择可能要依赖子问题的解时,则难以通过局部的贪心策略达到全局最优解;如果各子问题是不独立的,则分治法要做许多不必要的工作,重复地解公共的子问题。解决上述问题的办法是利用动态规划。该方法主要应用于最优化问题,这类问题会有多种可能的解,每个解都有一个值,而动态规划找出其中最优(最大或最小)值的解。若存在若干个取最优值的解的话,它只取其中的一个。在求解过程中,该方法也是通过求解局部子问题的解达到全局最优解,但与分治法和贪心法不同的是,动态规划允许这些子问题不独立,也允许其通过自身子问题的解作出选择,该方法对每一个子问题只解一次,并将结果保存起来,避免每次碰到时都要重复计算。

因此,动态规划法所针对的问题有一个显著的特征,即它所对应的子问题树

中的子问题呈现大量的重复。动态规划法的关键就在于,对于重复出现的子问题,只在第一次遇到时加以求解,并把答案保存起来,让以后再遇到时直接引用,不必重新求解。

3.动态规划的基本概念

动态规划的数学描述离不开它的一些基本概念与符号,因此有必要在介绍多阶段决策过程的数学描述的基础上,系统地介绍动态规划的一些基本概念。

3.1多阶段决策问题

如果一类活动过程可以分为若干个互相联系的阶段,在每一个阶段都需作出决策,一个阶段的决策确定以后,常常影响到下一个阶段的决策,从而就完全确定了一个过程的活动路线,则称它为多阶段决策问题。

各个阶段的决策构成一个决策序列,称为一个策略。每一个阶段都有若干个决策可供选择,因而就有许多策略供我们选取,对应于一个策略可以确定活动的效果,这个效果可以用数量来确定。策略不同,效果也不同,多阶段决策问题,就是要在可以选择的那些策略中间,选取一个最优策略,使在预定的标准下达到最好的效果.

3.2动态规划问题中的术语

阶段:把所给求解问题的过程恰当地分成若干个相互联系的阶段,以便于求解,过程不同,阶段数就可能不同.描述阶段的变量称为阶段变量。在多数情况下,阶段变量是离散的,用k表示。此外,也有阶段变量是连续的情形。如果过程可以在任何时刻作出决策,且在任意两个不同的时刻之间允许有无穷多个决策时,阶段变量就是连续的。

状态:状态表示每个阶段开始面临的自然状况或客观条件,它不以人们的主观意志为转移,也称为不可控因素。在上面的例子中状态就是某阶段的出发位置,它既是该阶段某路的起点,同时又是前一阶段某支路的终点。

过程的状态通常可以用一个或一组数来描述,称为状态变量。一般,状态是离散的,但有时为了方便也将状态取成连续的。当然,在现实生活中,由于变量形式的限制,所有的状态都是离散的,但从分析的观点,有时将状态作为连续的处理将会有很大的好处。此外,状态可以有多个分量(多维情形),因而用向量来代表;而且在每个阶段的状态维数可以不同。

无后效性:我们要求状态具有下面的性质:如果给定某一阶段的状态,则在这一阶段以后过程的发展不受这阶段以前各段状态的影响,所有各阶段都确定时,整个过程也就确定了。换句话说,过程的每一次实现可以用一个状态序列表示,在前面的例子中每阶段的状态是该线路的始点,确定了这些点的序列,整个线路也就完全确定。从某一阶段以后的线路开始,当这段的始点给定时,不受以前线路(所通过的点)的影响。状态的这个性质意味着过程的历史只能通过当前的状态去影响它的未来的发展,这个性质称为无后效性。

决策:一个阶段的状态给定以后,从该状态演变到下一阶段某个状态的一种选择(行动)称为决策。在最优控制中,也称为控制。在许多间题中,决策可以自然而然地表示为一个数或一组数。不同的决策对应着不同的数值。描述决策的变量称决策变量,因状态满足无后效性,故在每个阶段选择决策时只需考虑当前的状态而无须考虑过程的历史。决策变量的范围称为允许决策集合。

策略:由每个阶段的决策组成的序列称为策略。对于每一个实际的多阶段决策过程,可供选取的策略有一定的范围限制,这个范围称为允许策略集合。允许策略集合中达到最优效果的策略称为最优策略。

给定k阶段状态变量x(k)的值后,如果这一阶段的决策变量一经确定,第k+1阶段的状态变量x(k+1)也就完全确定,即x(k+1)的值随x(k)和第k阶段的决策u(k)的值变化而变化,那么可以把这一关系看成(x(k),u(k))与x(k+1)确定的对应关系,用x(k+1)=Tk(x(k),u(k))表示。这是从k阶段到k+1阶段的状态转移规律,称为状态转移方程。

最优性原理: 作为整个过程的最优策略,它满足:相对前面决策所形成的状态而言,余下的子策略必然构成“最优子策略”。

4.动态规划求解的基本步骤

动态规划所处理的问题是一个多阶段决策问题,一般由初始状态开始,通过对中间阶段决策的选择,达到结束状态。这些决策形成了一个决策序列,同时确定了完成整个过程的一条活动路线(通常是求最优的活动路线)。如图所示。动态规划的设计都有着一定的模式,一般要经历以下几个步骤。

初始状态→│决策1│→│决策2│→…→│决策n│→结束状态

动态规划决策过程示意图

(1)划分阶段:,按照问题的时间或空间特征,把问题分为若干个阶段。在划分阶段时,注意划分后的阶段一定要是有序的或者是可排序的,否则问题就无法求解。

(2)确定状态和状态变量:将问题发展到各个阶段时所处于的各种客观情况用不同的状态表示出来。当然,状态的选择要满足无后效性。

(3)确定决策并写出状态转移方程:因为决策和状态转移有着天然的联系,状态转移就是根据上一阶段的状态和决策来导出本阶段的状态。所以如果确定了决策,状态转移方程也就可写出。但事实上常常是反过来做,根据相邻两段各状态之间的关系来确定决策。

(4)寻找边界条件:给出的状态转移方程是一个递推式,需要一个递推的终止条件或边界条件。

(5)程序设计实现:动态规划的主要难点在于理论上的设计,一旦设计完成,实现部分就会非常简单。

根据上述动态规划设计的步骤,可得到大体解题框架如图所示。

动态规划设计的一般模式图

上述提供了动态规划方法的一般模式,对于简单的动态规划问题,可以按部就班地进行动态规划的设计。下面,给出一个利用动态规划方法求解的典型例子。

<数字三角形问题> 上图示出了一个数字三角形宝塔。数字三角形中的数字为不超过100的整数。现规定从最顶层走到最底层,每一步可沿左斜线向下或右斜线向下走。

任务一:假设三角形行数≤10,键盘输入一个确定的整数值M,编程确定是否存在一条路径,使得沿着该路径所经过的数字的总和恰为M,若存在则给出所有路径,若不存在,则输出“NO Answer!”字样。

任务二:假设三角形行数≤100,编程求解从最顶层走到最底层的一条路径,使得沿着该路径所经过的数字的总和最大,输出最大值。

输人数据:由文件输入数据,任务一中文件第一行是三角形的行数N和整数值 M。以后的N行分别是从最顶层到最底层的每一层中的数字。任务二中文件数据格式同任务一,只是第一行中没有整数值M。在例子中任务二的文件数据表示如下:

输入:5

7 输出:输出路径和最大值

3 8 7 或“No Answer!”字样。

8 1 0 38

2 7 7 4 810

4 5 2 6 5 2744

图3 数字三角形45265

【分析】对于这一问题,很容易想到用枚举的方法去解决,即列举出所有路径并记录每一条路径所经过的数字总和。然后判断数字总和是否等于给定的整数值M或寻找出最大的数字总和,这一想法很直观,而且对于任务一,由于数字三角形的行数不大(<=10),因此其枚举量不是很大,应该能够实现。但对于任务二,如果用枚举的方法,当三角形的行数等于100时,其枚举量之大是可想而知的,显然,枚举法对于任务二的求解并不适用。其实,只要对对任务二稍加分析,就可以得出一个结论:

如果得到一条由顶至底的某处的一条最佳路径,那么对于该路径上的每一个中间点来说,由顶至该中间点的路径所经过的数字和也为最大。因此该问题

是一个典型的多阶段决策最优化的问题。算法设计与分析如下:

对于任务一,合理地确认枚举的方法,可以优化问题的解法。由于从塔顶到底层每次都只有两种走法,即左或右。设“0”表示左,“1”表示右,对于层数为N的数字塔,从顶到底的一种走法可用一个N-1位的二进制数表示。如例中二进制数字串1011,其对应的路径应该是:8—1—4—6。这样就可以用一个N—l 位的二进制数来模拟走法和确定解的范围。穷举出从0到2n-1个十进制数所对应的N-1位二进制串对应的路径中的数字总和,判定其是否等于M而求得问题的解。

对于任务二,采用动态规划中的顺推解法。按三角形的行划分阶段,若行数为 n,则可把问题看做一个n-1个阶段的决策问题。从始点出发,依顺向求出第一阶段、第二阶段……第n—1阶段中各决策点至始点的最佳路径,最终求出始点到终点的最佳路径。

设:fk(Uk)为从第k阶段中的点Uk至三角形顶点有一条最佳路径,该路径所经过的数字的总和最大,fk(Uk)表示为这个数字和;由于每一次决策有两个选择,或沿左斜线向下,或沿右斜线向下,因此设:

Uk1为k-1阶段中某点Uk沿左斜线向下的点;

Uk2为k-1阶段中某点Uk沿右斜线向下的点;

dk(Uk1)为k阶段中Uk1的数字;dk(Uk2)为k阶段中Uk2的数字。

因而可写出顺推关系式(状态转移方程)为:

fk(Uk)=max{fk-1(Uk)+dk(Uk1),fk-1(Uk)+dk(Uk2)}(k=1,2,3,…,n)

f0(U0)=0

经过一次顺推,便可分别求出由顶至底N个数的N条路径,在这N条路径所经过的N个数字和中,最大值即为正确答案。

5.动态规划的应用实例

5.1最短路线问题

[例1]美国黑金石油公司(The Black Gold Petroleum Company)最近在阿拉斯加(Alaska)的北斯洛波(North Slope)发现了大的石油储量。为了大规模开发这一油田,首先必须建立相应的输运网络,使北斯洛波生产的原油能运至美国的3个装运港之一。在油田的集输站(结点C)与装运港(结点P1、P2、P3)之间需

要若干个中间站,中间站之间的联通情况如图7-2所示,图中线段上的数字代表两站之间的距离(单位:10千米)。试确定一最佳的输运线路,使原油的输送距离最短。

解:最短路线有一个重要性质,即如果由起点A经过B点和C点到达终点D是一条最短路线,则由B点经C点到达终点D一定是B到D的最短路(贝尔曼最优化原理)。此性质用反证法很容易证明,因为如果不是这样,则从B点到D点有另一条距离更短的路线存在,不妨假设为B—P—D;从而可知路线A—B—P—D比原路线A—B—C—D距离短,这与原路线A—B—C—D是最短路线相矛盾,性质得证。

根据最短路线的这一性质,寻找最短路线的方法就是从最后阶段开始,由后向前逐步递推求出各点到终点的最短路线,最后求得由始点到终点的最短路;即动态规划的方法是从终点逐段向始点方向寻找最短路线的一种方法。按照动态规划的方法,将此过程划分为4个阶段,即阶段变量1,2,3,4

k ;取过程在各阶段所处S,按逆序算法求解。

的位置为状态变量

k

当4=k 时:由结点M31到达目的地有两条路线可以选择,即选择P1或P2;故:

6

68min )(3144=??????==M S f

选择P2,由结点M32到达目的地有三条路线可以选择,即选择P1、P2或P3;故:

3

734min )(3244=??

?

???????==M S f

选择P2,由结点M33到达目的地也有三条路线可以选择,即选择P1、P2或P3;故:

5

567min )(3344=???

???????==M S f

选择P3,由结点M34到达目的地有两条路线可以选择,即选择P2或P3;故:

3

43min )(3444=???

???==M S f

选择P2当3k =时:由结点M21到达下一阶段有三条路线可以选择,即选择M31、

M32或M33;故:

10

5637610min )(2133=???

???????+++==M S f

选择M32由结点M22到达下一阶段也有三条路线可以选择,即选择M31、M32

或M33;故:

10

553769min )(2233=???

???????+++==M S f

选择M32或M33,由结点M23到达下一阶段也有三条路线可以选择,即选择

M32、M33或M34;故:

9

3654311min )(2333=???

???????+++==M S f

选择M33或M34当2k =时:由结点M11到达下一阶段有两条路线可以选择,

即选择M21或M22;故:

16

106108min )(1122=???

???++==M S f

选择M22,由结点M12,到达下一阶段也有两条路线可以选择,即选择M22或M23;故:

19

911109min )(1222=???

???++==M S f

选择M22,当1k =时:由结点C 到达下一阶段有两条路线可以选择,即选择M11

或M12;故:

28

19101612min )(11=???

???++==C S f

选择M11,,而通过顺序(计算的反顺序)追踪(黑体标示)可以得到两条最佳

的输运线路:C —M11—M22—M32—P2;C —M11—M22—M33—P3。最短的输送距离是280千米。 5.2资源分配问题

所谓资源分配问题,就是将一定数量的一种或若干种资源(如原材料、机器设备、资金、劳动力等)恰当地分配给若干个使用者,以使资源得到最有效地利用。设有m 种资源,总量分别为bi (i = 1,2,,m ),用于生产n 种产品,若用xij 代表用于生产第j 种产品的第i 种资源的数量(j = 1,2,,n ),则生产第j 种产品的收益是其所获得的各种资源数量的函数,即gj = f (x1j,x2j,, xmj )。由于总收益是n 种产品收益的和,此问题可用如下静态模型加以描述:

∑==n

j j

g z 1

max

1

n

ij

i j x

b ==∑ (1,2,,)i m =L

0ij x ≥ (1,2,,;1,2,,)i m j n ==L L

若ij x 是连续变量,当j g = f (1j x ,2j x ,, mj x )是线性函数时,该模型是线

性规划模型;当j g = f (1j x ,2j x ,

, mj x )是非线性函数时,该模型是非线性规

划模型。若ij x 是离散变量或(和)j g = f (1j x ,2j x ,

, mj x )是离散函数时,此

模型用线性规划或非线性规划来求解都将是非常麻烦的。然而在此情况下,由于这类问题的特殊结构,可以将它看成为一个多阶段决策问题,并利用动态规划的递推关系来求解。

本例只考虑一维资源的分配问题,设状态变量k s 表示分配于从第k 个阶段至过程最终(第N 个阶段)的资源数量,即第k 个阶段初资源的拥有量;决策变量xk 表示第k 个阶段资源的分配量。于是有状态转移律:

k

k k x S S -=+1

允许决策集合:

}

0|{)(k k k k k S x x S D ≤≤=

最优指标函数(动态规划的逆序递推关系式):

110()max {()()}k k

k k k k k k x S f S g x f S ++≤≤=+ (,1,2,,1)k N N N =--L

)(11=++N N S f

利用这一递推关系式,最后求得的11()f S 即为所求问题的最大总收益,下面来看一个具体的例子。

[例2] 某公司拟将500万元的资本投入所属的甲、乙、丙三个工厂进行技术改造,各工厂获得投资后年利润将有相应的增长,增长额如表7-1所示。试确定500万元资本的分配方案,以使公司总的年利润增长额最大。

解:将问题按工厂分为三个阶段k=1,2,3,设状态变量k S (1,2,3k =)代表从第k 个工厂到第3个工厂的投资额,决策变量k x 代表第k 个工厂的投资额。于是有状态转移率1k k k S S x +=-、允许决策集合(){|0}k k k k k D S x x S =≤≤和递推关系式:

1

0()max {()()}k k

k k k k k k k x S f S g x f S x +≤≤=+- (3,2,1)k =

0)(44=S f

当3=k 时:

)}

({max }0)({max )(330330333

33

3x g x g S f S x S x ≤≤≤≤=+=

于是有表7-2,表中3x *

表示第三个阶段的最优决策。

当2=k 时:22

22223220()max {()()}x S f S g x f S x ≤≤=+-。于是有表7-3。

当1=k 时:

)}

()({max )(112110111

1x S f x g S f S x -+=≤≤

然后按计算表格的顺序反推算,可知最优分配方案有两个:(1)甲工厂投资200万元,乙工厂投资200万元,丙工厂投资100万元;(2)甲工厂没有投资,乙工厂投资200万元,丙工厂投资300万元。按最优分配方案分配投资(资源),年利润将增长210万元。

5.3用动态规划求解非线性规划问题

非线性规划问题的求解是非常困难的;然而,对于有些非线性规划问题,如果转化为用动态规划来求解将是十分方便的。

[例3] 用动态规划求解

3

2

21max x x x z ??=

36

321=++x x x

,,321≥x x x

解:

阶段:将问题的变量数作为阶段,即k=1,2,3; 决策变量:决策变量k x ;

状态变量:状态变量k

S 代表第k 阶段的约束右端项,即从k x 到3x 占有的份额;

状态转移律:1k k k S S x +=-; 边界条件:136S =,44()1f S =; 允许决策集合:0k k x S ≤≤ 当3=k 时:

3

3

3

33

3|}{max )}({max )(330443033S

x S x S x S x S f x S f =≤≤≤≤*==?=

当2=k 时:

)}

({max )}({max )(2222033220222

22

2x S x S f x S f S x S x -=?=≤≤≤≤

设2222()h x S x =-,2

222222()dh

dx x S x x =-- 0

)(22

22222

=--=x x S x dx dh

02=x 2S

又因x ,所以:

2222

02|

20d h

x dx S ==>,02

=x 是)(22S f 的极小值点

222

2222222()2226d h dx S x x x S x =---=-,2223x S =是22()f S 的极大值点

于是:

2

322

|)(3

227

422S

x S S f =*=

当1=k 时:

}

)({max )}({max )(311274

102210111

11

1x S x S f x S f S x S x -?=?=≤≤≤≤

同上可得:

9

464

14164

1

111

411

|2624436)36(==*=?=

==S x S S f

由279361

12=-=-=*x S S ,有

18

273

2232

2=?=

=*S x

由322

27189S S x *=-=-=,有339x S *== 于是得到最优解(9,18,9)X *=,最优值26244=*

z 。

6. 结束语

从以上实例分析可以看出,用动态规划解决多阶段决策问题效率是很高的,而且思路清晰简便,同时易于实现,虽然使用动态规划方法也有一定的限制,如状态变量必须满足无后效性,并且只适用一些维数相当低的问题等。但是,可以看到,动态规划方法的应用是很广的,已成功解决了许多实际问题,具有很强的实用性。

参考文献

[1] 徐渝,贾涛.运筹学[M].北京:清华大学出版社, 2005.

[2] 韦兰用.最优控制问题研究综述[D].吉林大学,2006.

[3] 谬慧芬,邵小兵.动态规划算法的原理及应用[J].中国科技信息, 2005(21).

[4] 解可新,韩立兴,林友联.最优化方法[M].天津:天津大学出版社, 1997.

[5] 赵旋. 变分法、最小值原理、动态规划和最优控制[J].自动化博览,1997

蚁群算法简述及实现

蚁群算法简述及实现 1 蚁群算法的原理分析 蚁群算法是受自然界中真实蚁群算法的集体觅食行为的启发而发展起来的一种基于群体的模拟进化算法,属于随机搜索算法,所以它更恰当的名字应该叫“人工蚁群算法”,我们一般简称为蚁群算法。M.Dorigo等人充分的利用了蚁群搜索食物的过程与著名的TSP问题的相似性,通过人工模拟蚁群搜索食物的行为来求解TSP问题。 蚂蚁这种社会性动物,虽然个体行为及其简单,但是由这些简单个体所组成的群体却表现出及其复杂的行为特征。这是因为蚂蚁在寻找食物时,能在其经过的路径上释放一种叫做信息素的物质,使得一定范围内的其他蚂蚁能够感觉到这种物质,且倾向于朝着该物质强度高的方向移动。蚁群的集体行为表现为一种正反馈现象,蚁群这种选择路径的行为过程称之为自催化行为。由于其原理是一种正反馈机制,因此也可以把蚁群的行为理解成所谓的增强型学习系统(Reinforcement Learning System)。 引用M.Dorigo所举的例子来说明蚁群发现最短路径的原理和机制,见图1所示。假设D 和H之间、B和H之间以及B和D之间(通过C)的距离为1,C位于D和B的中央(见图1(a))。现在我们考虑在等间隔等离散世界时间点(t=0,1,2……)的蚁群系统情况。假设每单位时间有30只蚂蚁从A到B,另三十只蚂蚁从E到D,其行走速度都为1(一个单位时间所走距离为1),在行走时,一只蚂蚁可在时刻t留下浓度为1的信息素。为简单起见,设信息素在时间区间(t+1,t+2)的中点(t+1.5)时刻瞬时完全挥发。在t=0时刻无任何信息素,但分别有30只蚂蚁在B、30只蚂蚁在D等待出发。它们选择走哪一条路径是完全随机的,因此在两个节点上蚁群可各自一分为二,走两个方向。但在t=1时刻,从A到B的30只蚂蚁在通向H的路径上(见图1(b))发现一条浓度为15的信息素,这是由15只从B走向H的先行蚂蚁留下来的;而在通向C的路径上它们可以发现一条浓度为30的信息素路径,这是由15只走向BC的路径的蚂蚁所留下的气息与15只从D经C到达B留下的气息之和(图1(c))。这时,选择路径的概率就有了偏差,向C走的蚂蚁数将是向H走的蚂蚁数的2倍。对于从E到D来的蚂蚁也是如此。 (a)(b)(c) 图1 蚁群路径搜索实例 这个过程一直会持续到所有的蚂蚁最终都选择了最短的路径为止。 这样,我们就可以理解蚁群算法的基本思想:如果在给定点,一只蚂蚁要在不同的路径中选择,那么,那些被先行蚂蚁大量选择的路径(也就是信息素留存较浓的路径)被选中的概率就更大,较多的信息素意味着较短的路径,也就意味着较好的问题回答。

动态规划算法原理与的应用

动态规划算法原理及其应用研究 系别:x x x 姓名:x x x 指导教员: x x x 2012年5月20日

摘要:动态规划是解决最优化问题的基本方法,本文介绍了动态规划的基本思想和基本步骤,并通过几个实例的分析,研究了利用动态规划设计算法的具体途径。关键词:动态规划多阶段决策 1.引言 规划问题的最终目的就是确定各决策变量的取值,以使目标函数达到极大或极小。在线性规划和非线性规划中,决策变量都是以集合的形式被一次性处理的;然而,有时我们也会面对决策变量需分期、分批处理的多阶段决策问题。所谓多阶段决策问题是指这样一类活动过程:它可以分解为若干个互相联系的阶段,在每一阶段分别对应着一组可供选取的决策集合;即构成过程的每个阶段都需要进行一次决策的决策问题。将各个阶段的决策综合起来构成一个决策序列,称为一个策略。显然,由于各个阶段选取的决策不同,对应整个过程可以有一系列不同的策略。当过程采取某个具体策略时,相应可以得到一个确定的效果,采取不同的策略,就会得到不同的效果。多阶段的决策问题,就是要在所有可能采取的策略中选取一个最优的策略,以便得到最佳的效果。动态规划是一种求解多阶段决策问题的系统技术,可以说它横跨整个规划领域(线性规划和非线性规划)。在多阶段决策问题中,有些问题对阶段的划分具有明显的时序性,动态规划的“动态”二字也由此而得名。动态规划的主要创始人是美国数学家贝尔曼(Bellman)。20世纪40年代末50年代初,当时在兰德公司(Rand Corporation)从事研究工作的贝尔曼首先提出了动态规划的概念。1957年贝尔曼发表了数篇研究论文,并出版了他的第一部著作《动态规划》。该著作成为了当时唯一的进一步研究和应用动态规划的理论源泉。在贝尔曼及其助手们致力于发展和推广这一技术的同时,其他一些学者也对动态规划的发展做出了重大的贡献,其中最值得一提的是爱尔思(Aris)和梅特顿(Mitten)。爱尔思先后于1961年和1964年出版了两部关于动态规划的著作,并于1964年同尼母霍思尔(Nemhauser)、威尔德(Wild)一道创建了处理分枝、循环性多阶段决策系统的一般性理论。梅特顿提出了许多对动态规划后来发展有着重要意义的基础性观点,并且对明晰动态规划路径的数

经典算法——动态规划教程

动态规划是对最优化问题的一种新的算法设计方法。由于各种问题的性质不同,确定最优解的条件也互不相同,因而动态规划的没计法对不同的问题,有各具特色的表示方式。不存在一种万能的动态规划算法。但是可以通过对若干有代表性的问题的动态规划算法进行讨论,学会这一设计方法。 多阶段决策过程最优化问题 ——动态规划的基本模型 在现实生活中,有一类活动的过程,由于它的特殊性,可将过程分成若干个互相联系的阶段,在它的每一阶段都需要作出决策,从而使整个过程达到最好的活动效果。因此各个阶段决策的选取不能任意确定,它依赖于当前面临的状态,又影响以后的发展。当各个阶段决策确定后,就组成一个决策序列,因而也就确定了整个过程的一条活动路线。这种把一个问题看做是一个前后关联具有链状结构的多阶段过程就称为多阶段决策过程,这种问题称为多阶段决策最优化问题。 【例题1】最短路径问题。图中给出了一个地图,地图中每个顶点代表一个城市,两个城市间的连线代表道路,连线上的数值代表道路的长度。现在,想从城市A到达城市E,怎样走路程最短,最短路程的长度是多少? 【分析】把从A到E的全过程分成四个阶段,用k表示阶段变量,第1阶段有一个初始状态A,两条可供选择的支路ABl、AB2;第2阶段有两个初始状态B1、 B2,B1有三条可供选择的支路,B2有两条可供选择的支路……。用dk(x k,x k+1)表示在第k阶段由初始状态x k到下阶段的初始状态x k+1的路径距离,Fk(x k)表示从第k阶段的x k到终点E的最短距离,利用倒推方法求解A到E的最短距离。具体计算过程如下: S1:K=4,有:F4(D1)=3,F4(D2)=4,F4(D3)=3 S2: K=3,有: F3(C1)=min{d3(C1,D1)+F4(D1),d3(C1,D2)+F4(d2)}=min{8,10}=8 F3(C2)=d3(C2,D1)+f4(D1)=5+3=8 F3(C3)=d3(C3,D3)+f4(D3)=8+3=11 F3(C4)=d3(C4,D3)+f4(D3)=3+3=6

解0-1背包问题的动态规划算法

关于求解0/1背包问题的动态规划算法 摘要:本文通过研究动态规划原理,提出了根据该原理解决0/1背包问题的方法与算法实现, 并对算法的正确性作了验证.观察程序运行结果,发现基于动态规划的算法能够得到正确的决策方案且比穷举法有效. 关键字:动态规划;0/1背包;约束条件;序偶;决策序列;支配规则 1、引 言 科学研究与工程实践中,常常会遇到许多优化问题,而有这么一类问题,它们的活动过程可以分为若干个阶段,但整个过程受到某一条件的限制。这若干个阶段的不同决策的组合就构成一个完整的决策。0/1背包问题就是一个典型的在资源有限的条件下,追求总的收益最大的资源有效分配的优化问题。 对于0/1背包问题,我们可以这样描述:设有一确定容量为C 的包及两个向量C ’=(S 1,S 2,……,S n )和P=(P 1,P 2,……,P N ),再设X 为一整数集合,即X=1,2,3,……,N ,X 为SI 、PI 的下标集,T 为X 的子集,那么问题就是找出满足约束条件∑S i 〈=C ,使∑PI 获得最大的子集T 。在实际运用中,S 的元素可以是N 个经营项目各自所消耗的资源,C 可以是所能提供的资源总量,P 的元素可是人们从各项项目中得到的利润。 0/1背包问题是工程问题的典型概括,怎么样高效求出最优决策,是人们关心的问题。 2、求解问题的动态规划原理与算法 2.1动态规划原理的描述 求解问题的动态规划有向前处理法向后处理法两种,这里使用向前处理法求解0/1背包问题。对于0/1背包问题,可以通过作出变量X 1,X 2,……,X N 的一个决策序列来得到它的解。而对于变量X 的决策就是决定它是取0值还是取1值。假定决策这些X 的次序为X n ,X N-1,……,X 0。在对X 0做出决策之后,问题处于下列两种状态之一:包的剩余容量是M ,没任何效益;剩余容量是M-w ,效益值增长了P 。显然,之后对X n-1,Xn-2,……,X 1的决策相对于决策X 所产生的问题状态应该是最优的,否则X n ,……,X 1就不可能是最优决策序列。如果设F j (X )是KNAP (1,j ,X )最优解的值,那么F n (M )就可表示为 F N (M )=max(f n (M),f n-1(M-w n )+p n )} (1) 对于任意的f i (X),这里i>0,则有 f i (X)=max{f i-1(X),f i-1(X-w i )+p i } (2) 为了能由前向后推而最后求解出F N (M ),需从F 0(X )开始。对于所有的X>=0,有F 0(X )=0,当X<0时,有F 0(X )等于负无穷。根据(2),可求出0〈X 〈W 1和X 〉=W 1情况下F 1(X )的值。接着由(2)不断求出F 2,F 3,……,F N 在X 相应取值范围内的值。 2.2 0/1背包问题算法的抽象描述 (1)初始化各个元素的重量W[i]、效益值P[i]、包的最大容量M ; (2)初始化S0; (3)生成S i ;

基本蚁群算法

蚁群算法浅析 摘要:介绍了什么是蚁群算法,蚁群算法的种类,对四种不同的蚁群算法进行了分析对比。详细阐述了蚁群算法的基本原理,将其应用于旅行商问题,有效地解决了问题。通过对旅行商问题C++模拟仿真程序的详细分析,更加深刻地理解与掌握了蚁群算法。 关键词:蚁群算法;旅行商问题;信息素;轮盘选择 一、引言 蚁群算法(Ant Colony Optimization, ACO),是一种用来在图中寻找优化路径的算法。它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质。 蚁群算法成功解决了旅行商问题(Traveling Salesman Problem, TSP):一个商人要到若干城市推销物品,从一个城市出发要到达其他各城市一次而且最多一次最后又回到第一个城市。寻找一条最短路径,使他从起点的城市到达所有城市一遍,最后回到起点的总路程最短。若把每个城市看成是图上的节点,那么旅行商问题就是在N个节点的完全图上寻找一条花费最少的回路。 最基本的蚁群算法见第二节。目前典型的蚁群算法有随机蚁群算法、排序蚁群算法和最大最小蚁群算法,其中后两种蚁群算法是对前一种的优化。本文将终点介绍随机蚁群算法。 二、基本蚁群算法 (一)算法思想 各个蚂蚁在没有事先告诉他们食物在什么地方的前提下开始寻找食物。当一只找到食物以后,它会向环境释放一种信息素,信息素多的地方显然经过这里的蚂蚁会多,因而会有更多的蚂蚁聚集过来。假设有两条路从窝通向食物,开始的时候,走这两条路的蚂蚁数量同样多(或者较长的路上蚂蚁多,这也无关紧要)。当蚂蚁沿着一条路到达终点以后会马上返回来,这样,短的路蚂蚁来回一次的时间就短,这也意味着重复的频率就快,因而在单位时间里走过的蚂蚁数目就多,洒下的信息素自然也会多,自然会有更多的蚂蚁被吸引过来,从而洒下更多的信息素。因此,越来越多地蚂蚁聚集到较短的路径上来,最短的路径就找到了。 蚁群算法的基本思想如下图表示:

计算智能大作业--蚁群算法解决TSP问题

(计算智能大作业) 应用蚁群算法求解TSP问题

目录 蚁群算法求解TSP问题 (3) 摘要: (3) 关键词: (3) 一、引言 (3) 二、蚁群算法原理 (4) 三、蚁群算法解决TSP问题 (7) 四、解决n个城市的TSP问题的算法步骤 (9) 五、程序实现 (11) 六、蚁群算法优缺点分析及展望 (18) 七、总结 (18)

采用蚁群算法解决TSP问题 摘要:蚁群算法是通过蚂蚁觅食而发展出的一种新的启发算法,该算法已经成功的解决了诸如TSP问题。本文简要学习探讨了蚂蚁算法和TSP问题的基本内容,尝试通过matlab 仿真解决一个实例问题。 关键词:蚁群算法;TSP问题;matlab。 一、引言 TSP(Travelling Salesman Problem)又称货郎担或巡回售货员问题。TSP问题可以描述为:有N个城市,一售货员从起始城市出发,访问所有的城市一次,最后回到起始城市,求最短路径。TSP问题除了具有明显的实际意义外,有许多问题都可以归结为TSP问题。目前针对这一问题已有许多解法,如穷举搜索法(Exhaustive Search Method), 贪心法(Greedy Method), 动态规划法(Dynamic Programming Method)分支界定法(Branch-And-Bound),遗传算法(Genetic Agorithm)模拟退火法(simulated annealing),禁忌搜索。本文介绍了一种求解TSP问题的算法—蚁群算法,并通过matlab仿真求解50个城市之间的最短距离,经过仿真试验,证明是一种解决TSP问题有效的方法。

蚁群算法原理及在TSP中的应用(附程序)

蚁群算法原理及在TSP 中的应用 1 蚁群算法(ACA )原理 1.1 基本蚁群算法的数学模型 以求解平面上一个n 阶旅行商问题(Traveling Salesman Problem ,TSP)为例来说明蚁群算法ACA (Ant Colony Algorithm )的基本原理。对于其他问题,可以对此模型稍作修改便可应用。TSP 问题就是给定一组城市,求一条遍历所有城市的最短回路问题。 设()i b t 表示t 时刻位于元素i 的蚂蚁数目,()ij t τ为t 时刻路径(,)i j 上的信息量,n 表示TSP 规模,m 为蚁群的总数目,则1()n i i m b t ==∑;{(),}ij i i t c c C τΓ=?是t 时刻集合C 中元素(城市)两两连接ij t 上残留信息量的集合。在初始时刻各条路径上信息量相等,并设 (0)ij const τ=,基本蚁群算法的寻优是通过有向图 (,,)g C L =Γ实现的。 蚂蚁(1,2,...,)k k m =在运动过程中,根据各条路径上的信息量决定其转移方向。这里用禁忌表(1,2,...,)k tabu k m =来记录蚂蚁k 当前所走过的城市,集合随着 k tabu 进化过程作动态调整。在搜索过程中,蚂蚁根据各条路径上的信息量及路 径的启发信息来计算状态转移概率。()k ij p t 表示在t 时刻蚂蚁k 由元素(城市)i 转移 到元素(城市)j 的状态转移概率。 ()*()()*()()0k ij ij k k ij ij ij s allowed t t j allowed t t p t αβ αβτητη??????????? ∈?????=????? ??? ∑若否则 (1) 式中,{}k k allowed C tabuk =-表示蚂蚁k 下一步允许选择的城市;α为信息启发式因子,表示轨迹的相对重要性,反映了蚂蚁在运动过程中所积累的信息在蚂蚁运动时所起作用,其值越大,则该蚂蚁越倾向于选择其他蚂蚁经过的路径,蚂蚁之间协作性越强;β为期望启发式因子,表示能见度的相对重要性,反映了蚂蚁在运动过程中启发信息在蚂蚁选择路径中的重视程度,其值越大,则该状态转移概率越接近于贪心规则;()ij t η为启发函数,其表达式如下: 1 ()ij ij t d η= (2)

算法分析复习题目及答案

一、选择题 1、二分搜索算法是利用 (A)实现的算法。 A、分治策略 B、动态规划法 C、贪心法 D、回溯法 2、下列不是动态规划算法基本步骤的是(A)。 A、找出最优解的性 质B、构造最优解C、算出最优解D、定义最优解3、最大效益优先是 ( A )的一搜索方式。 A、分支界限法 B、动态规划法 C、贪心法 D、回溯法 4、在下列算法中有时找不到问题解的是(B)。 A、蒙特卡罗算 法B、拉斯维加斯算法C、舍伍德算法D、数值概率算法5.回溯法解旅行售货员问题时的解空间树是( A )。 A、子集树 B、排列树 C、深度优先生成树 D、广度优先生成树 6.下列算法中通常以自底向上的方式求解最优解的 是(B)。 A、备忘录法 B、动态规划法 C、贪心法 D、回溯法 7、衡量一个算法好坏的标准是(C)。 A运行速度快B 占用空间少C时间复杂度低D代码短 8、以下不可以使用分治法求解的是 ( D )。 A棋盘覆盖问题 B 选择问题C归并排序D0/1背包问题 9.实现循环赛日程表利用的算法是(A)。 A、分治策略 B、动态规划法 C、贪心法 D、回溯法 10、下列随机算法中运行时有时候成功有时候失败的是(C) A数值概率算法B舍伍德算法C拉斯维加斯算法D蒙特卡罗算法 11.下面不是分支界限法搜索方式的是(D)。 A、广度优先 B、最小耗费优先 C、最大效益优先 D、深度优先 12.下列算法中通常以深度优先方式系统搜索问题解的是(D)。 A、备忘录法 B、动态规划法 C、贪心法 D、回溯法 13.备忘录方法是那种算法的变形。(B) A、分治法 B、动态规划法 C、贪心法 D、回溯法14.哈弗曼编码的贪心算法所需的计算时间为 (B)。 A、O(n2n) B、O(nlogn) C、O(2n) D、O(n)15.分支限界法解最大团问题时,活结点表的组织形式是(B)。 A、最小堆 B、最大堆 C、栈 D、数组16.最长公共子序列算法利用的算法是 (B)。 A、分支界限法 B、动态规划法 C、贪心法 D、回溯法17.实现棋盘覆盖算法利用的算法是(A)。 A、分治法 B、动态规划法 C、贪心法 D、回溯法 18.下面是贪心算法的基本要素的是(C)。 A、重叠子问题 B、构造最优解 C、贪心选择性质 D、定义最优解 19.回溯法的效率不依赖于下列哪些因素 (D) A.满足显约束的值的个 数 B. 计算约束函数的时间C.计算限界函数的时间 D. 确定解空间的时间

浅谈我国动态规划算法研究与应用

动态规划算法研究与应用 1.引言 动态规划被认为是组成运筹学其中的一部分,也被当成为进行运算决定时最好的一种数学方式。在1950年左右,美国相关方面的几位数学家,对阶段决策期间关于优化的问题做了大量的研究,并发布著名的最优化理论,将众多的阶段变成了一个一个单一的问题,并分别进行解答,最后,发明了能够处理这种相关优化方面事情新的解决措施——动态规划。到了1957年,创造出了Dynamic Programming这一名著,被称为该领域创作第一人[1]。 在数学和计算机科学领域,动态规划算法对于求解最优解的问题方便快捷。动态规划方法经常用来解决生活中的实际问题,这些问题往往可以分解为很多个子问题,每个子问题都有一个对应解,其中的临界值就是我们所要求得的最优解。动态规划并非一种数学算法,而是用于最优化解题的一种技巧和方法。它非但不具有一个标准的数学方程式,不能够推导出清晰明确的解题步骤,更不具备万能性。对于要解决的若干问题,一定要建立在正确理解的基础上具体问题具体分析,用我们现有的数学知识和丰富的想象力创建模型,结合日常的技巧分析求解。客观人为的介入时间和空间因素,只要可以分为若干子问题的多状态过程,就可以用此方法快速求解。 2.动态规划算法简介 动态规划诞生之后,很快就在在工业生产、金融管理、工程技术、和资源最大化利用等领域得到了好评。在处理路线规划、物品进出库管理、资源最优化利用、更换设备、顺序、装载等问题,动态规划算法相比于其他算法更有优势而且更加便捷。 2.1基本原理 其主要的理论可以被理解成是将求解的划分成若干个子问题,并将其称作为N,然后这些子问题又有N个解的情况,其中这些可行解之中一定会有一个最优解,研究动态规划也就是希望能够找到最优解[2]。 如何能够合理的推导出基本的最优化方程式和找出唯一的临界值是研究动

蚁群算法综述

《智能计算—蚁群算法基本综述》 班级:研1102班 专业:计算数学 姓名:刘鑫 学号: 1107010036 2012年

蚁群算法基本综述 刘鑫 (西安理工大学理学院,研1102班,西安市,710054) 摘要:蚁群算法( ACA)是一种广泛应用于优化领域的仿生进化算法。ACA发展背景着手,分析比较国内外ACA研究团队与发展情况立足于基本原理,分析其数学模型,介绍了六种经典的改进模型,对其优缺点进行分析,简要总结其应用领域并对其今后的发展、应用做出展望。 关键词:蚁群;算法;优化;改进;应用 0引言 专家发现单个蚂蚁只具有一些简单的行为能力。但整个蚁群却能完成一系列复杂的任务。这种现象是通过高度组织协调完成的1991年。意大利学者M.Dorigo 首次提出一种新型仿生算法ACA。研究了蚂蚁的行为。提出其基本原理及数学模型。并将之应用于寻求旅行商问题(TSP)的解。 通过实验及相关理论证明,ACA有着有着优化的选择机制的本质。而这种适应和协作机制使之具有良好的发现能力及其它算法所没有的优点。如较强的鲁棒性、分布式计算、易与其他方法结合等;但同时也不应忽略其不足。如搜索时间较长,若每步进行信息素更新,计算仿真时所占用CPU时间过长:若当前最优路径不是全局最优路径,但其信息素浓度过高时。靠公式对信息素浓度的调整不能缓解这种现象。会陷人局部收敛无法寻找到全局最优解:转移概率过大时,虽有较快的收敛速度,但会导致早熟收敛。所以正反馈原理所引起的自催化现象意在强化性能好的解,却容易出现停滞现象。笔者综述性地介绍了ACA对一些已有的提出自己的想法,并对其应用及发展前景提出了展望。 1 蚁群算法概述 ACA源自于蚁群的觅食行为。S.Goss的“双桥”实验说明蚂蚁总会选择距食物源较短的分支蚂蚁之间通过信息素进行信息的传递,捷径上的信息素越多,吸引的蚂蚁越多。形成正反馈机制,达到一种协调化的高组织状态该行为称集体自催化目前研究的多为大规模征兵,即仅靠化学追踪的征兵。 1 .1 蚁群算法的基本原理

动态规划的原理及应用

动态规划的原理及应用 班级:计科1302班 小组成员:王海涛蔡佳韦舒 蒋宪豪尹卓 完成时间:2015年5月26日

动态规划的原理及应用 学生:算法设计第5组,计算机系 指导教师:甘靖,计算机系 摘要:动态规划是解决多阶段决策过程最优化问题的一种方法。特点是把多阶段决策问题变换为一系列相互联系的单阶段问题,然后逐个加以解决。其基本思想就是把全局的问题化为局部的问题,为了全局最优必须局部最优,适用于在解决问题过程中需要多次重复解决子问题的问题。其应用领域广泛,涉及到管理学、经济学、交通、军事和计算机等多个领域,将动态规划思想正确地应用于实践,将对我们的生活带来便利,甚至带给我们的社会和国家以保障。 关键词:动态规划;最优决策;应用;领域 The Principle and Application of Dynamic Programing The dynamic programing is a way to solve optimization problem in the process of multi-stage decision,whose feature is alter the multi-stage decision problems to single phase problems which are connected with each other,and then solve them one by one.The basic idea is to change the overall problem into partcial problem.And the partcial one must keep the best in order to promise the quality of overall one,which splies to repeatedly solving subproblem throughout the whole process.It is spreading to many fields,like management,economics,traffic,military and computer. Put the idea of dynamic programing correctly into practice will bring a lot of convenience to our daily life,our society as well as our country.

贪心算法与动态规划的比较

贪心算法与动态规划的比较 【摘要】介绍了计算机算法设计的两种常用算法思想:贪心算法与动态规划算法。通过介绍两种算法思想的基本原理,比较两种算法的联系和区别。通过背包问题对比了两种算法的使用特点和使用范围。 【关键字】动态规划;贪心算法;背包问题 1、引言 为了满足人们对大数据量信息处理的渴望,为解决各种实际问题,计算机算法学得到了飞速的发展,线性规划、动态规划、贪心策略等一系列运筹学模型纷纷运用到计算机算法学中,产生了解决各种现实问题的有效算法。虽然设计一个好的求解算法更像是一门艺术而不像是技术,但仍然存在一些行之有效的、能够用于解决许多问题的算法设计方法,你可以使用这些方法来设计算法,并观察这些算法是如何工作的。一般情况下,为了获得较好的性能,必须对算法进行细致的调整。但是在某些情况下,算法经过调整之后性能仍无法达到要求,这时就必须寻求另外的方法来求解该问题。本文针对部分背包问题和0/ 1 背包问题进行分析,介绍贪心算法和动态规划算法的区别。 2、背包问题的提出 给定n种物品( 每种物品仅有一件) 和一个背包。物品i的重量是w i,其价值为p i,背包的容量为M。问应如何选择物品装入背包,使得装入背包中的物品的总价值最大,每件物品i的装入情况为x i,得到的效益是p i*x i。 ⑴部分背包问题。在选择物品时,可以将物品分割为部分装入背包,即0≤x i≤1 ( 贪心算法)。 ⑵0/ 1背包问题。和部分背包问题相似,但是在选择物品装入时要么不装,要么全装入,即x i = 1或0。( 动态规划算法) 。 3、贪心算法 3.1 贪心算法的基本要素 能够使用贪心算法的许多例子都是最优化问题,每个最优化问题都包含一组限制条件和一个优化函数,符合限制条件的问题求解方案称为可行解;使优化函数取得最佳值的可行解称为最优解。此类所求问题的整体最优解可以通过一系列局部最优的选择,即贪心选择来达到(这是贪心算法与动态规划的主要区别) 。 3.2贪心策略的定义 贪心策略是指从问题的初始状态出发,通过若干次的贪心选择而得出最优值( 或较优解) 的一种解题方法。贪心策略总是做出在当前看来是最优的选择,也就是说贪心策略并不是从整体上加以考虑,它所做出的选择只是在某种意义上的局部最优解,而许多问题自身的特性决定了该问题运用贪心策略可以得到最优解或较优解。(注:贪心算法不是对所有问题都能

蚁群算法

蚁群算法的改进与应用 摘要:蚁群算法是一种仿生优化算法,其本质是一个复杂的智能系统,它具有较强的鲁棒性、优良的分布式计算机制和易于与其他方法结合等优点。但是现在蚁群算法还是存在着缺点和不足,需要我们进一歩改进,如:搜索时间长、容易出现搜索停滞现象、数学基础还不完整。本文首先说明蚁群算法的基本思想,阐述了蚁群算法的原始模型及其特点,其次讨论如何利用遗传算法选取蚁群算法的参数,然后结合对边缘检测的蚁群算法具体实现过程进行研究分析,最后对本论文所做的工作进行全面总结,提出不足之处,并展望了今后要继续研究学习的工作内容。 关键词:蚁群算法;边缘检测;阈值;信息素;遗传算法; 1 前言 蚁群算法是近年来提出的一种群体智能仿生优化算法,是受到自然界中真实的蚂蚁群寻觅食物过程的启发而发现的。蚂蚁之所以能够找到蚁穴到食物之间的最短路径是因为它们的个体之间通过一种化学物质来传递信息,蚁群算法正是利用了真实蚁群的这种行为特征,解决了在离散系统中存在的一些寻优问题。该算法起源于意大利学者 Dorigo M 等人于 1991 年首先提出的一种基于种群寻优的启发式搜索算法,经观察发现,蚂蚁在寻找食物的过程中其自身能够将一种化学物质遗留在它们所经过的路径上,这种化学物质被学者们称为信息素。这种信息素能够沉积在路径表面,并且可以随着时间慢慢的挥发。在蚂蚁寻觅食物的过程中,蚂蚁会向着积累信息素多的方向移动,这样下去最终所有蚂蚁都会选择最短路径。该算法首先用于求解著名的旅行商问题(Traveling Salesman Problem,简称 TSP)并获得了较好的效果,随后该算法被用于求解组合优化、函数优化、系统辨识、机器人路径规划、数据挖掘、网络路由等问题。 尽管目前对 ACO 的研究刚刚起步,一些思想尚处于萌芽时期,但人们已隐隐约约认识到,人类诞生于大自然,解决问题的灵感似乎也应该来自大自然,因此越来越多人开始关注和研究 ACO,初步的研究结果已显示出该算法在求解复杂优化问题(特别是离散优化问题)方面的优越性。虽然 ACO 的严格理论基础尚未奠定,国内外的有关研究仍停留在实验探索阶段,但从当前的应用效果来看,这种自然生物的新型系统寻优思想无疑具有十分光明的前景。但该算法存在收敛速度慢且容易出现停滞现象的缺点,这是因为并不是所有的候选解都是最优解,而候选解却影响了蚂蚁的判断以及在蚂蚁群体中,单个蚂蚁的运动没有固定的规则,是随机的,蚂蚁与蚂蚁之间通过信息素来交换信息,但是对于较大规模的优化问题,这个信息传递和搜索过程比较繁琐,难以在较短的时间内找到一个最优的解。 由于依靠经验来选择蚁群参数存在复杂性和随机性,因此本文最后讨论如何利用遗传算法选取蚁群算法的参数。遗传算法得到的蚁群参数减少了人工选参的不确定性以及盲目性。 2 基本蚁群算法 2.1 蚁群算法基本原理 根据仿生学家的研究结果表明,单只蚂蚁不能找到从巢穴到食物源的最短路 径,而大量蚂蚁之间通过相互适应与协作组成的群体则可以,蚂蚁是没有视觉的,但是是通过蚂蚁在它经过的路径上留下一种彼此可以识别的物质,叫信息素,来相互传递信息,达到协作的。蚂蚁在搜索食物源的过程中,在所经过的路径上留下信息素,同时又可以感知并根据信息素的浓度来选择下一条路径,一条路径上的浓度越浓,蚂蚁选择该条路径的概率越大,并留下信息素使这条路径上的浓度加强,这样会有更多的蚂蚁选择次路径。相反,信息素浓度少的路

matlab蚁群算法精讲及仿真图

蚁群算法matlab精讲及仿真 4.1基本蚁群算法 4.1.1基本蚁群算法的原理 蚁群算法是上世纪90年代意大利学者M.Dorigo,v.Maneizz。等人提出来的,在越来越多的领域里得到广泛应用。蚁群算法,是一种模拟生物活动的智能算法,蚁群算法的运作机理来源于现实世界中蚂蚁的真实行为,该算法是由Marco Dorigo 首先提出并进行相关研究的,蚂蚁这种小生物,个体能力非常有限,但实际的活动中却可以搬动自己大几十倍的物体,其有序的合作能力可以与人类的集体完成浩大的工程非常相似,它们之前可以进行信息的交流,各自负责自己的任务,整个运作过程统一有序,在一只蚂蚁找食物的过程中,在自己走过的足迹上洒下某种物质,以传达信息给伙伴,吸引同伴向自己走过的路径上靠拢,当有一只蚂蚁找到食物后,它还可以沿着自己走过的路径返回,这样一来找到食物的蚂蚁走过的路径上信息传递物质的量就比较大,更多的蚂蚁就可能以更大的机率来选择这条路径,越来越多的蚂蚁都集中在这条路径上,蚂蚁就会成群结队在蚁窝与食物间的路径上工作。当然,信息传递物质会随着时间的推移而消失掉一部分,留下一部分,其含量是处于动态变化之中,起初,在没有蚂蚁找到食物的时候,其实所有从蚁窝出发的蚂蚁是保持一种随机的运动状态而进行食物搜索的,因此,这时,各蚂蚁间信息传递物质的参考其实是没有价值的,当有一只蚂蚁找到食物后,该蚂蚁一般就会向着出发地返回,这样,该蚂蚁来回一趟在自己的路径上留下的信息传递物质就相对较多,蚂蚁向着信息传递物质比较高的路径上运动,更多的蚂蚁就会选择找到食物的路径,而蚂蚁有时不一定向着信

息传递物质量高的路径走,可能搜索其它的路径。这样如果搜索到更短的路径后,蚂蚁又会往更短的路径上靠拢,最终多数蚂蚁在最短路径上工作。【基于蚁群算法和遗传算法的机器人路径规划研究】 该算法的特点: (1)自我组织能力,蚂蚁不需要知道整体环境信息,只需要得到自己周围的信息,并且通过信息传递物质来作用于周围的环境,根据其他蚂蚁的信息素来判断自己的路径。 (2)正反馈机制,蚂蚁在运动的过程中,收到其他蚂蚁的信息素影响,对于某路径上信息素越强的路径,其转向该路径的概率就越大,从而更容易使得蚁群寻找到最短的避障路径。 (3)易于与其他算法结合,现实中蚂蚁的工作过程简单,单位蚂蚁的任务也比较单一,因而蚁群算法的规则也比较简单,稳定性好,易于和其他算法结合使得避障路径规划效果更好。 (4)具有并行搜索能力探索过程彼此独立又相互影响,具备并行搜索能力,这样既可以保持解的多样性,又能够加速最优解的发现。 4.1.2 基本蚁群算法的生物仿真模型 a为蚂蚁所在洞穴,food为食物所在区,假设abde为一条路径,eadf为另外一条路径,蚂蚁走过后会留下信息素,5分钟后蚂蚁在两条路径上留下的信息素的量都为3,概率可以认为相同,而30分钟后baed路径上的信息素的量为60,明显大于eadf路径上的信息素的量。最终蚂蚁会完全选择abed这条最短路径,由此可见,

算法合集之《动态规划算法的优化技巧》

动态规划算法的优化技巧 福州第三中学毛子青 [关键词] 动态规划、时间复杂度、优化、状态 [摘要] 动态规划是信息学竞赛中一种常用的程序设计方法,本文着重讨论了运用动态规划思想解题时时间效率的优化。全文分为四个部分,首先讨论了动态规划时间效率优化的可行性和必要性,接着给出了动态规划时间复杂度的决定因素,然后分别阐述了对各个决定因素的优化方法,最后总结全文 [正文] 一、引言 动态规划是一种重要的程序设计方法,在信息学竞赛中具有广泛的应用。 使用动态规划方法解题,对于不少问题具有空间耗费大、时间效率高的特点,因此人们在研究动态规划解题时更多的注意空间复杂度的优化,运用各种技巧将空间需求控制在软硬件可以承受的范围之内。但是,也有一部分问题在使用动态规划思想解题时,时间效率并不能满足要求,而且算法仍然存在优化的余地,这时,就需要考虑时间效率的优化。 本文讨论的是在确定使用动态规划思想解题的情况下,对原有的动态规划解法的优化,以求降低算法的时间复杂度,使其能够适用于更大的规模。 二、动态规划时间复杂度的分析 使用动态规划方法解题,对于不少问题之所以具有较高的时间效率,关键在于它减少了“冗余”。所谓“冗余”,就是指不必要的计算或重复计算部分,算法的冗余程度是决定算法效率的关键。动态规划在将问题规模不断缩小的同时,记录已经求解过的子问题的解,充分利用求解结果,避免了反复求解同一子问题的现象,从而减少了冗余。 但是,动态规划求解问题时,仍然存在冗余。它主要包括:求解无用的子问题,对结果无意义的引用等等。 下面给出动态规划时间复杂度的决定因素: 时间复杂度=状态总数*每个状态转移的状态数*每次状态转移的时间[1] 下文就将分别讨论对这三个因素的优化。这里需要指出的是:这三者之间不是相互独立的,而是相互联系,矛盾而统一的。有时,实现了某个因素的优化,另外两个因素也随之得到了优化;有时,实现某个因素的优化却要以增大另一因素为代价。因此,这就要求我们在优化时,坚持“全局观”,实现三者的平衡。 三、动态规划时间效率的优化 3.1 减少状态总数 我们知道,动态规划的求解过程实际上就是计算所有状态值的过程,因此状态的规模直接影响到算法的时间效率。所以,减少状态总数是动态规划优化的重要部分,本节将讨论减少状态总数的一些方法。

2设计动态规划算法的主要步骤为

2设计动态规划算法的主要步骤为: (1)找出最优解的性质,并刻划其结构特征。(2)递归地定义最优值。(3)以自底向上的方式计算出最优值。(4)根据计算最优值时得到的信息,构造最优解。 3. 分治法与动态规划法的相同点是:将待求解的问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。 两者的不同点是:适合于用动态规划法求解的问题,经分解得到的子问题往往不是互相独立的。而用分治法求解的问题,经分解得到的子问题往往是互相独立的。 贪心选择算法与动态规划算法的异同点:同:都要求问题具有最优子结构性质;异:动态规划算法为自底向上的方式解各子问题,贪心算法为自顶向下的方式进行,以迭代的方式作出相继的贪心选择,每做一次贪心选择问题就转换为规模更小的字问题。 6. 分治法所能解决的问题一般具有的几个特征是:(1)该问题的规模缩小到一定的程度就可以容易地解决; (2)该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质; (3)利用该问题分解出的子问题的解可以合并为该问题的解; (4)原问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子问题。 P:也即是多项式复杂程度的问题。 NP就是多项式复杂程度的非确定性问题。 NPC(NP Complete)问题 ADT 抽象数据类型 分析问题→设计算法→编写程序→上机运行和测试 算法特性1. 确定性、可实现性、输入、输出、有穷性 算法分析目的2. 分析算法占用计算机资源的 情况,对算法做出比较和评价,设计出额更好 的算法。 3. 算法的时间复杂性与问题的规模相关,是 问题大小n的函数。 算法的渐进时间复杂性的含义:当问题的规模 n趋向无穷大时,影响算法效率的重要因素是 T(n)的数量级,而其他因素仅是使时间复杂度 相差常数倍,因此可以用T(n)的数量级(阶) 评价算法。时间复杂度T(n)的数量级(阶)称为 渐进时间复杂性。 最坏情况下的时间复杂性和平均时间复杂性有什么不同? 最坏情况下的时间复杂性和平均时间复杂性 考察的是n固定时,不同输入实例下的算法所 耗时间。最坏情况下的时间复杂性取的输入实 例中最大的时间复杂度: W(n) = max{ T(n,I) } , I∈Dn 平均时间复杂性是所有输入实例的处理时间 与各自概率的乘积和: A(n) =∑P(I)T(n,I) I∈Dn 为什么要分析最坏情况下的算法时间复杂 性?最坏情况下的时间复杂性决定算法的优 劣,并且最坏情况下的时间复杂性较平均时间 复杂性游可操作性。 1.贪心算法的基本思想? 是一种依据最优化量度依次选择输入的分级处理方法。基本思路是:首先根据题意,选取一种量度标准;然后按这种量度标准对这n个输入排序,依次选择输入量加入部分解中。如果当前这个输入量的加入,不满足约束条件,则不把此输入加到这部分解中。 贪心选择算法与动态规划算法的异同点:同:都要求问题具有最优子结构性质;异:动态规划算法为自底向上的方式解各子问题,贪心算法为自顶向下的方式进行,以迭代的方式作出相继的贪心选择,每做一次贪心选择问题就转换为规模更小的字问题。

lab4_动态规划算法设计与应用

实验四动态规划算法设计与应用 一. 实验目的和要求 1.加深对动态规划算法的基本原理的理解,掌握用动态规划方法求解最优化问题的方法步骤及应用; 2.用动态规划设计整数序列的最长递增子序列问题的算法,分析其复杂性,并实现; 3.用动态规划设计求凸多边形的三角剖分问题的算法,分析其复杂性,并实现。 4.选做题:用动态规划设计求解0/1背包问题的算法,分析其复杂性,并实现。 二.基本原理 动态规划是一种非常重要的程序设计方法,常用于求解最优化问题。最优化问题:给定若干个约束条件和一个目标函数,在某指定集合中求满足所有约束条件的且使得目标函数值达最大或最小的元素和相应的目标函数值,即:问题的最优值和最优解。 适用动态规划求解的问题的基本要素: (1)满足最优性原理:即一个最优化问题的最优解包含了其子问题的最优解。 (2)无后向性:即某阶段状态一旦确定,就不受这个状态以后决策的影响。也即,某状态以后的过程不会影响以前的状态,只与当前状态有关,这种特性也被称为无后效性。 (2)具有重叠的子问题:即问题被分解成的子问题存在互相重叠。动态规划方法对于这些重叠的子问题只求解一次,以提高算法的效率。 三.该类算法设计与实现的要点 动态规划算法求解最优化问题的步骤: (1) 找出问题的最优子结构。分析问题的最优解(最优值)的结构特征。 (2) 递归地定义最优值。根据最优子结构,确定最优值所满足的递归公式。 (3) 计算最优值。根据最优值的递归公式,采用自底向上的迭代或自顶向下的递归,计算最优值。 (4) 构造最优解。在求解最优值的过程中要记录下得到最优值的相应最优解的信息,并根据该信息构造最优解。 注意:在计算最优值时应保存相应的信息: (a) 已经求出的子问题的最优值(避免重复计算)。 (b) 最优解的有关信息。 动态规划算法求解其它问题的步骤: (1) 根据最优化原理分析问题的解的结构。 (2) 递归地定义问题的解。 (3) 计算问题的解。根据解的递归公式,自底向上或自顶向下地计算解,计算过程中注意保存已经求出的子问题的解。 其中,自底向上方法通过迭代来实现,适用于所有的子问题都需要解的情况,实现时要注意根据递归公式正确确定子问题的求解顺序。自顶向下方法通过递归来实现,适用于不必解所有的子问题的情况,实现时要注意标记子问题是否计算过,同一个子问题只在第一次递归调用时计算并存储结果。 四.实验内容 (一) 最长递增子序列问题

动态规划算法及其应用

湖州师范学院实验报告 课程名称:算法 实验二:动态规划方法及其应用 一、实验目的 1、掌握动态规划方法的基本思想和算法设计的基本步骤。 2、应用动态规划方法解决实际问题。 二、实验内容 1、问题描述 1 )背包问题 给定 N 种物品和一个背包。物品 i 的重量是 C i ,价值为 W i ;背包的容量为 V。问应如何选择装入背包中的物品,使得装入背包中物品的总价值最大?在选择装入背包的物品,对每种物品只有两个选择:装入或不装入,且不能重复装入。输入数据的第一行分别为:背包的容量 V,物品的个数 N。接下来的 N 行表示 N 个物品的重量和价值。输出为最大的总价值。 2)矩阵连乘问题 给定 n 个矩阵:A1,A2,...,An,其中 Ai 与 Ai+1 是可乘的,i=1 , 2... , n-1。确定计算矩阵连乘积的计算次序,使得依此次序计算矩阵连乘积需要的数乘次数最少。输入数据为矩阵个数和每个矩阵规模,输出结果为计算矩阵连乘积的计算次序和最少数乘次数。 3 )LCS问题 给定两个序列,求最长的公共子序列及其长度。输出为最长公共子序列及其长度。 2、数据输入:文件输入或键盘输入。 3、要求: 1)完成上述两个问题,时间为 2 次课。 2)独立完成实验及实验报告。 三、实验步骤 1、理解方法思想和问题要求。 2、采用编程语言实现题目要求。 3、上机输入和调试自己所写的程序。 4、附程序主要代码: (1) #include int max(int a, int b) { return (a > b)? a : b; } int knapSack(int W, int wt[], int val[], int n) { if (n == 0 || W == 0) return 0;

相关文档
相关文档 最新文档