文档视界 最新最全的文档下载
当前位置:文档视界 › 纳米二氧化钛表面改性

纳米二氧化钛表面改性

纳米二氧化钛表面改性
纳米二氧化钛表面改性

第31卷第2期 唐山师范学院学报 2009年3月 Vol.31 No.2 Journal of Tangshan Teachers College Mar. 2009 ──────────

基金项目:河北省科学研究与发展计划项目(07215107) 收稿日期:2008-04-19

作者简介:刘立华(1969-),女,河北唐山人,硕士,唐山师范学院化学系副教授,研究方向为纳米复合材料制备和应用。 -31-

纳米二氧化钛表面改性

刘立华,刘会媛,张相平

(唐山师范学院 化学系,河北 唐山 063000)

摘 要:对纳米二氧化钛进行表面改性处理是钛白粉工业生产中必不可少的关键步骤,处理的方法和包覆的程度直接影响产品的应用范围。阐述了纳米二氧化钛的表面改性原理和化学表面改性的两种方法──无机包膜改性和有机包膜改性。无机包膜改性包括铝包膜改性、硅包膜改性、铁包膜改性和硅铝复合包膜改性;有机包膜改性主要是醇类化合物和羧酸类化合物对纳米二氧化钛的包覆改性。

关键词:二氧化钛;表面改性;纳米 中图分类号: O 621.4

文献标识码:A

文章编号:1009-9115(2009)02-0031-03

Surface Modification of Nano-Sized Titania

LIU Li-hua, LIU Hui-yuan, ZHANG Xiang-pin

(Department of Chemistry, Tangshan Teachers College, Hebei Tangshan 063000, China)

Abstract: Surface modification of nano-sized titania is one of the key steps in commercial production of titania and it can directly effecte the application fields of titania powder. The principles of modification of nanoscale titania were introduced in this article. Coating a film of organic or inorganic compound on its surface which is two means of surface modification is reviewd in the paper. Inorganic surface modification includes surface modification with Aluminium, surface modification with silicon surface modification with iron and composite surface modification with silicon and aluminium. Organic surface modifications were mainly interpreted by the alcohol compounds and carboxylic acid compounds coating on the surface of titania.

Key words: titania; surface modification; nano

纳米二氧化钛因具有光催化活性好、毒性低、稳定、价廉、易于回收等优势而倍受人们的关注。特别是随着环境污染的日益严重,纳米二氧化钛以其高效的光催化降解污染物的能力而成为当前最为活跃的研究热点之一[1]。纳米二氧化钛这种独特的性能主要取决于其粒度的大小。一般来说,粒径越小,比表面积越大,其光催化活性也就越高。

由于纳米二氧化钛表面极强的活性,使得它们很容易团聚,这大大降低了纳米二氧化钛的实际应用效果,同时由于纳米二氧化钛表面亲水疏油,在有机高分子树脂中难以均匀分散,界面上会出现空隙,当空气中的水分进入空隙中就会引起界面处高聚物的降解、脆化、导致材料性能下降。为了充分利用二氧化钛的优良性能,在表面包覆一层无机物或有机物膜对其进行表面改性。

1 表面改性原理

由溶胶稳定性的DLVO 理论可知,纳米级的二氧化钛细粉,单位面积的超额吉布斯自由能升高,表面张力变大,促使二氧化钛发生团聚,此时ζ电位比较高。若要使团聚体重新分散,首先应使表面充分润湿。判断固体能否在液体中润湿以及润湿程度的标准一般有两种。一是根据润湿热的大小,可以用润湿热来比较二氧化钛粉末在不同溶剂中的润湿程度。二氧化钛在水中的润湿程度比较好。实际上,在把二氧化钛粉末中加入水以后,由于颗粒外表面附着的空气与水的置换作用,使细小颗粒的润湿速度较慢。为了加大润湿程度,可以加入少量表面活性剂以降低其表面张力,提高润湿性。通常使用的表面活性剂有三乙醇胺、硅酸盐、烷基萘磺酸等。二是根据接触角的大小判断。二

第31卷第2期 唐山师范学院学报 2009年3月

-32-

氧化钛是亲水性的,经过紫外线照射后,与水的接触角减小,显示出极强的亲水性[2]。

经表面改性处理的金红石型二氧化钛的等电点为4.7mv ,锐钛型的等电点为6.2mv ,表面带负电荷。由于颗粒表面带有负电荷,溶液中的一些带正电荷的离子靠库仑力被紧密吸附在颗粒的表面而构成吸附层,从而形成双电层,产生了ζ电位。ζ电位越高,由颗粒的双电层产生的斥力越大,从而使颗粒更容易分散。在等电点附近(ζ=0mv ),颗粒之间没有库仑排斥力,当排斥力小于范德华引力时,颗粒之间引力为主,将发生团聚。当PH=10时,ζ=-43.8mv ,此时ζ电位负的最大。此时二氧化钛本身处于单分散状态,进行包膜改性。在等电点处,pH=3.6。当pH 较小时,颗粒之间的引力较大,ζ电位较小,不利于颗粒分散,使二氧化钛粒子团聚[3]。

二氧化钛在经表面处理后,可以使其表面所带电荷的电性和电量改变,从而影响其在各种不同介质中的分散性能。

2 表面改性方法

对普通粉体的表面改性可通过物理、化学、机械等方法进行。纳米二氧化钛由于颗粒极小,采用机械方法很难完成对它表面的处理,一般应采用物理、化学方法[4]。

2.1 无机包膜改性

无机改性的原理是在钛白粉浆液中添加无机盐,使钛白粉颗粒表面沉积金属离子的氧化物或氢氧化物膜。常用方法主要有铝包膜改性、铁包膜改性、和硅铝复合包膜改性等。

2.1.1 铝包膜改性

以加入硫酸铝与氢氧化钠为例,其化学反应方程式表示如下:

Al 2(SO 4)3 + 6NaOH + (n-3)H 2O =

Al 2O 3.nH 2O + 3Na 2SO 4

反应中生成的氧化铝水合物以沉淀形式均匀地包覆在二氧化钛颗粒的表面形成一层膜,膜的致密程度与中和的速度有关。如果中和速度过快,则会生成海绵状的膜;反之,则会在颗粒表面生成一层致密的膜。具有海绵状的产品因其遮盖力高,主要应用于乳胶漆等水性涂料中,而具有致密膜的产品则因其耐候性好而主要适用于汽车、外墙等经常暴露于阳光下的物体表面。

2.1.2 硅包覆改性

把水玻璃加入到二氧化钛的浆液中,然后向其中加入酸中和,使硅以硅酸的形式沉淀在二氧化钛颗粒的表面,其反应过程可以用化学方程式表示如下:

Na 2SiO 3 + H 2SO 4 + (n-1)H 2O = SiO 2.nH 2O + 3Na 2SO 4 生成的硅酸包覆在钛白粉表面,从而形成一层均匀无定形的氧化硅表皮状膜。该反应最初生成的是Si(OH)4正硅酸,这种单分子以不同的速度进行聚合,逐渐形成单体形式的具有很大活性的Si(OH)4及聚合度较低的硅酸聚合物。二氧化钛的表面羟基聚合牢固,在表面上形成成核点,快速聚合成具有致密结构的硅的聚合物。这种聚合物最终在二氧化钛表面形成一层氧化硅表皮状固体膜。生成的无定形氧化硅水合物以羟基的形式牢牢的键合在氧化钛表面,使钛白粉不易受化学侵蚀[5]。

硅包覆的操作方法是在一定的温度和剧烈搅拌下,向钛白粉的浆液中加入水玻璃,然后用酸中和,以硅胶的形式沉淀于颗粒表面。

与铝包覆改性相似,生成硅膜的疏密程度主要与中和速度有关。如果中和速度较慢,则在颗粒表面生成一层薄的致密膜,这种膜的耐候性好,能够降低二氧化钛与有机物的光化学反应,还可以保护二氧化钛免受其他化学品的侵蚀;中和速度较快时,所形成的海绵状膜可以增大对光的散射能力,这种产品可以应用于乳胶漆中。利用硅酸盐改性后的钛白粉,可以增加颜料的亲水性,提高颜料的遮盖力,并可以改善其抗粉化性能。

2.1.3 铁包覆改性

铁包覆改性是在搅拌下将FeCl 3溶液加入到含有二氧化钛的浆液中,发生以下反应:

FeCl 3 + 3H 2O = Fe(OH)3 + 3HCl

趁热用渗析法除去HCl ,可以得到稳定的溶胶。因为二氧化钛具有表面羟基结构,或与Fe(OH)Cl 2,FeO(OH)等键合,在二氧化钛表面形成包覆,这种膜的形成可以阻止电子-空穴对同H 2O ,O 2的结合,从而使光化学活性降低,提高产品的耐候性。在操作中应合理控制铁的含量,如果铁的含量低于某一值时反而会使光活性提高。

在快速搅拌下,把少量二氧化钛粉末加入到沸水中,然后向其中漫漫滴加FeCl 3溶液,直到形成溶胶为止[6]。由于Fe(OH)3溶胶本身可以作为一种颜料应用于化妆品中,并且可吸收紫外线;加入二氧化钛后,其吸收紫外线的能力更强。因此,用铁盐改性后的二氧化钛可以使产品的光化学活性降低,该产品可以应用于防晒化妆品中。

2.1.4 硅铝复合包膜改性

为了提高包覆改性处理的效果,可以使用两种或多种改性剂来进行复合表面包覆。常用的复合包膜方法有无机包膜、无机-有机复合包膜。其中无机复合包膜改性的方法有硅铝复合包膜、硅锌复合包膜、硅锆复合包膜等。无机-有机复合包膜的方法一般是先进行无机包膜然后再进行有机包膜。

用氧化铝包膜改性的钛白粉可以反射紫外线,使涂料的抗粉化性能增强,而硅包覆的钛白粉的亲水性比较好。如果依次用硅和铝的化合物包覆在颗粒表面,则产品就会同时具有单独用铝和单独用硅两种包覆改性方法所得产品的优点。

硅铝复合包膜存在着一个包膜次序问题。在生产高耐候性的颜料品种时,一般是先包铝后包硅。而应用于水性涂料

刘立华,等:纳米二氧化钛表面改性

-33-

品种时,则是先包硅后包铝。

该类产品的生产方法是在一定温度下,将铝盐溶液加入到含有硅酸钠的二氧化钛体系中,pH 值调节到7左右进行包膜。另外也可把硅酸钠溶液加入到铝盐溶液中。用后一种方法包膜的产品容易过滤、洗涤、但耐候性不好。

采用硅和铝的化合物来进行复合包膜为二氧化钛提供了一层物理屏障,更有效地降低了二氧化钛的光化学活性。此外,二者的相容性比较好,很容易共沉淀到二氧化钛表面上。在二氧化硅凝胶粒子上吸附的羟基化铝离子能阻止二氧化钛粒子的聚合,从而可以防止凝胶粒子的进一步长大,实现更有效的分散,使尽可能少的二氧化钛粒子包在一起。

2.2 有机包覆改性

有机改性的主要目的是改进二氧化钛在各种介质中的分散性能,其机理是改变二氧化钛的表面性质。改性剂与二氧化钛表面的连接主要有两种形式[8]:一种是物理吸附,因为有机表面活性剂分子一般由亲水的极性基和亲油的非极性两部分组成,当它和有极性的二氧化钛分子接触时,它的极性基便被吸附在二氧化钛表面,让非极性基展露在外与其它有机介质亲和,从而使外界面张力降低促使有机介质渗入聚集在一起的颗粒中,而将空隙中的空气排斥,使二氧化钛颗粒相互分离,达到分散的效果;另一种方式是化学吸附,即处理剂与二氧化钛表面的羟基反应而连接起来,使二氧化钛粒子表面由亲水性转变为疏水性,改善无机粉体与有机单体的亲和性。

2.2.1 醇类化合物包覆改性 可能的反应式为:

O 2Ti-OH + HO-R →O 2Ti-OR + H 2O

式中ROH 为季戊四醇,丙二醇,辛戊二醇等。利用类脂化反应法对纳米二氧化钛进行表面改性,可以改善纳米粒子的亲油性,提高纳米粒子有机物中的分散性;添加纳米二氧化钛后的环氧树脂涂料在耐候性,柔韧性,抗冲击性和抗耐划痕性等性能上有很大的提高[9]。

2.2.2 羧酸化合物包覆改性

以硬脂酸为例进行说明。硬脂酸中的羧基与二氧化钛颗粒表面的羟基发生了类似酸醇生成脂的反应。可能的反应为:

TiO 2(OH)2 + yHOOC(CH 2)16CH 3→

TiO 2(OH)x-y [OOC(CH 2)16CH 3]y

改性后的纳米二氧化钛粒子经红外光谱分析后证明吸附为单分子吸附:

O 2Ti-OH + HO-CO-(CH)16-CH 3→

O 2Ti-O-CO-(CH)16-CH 3

当纳米二氧化钛粉体表面吸附单分子膜后降低了粉体间的相互作用力,即降低了粉体流动时的摩擦力,从而提高了粉体的流动性。

3 前景展望

纳米二氧化钛具有大的比表面积,表面原子数,表面能和表面张力,随着粒径的下降急剧增加,小尺寸效应,表面效应,量子尺寸效应及宏观量子隧道效应等导致纳米微粒的热、磁、光、敏感特性和表面稳定性不同于常规粒子,例如纳米二氧化钛的强度,韧性和超塑性与二氧化钛粗晶粒相比大大提高,可用于生产纳米陶瓷。纳米微粒的熔点、开始烧结温度和晶化温度均比常规粉体低得多,可用于生产电子陶瓷或用做革制剂。利用纳米二氧化钛的光催化特性就可以处理含有机污染物的废水也可降解空气中有机物。另外它的光学性质使其用于高档轿车涂料、感光材料、PEC 电池、化妆品、食品包装、化学纤维、红外线反射膜、隐身涂料等。纳米二氧化钛也有较好的化学活性,可以用于农药、医药、环境工程等方面。

[参考文献]

[1] 范崇正,肖建平,丁延伟.纳米二氧化钛的制备与光催化反

应研究进展[J].科学通报,2001,46(4):256-273.

[2] 于向阳,梁文,杜永鹃,等.二氧化钛光催化材料的应用进展

[[J].材料导报,2000,14(2):38-40.

[3] 崔爱莉,王亭杰,金涌,等.TiO 2 表面包覆SiO 2和Al 2O 3的机理

和结构分析[J].高等学校化学学报,1998,19(11):1727-1729. [4] 王训,祖庸,李小娥.纳米TiO 2表面改性[J].化工进展, 2001,

(1):67-70.

[5] 徐存英,段云彪,张鹏翔,等.纳米二氧化钛的表面改性研究

[J].云南化工,2000,27(5):6-7.

[6] 沙利,王训,李晓娥,等.Fe(III)对纳米TiO 2光化学活性影响

研究[J].现代化工,2000,20(1):37-39.

[7] 唐振宁.钛白粉的生产与环境治理[M].北京:化学工业出

版社,2000,170-171.

[8] 郭英凯,刘晓薇,张秀起,等. 纳米二氧化钛表面改性研究

[J].无机盐工业,2003,35(3):25-26.

[9] 林安,程学群,张三平,等.纳米二氧化钛表面化学改性及在

涂料中的应用[J].材料保护,2002,55(11):6-7.

(责任编辑、校对:琚行松)

纳米二氧化硅表面改性及其 补强天然胶乳研究

万方数据

万方数据

万方数据

纳米二氧化硅表面改性及其补强天然胶乳研究 作者:邱权芳, 彭政, 罗勇悦, 李永振, Qiu Quanfang, Peng Zheng, Luo Yongyue, Li Yongzhen 作者单位: 刊名: 广东化工 英文刊名:GUANGDONG CHEMICAL INDUSTRY 年,卷(期):2009,36(11) 被引用次数:0次 相似文献(10条) 1.期刊论文邱权芳.彭政.罗勇悦.李永振.Qiu Quanfang.Peng Zheng.Luo Yongyue.Li Yongzhen"胶乳共混法"制备天然橡胶/二氧化硅纳米复合材料及其性能-广东化工2009,36(4) 采用γ-甲基丙烯酰氧基丙基三甲氧基硅烷(KH570)改性纳米二氧化硅(SiO2),然后通过乳液聚合接枝上聚甲基丙烯酸甲酯(PMMA),再将其与甲基丙烯酸甲酯(MMA)改性的天然胶乳,通过胶乳共混法制备天然橡胶/二氧化硅纳米复合材料,结果显示,纳米二氧化硅表面接枝上了PMMA,二氧化硅在橡胶基体中分散良好,粒径在60~100 nm之间,得到的胶膜力学性能有很大的提高. 2.期刊论文魏福庆.李志君.殷茜.邵月君.段宏义.Wei Fuqing.Li Zhijun.Yin Qian.Shao Yuejun.Duan Hongyi纳米SiO2对天然橡胶/聚丙烯共混型热塑性弹性体的改性-合成橡胶工业2006,29(3) 在双辊电热式塑炼机上采用动态硫化法制备了天然橡胶/聚丙烯共混型热塑性弹性体(NR/PP TPV).考察了纳米SiO2的加入顺序及其用量对NR/PP TPV力学性能的影响,研究了纳米SiO2填充改性TPV的耐溶剂性能和耐热变形性能,并用扫描电镜(SEM)观察了其两相结构和断面形貌.结果表明,纳米SiO2先与NR混炼均匀,再加入小料和硫黄所得的NR母炼胶与PP制备的TPV力学性能较好,且最佳的纳米SiO2加入量为3份;纳米SiO2改性的NR/PP TPV具有良好的耐溶剂性能和耐热变形性能;纳米SiO2提高了NR与PP相间结合强度. 3.期刊论文李志君.魏福庆.LI Zhijun.WEI Fuqing接枝和交联对纳米SiO2改性NR/PP共混型热塑弹性体的影响-高分子学报2006(1) 动态硫化制备纳米二氧化硅(SiO2)改性天然橡胶/聚丙烯共混型热塑性弹性体(NR/PP TPE).研究了马来酸酐/苯乙烯/过氧化二异丙苯(MAH/St/DCP)多单体"就地"熔融接枝、交联对TPE力学性能、耐溶剂性能和耐热变形性能的影响,并用SEM分析了TPE的断面形貌.结果表明:纳米SiO2和MAH/St/DCP的最佳质量分数分别为0.03和0.0375/0.0188/0.00375时,MAH/St/DCP接枝、交联改性NR/PP/纳米SiO2 TPE的力学性能、耐溶剂性能和耐热变形性能最佳 .MAH/St/DCP"就地"接枝、交联通过细化交联NR分散相、改善交联NR分散的均匀性和增加两相之间的共交联,使NR与PP两相界面结合强度明显提高,NR/PP TPE的综合性能得到明显的改善. 4.期刊论文郑辉林.李志君.赵红磊.胡树.ZHENG Hui-lin.LI Zhi-jun.ZHAO Hong-lei.HU Shu NR-g-(GMA-co-St)与nano-SiO2协同增强增韧PVC的研究-弹性体2009,19(2) 研究了甲基丙烯酸缩水甘油酯(GMA)/苯乙烯(St)多单体熔融接枝天然橡胶(NR)[NR-g-(GMA-co-St)]与nano-SiO2协同增强增韧PVC的力学性能,并通过SEM、TG-DTG表征了改性PVC的相结构及耐热分解性能.结果表明,当NR-g-(GMA-co-St)和nano-SiO2的质量分数分别为5%和3%时,相界面的结合强度明显提高,达到较好的协同增强增韧效果;与未改性PVC相比,增强增韧PVC的缺口冲击强度和断裂拉伸强度分别提高了78.9%和50.5%,并且具有较好的耐热分解性能. 5.期刊论文李志君.魏福庆NR-g-(MAH-co-St)对纳米SiO2改性NR/PP共混型热塑性弹性体的影响-弹性体 2004,14(6) 研究了马来酸酐/苯乙烯(MAH/St)多单体熔融接枝NR[NR-g-(MAH-co-St)]对纳米SiO2改性天然橡胶/聚丙烯动态硫化共混型热塑性弹性体(NR/PP TPV)力学性能的影响;采用SEM分析了TPV的断面形貌.结果表明:纳米SiO2的质量分数为0.03时,NR-g-(MAH-co-St)通过改善纳米SiO2分散的均匀性和细化交联NR分散相,使NR与PP两相的相容性得到明显改善,两相界面结合强度明显提高,NR/PP/纳米SiO2 TPV的力学性能提高. 6.会议论文鹿海华.刘岚.罗远芳.贾德民胶粉中原位生成SiO2及其在天然胶的应用研究2007 通过溶胶-凝胶法在胶粉中原位生成纳米SiO2网络,利用傅立叶变换红外(FTIR)、热重分析(TGA)等技术,证实了溶胶-凝胶反应中在胶粉表面过渡层中原位生成了约3%~5%wt的-O-Si-O-类似SiO2的网络结构;改性胶粉表现出更好的热稳定性,失重5%对应的温度提高了72.4℃.将50份改性胶粉添加到天然橡胶(NR)中,考察了反应前驱体及有机硅氧烷用量等对NR/改性胶粉复合材料性能的影响。研究发现,NR/改性胶粉复合材料仍具有较好的力学性能及动态性能。 7.期刊论文郑辉林.李志君.赵红磊.胡树.ZHENG Hui-lin.LI Zhi-jun.ZHAO Hong-lei.HU Shu原位接枝NR与nano-SiO2协同增韧PVC的研究-塑料2009,38(3) 研究了原位接枝NR与nano-SiO2协同增韧PVC的力学性能和耐溶剂性,通过SEM表征了增韧PVC的相结构.结果表明:当原位接枝NR和nano-SiO2的质量分数分别为5%和3%时,与未增韧PVC相比,相界面的结合强度明显提高,增韧PVC的缺口冲击强度和拉伸强度分别提高了102%和35.11%,并且具有较好的耐溶剂性能,达到较好的协同增韧增强效果. 8.会议论文李志君.魏福庆.符新NR/PP共混型热塑性弹性体的改性技术2004 动态硫化制备NR/PP/纳米SiO2共混型热塑性弹性体(TPV).通过力学性能的测定,确定了TPV的最佳加工工艺条件;研究了纳米SiO2改性和马来酸酐/苯乙烯/过氧化二异丙苯(MAH/St/DCP)多单体熔融接枝、交联改性对TPV力学性能、耐溶剂性能和耐热性能的影响.结果表明:MAH/St/DCP"就地"接枝、交联改性NR/PP/纳米SiO2TPV的力学性能最好,耐溶剂性能和热稳定性最佳.纳米SiO2的最佳质量分数为0.03;MAH/St/DCP的最佳质量分数为3.75/1.875/0.375. 9.期刊论文魏福庆.刘义.王卓妮.殷茜.李志君.林秀娟.Wei Fuqing.Liu Yi.Wang Zhuoni.Yin Qian.Li Zhijun. Lin Xiujuan马来酸酐和苯乙烯接枝改性对天然橡胶/聚丙烯共混物物理机械性能的影响-合成橡胶工业 2007,30(1) 用动态硫化法制备了天然橡胶(NR)/聚丙烯(PP)热塑性弹性体(TPV).研究了马来酸酐/苯乙烯/过氧化二异丙苯(MAH/St/DCP)多单体熔融接枝交联改性及纳米二氧化硅用量对NR/PP TPV物理机械性能的影响,讨论了NR/PP TPV的重复加工性能.结果表明,当MAH/St/DCP用量为3.750/1.875/0.375质量份、纳

纳米技术在高分子材料改性中的应用

纳米技术在高分子材料改性中的应用 (南通大学化学化工学院高分子材料与工程132 朱梦成1308052064 ) [摘要] 纳米材料及其技术是随着科技发展而形成的新型应用技术。纳米材料的研究是从金属粉末、陶瓷等领域开始的,现已在微电子、冶金、化工、电子、国防、核技术、航天、医学和生物工程等领域得到广泛的应用。近年来将纳米材料分散于聚合物中以提高高分子材料性能的研究也日益活跃,并取得了许多可观的成果。 [关键词] 纳米技术;高分子材料;改性;应用 1纳米粒子的特性及其对纳米复合材料的性能影响 1.1纳米粒子的特性 纳米粒子按成分分可以是金属,也可以是非金属,包括无机物和有机高分子等;按相结构分可以是单相,也可以是多相;根据原子排列的对称性和有序程度,有晶态、非晶态、准晶态。由于颗粒尺寸进入纳米量级后,其结构与常规材料相比发生了很大的变化,使其在催化、光电、磁性、热、力学等方面表现出许多奇异的物理和化学性能,具有许多重要的应用价值。 1.1.1表面与界面效应 纳米微粒比表面积大,位于表面的原子占相当大的比例,表面能高。由于表面原子缺少邻近配位的原子和具有高的表面能,使得表面原子具有很大的化学活性,从而使纳米粒子表现出强烈的表面效应。利用纳米材料的这种特点,能与某些大分子发生键合作用,提高分子间的键合力,从而使添加纳米材料的复合材料的强度、韧性大幅度提高。 1.1.2小尺寸效应 当超细微粒的尺寸与传导电子的德布罗意波长相当或更小时,晶体周期性的边界条件将被破坏,导致其磁性、光吸收、热、化学活性、催化性及熔点等发生变化。如银的熔点为900℃,而纳米银粉的熔点仅为100℃(一般纳米材料的熔点为其原来块体材料的30%~50%)。应用于高分子材料改性,利用纳米材料的高流动性和小尺寸效应,可使纳米复合材料的延展性提高,摩擦系数减小,材料表面光洁度

纳米碳酸钙

纳米碳酸钙 纳米碳酸钙又称超微细碳酸钙。标准的名称即超细碳酸钙。纳米碳酸钙应用最成熟的行业是塑料工业主要应用于高档塑料制品。可改善塑料母料的流变性,提高其成型性。用作塑料填料具有增韧补强的作用,提高塑料的弯曲强度和弯曲弹性模量,热变形温度和尺寸稳定性,同时还赋予塑料滞热性。纳米碳酸钙用于油墨产品中体现出了优异的分散性和透明性和极好的光泽、及优异的油墨吸收性和高干燥性。纳米碳酸钙在树脂型油墨中作油墨填料,具有稳定性好,光泽度高,不影响印刷油墨的干燥性能.适应性强等优点。 北方最大的纳米碳酸钙生产基地 盖尔克斯(Gerks)年产纳米碳酸钙系列产品12万t,其中纳米碳酸钙5万t,纳米碳酸钙助剂2万t,亚纳米碳酸钙3万t,造纸涂布碳酸钙2万t。产品广泛应用于各种胶黏剂、PVC软硬制品、电线电缆、涂料、油墨、造纸、医药等工业领域。 纳米碳酸钙的应用范围纳 米碳酸钙应用最成熟的行业是塑料工业主要应用于高档塑料制品。 造纸业是纳米碳酸钙最具开发潜力的市场。目前,纳米碳酸钙还主要用于特殊纸制品,如女性用卫生巾、婴儿用尿不湿等。纳米活性碳酸钙作为造纸填料具有以下优点:高蔽光性、高亮度、可提高纸制品的白度和蔽光性;高膨胀性,能使造纸厂使用更多的填料而大幅度降低原料成本;粒度细、均匀,制品更加均匀、平整;吸油值高、

能提高彩色纸的预料牢固性. 纳米碳酸钙在涂料工业作为颜料填充剂,具有细腻、均匀、白度高、光学性能好等优点。纳米级超细碳酸钙具有空间位阻效应.在制漆中,能使配方中密度较大的立德粉悬浮,起防沉降作用.制漆后,漆膜白度增加,光泽度高,而遮盖力却不降低,主要用于高档轿车漆。 橡胶工业纳米碳酸钙的主要应用市场之一。添加钠米碳酸钙的橡胶,其硫化胶升长率、撕断性能、压缩变形和耐屈性能,都比添加一般碳酸钙的高。加入用树脂酸处理的纳米碳酸钙后,有的豫胶制品撕裂强度提高4倍以上纳米碳酸钙在饲料行业中可作为补钙剂,增加饲料含钙量;在化妆品中使用,由于其纯度高、白度好、粒度细,可以替代钛白粉。 纳米活性碳酸钙的工业制备方法。该方法在一定浓度的Ca(OH)2的悬浮液中通入二氧化碳气体进行碳化。通过对Ca(OH)2悬浮液的温度、二氧化碳气体的流量控制碳酸钙晶核的成核速率;在碳化至形成一定的晶核数后,由晶核形成控制转化为晶体生长控制,此时加入晶形调节剂控制各晶面的生长速率,从而达到形貌可控;继续碳化至终点加入分散剂调节粒子表面电荷得均分散的立方形碳酸钙纳米颗粒;然后将均分散的立方形纳米碳酸钙颗粒进行液相表面包覆处理。所获得的纳米活性碳酸钙粒子在25~100nm之间可控,立方形,比表面大于25m2/g,粒径分布GSD为1.57,吸油值小于28g/100gCaCO3,且无团聚现象。所获得的产品性能优异,可作为高档橡胶、塑料以及汽车底漆中的功能填料。

粉体表面改性复习要点(精简版)

第2章 纳米粉体的分散 1.粉体分散的三个阶段(名词解释) 润湿 是将粉体缓慢加入混合体系形成的漩涡,使吸附在粉体表面的空气或其它杂质被液体取代的过程。 ?解团聚 是指通过机械或超声等方法,使较大粒径的聚集体分散为较小颗粒。 ?稳定化 是指保证粉体颗粒在液体中保持长期的均匀分散 2.常用的分散剂种类 (1)表面活性剂 空间位阻效应 (2)小分子量无机电解质或无机聚合物 吸附--提高颗粒表面电势 (3)聚合物类(应用最多) 空间位阻效应、静电效应 (4)偶联剂类 3.聚电解质(名词解释) 是指在高分子链上带有羧基或磺酸基等可离解基团的水溶性高分子 4.对不同pH 值下PAA 在ZrO 2表面的吸附构型进行分析。 图.不同pH 值下PAA 在ZrO 2 表 面的吸附构型 a.当pH<4时,PAA 几乎不解离,以线团方式存在于固液界面上,吸附层很薄,几乎无位阻作用 δ δδ

b.随pH值增加,链节间静电斥力使其伸展开 c.ZrO2表面电荷减小直至由正变负,PAA的负电荷量增加,其间斥力增加, 使得PAA链更加伸展,可在较远范围提供静电位阻作用 5.用聚电解质分散剂分散纳米粉体时,影响浆料稳定性的各种因素有哪些? 1、聚电解质的分子量 当聚电解质分子量过小,在粉体表面的吸附较弱,吸附层也较薄,影响位阻作用的发挥。 分子量过大,易发生桥连或空位絮凝,使团聚加重,粘度增加。 2、分散剂用量 适宜的分散剂用量才可以使分散体系稳定。 用量过低,粉体表面产生不同带电区域,相邻颗粒因静电引力发生吸引,导致絮凝。 用量过高,离子强度过高,压缩双电层,减小静电斥力;同时,还易发生桥连或空缺絮凝,稳定性下降。 3、温度 研究表明,为了获得较好的分散效果(以最低粘度为衡量标准),随温度的升高,所需分散剂的用量随之增加 6.结合下图,分析煅烧为什么能够改善纳米Si3N4粉体的分散性? 煅烧改善纳米Si3N4粉体的可分散性 ?此前提到,球磨可有效降低粉体的粒度。但球磨过程可能造成分散介质与粉体发生化学反应。 ?以乙醇为介质球磨Si3N4粉体时,表面的Si-OH可能与乙醇反应生成酯。 ?酯基的生成对粉体的分散性影响很大: a、酯基是疏水基团 b、屏蔽负电荷,影响分散剂的吸附 ?采取煅烧去除酯基,可改善其分散性 第3章纳米粉体表面改性(功能化) 1.表面改性有哪些重要应用? 改善纳米粉体的润湿和附着特性。 改善纳米粉体在基体中的分散行为,提高其催化性能。 改善粉体与基体的界面结合能等。 2.纳米粉体的表面改性方法? 气相沉积法 机械球磨法 高能量法

浅谈二氧化钛讲解

浅谈纳米二氧化钛 纳米二氧化钛(Ti0 2 )是一种重要的无机功能材料,由于其粒子具有表面效应、量子尺寸效应、小尺寸效应、宏观量子隧道效应等性质;其晶体具有防紫外线、光吸收性好、随角异色效应和光催化等性能;而且它的耐候性、耐用化学腐蚀性和化学稳定性较好,因此纳米二氧化钛被广泛应用于光催化、太阳能电池、有机污染物降解、涂料等领域。但纳米二氧化钛也有一定的局限性,可在纳米二氧化钛中添加合适的物质(如树脂、聚苯胺、偶联剂、氟碳树脂等),对其进行改性。 1. 纳米TiO 2的制备(纳米TiO 2 溶胶) 纳米TiO 2的制备方法一般分为气相法和液相法。由于气相法制备纳米TiO 2 有诸多缺点如:能耗大、成本高、设备复杂等,且条件苛刻,大大限制了其发展。液相法主要包括水解法、沉淀法、溶胶-凝胶法、水热法、微乳液法、微波感应等离子体法等制备技术。而液相法能耗小、设备简单、成本低,是实验室和工业上广泛使用的制备方法。由于传统的方法不能或难以制备纳米级二氧化钛,而溶胶-凝胶法则可以在低温下制备高纯度、粒径分布均匀、化学活性大的单组分或多组分分子级纳米催化剂,在此仅介绍用溶胶-凝胶法制备纳米TiO 2 溶胶。 溶胶一凝胶法制备纳米TiO 2:是以钛的醇盐Ti(OR) 2 ,(R为-C 2 H 5 、-C 3 H 7 、-C 4 H 9 等烷基)为原料。其主要步骤为:钛醇盐溶于溶剂中形成均相溶液,以保证钛醇盐的水解反应在分子均匀的水平上进行,由于钛醇盐在水中的溶解度不大,一般选用醇(乙醇、丙醇、丁醇等)作为溶剂;钛醇盐与水发生水解反应,同时失去水和失醇缩聚反应,生成物聚集成1nm左右的粒子并形成溶胶;经陈化、溶胶形成三维网络而成凝胶;干燥凝胶以除去残余水分、有机基团和有机溶剂,得到干凝胶;干凝胶研磨后煅烧,除去化学吸附的羟基和烷基团,以及物理吸附的有机溶剂和水,得到纳米TiO 2 粉体。因为钛醇盐的水解活性很高,所以需添加抑制剂来减缓其水解速度,常用的抑制剂有盐酸、醋酸、氨水、硝酸等。但在制备过程中要注意加水方式、水量、pH值、溶剂量、反应温度、拌速度等因素对凝胶形成的影响。

纳米二氧化硅修饰-改性文献总结

一、单分散纳米二氧化硅微球的制备及羧基化改性赵存挺,冯新星,吴芳,陈建勇2009年第 11期(40)卷 采用改进工艺条件的St ber法制备纳米SiO2微球 用KH-550硅烷偶联剂和丁二酸酐对纳米二氧化硅表面羧基化改性。结果表明,纳米二氧化硅表面成功接枝了羧基官能团。 2.1主要试剂 正硅酸乙酯(TEOS,AR);无水乙醇(AR);氨水,含量为25%~28%;去离子水;硅烷偶联剂KH-550, 纯度≥95%;丁二酸酐(AR)。 2.2二氧化硅微球的制备 将一定量无水乙醇、去离子水和氨水混合磁力搅拌约20min成均匀溶液。将4ml正硅酸乙酯分散在20ml无水乙醇中,磁力搅拌约30min混合成均匀溶液。然后将上面两种溶液混合在100ml单口烧瓶中,在一定温度下恒温磁力搅拌5h即生成二氧化硅微球溶胶。小球经多次醇洗离心分离后,即得SiO2小球样品。 2.3二氧化硅微球表面羧基化改性 将等摩尔的KH-550和丁二酸酐均匀分散在一定量的DMF中,一定温度下磁力搅拌3h后,往该

体系中加入经过超声分散的约20ml二氧化硅的DMF悬浊液,同时加入2ml去离子水。 在相同温度下继续磁力搅拌5h后,用超高速离心机分离出纳米二氧化硅,多次醇洗离心分离后,即得到羧基化改性后的纳米二氧化硅。改性的纳米SiO2标为样品S1,未改性的标为S0。 SiO2表面羧基的引入不仅提高了纳米粒子与基体的界面相容性,更重要的是羧基宽广的反应范围和易于离子化的特性赋予了纳米粒子很高的反应活性,使之可以广泛地应用于纳米粒子自组装[5]、高分子材料改性剂、水处理剂、催化剂和蛋白质载体、微胶囊包埋等领域[6] 二、二氯二甲基硅烷改性纳米二氧化硅工艺研究唐洪波李萌马冰洁精细石油化工 第24卷第6期2007年11月 以纳米二氧化硅为原料,乙醇为溶剂,二甲基二氯硅烷为改性剂,水为改性助剂,较佳工艺条件为:二甲基二氯硅烷用量15%,预处理温度120℃,预处理时间50min,回流温度130℃,回流时间50min,水用量4%。 称取纳米二氧化硅29置于三口瓶中,搅拌,加热至一定温度,并恒温。另称取一定量乙醇置于三口瓶中,配制成纳米二氧化硅质量分数为4.8%的乳液,继续搅拌分散10min后,一次性加人全部改性剂二甲基二氯硅烷,同时缓慢滴加一定量的改性助剂,当改性助剂加完后,升温至回流温度。反应结束后,将悬浮液用乙醇离心洗涤3一4次,经干燥至恒重即得产物。 3、氟烷基改性的二氧化硅纳米球的制备与应用研究郭庆中,周书祥,伍双全,喻湘华有机硅 材料, 2009, 23(4): 238~241 以浓氨水为催化剂、正硅酸乙酯(TEOS)为原料,通过种子生长法制得二氧化硅纳米球;进一步以十三氟辛基三乙氧基硅烷(F-8261)对二氧化硅纳米球的表面进行改性,得到氟烷基改性二氧化硅纳米球。利用IR、UV、TEM等手段对氟烷基改性纳米球进行了表征。有机基多为甲基或长碳链烷基,究其本质是亲油性的 1·5 mL TEOS、1·7 mL浓氨水(25% ~28% )、1mL去离子水和50 mL乙醇加入到250 mL的圆底烧瓶中,在40℃下缓慢搅拌3 h;然后再加入1mLTEOS,继续搅拌水解3 h;离心,水洗至pH=7,

纳米碳酸钙表面改性研究进展

纳米碳酸钙表面改性研究进展 班级:S1467姓名:学号:201421801014 1前言 纳米碳酸钙是指粒径在1~100nm之间的碳酸钙产品。纳米碳酸钙是一种十分重要的功能性无机填料,被广泛地应用在塑料、橡胶、涂料和造纸等工业领域。由于碳酸钙粒子的超细化,其晶体结构和表面电子结构发生变化,产生了普通碳酸钙所不具有的表面效应、量子尺寸效应、小尺寸效应和宏观量子隧道效应,显示了它优越的性能。 在塑料加工过程中添加纳米碳酸钙,不仅可以增加塑料制品的致密性,提高使用强度,而且还可以提高塑料薄膜的透明度、韧性、防水性、抗老化性等性能。在造纸工业中,碳酸钙用作造纸填料白度高,可大大改善纸张的性能,由于替代了价格较高的高岭土,使造纸厂获得明显的经济效益。纳米碳酸钙用在高级油墨、涂料中具有良好的光泽、透明、稳定、快干等特性。另外,在医药、化妆品等行业纳米碳酸钙也得到广泛应用,从而开辟了更广阔的应用领域[1,2]。 但是在用作橡胶和塑料制品填料时,由于纳米碳酸钙具有粒度小、表面能高、极易团聚、表面亲水疏油和强极性的特点,在有机介质中分散不均匀,与基料结合力较弱,容易造成基料和填料之间的界面缺陷。因此,为降低纳米碳酸钙表面高势能、调节疏水性、提高与基料之间的润湿性和结合力、改善材料性能,必须对纳米碳酸钙进行表面改性[3]。 2改性方法 目前用于表面改性的方法主要有:局部化学反应改性、表面包覆改性、胶囊化改性(微乳液改性)、高能表面改性及机械改性法[4]。 2.1局部化学反应改性 局部化学反应改性方法主要利用纳米碳酸钙表面的官能团与处理剂间进行化学反应来达到改性的目的。局部化学反应改性主要有干法和湿法两种工艺[5]。湿法是将表面改性剂投入到碳酸钙悬浮液中,在一定温度下让表面改性剂和碳酸钙粉末混合均匀,形成表面改性剂包覆碳酸钙粉末的双膜结构,效果较好,但工艺繁杂。水溶性的表面活性剂较适合湿法改性工艺,因为表面活性剂同时具有亲水基团和亲油基团,亲水基团与碳酸钙有亲和性,亲油基团与橡胶有亲和性,当表面活性剂处于碳酸钙和橡胶之间时,二者紧密地结合,这类水溶性表面活性剂主要是高级脂肪酸及其盐[6]。干法则是直接将碳酸钙粉末与表面改性剂直接投入高速捏合机中进行捏合,简单易行,出料后可直接包装,易于运输出料。这种方法得到的碳酸钙粉末表面不太均匀,适用于对碳酸钙粉末要求不高的场合,但处理方法简单易行,因而得到广泛应用。干法较适合于钛酸脂、铝酸脂、磷酸脂等偶联剂[7]。局部化学反应的改性剂主要有偶联剂、无机物、有机物等。 2.2表面包覆改性[8] 表面包覆改性指表面改性剂与纳米碳酸钙表面无化学反应,包覆物与颗粒之间依靠物理方法或范德瓦耳斯力而连接的改性方法。在制备纳米碳酸钙的溶液中加入表面活性剂,纳米碳酸钙生成的同时,表面活性剂包覆在其表面,形成均匀的纳米颗粒。此种方法可有效改善纳米碳酸钙的分散性。 2.3胶囊化改性 胶囊化改性又称微乳液改性,此种方法是在纳米碳酸钙表面包上一层其他物质的膜,使粒子表面的特性发生改变。与表面包覆改性不同的是包覆的膜是均匀的。 2.4高能表面改性 高能表面改性包括高能射线(γ射线、χ射线等)、等离子体处理几种方法[9]。

TiO2制备及其改性 综述

纳米TiO2的制备及其改性和应用研究进展 摘要:简要介绍了TiO 纳米材料的制备、改性方法及其应用; 2 其制备方法包括气相法和液相法,液相法又包括溶胶-凝胶法、水热/溶剂热法、液相沉积法和微乳液法;其改性主要包括贵金属沉积、离子掺杂、染料敏化和半导体复合;其应用领域则主要包括光催化、光伏电池和光解水。 关键词:二氧化钛;纳米材料;制备;改性;应用 前言 俗称钛白粉,无毒、无味、无刺激性,热稳定性好,且原料TiO 2 来源广泛易得。它有三种晶型:板钛矿、锐钛矿和金红石型。TiO 2 电极光最早用来做涂料。自从1972年Fujishima 等[1]发现用TiO 2 催化分解水现象之后TiO 纳米材料的研究受到了极大的关注。包 2 纳米材料的性括纳米颗粒、纳米棒、纳米线和纳米管在内的TiO 2 质、制备和改性方法及其在光催化、光伏电池、光电化学电池等领域的应用得到了广泛的研究。 在二十世纪早期,二氧化钛就已经被广泛应用于颜料、防晒霜、涂料、药膏、牙膏等领域中,而自从1972年Fujishima发现二氧化钛电极在紫外光照射下可以光解水制氢以来,二氧化钛的光催化性能得到了广泛的研究,目前已经在光电性能和光催化净化环境方面开发了很多实际的应用。作为一种光催化材料,二氧化钛在净化污染和保护环境方面被认为是最有潜力的一种材料,众所周知二氧化钛的量子产率是由光致电子与空穴的产生与复合决定的,而二氧化钛的颗粒大小与几何结构则会直接影响光致电子与空穴的运动变化,具有较小的晶粒大小一般来说会提高二氧化钛的光学性能。因此,通过制备均匀细小的二氧化钛纳米颗粒以及对二氧化钛进行改性如:掺杂、半导体复合、表面贵金属修饰和有机染料敏化等方法,都可以提高二氧化钛的光催化性能,使其满足现代生活中各种不同的需求。本文将重点介绍通过掺杂的方法对二氧化钛纳米颗粒进行改性。 1 TiO2纳米材料的制备方法 TiO 纳米材料的制备方法很多,大体可以分为气相法和液相2 法。 1.1 气相法

纳米二氧化硅表面改性条件优化

纳米二氧化硅表面改性条件优化 【摘要】引入微波有机合成技术对纳米SiO2进行表面改性,考察了偶联剂、微波功率和辐照时间、浓硫酸用量等对纳米SiO2表面处理的影响,并通过红外光谱和热失重测试考察了粉体表面化学结构及改性情况。实验得出的纳米SiO2表面处理的最佳工艺条件为:偶联剂的用量为6%(质量百分含量),微波功率为320W,硫酸用量为1.25%(质量百分含量),微波辐射反应时间为15min。 【关键词】纳米二氧化硅;表面处理;微波 对于用熔融共混法制备的纳米复合材料而言,无机粒子能在聚合物中作纳米级的原生粒子分散是决定材料性能改善的最重要因素之一。粒子在塑料中分散粒径大小及分散均匀性对填充改性塑料的性能及其均匀性影响很大。因此解决自身团聚很强的纳米粒子在材料中的分散性问题,成为制备性能优良复合材料的关键点,也是难点之所在。 纳米SiO2为无定形白色粉末,是一种无毒、无味、无污染的无机非金属材料,其呈现出絮状和网状的准颗粒结构。由于纳米SiO2表面能大,易于团聚,通常以二次聚集体的形式存在,限制了其超细效应的充分发挥,在有机相中难以浸润和分散。 目前,对纳米SiO2的改性方法有多种,通常采用的是硅烷偶联剂法。硅烷偶联剂由于具有双反应功能团[1],能使填料与聚合物的结合界面以化学键相连,从而提高填料的补强性能[2~4]。 微波是一种波长从1mm到1m左右的超高频电磁波,具有物理、化学、生物学效应。在电磁场中,体系介质产生极化取向,相邻分子间由于分子热运动产生强烈的相互作用,极性分子产生“变极”效应,由此产生了类似摩擦作用,使极性分子瞬间获得能量,以热量形式表现出来,介质整体温度同时随之升高。微波还存在一种不是由温度引起的非热效应,微波作用下的有机反应,改变了反应动力学,降低了反应活化能。以上特性使得微波加热有机反应具有传统加热法所无法具备的优点,反应速度快,效率高。 本文作者采用微波法对纳米SiO2进行表面改性,考察了偶联剂用量、微波功率、硫酸用量对改性效果的影响,探讨了最佳表面改性条件,并对改性后的纳米SiO2进行了表征。 1 实验部分 1.1 主要试剂与仪器 纳米二氧化硅:粒径<100nm,购自海川化工有限公司,硅烷偶联剂SCA-1603:分析纯,哈尔滨化工研究所实验厂产品;浓硫酸:分析纯,购自莱

纳米碳酸钙的生产和用途

纳米碳酸钙的生产和用途 杨小红 陈建兵 盛敏钢 (池州学院非金属材料研究中心 安徽池州 247000) 摘要 碳酸钙是自然界广泛存在的一种很普通的非金属材料,也是一种传统的无机盐化工产品。近年来,随着碳酸钙的超细化及表面改性技术的发展,纳米碳酸钙制备技术及应用,已成为国内外竞相开发的研究热点。本文就有关纳米碳酸钙的主要生产技术及其应用领域作一简介。 关键词 纳米碳酸钙 生产 用途 碳酸钙(化学式为CaCO3)在自然界广泛存在,它至少有6种矿物形式[1]:无定形碳酸钙(amor2 p hous CaCO3)、球霰石(vaterite)、文石(aragonite)、方解石(calcite)、单水方解石(monohydro calcite)和六水方解石(ikaite,CaCO3?6H2O),是大理石、石灰石、白垩等天然矿物的主要成分,也是贝壳、珊瑚礁、珍珠的构成成分。在工业上,碳酸钙作为一种重要的无机盐化工产品,物美价廉。根据生产方法不同,碳酸钙分为两大类、多种型号,以满足不同行业、不同用途的需要[2]。以方解石、大理石、白垩、贝壳、石灰石等为原料经机械粉碎及超细研磨等用物理方法制取的碳酸钙粉体产品称重质碳酸钙,以GCC表示;以石灰石为原料经煅烧、消化、碳酸化、分离、干燥分级等化学方法制取的产品称轻质碳酸钙,以PCC表示。普通型的重质碳酸钙和轻质碳酸钙,通常作一般填料和白色颜料使用。 纳米碳酸钙是20世纪80年代运用纳米技术加工发展而成的一种新型轻质碳酸钙产品,粒径通常在20~100nm之间。由于碳酸钙粒子的超细化,其晶体结构和表面电子结构发生变化,产生了普通碳酸钙所不具有的量子尺寸效应、小尺寸效应、表面效应和宏观量子效应,且粒径细而均匀、分布窄、比表面积大、表面活性及分散性好、表面能高,使其在实际使用中体现了很多普通碳酸钙材料所不具备的更加优异的性能,用途更为广泛。如可广泛大量应用于注塑、挤出、PVC型材、管材、汽车涂料、密封胶、粘结剂涂料、油墨、橡胶等行业,碳酸钙产品的附加值得到很大提高,很快引起了世界各国的普遍关注,现已成为无机非金属材料研究和企业竞争投资的热点[3]。 1 纳米碳酸钙的主要工业生产技术[4] 纳米级超细碳酸钙的粒径很小(一般为1nm~100nm),用物理方法生产纳米级超细碳酸钙很困难,特别是物理方法不能制备高活性晶形。因此,国内外都在研究化学方法,其中碳化法是生产纳米级超细碳酸钙的主要方法。纳米碳酸钙的工业化生产工艺主要有:间歇鼓泡碳化法、连续喷雾碳化法、超重力反应结晶法等。 111 间歇鼓泡碳化法 间歇鼓泡碳化法是目前国内外大多数厂家所采用的工艺。根据碳化塔中是否有搅拌装置,该法又可分为普通间歇鼓泡碳化法和搅拌式间歇鼓泡碳化法。该法是在锥底圆柱体碳化塔中加入精制氢氧化钙悬浊液和适当的添加剂,然后从塔底通入二氧化碳进行“碳化”,得到所要求的碳酸钙产品。在反应过程中需要严格控制反应条件,如碳化温度、二氧化碳流量、石灰乳浓度及搅拌速度,并加入适当的添加剂。该法投资少、操作简单,但生产不连续,自动化程度低,产品质量不稳定,主要表现在产品晶形不易控制、粒度分布不均、不同批次产品的重现性差。目前国内多数厂家采用此法来生产轻质碳酸钙。 112 连续喷雾碳化法 连续喷雾碳化法是将石灰乳用喷头喷成雾状,从塔顶喷下,将一定浓度的CO2以某一速度从塔底上升,与雾状石灰乳发生反应。一般采用三级串联碳化工艺。精制石灰乳从第一级碳化塔顶部喷雾成0101nm~011mm的液滴加入,二氧化碳从塔底通入,二者逆流接触发生碳化反应。反应混合液从塔底流出,进入浆液槽,添加适当的分散剂处理后,喷雾进入第二级碳化塔继续碳化;然后再经表面活性处理、喷雾进入三级碳化塔碳化制得粒径可达40~80nm的最终产品。该法生产效率高,碳化时间短,产品晶型、粒度容易控制,可制得优质稳定的纳米碳酸钙产品,经济效益可观,并能实现连续自动大规模生产,具有很高的科技含量,但设备投资较大。113 超重力反应结晶法 超重力反应结晶法技术的特征是以强化气液传质过程为基本出发点。其核心在于碳化反应是在超重力离心反应器(旋转螺旋或填充床反应器)中进行,利用填充床高速旋转产生的几十到几百倍重力加速度,可获得超重力场环境。通过CO2和Ca(O H)2悬浊液在超重力专用设备中逆流接触,使 ? 5 ? 2007年第10期 化 学 教 育

纳米二氧化硅

纳米二氧化硅 简介: 为相关工业领域的发展提供了新材料基础和技术保证。由于它在磁性、催化性、光吸收、热阻和熔点等方面与常规材料相比显示出特异功能,因而得到人们的极大重视。一、XZ-G01二氧化硅产品的主要技术指标,含量:99.99 % 水分≤0.01 二、XZ-G01二氧化硅用途1、涂料及饱和树脂的增稠剂和触变剂;2、平光剂:家具漆有向亚光方向发展的趋势,列沦清漆或色漆均可使用超细二氧化硅凝胶产品作为平光剂,另外卷材涂层、PVC、塑料壁纸、雨衣帐篷等平光剂亦可使用此类产品。3、聚乙烯、聚苯烯、无毒聚氯乙稀薄膜抗阻塞剂/开口剂。三.XZ-G01二氧化硅在高分子工业中的应用它广泛地应用于橡胶、塑料、电子、涂料、陶(搪)瓷、石膏、蓄电池、颜料、胶粘剂、化妆品、玻璃钢、化纤、有机玻璃、环保等诸多领域。 应用范围 由于纳米二氧化硅SP30具有小尺寸效应,表面界面效应、量子尺寸效应和宏观量子遂道效应和特殊光、电特性、高磁阻现象、非线性电阻现象以及在高温下仍具的高强、高韧、稳定性好等奇异性,纳米二氧化硅可广泛应用各个领域,具有广阔的应用前景和巨大的商业价值。纳米二氧化硅是应用较早的纳米材料之一,关于纳米SiO2在橡胶改性、工程塑料、陶瓷、生物医学、光学、建材、树脂基复合材料改性中的应用已有过许多报道,这里重点介绍纳米氧化硅SP30)在其他领域的应用进展。 4.1在涂料领域 纳米二氧化硅具有三维网状结构,拥有庞大的比表面积,表现出极大的活性,能在涂料干燥时形成网状结构,同时增加了涂料的强度和光洁度,而且提高了颜料的悬浮性,能保持涂料的颜色长期不退色。在建筑内外墙涂料中,若添加纳米氧化硅,可明显改善涂料的开罐效果,涂料不分层,具有触变性、防流挂、施式性能良好,尤其是抗沾污染性能大大提高,具有优良的自清洁能力和附着力。纳米SiO2还可与有机颜料配用,可获得光致变色涂料,M.P .J .Peeters 等用溶胶凝胶法合成了含纳米二氧化硅SP30的全透明的耐温涂料 H.Schmidt 等合成了很厚的含纳米SiO2的涂料,并耐高温,在500℃下没有出现裂缝,Fayna Mamme ri等合成了P MMA- SiO2纳米涂料。明显增强了涂料的弹性和强度。

纳米材料改性水性聚氨酯的研究进展

纳米材料改性水性聚氨酯的研究进展 综述了纳米材料改性水性聚氨酯几种常用方法的特点和研究进展,指出了纳米材料改性水性聚氨酯存在的问题。 标签:水性聚氨酯(WPU);纳米材料;方法;改性 1 前言 近年来,随着人们环保意识的增强,水性聚氨酯(WPU)受到越来越多学者的关注。WPU是以水为分散介质的二元胶态体系,具有不污染环境、VOC(有机挥发物)排放量低、机械性能优良和易改性等优点,使其在胶粘剂、涂料、皮革涂饰、造纸和油墨等行业中得到广泛应用[1~4]。但在制备WPU过程中由于引入亲水基团(如-OH、-COOH等),因此存在固含量低,耐水性、耐热性和耐老化性差等缺陷,从而限制了其应用范围。 纳米材料具有小尺寸效应、表面效应、量子尺寸效应及宏观量子隧道效应等特殊性质,为各种材料的改性开辟了崭新的途径。通过纳米材料改性的WPU,其成膜性、耐水性和耐磨性等性能均得到显著提高[5]。 2 纳米材料改性WPU的方法 2.1 共混法 共混法即纳米粒子在WPU中直接分散。首先是合成各种形态的纳米粒子,再通过机械混合的方法将纳米粒子加入到WPU中。但在该方法中,由于纳米粒子颗粒比表面积大,极易团聚。为防止纳米粒子团聚,科研工作者对纳米材料进行表面改性来提高其分散性,改善聚合物表面结构以提高其相容性。 李莉[6]等利用接枝改性后的纳米SiO2和TiO2与WPU共混,制备了纳米材料改性水性WPU乳液。研究发现,纳米粒子在乳液中分散均匀,无团聚现象;改性后的WPU乳液力学性能比未改性前得到改善和提高;当纳米粒子添加量为0.5%时,WPU乳液的力学性能最佳,吸水性降低了70%,添加的纳米粒子对波长290~400 nm的紫外光有吸收。 李文倩[7]等采用硅烷偶联剂(KH560)对纳米SiO2溶胶进行表面改性,然后将其与WPU共混制备出了WPU/SiO2复合乳液,考查了改性纳米溶胶含量对复合乳液及其涂膜性能的影响。结果表明,当纳米SiO2/KH560物质的量比为6:1时,改性后的纳米SiO2溶胶的粒径最小且分布较均一。KH560的加入使纳米SiO2粒子更均匀地分散在聚氨酯乳液中,且SiO2粒子与聚氨酯乳液之间存在一定键合作用,使涂层的耐热性得到显著增强。当改性SiO2溶胶添加量为5%~10%时,涂膜的硬度、耐磨性、耐划伤性、耐水性等性能明显提高。

纳米碳酸钙表面修饰[设计、开题、综述]

BI YE SHE JI (二零届) 纳米碳酸钙表面修饰 所在学院 专业班级高分子材料与工程 学生姓名学号 指导教师职称 完成日期年月

摘要:单纯的PP树脂是一种较硬的原料。它的熔体粘度大,流动性差,耐低温性、耐冲击性差等,这些缺点都可依靠填充和共混改性得到改善。 纳米碳酸钙具有粒度小、表面能高、表面亲水疏油和强极性的特点,且价格低廉,但在有机介质中分散不均匀,极易团据,与塑料结合力较弱,容易造成塑料和填料之间的界面缺陷。未经表面处理的纳米碳酸钙团聚现象严重,填充到PP中对复合材料的力学性能产生不良影响。 本实验旨在通过利用偶联剂处理过的纳米碳酸钙利用共混的方法把它填充到PP树脂中,使其熔体粘度降低,实现改性。 关键词:纳米碳酸钙;钛酸酯偶联剂;聚丙烯/碳酸钙复合材料;表面改性

Study on Surface Modification of Calcium Carbonate Abstract:Pure polypropylene resin is a harder material that has some characteristics,such as high Melt viscosity,poor flow properties,poor low temperature performance and poor impact resistance.Although these defects could be improved depends on filling and blending modification with powders. Nano calcium carbonate is the material that has characteristics of low size,high surface energy,strong hydrophobicity and strong polar has low price.However,it is unevenly distributed in organic solvents, easily reunion,and has low interaction with polypropylene plastic,so that it is to cause the interface between the plastic and packing defects.Nano calcium carbonate filled into PP(polypropylene) without surface treatments has Seriously Reunion will be bring negative effects on the mechanical properties of composite materials. This study was designed through the use of coupling agent treated by blending method of nano calcium carbonate filled it to the PP, to enhance the elastic modulus, melt viscosity decreases to achieve modification. Keywords: Nano-CaCO3;Polypropylene/Calcium carbonate Nanocomposites;Coupling agent;organic titanate

改性二氧化钛纳米材料的研究进展

云南化工Yunnan Chemical Technology Apr.2018 Vol.45,No.4 2018年4月第45卷第4期 半导体光催化材料能够直接利用太阳光将水中的有机污染物降解为无毒的二氧化碳和水,且不造成二次污染,受到人们广泛关注。TiO2半导体光催化材料因其具有良好的化学稳定性、高效的光催化效率以及无毒无害、环境友好和生产成本低等优点倍受人们的青睐。为充分利用太阳光降解各类污染物,提高TiO2光催化性能,使其能够在实际应用中充分发挥自身的优势,研究人员对TiO2光催化材料进行改进,结果表明掺杂对于TiO2光催化过程中存在的禁带宽度大、量子产率低、光催化活性低等缺点有显著的改善,但也各自存在着一些不足。文章就近年来TiO2掺杂改性方面的最新研究进展进行综述。 1 金属掺杂[1] 于晓彩等[2]在TiO2中掺杂Li+,研究发现,掺杂Li+能明显提高TiO2的结晶度,从而提高了样品的光催化性能。当Li+掺杂量为5%时,样品为锐钛矿型和金红石型的混合晶型,有效提高了可见光的利用率以及光催化活性。谭昌会等[3]采用溶胶-凝胶法制备了Al3+掺杂TiO2光催化剂,研究其对亚基蓝污染物的降解率,研究表明,当Al3+掺杂量为1%时,降解效率最佳。晁显玉等[4]制备了纳米Cu2+/TiO2光催化剂,研究其对头孢类污染物阿莫西林的降解效率。发现Cu2+掺杂,有效提高了对紫外线的吸收性能,提高了光能的利用率。Cu2+/TiO2光催化剂光吸收范围的扩展程度优于Fe3+/TiO2光催化剂[5]。 2 非金属掺杂 Sato等[6]率先开始了非金属掺杂TiO2光催化剂的研究,他们从氧化氮气体中分解出了氮气,并且把它导入了TiO2。王志宇[7]等采用水热法制备了S掺杂 TiO2光催化剂,研究了其在可见光下对甲基橙的降解率,结果表明,S的掺杂有效拓展了 TiO2的吸收光谱至可见光区,有效提高了其在可见光区的光催化性能。夏勇[8]等制备了N/TiO2光催化剂,研究发现氮掺杂使TiO2的吸收带发生明显红移,在自然光照下,120min时降解率为95.4%。 3 稀土离子掺杂 镧系稀土元素具备独特的电子结构、光学性质以及活泼的化学活性,在对TiO2的能带结构、晶体结构以及光吸收性能等方面进行改性时,稀土元素是一个理想的选择。刘丽静[8]利用溶胶-凝胶法制备了Dy3+掺杂TiO2复合光催化剂,发现掺杂少量稀土离子能细化晶粒,同时具有良好的热稳定性。徐晓虹等[9]制备了Y3+掺杂TiO2纳米粉体,研究表明,掺杂Y3+有效降低了禁带宽度,发生红移现象,且光催化记得平均粒径随着掺杂量的增加而减小。薛寒松等[10]合成了Ce3+掺杂TiO2纳米管,通过与未掺杂TiO2纳米管相比,光催化效果明显提高。光照150min后,甲基橙的降解率超过了80%。 4 共掺杂 近年来,多种与非金属共掺杂 TiO2引起人们的研究兴趣。刘元[11]等采用Fe3+-Ce4+复合掺杂改性 TiO2光催化剂处理真丝产品的印染废水,结果表明,Fe3+-Ce4+共掺杂TiO2光催化剂处理后废水去色率为 98.7%,COD去除率为70%,比单一元素的改性处理工艺更加有效。江鸿等[12]合成了Fe、N共掺杂的TiO2纳米粉体,其对可见光的响应范围明显大于纯TiO2,禁带宽度减少至2.74 eV,使其在可见光下的催化活性显著提高。双元素掺杂比单元素掺杂优越,是因为双元素掺杂克服了单一元素掺杂中总速率仍为较慢的界面反应所控制的弊端,使两个界面反应的速度同时加快保证了整个光催化反应的加快和完善,对污染物种类多,含有毒成分的废水有着良好的处理效果。 5 展望 随着人们对改性纳米 TiO2光催化材料研究的深入,制备出了不同离子掺杂的改性纳米 TiO2 光催化材料,改善了最初二氧化钛光催化材料催化效率低、太阳光光谱利用率低等问题。但是,改性纳米 TiO2 光催化材料在一定程度上仍然无法避免光催化剂制备工艺复杂、成本高、易于团聚等问题。因此,深入理论探讨、优化反应工艺,制备出低密度、光利用率高的催化剂成为当今研究的重点和热点。同时,降低粒子尺寸,提高重复利用率等也成为亟待解决的问题。 参考文献: [1] 王瑶,武志刚.银掺杂多孔氧化钛制备、表征及光催化性能探 究[J].山东化工,2016,45(7):17. [2] 于晓彩,徐晓,金晓杰,等.Li+-TiO2复合纳米光催化剂制备及 其光催化降解海产品深加工废水的研究[J].大连海洋大学学 doi:10.3969/j.issn.1004-275X.2018.04.004 改性二氧化钛纳米材料的研究进展 韩金轩,甘子萱,白美玲,毕 菲 (吉林建筑大学,吉林 长春 130118) 摘 要:TiO 2 半导体光催化材料因其具有良好的化学稳定性、高效的光催化效率以及无毒无害、环境友好和生产成本低等优点倍受人们的青睐。为在实际应用中充分发挥TiO2的优势,研究人员对TiO2光催化材料进行改进,金属,非金属,稀土元素等多种化学成分和物质都被用于TiO2的掺杂改性。文章就近年来TiO2掺杂改性方面的最新研究进展进行综述。 关键词:TiO 2 ;光催化材料;离子掺杂;改性 中图分类号:X703;TB33 文献标识码:B 文章编号:1004-275X(2018)04-006-02 ·6·

相关文档
相关文档 最新文档