文档视界 最新最全的文档下载
当前位置:文档视界 › 回溯算法实验报告

回溯算法实验报告

回溯算法实验报告
回溯算法实验报告

回溯算法实验报告

一、问题定义

在n*n格的棋盘上放置彼此不受攻击的n个皇后。按照国际象棋的规矩,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。n后问题等价于在n*n 格的棋盘上方置n个皇后,任何2个皇后不放在同一行或同一列或同一斜线上。我们需要求的是可放置的总数。

二、基本思路

用n元组x[1;n]表示n后问题的解。其中,x[i]表示皇后i放置在棋盘的第i行的第x[i]列。由于不容许将2个皇后放在同一列上,所以解向量中的x[i]互不相同。2个皇后不能放在同一斜线上是问题的隐约束。对于一般的n后问题,这一隐约束条件可以化成显约束的形式。如果将n*n 格的棋盘看做二维方阵,其行号从上到下,列号从左到右依次编号为1,2,...n。从棋盘左上角到右下角的主对角线及其平行线(即斜率为-1的各斜线)上,2个下标值的差(行号-列号)值相等。同理,斜率为+1的每条斜线上,2个下标值的和(行号+列号)值相等。因此,若2个皇后放置的位置分别是(i,j)和(k,l),且 i-j = k -l 或 i+j = k+l,则说明这2个皇后处于同一斜线上。以上2个方程分别等价于i-k = j-l 和 i-k =l-j。由此可知,只要|i-k|=|l-j|成立,就表明2个皇后位于同一条斜线上。

1、从空棋盘起,逐行放置棋子。

2、每在一个布局中放下一个棋子,即推演到一个新的布局。

3、如果当前行上没有可合法放置棋子的位置,则回溯到上一行,重新布放上一行的棋子。

四、编码

#include

#include

#include

static int n,x[1000];

static long sum;

int Place(int k)

{

for(int j=1;j

if((abs(k-j) == abs(x[j]-x[k]))||(x[j]==x[k])) return0;

return1;

}

void Backtrak(int t)

{

if(t>n) sum++;

else

for(int i=1; i <= n; i++)

{

x[t] =i;

if(Place(t))Backtrak(t+1);

}

}

int main()

{

int nn;

while(scanf("%d",&nn)!=EOF)

{

n=nn;

sum=0;

for(int i=0;i<=n;i++)

x[i]=0;

Backtrak(1);

printf("%d\n",sum);

}

}

五、总结

我感受出了回溯算法的核心思想:但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择

回溯法实验(0-1背包问题)

算法分析与设计实验报告第五次附加实验

附录: 完整代码(回溯法) //0-1背包问题回溯法求解 #include using namespace std; template class Knap //Knap类记录解空间树的结点信息 { template friend Typep Knapsack(Typep [],Typew [],Typew,int); private: Typep Bound(int i); //计算上界的函数 void Backtrack(int i); //回溯求最优解函数

Typew c; //背包容量 int n; //物品数 Typew *w; //物品重量数组| Typep *p; //物品价值数组 Typew cw; //当前重量 Typep cp; //当前价值 Typep bestp; //当前最后价值 }; template Typep Knapsack(Typep p[],Typew w[],Typew c,int n); //声明背包问题求解函数template inline void Swap(Type &a,Type &b); //声明交换函数 template void BubbleSort(Type a[],int n); //声明冒泡排序函数 int main() { int n ;//物品数 int c ;//背包容量 cout<<"物品个数为:"; cin>>n; cout<<"背包容量为:"; cin>>c; int *p = new int[n];//物品价值下标从1开始 int *w = new int[n];//物品重量下标从1开始 cout<<"物品重量分别为:"<>w[i]; } cout<<"物品价值分别为:"<>p[i]; } cout<<"物品重量和价值分别为:"<

回溯法实验(最大团问题)

算法分析与设计实验报告第七次附加实验

} } 测试结果 当输入图如下时: 当输入图如下时: 1 2 3 4 5 1 2 3 4 5

当输入图如下时: 1 2 3 4 5

附录: 完整代码(回溯法) //最大团问题回溯法求解 #include using namespace std; class Clique { friend void MaxClique(int **,int *,int ); private: void Backtrack(int i); int **a; //图的邻接矩阵 int n; //图的顶点数 int *x; //当前解 int *bestx; //当前最优解 int cn; //当前顶点数 int bestn; //当前最大顶点数 }; void Clique::Backtrack(int i) { //计算最大团 if(i>n) //到达叶子节点 { for(int j=1;j<=n;j++) bestx[j]=x[j]; bestn=cn;

cout<<"最大团:("; for(int i=1;i=bestn) { //修改一下上界函数的条件,可以得到 x[i]=0; //相同点数时的解 Backtrack(i+1); } } void MaxClique(int **a,int *v,int n) { //初始化Y Clique Y; Y.x=new int[n+1]; Y.a=a; Y.n=n; https://www.docsj.com/doc/c39520674.html,=0; Y.bestn=0; Y.bestx=v; Y.Backtrack(1); delete [] Y.x; cout<<"最大团的顶点数:"<

回溯算法的应用(DOC)

回溯算法的应用 课程名称:算法设计与分析 院系:************************ 学生姓名:****** 学号:************ 专业班级:***************************** 指导教师:****** 2013年12月27日

回溯法的应用 摘要:回溯法(探索与回溯法)是一种选优搜索法,按选优条件向前搜索,以达到目标。但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法,而满足回溯条件的某个状态的点称为“回溯点”。 回溯法,其意义是在递归直到可解的最小问题后,逐步返回原问题的过程。而这里所说的回溯算法实际是一个类似枚举的搜索尝试方法,它的主题思想是在搜索尝试过程中寻找问题的解,当发现已不满足求解条件时,就“回溯”返回,尝试别的路径。 回溯算法是尝试搜索算法中最为基本的一种算法,其采用了一种“走不通就掉头”的思想,作为其控制结构。在包含问题的所有解的解空间树中,按照深度优先搜索的策略,从根结点出发深度探索解空间树。当探索到某一结点时,要先判断该结点是否包含问题的解,如果包含,就从该结点出发继续探索下去,如果该结点不包含问题的解,则逐层向其祖先结点回溯。若用回溯法求问题的所有解时,要回溯到根,且根结点的所有可行的子树都要已被搜索遍才结束。而若使用回溯法求任一个解时,只要搜索到问题的一个解就可以结束。 全排列和求最优解问题是比较经典的问题,我们可以采用多种算法去求解此问题,比如动态规划法、分支限界法、回溯法。在这里我们采用回溯法来解决这个问题。 关键词:回溯法全排列最优值枚举

回溯法实验报告

实验04 回溯法 班级:0920561 姓名:宋建俭学号:20 一、实验目的 1.掌握回溯法的基本思想。 2.掌握回溯法中问题的解空间、解向量、显式约束条件、隐式约束条件以及子 集树与排列树的递归算法结构等内容。 3.掌握回溯法求解具体问题的方法。 二、实验要求 1.认真阅读算法设计教材,了解回溯法思想及方法; 2.设计用回溯算法求解装载问题、n后问题、图的m着色问题的java程序 三、实验内容 1.有一批共n个集装箱要装上2艘载重量分别为C1和C2的轮船,其中集装箱 i的重量为wi,且∑wi≤C1+C2。装载问题要求确定是否有一个合理的装载方案可将这个集装箱装上这2艘轮船。如果有,找出一种装载方案。 2.在n×n格的棋盘上放置彼此不受攻击的n个皇后。按照国际象棋的规则, 皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。n后问题等价于在n×n格的棋盘上放置n个皇后,任何2个皇后不放在同一行或同一列或同一斜线上。 3.给定无向连通图G和m种不同的颜色。用这些颜色为图G的各顶点着色,每 个顶点着一种颜色。是否有一种着色法使G中每条边的2个顶点着不同颜色。 这个问题是图的m可着色判定问题。 四、算法原理 1、装载问题 用回溯法解装载问题时,用子集树表示其解空间是最合适的。可行性约束可剪去不满足约束条件(w1x1+w2x2+…+wnxn)<=c1的子树。在子集树的第j+1层结点Z处,用cw记当前的装载重量,即cw=(w1x1+w2x2+…+wjxj),当cw>c1时,以结点Z为根的子树中所有结点都不满足约束条件,因而该子树中的解均为不可行解,故可将该子树剪去。 解装载问题的回溯法中,方法maxLoading返回不超过c的最大子集和,但未给出达到这个最大子集和的相应子集。 算法maxLoading调用递归方法backtrack(1)实现回溯搜索。Backtrack(i)搜索

搜索与回溯算法介绍

搜索与回溯算法介绍 一、概述: 计算机常用算法大致有两大类:一类叫蛮干算法,一类叫贪心算法。前者常使用的手段就是搜索,对全部解空间进行地毯式搜索,直到找到指定解或最优解。后者在求最优解问题的过程中,依据某种贪心标准,从问题的初始状态出发,直接去求每一步的最优解,通过若干次的贪心选择,最终得出整个问题的最优解。 二、搜索与回溯: 这里着重介绍搜索与回溯。当很多问题无法根据某种确定的计算法则来求解时可以利用搜索与回溯的技术求解。回溯是搜索算法中既带有系统性又带有跳跃性的一种控制策略。它的基本思想是:为了求得问题的解,先选择某一种可能情况向前探索。在探索过程中,一旦发现原来的选择是错误的,就退回一步重新选择,然后继续向前探索,如此反复进行,直至得到解或证明无解。如迷宫问题:进入迷宫后,先随意选择一个前进方向,一步步向前试探前进。如果碰到死胡同,说明前进方向已无路可走,这时,首先看其它方向是否还有路可走,如果有路可走,则沿该方向再向前试探;如果已无路可走,则返回一步,再看其它方向是否还有路可走;如果有路可走,则沿该方向再向前试探。按此原则不断搜索回溯再搜索,直到找到新的出路或从原路返回入口处无解为止。 【建立解空间】 问题的解应该如何描述,如何建立呢?问题的解空间:应用回溯法解问题时,首先应明确定义问题的解空间。问题的解空间应到少包含问题的一个(最优)解。借助图论的思想,可以用图来描述,图的定义为G,由顶点集和边集构成,顶点即实实在在的数据、对象,而边可以抽象为关系,即顶点间的关系,这种关系不一定非要在数据结构上表现出来,用数据结构的语言来描述,如果关系是一对一,则为线性表,如果关系是一对多,则为树,如果关系是多对多,则为图,如果完全没有关系,则为集合。但在数据结构中这种关系不一定非要在数据的存储性质上一开始就表现出来,譬如,你可以用一个数组表示一个线性表,也可以表示完全二叉树,同样也可以用邻接表表示一个图,对于关系的描述不是数据结构本身的描述,而是算法的描述,正如数据结构是离不开特定的算法一样,不可分开单独而谈。 确定了解空间的组织结构后,回溯法就从开始结点(根结点)出发,以深度优先的方式搜索整个解空间。这个开始结点就成为一个活结点,同时也成为当前的扩展结点。在当前的扩展结点处,搜索向纵深方向移至一个新结点。这个新结点就成为一个新的活结点,并成为当前扩展结点。如果在当前的扩展结点处不能再向

回溯法实验报告

数学与计算机学院实验报告 一、实验项目信息 项目名称:回溯法 实验时间: 2016/06/08 实验学时: 03 学时 实验地点:工科楼503 二、实验目的及要求 理解回溯法的深度优先搜索策略、 掌握用回溯法解题的算法框架、 掌握回溯法的设计策略 三、实验环境 计算机Ubuntu Kylin14.04 CodeBlock软件四、实验内容及实验步骤 排兵布阵问题 某游戏中,不同的兵种处在不同的地形上其攻击能力不一样,现有n个不同兵种的角色{1,2,...,n},需安排在某战区n个点上,角色i在j点上的攻击力为A ij。试设计一个布阵方案,使总的攻击力最大。 数据: 防卫点 角 色 1 2 3 4 5 1 2 3 4 5 回溯法: 程序: #include int position[10]; int a[10][10]; int check(int k){//每个节点检查的函数 int i; for(i=0;i=0) { sum=0; position[k]=position[k]+1; while(position[k]<=n)

if(check(k))break; else position[k]=position[k]+1; if(position[k]<=n && k==n-1) { for(i=0;i

回溯算法实验

中原工学院信息商务学院 实验报告 实验项目名称回溯划算法的应用 课程名称算法设计与分析 学院(系、部)中原工学院信息商务学院学科专业计算机科学与技术系班级学号计科132班17号姓名程一涵 任课教师邬迎 日期2014年12月9日

实验五回溯算法的应用 一、实验目的 1.掌握回溯算法的基本概念 2.熟练掌握回溯算法解决问题的基本步骤。 3.学会利用回溯算法解决实际问题。 二.问题描述 题目一:N皇后问题 要在n*n的国际象棋棋盘中放n个皇后,使任意两个皇后都不能互相吃掉。规则:皇后能吃掉同一行、同一列、同一对角线的任意棋子。求所有的解要求:键盘输入皇后的个数n (n ≤ 13) 输出有多少种放置方法 输入输出实例:

三.算法设计 首先,确定第一行皇后的位置,再确定第二行的位置,并且要注意不能同行同列同对角线,若是发现有错则返回上一层,继续判断。满足约束条件时,则开始搜索下一个皇后的位置,直到找出问题的解。 四.程序调试及运行结果分析 五.实验总结 通过这次试验,使得我们面对问题时的解题思路变得更加灵活和多变,并且使我们的编写能力稍稍的提高一些。初步了解了回溯算法,回溯算法实际是一个类似枚举的搜索尝试方法,他的主题思想是在搜索尝试的过程中寻找问题的解,当发现已不满足求解条件时,就回溯返回,尝试别的路径。他特别适用于求解那些涉及到寻求一组解的问题或者求满足某些约束条件的最优解的问题。此算法具有结构清晰,容易理解且可读性强等优点,并且通过稍加变通也可以适用于其他类似问题

附录:程序清单(程序过长,可附主要部分) #include #include using namespace std; int a[20],n; backdate(int n); int check(int k); void output(int n); int main() { int n; cout<<"请输入皇后的个数:"; cin>>n; cout<<"位置排列是:"<0) { a[k]=a[k]+1; while((a[k]<=n) && (check(k)==0)) a[k]=a[k]+1; if(a[k]<=n) if(k==n) { num++; output(n); } else { k=k+1; a[k]=0; } else k=k-1; } cout<<"一共有"<

算法设计与分析:回溯法-实验报告

应用数学学院信息安全专业班学号姓名 实验题目回溯算法 实验评分表

实验报告 一、实验目的与要求 1、理解回溯算法的基本思想; 2、掌握回溯算法求解问题的基本步骤; 3、了解回溯算法效率的分析方法。 二、实验内容 【实验内容】 最小重量机器设计问题:设某一个机器有n个部件组成,每个部件都可以m个不同供应商处购买,假设已知表示从j个供应商购买第i个部件的重量,表示从j个供应商购买第i个部件的价格,试用回溯法求出一个或多个总价格不超过c且重量最小的机器部件购买方案。 【回溯法解题步骤】 1、确定该问题的解向量及解空间树; 2、对解空间树进行深度优先搜索; 3、再根据约束条件(总价格不能超过c)和目标函数(机器重量最小)在搜索过程中剪去多余的分支。 4、达到叶结点时记录下当前最优解。 5、实验数据n,m, ] ][ [j i w,] ][ [j i c的值由自己假设。 三、算法思想和实现【实现代码】

【实验数据】 假设机器有3个部件,每个部件可由3个供应商提供(n=3,m=3)。总价不超过7(c<=7)。 部件重量表: 部件价格表: 【运行结果】

实验结果:选择供应商1的部件1、供应商1的部件2、供应商3的部件3,有最小重量机器的重量为4,总价钱为6。 四、问题与讨论 影响回溯法效率的因素有哪些? 答:影响回溯法效率的因素主要有以下这五点: 1、产生x[k]的时间; 2、满足显约束得x[k]值的个数; 3、计算约束函数constraint的时间; 4、计算上界函数bound的时间; 5、满足约束函数和上界函数约束的所有x[k]的个数。 五、总结 这次实验的内容都很有代表性,通过上机操作实践与对问题的思考,让我更深层地领悟到了回溯算法的思想。 回溯算法的基本思路并不难理解,简单来说就是:从一条路往前走,能进则进,不能进则退回来,换一条路再试。回溯法的基本做法是深度优先搜索,是一种组织得井井

回溯算法实例一培训讲学

回溯算法实例一

【问题】填字游戏 问题描述:在3×3个方格的方阵中要填入数字1到N(N≥10)内的某9个数字,每个方格填一个整数,使得所有相邻两个方格内的两个整数之和为质数。试求出所有满足这个要求的各种数字填法。 可用试探发找到问题的解,即从第一个方格开始,为当前方格寻找一个合理的整数填入,并在当前位置正确填入后,为下一方格寻找可填入的合理整数。如不能为当前方格找到一个合理的可填证书,就要回退到前一方格,调整前一方格的填入数。当第九个方格也填入合理的整数后,就找到了一个解,将该解输出,并调整第九个的填入的整数,寻找下一个解。 为找到一个满足要求的9个数的填法,从还未填一个数开始,按某种顺序(如从小到大的顺序)每次在当前位置填入一个整数,然后检查当前填入的整数是否能满足要求。在满足要求的情况下,继续用同样的方法为下一方格填入整数。如果最近填入的整数不能满足要求,就改变填入的整数。如对当前方格试尽所有可能的整数,都不能满足要求,就得回退到前一方格,并调整前一方格填入的整数。如此重复执行扩展、检查或调整、检查,直到找到一个满足问题要求的解,将解输出。 回溯法找一个解的算法: { int m=0,ok=1; int n=8; do{ if (ok) 扩展; else 调整; ok=检查前m个整数填放的合理性; } while ((!ok||m!=n)&&(m!=0)) if (m!=0) 输出解; else 输出无解报告; } 如果程序要找全部解,则在将找到的解输出后,应继续调整最后位置上填放的整数,试图去找下一个解。相应的算法如下: 回溯法找全部解的算法: { int m=0,ok=1; int n=8; do{ if (ok) { if (m==n) { 输出解; 调整; } else 扩展; } else 调整; ok=检查前m个整数填放的合理性; } while (m!=0);

算法分析与设计实验四回溯法

实验四 回溯法 实验目的 1. 掌握回溯法的基本思想方法; 2. 了解适用于用回溯法求解的问题类型,并能设计相应回溯法算法; 3. 掌握回溯法算法复杂性分析方法,分析问题复杂性。 预习与实验要求 1. 预习实验指导书及教材的有关内容,掌握回溯法的基本思想; 2. 严格按照实验内容进行实验,培养良好的算法设计和编程的习惯; 3. 认真听讲,服从安排,独立思考并完成实验。 实验设备与器材 硬件:PC 机 软件:C++或Java 等编程环境 实验原理 回溯法是最常用的解题方法,有“通用的解题法”之称。当要解决的问题有若干可行解时,则可以在包含问题所有解的空间树中,按深度优先的策略,从根节点出发搜索解空间树。算法搜索至解空间树的任一结点时,总是先判断该结点是否肯定不包含问题的解。如果肯定不包含,则跳过对以该结点为根的子树的搜索,继续查找该结点的兄弟结点,若它的兄弟结点都不包含问题的解,则返回其父结点——这个步骤称为回溯。否则进入一个可能包含解的子树,继续按深度优先的策略进行搜索。这种以深度优先的方式搜索问题的解的算法称为回溯法。它本质上是一种穷举法,但由于在搜索过程中不断略过某些显然不合适的子树,所以搜索的空间大大少于一般的穷举,故它适用于解一些组合数较大的问题。 回溯法也可以形式化地描述如下:假设能够用n 元组()n i x x x x ,,,,,21 表示一个给定问题P 的解,其中i i S x ∈。如果n 元组的子组()i x x x ,,,21 ()n i <满足一定的约束条件,则称为部分解。如果它已经是满足约束条件的部分解,则添加11++∈i i S x 形成新的子组()121,,,,+i i x x x x ,并检查它是否满足约束条件,若仍满足则继续添加22++∈i i S x ,并以此类推。如果所有的11++∈i i S x 都不满足约束条件,那么去掉1+i x ,回溯到i x 的位置,并去掉当前的i x ,另选一个i i S x ∈',组成新的子组()i x x x ',,,21 ,并判断其是否满足约束条件。如此反复下去,直到得到解或者证明无解为止。

回溯法实验(n皇后问题)(迭代法)

算法分析与设计实验报告第三次附加实验

附录: 完整代码(回溯法) //回溯算法递归回溯n皇后问题#include #include #include #include"math.h" using namespace std; class Queen

{ friend int nQueen(int); //定义友元函数,可以访问私有数据 private: bool Place(int k); //判断该位置是否可用的函数 void Backtrack(int t); //定义回溯函数 int n; //皇后个数 int *x; //当前解 long sum; //当前已找到的可行方案数 }; int main() { int m,n; for(int i=1;i<=1;i++) { cout<<"请输入皇后的个数:"; //输入皇后个数 cin>>n; cout<<"皇后问题的解为:"<

回溯法实验(最优装载)

算法分析与设计实验报告第二次附加实验 )用可行性约束函数可剪去不满足约束条件

附录: 完整代码(贪心法) //回溯法递归求最优装载问题#include #include #include using namespace std; template class Loading { public: void Backtrack(int i);

int n, //集装箱数 *x, //当前解 *bestx; //当前最优解 Type *w, //集装箱重量数组 c, //第一艘轮船的载重量 cw, //当前载重量 bestw, //当前最优载重量 r; //剩余集装箱重量 }; template void Loading::Backtrack(int i); template //参数为:w[]各物品重量数组,c为第一艘轮船的载重量,n为物品数量,bestx[]数组为最优解 Type MaxLoading(Type w[],Type c,int n,int bestx[]); int main() { int n=3,m; int c=50,c2=50; int w[4]={0,10,40,40}; int bestx[4]; clock_t start,end,over; //计算程序运行时间的算法 start=clock(); end=clock(); over=end-start; start=clock(); m=MaxLoading(w,c,n,bestx); //调用MaxLoading函数 cout<<"轮船的载重量分别是:"<

回溯法解0 1背包问题实验报告

实验4 回溯法解0-1背包问题 一、实验要求 1.要求用回溯法求解0-1背包问题; 要求交互输入背包容量,物品重量数组,物品价值数组;2.要求显示结果。3. 二、实验仪器和软件平台 仪器:带usb接口微机 软件平台:WIN-XP + VC++ 三、实验源码 #include \ #include #include #include<> #include using namespace std; template class Knap { public: friend void Init(); friend void Knapsack(); friend void Backtrack(int i); friend float Bound(int i); bool operator<(Knap a)const { if(fl< return true; else return false; } private: ty w; ; cout<>bag[i].v; for(i=0;i

{ bag[i].flag=0; bag[i].kk=i; bag[i].fl=*bag[i].v/bag[i].w; } }void Backtrack(int i){cw+=bag[i].w;if(i>=n) <=c) lag=1; cp+=bag[i].v; Backtrack(i+1); cw-=bag[i].w; cp-=bag[i].v; } if(Bound(i+1)>bestp)lag=0; Backtrack(i+1); }}<=cleft){; b+=bag[i].v; i++; } /bag[i].w * cleft; return b; } void Knapsack() k]=bag[k].flag; lag*bag[k].v; //价值累加 } cout<

回溯算法

常用算法四(回溯算法) 1、概念 回溯算法实际上一个类似枚举的搜索尝试过程,主要是在搜索尝试过程中寻找问题的解,当发现已不满足求解条件时,就“回溯”返回,尝试别的路径。 回溯法是一种选优搜索法,按选优条件向前搜索,以达到目标。但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法,而满足回溯条件的某个状态的点称为“回溯点”。 许多复杂的,规模较大的问题都可以使用回溯法,有“通用解题方法”的美称。 2、基本思想 在包含问题的所有解的解空间树中,按照深度优先搜索的策略,从根结点出发深度探索解空间树。当探索到某一结点时,要先判断该结点是否包含问题的解,如果包含,就从该结点出发继续探索下去,如果该结点不包含问题的解,则逐层向其祖先结点回溯。(其实回溯法就是对隐式图的深度优先搜索算法)。 若用回溯法求问题的所有解时,要回溯到根,且根结点的所有可行的子树都要已被搜索遍才结束。 而若使用回溯法求任一个解时,只要搜索到问题的一个解就可以结束。3、用回溯法解题的一般步骤: (1)针对所给问题,确定问题的解空间: 首先应明确定义问题的解空间,问题的解空间应至少包含问题的一个(最优)解。 (2)确定结点的扩展搜索规则 (3)以深度优先方式搜索解空间,并在搜索过程中用剪枝函数避免无效搜索。 4、算法应用示例:

八皇后问题的递归实现 [java]view plaincopy 1.public class Empress { 2. 3.private int n ; //皇后个数 4.private int[] x ; //当前解 5.private long sum ; //当前已找到的可行方案数 6.private static int h ; //记录遍历方案序数 7. 8.public Empress(){ 9.this.sum = 0 ; //初始化方案数为1,当回溯到最佳方案的时候,就自增1 10.this.n = 8 ; //求n皇后问题,由自己定义 11.this.x = new int[n+1]; //x[i]表示皇后i放在棋盘的第i行的第x[i] 列 12. h = 1 ; //这个是我额外定义的变量,用于遍历方案的个数,请看backTrace() 中h变量的作用,这里将它定义为static静态变量 13. } 14. 15.public boolean place (int k){ 16.for (int j = 1 ; j < k ; j++){ 17.//这个主要是刷选符合皇后条件的解,因为皇后可以攻击与之同一行同一列的 或同一斜线上的棋子 18.if ( (Math.abs(k - j)) == (Math.abs(x[j]-x[k])) || (x[j] == x [k]) ){ 19.return false ; //如果是与之同一行同一列的或同一斜线上的棋子, 返回false; 20. } 21. } 22.return true ;//如果不是与之同一行同一列的或同一斜线上的棋子,返回 true; 23. } 24. 25.public void backTrace (int t){ 26.if (t > n){ //当t>n时,算法搜索到叶节点,得到一个新的n皇后互不攻击放 置方案,方案数加1 27. sum ++ ; //方案数自增1 28. System.out.println ("方案" + (h++) + ""); 29. print(x); 30. System.out.print ("\n----------------\n");//华丽的分割线 31. }else { //当t<=n时,当前扩展的结点Z是解空间中的内部结点,该节点有 x[i]=1,2,…,n共n个子结点, 32.//对于当前扩展结点Z的每一个儿子结点,由place()方法检测其可行 性,

实验四回溯算法

实验四回溯算法的应用 一、实验目的 1.掌握回溯算法的基本思想、技巧和效率分析方法。 2.熟练掌握用回溯算法求解问题的基本步骤,非递归算法框架和递归算法框架。 3.学会利用回溯算法解决实际问题。 二、实验内容 1.问题描述: 题目一、 n后问题 在n*n格的棋盘上摆放n个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一列或同一对角线上,问有多少种摆法。 题目二、数字全排列问题 任意给出从1到N的N个连续的自然数,求出这N个自然数的各种全排列。如N=3时,共有以下6种排列方式:123,132,213,231,312,321。注意:数字不能重复,N由键盘输入。 题目三、0-1 背包问题 有N件物品和一个容量为V的背包。第i件物品的体积是v[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。 题目四、连续邮资问题 假设国家发行了n种不同面值的邮票,并且规定每个信封上最多只允许贴m 张邮票。连续邮资问题要求对于给定的n和m的值,给出邮票面值的最佳设计,使得可在1张信封上贴出从邮资1开始,增量为1的最大连续邮资区间。 【输入样例】 n=5

m=4 【输出样例】 1,3,11,15,32 含义:当n=5,m=4时,面值为{1,3,11,15,32}的5种邮票可以贴出邮资的最大连续区间是1到70。 2.数据输入:个人设定,由键盘输入。 3.要求: 1)上述题目任选一做。上机前,完成程序代码的编写 2)独立完成实验及实验报告 三、实验步骤 1.理解算法思想和问题要求; 2.编程实现题目要求; 3.上机输入和调试自己所编的程序; 4.验证分析实验结果; 5.整理出实验报告。

回溯法(马周游问题)——实验报告

华南师范大学本科生实验报告 姓名_黎国庄_学号20062101247 院系_计算机学院专业_计算机科学与技术 年级2006级班级_2班_ 小组实验任务分工_独立完成 实验时间2008 年_6_月 3 _日 实验名称回溯法的应用 指导老师及职称陈卫东老师 华南师范大学教务处编印

实验课程:算法分析与设计 实验名称:回溯法的应用(综设型实验) 第一部分实验内容 1.实验目标 (1)熟悉使用回溯法求解问题的基本思路。 (2)掌握回溯算法的程序实现方法。 (3)理解回溯算法的特点。 2. 实验任务 (1)从所给定的题目中选择一题,使用回溯法求解之。 (2)用文字来描述你的算法思路,包括解空间、限界函数、算法主要步骤等。 (3)在Windows环境下使用C/C++语言编程实现算法。 (4)记录运行结果,包括输入数据,问题解答及运行时间。 (5)分析算法最坏情况下时间复杂度和空间复杂度。 (6)谈谈实验后的感想,包括关于该问题或类似问题的求解算法的建议。 3. 实验设备及环境 PC;C/C++等编程语言。 4. 实验主要步骤 (1)根据实验目标,明确实验的具体任务; (2)设计求解问题的回溯算法,并编写程序实现算法; (3)设计实验数据并运行程序、记录运行的结果; (4)分析算法时空性能; (5)实验后的心得体会。 第二部分问题及算法 1.问题描述 给出一个8×8的棋盘,一个放在棋盘某个位置上的马(规定马的走法为走“日”)是否可以恰好访问每个方格一次,并回到起始位置上? 2. 回溯法的一般思路 对于马所在其中一格时,它可以走的位置有以下8种情况: ⑧① ⑦②

马 ⑥③ ⑤④ 所以对于每一个马所在的格子里,马可以走对应的8个方向。 用满8叉树,每一个子树对应马可跳的方向 当要走下一子树(跳下一格)时,该子树可走(还没有走过并且在棋盘里边),即沿该方向走下去,当不可以走,即回溯到上一步,选择另一方向往下走;当该子树的8个子棋都遍历完了(即8个方向都走过了),则回溯到它父亲那里。 重复一直做下去,到棋盘每个格子都走过一遍,而且回到出发点或者找不到路径即结束。 3. 求解问题的回溯算法描述 算法如下: 输入:V(x,y)马开始的起点 输出:马从第一步到最后一步(64)的先后次序数字 1.v←() 2.flag ← false 3.k ← 1 4.while k≥1 5. while X k 没有被穷举 6. x k ← X k 中的下一个元素;将x k 加入v 7. if v为最终解then set flag ← true,且从两个while循环退出 8. else if v是部分解then k ← k+1 {前进} 9. end while 10.重置X k ,使得下一个元素排在第一位 11. K ← k-1 {回溯} 12.end while 13.if flag then output v 14.else output “no solution” 4. 算法实现的关键技巧

相关文档
相关文档 最新文档