文档视界 最新最全的文档下载
当前位置:文档视界 › STM32F103启动文件详解

STM32F103启动文件详解

STM32F103启动文件详解
STM32F103启动文件详解

转。。

在<>,用的是STM32F103RBT6,所有的例程都采用了一个

叫STM32F10x.s的启动文件,里面定义了STM32的堆栈大小以及各种中断的名字及入口函数名称,还有启动相关的汇编代码。STM32F10x.s是MDK提供的启动代码,从其里面的内容看来,它只定义了3个串口,4个定时器。实际上STM32的系列产品有5个串口

的型号,也只有有2个串口的型号,定时器也是,做多的有8个定时器。比如,如果你用的STM32F103ZET6,而启动文件用的是STM32F10x.s的话,你可以正常使用串口1~3

的中断,而串口4和5的中断,则无**常使用。又比如,你TIM1~4的中断可以正常使用,而5~8的,则无法使用。

而在固件库里出现3个文件

startup_stm32f10x_ld.s

startup_stm32f10x_md.s

startup_stm32f10x_hd.s

其中,ld.s适用于小容量产品;md.s适用于中等容量产品;hd适用于大容量产品;

这里的容量是指FLASH的大小.判断方法如下:

小容量:FLASH≤32K

中容量:64K≤FLASH≤128K

大容量:256K≤FLASH

;******************** (C) COPYRIGHT 2011 STMicroelectronics ******************** ;* File Name : startup_stm32f10x_hd.s

;* Author : MCD Application Team

;* Version : V3.5.0

;* Date : 11-March-2011

;* Description : STM32F10x High Density Devices vector table for MDK-ARM ;* toolchain.

;* This module performs:

;* - Set the initial SP

;* - Set the initial PC == Reset_Handler

;* - Set the vector table entries with the exceptions ISR address

;* - Configure the clock system and also configure the external

;* SRAM mounted on STM3210E-EVAL board to be used as data ;* memory (optional, to be enabled by user)

;* - Branches to __main in the C library (which eventually

;* calls main()).

;* After Reset the CortexM3 processor is in Thread mode,

;* priority is Privileged, and the Stack is set to Main.

;* 说明: 此文件为STM32F10x高密度设备的MDK工具链的启动文件

;* 该模块执行以下操作:

;* -设置初始堆栈指针(SP)

;* -设置初始程序计数器(PC)为复位向量,并在执行main函数前初始化系统时钟

;* -设置向量表入口为异常事件的入口地址

;* -复位之后处理器为线程模式,优先级为特权级,堆栈设置为MSP主堆栈;* <<< Use Configuration Wizard in Context Menu >>>

; 首先对栈和堆的大小进行定义,并在代码区的起始处建立中断向量表,其第一个表项是栈; 顶地址,第二个表项是复位中断服务入口地址。然后在复位中断服务程序中跳

转??C/C++标

; 准实时库的__main函数。假设STM32被设置为从内部FLASH启动中断向量表起始地位为0x8000000,

; 则栈顶地址存放于0x8000000处,而复位中断服务入口地址存放于0x8000004处。当STM32遇

; 到复位信号后,则从0x80000004处取出复位中断服务入口地址继而执行复位中断服务程序,

; 然后跳转__main函数,最后来到C的世界。

; DCD指令:作用是开辟一段空间,其意义等价于C语言中的地址符“&”。开始建立的

中断向量

; 表则类似于使用C语.其每一个成员都是一个函数指针,分别指向各个中断服务函数

;伪指令AREA,表示开辟一段大小为Stack_Size的内存空间作为栈,段名是STACK,可读可写。

;NOINIT:指定此数据段仅仅保留了内存单元,而没有将各初始值写入内存单元,或者将各个内存单元值初始化为0

;*******************************************************************************

; THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS

; WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE TIME.

; AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY DIRECT,

; INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING FROM THE

; CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE CODING

; INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS. ;*******************************************************************************

; Amount of memory (in bytes) allocated for Stack

; Tailor this value to your application needs

; Stack Configuration

; Stack Size (in Bytes) <0x0-0xFFFFFFFF:8>

;

Stack_Size EQU 0x00000400 ;定义栈大小1024B

AREA STACK, NOINIT, READWRITE, ALIGN=3;###AREA 命令指示汇编器汇编一个新的代码段或数据段。

;段是独立的、指定的、不可见的代码或数据块,它们由链接器处理.

;段是独立的、命名的、不可分割的代码或数据序列。一个代码段是生成一个应用程序的最低要求

;默认情况下,ELF 段在四字节边界上对齐。expression 可以拥有 0 到 31 的任何整数。

;段在 2expression 字节边界上对齐

Stack_Mem SPACE Stack_Size ;### ;分配连续 Stack_Size 字节的存储单元并初始化为 0。

;堆栈段,未初始化,允许读写,8字节边界对齐

;说明: Cortex-M3的指令地址要求是字边界对齐

(4字节);但是代码段是8字节边界对齐的

__initial_sp ;###初始化堆栈指,标号__initial_sp表示指向堆栈顶.

; ###此处有个一个问题讨论,关于栈顶在RAM中所处位置问题,很多初学者一直以为是编译器特意放在HEAP段之后是有意为之,并且认为这样可以利用heap未分配空间来防止未知的栈溢出问题

; 这种理解是错误的,链接器并不会为栈的位置做特殊的处理,而且这样做也并不会利用heap段,在此文件的最后对堆栈的初始化代码中可以看出他们是两个互相独立的数据区。此处出现的现

; 象是因为MDK按数据段的字母顺序链接数据段的地址的,所以此处造成了堆的地址在栈的前面的假象,不要窃以为是有某种特殊的约定。

; Heap Configuration

; Heap Size (in Bytes) <0x0-0xFFFFFFFF:8>

;

Heap_Size EQU 0x00000200 ;定义堆的大小

AREA HEAP, NOINIT, READWRITE, ALIGN=3 ;堆段,malloc用的地方,不一定连续空间,未初始化,允许读写,堆数据段8字节边界对齐

__heap_base ;表示堆空间起始地址

Heap_Mem SPACE Heap_Size ;分配堆空间

__heap_limit ;表示堆空间结束地址与__heap_base配合限制堆的大小

PRESERVE8 ;命令指定当前文件保持栈的八字节对齐

THUMB ;指令集,THUMB 必须位于使用新语法的任何Thumb代码之前

; EXPORT 命令声明一个符号,可由链接器用于解释各个目标和库文件中的符号引用,相当于声明了一个全局变量。 GLOBAL 于 EXPORT相同。

; 以下为向量表,在复位时被映射到FLASH的0地址

; Vector Table Mapped to Address 0 at Reset;实际上是在CODE区(假设STM32从FLASH启动,则此中断向量表起始地址即为0x8000000)

AREA RESET, DATA, READONLY ;定义一块数据段,只可读,段名字是

RESET,复位段,只包含数据,只读

EXPORT __Vectors ;标号输出,中断向量表开始;EXPORT在程序中声明一个全局的标号__Vectors,该标号可在其他的文件中引用

EXPORT __Vectors_End ;在程序中声明一个全局标号__Vectors_End

EXPORT __Vectors_Size ;在程序中声明一个全局号__Vectors_Size,中断

向量表大小

; DCD 命令分配一个或多个字的存储器,在四个字节的边界上对齐,并定义存储器的运行

时初值。

__Vectors ;建立中断表

DCD __initial_sp ; Top of Stack 栈顶指针,被放在向量表的开始,FLASH的0地址,复位后首先装载栈顶指针

DCD Reset_Handler ; Reset Handler 复位异常,装载完栈顶后,第一个执行的,并且不返回。

DCD NMI_Handler ; NMI Handler 不可屏蔽中断

DCD HardFault_Handler ; Hard Fault Handler 硬件错误中断

DCD MemManage_Handler ; MPU Fault Handler 内存管理错误中断

DCD BusFault_Handler ; Bus Fault Handler 总线错误中断,一般发生在数据访问异常,比如fsmc访问不当

DCD UsageFault_Handler ; Usage Fault Handler 用法错误中断,一般是预取值,或者位置指令,数据处理等错误

DCD 0 ; Reserved

DCD 0 ; Reserved

DCD 0 ; Reserved

DCD 0 ; Reserved

DCD SVC_Handler ; SVCall Handler 系统调用异常,主要是为了调用操作系统内核服务

DCD DebugMon_Handler ; Debug Monitor Handler 调试监视异常

DCD 0 ; Reserved

DCD PendSV_Handler ; PendSV Handler 挂起异常,此处可以看见用作了uCOS-II的上下文切换异常,这是被推荐使用的,

;因为Cortex-M3会在异常发生时自动保存R0-R3,R12,R13(堆栈指针SP),R14(链接地址,也叫返回地址LR,在异常返回时使用),

;R15(程序计数器PC,为当前应用程序+4)和中断完成时自动回复我们只需保存R4-

R11,大大减少了中断响应和上下文切换的时间。

;说明:此处涉及到一个中断保存寄存器问题:因为在所有的运行模式下,未分组寄存器都指向同一个物理寄存器,他们未被系统用作特殊的用途,

;因此,在中断或者异常处理进行模式转换时,由于不同模式(此处为"线程"和"特权")均使用相同的物理寄存器,可能会造成寄存器中数据的破坏,

;这也是常说的"关键代码段"和"l临界区"保护的原因。

DCD SysTick_Handler ; SysTick Handler 滴答定时器,为操作系统内核时钟

;DCD OS_CPU_PendSVHandler

;DCD OS_CPU_SysTickHandler

; External Interrupts ;以上都是Coretex M3内核自带的;以下为外部中断向量表

DCD WWDG_IRQHandler ; Window Watchdog

DCD PVD_IRQHandler ; PVD through EXTI Line detect

DCD TAMPER_IRQHandler ; Tamper

DCD RTC_IRQHandler ; RTC

DCD FLASH_IRQHandler ; Flash

DCD RCC_IRQHandler ; RCC

DCD EXTI0_IRQHandler ; EXTI Line 0

DCD EXTI1_IRQHandler ; EXTI Line 1

DCD EXTI2_IRQHandler ; EXTI Line 2

DCD EXTI3_IRQHandler ; EXTI Line 3

DCD EXTI4_IRQHandler ; EXTI Line 4

DCD DMA1_Channel1_IRQHandler ; DMA1 Channel 1

DCD DMA1_Channel2_IRQHandler ; DMA1 Channel 2

DCD DMA1_Channel3_IRQHandler ; DMA1 Channel 3

DCD DMA1_Channel4_IRQHandler ; DMA1 Channel 4

DCD DMA1_Channel5_IRQHandler ; DMA1 Channel 5

DCD DMA1_Channel6_IRQHandler ; DMA1 Channel 6

DCD DMA1_Channel7_IRQHandler ; DMA1 Channel 7

DCD ADC1_2_IRQHandler ; ADC1 & ADC2

DCD USB_HP_CAN1_TX_IRQHandler ; USB High Priority or CAN1 TX DCD USB_LP_CAN1_RX0_IRQHandler ; USB Low Priority or CAN1 RX0 DCD CAN1_RX1_IRQHandler ; CAN1 RX1

DCD CAN1_SCE_IRQHandler ; CAN1 SCE

DCD EXTI9_5_IRQHandler ; EXTI Line 9..5

DCD TIM1_BRK_IRQHandler ; TIM1 Break

DCD TIM1_UP_IRQHandler ; TIM1 Update

DCD TIM1_CC_IRQHandler ; TIM1 Capture Compare

DCD TIM2_IRQHandler ; TIM2

DCD TIM3_IRQHandler ; TIM3

DCD TIM4_IRQHandler ; TIM4

DCD I2C1_EV_IRQHandler ; I2C1 Event

DCD I2C1_ER_IRQHandler ; I2C1 Error

DCD I2C2_EV_IRQHandler ; I2C2 Event

DCD I2C2_ER_IRQHandler ; I2C2 Error

DCD SPI1_IRQHandler ; SPI1

DCD SPI2_IRQHandler ; SPI2

DCD USART1_IRQHandler ; USART1

DCD USART2_IRQHandler ; USART2

DCD USART3_IRQHandler ; USART3

DCD EXTI15_10_IRQHandler ; EXTI Line 15..10

DCD RTCAlarm_IRQHandler ; RTC Alarm through EXTI Line DCD USBWakeUp_IRQHandler ; USB Wakeup from suspend DCD TIM8_BRK_IRQHandler ; TIM8 Break

DCD TIM8_UP_IRQHandler ; TIM8 Update

DCD TIM8_CC_IRQHandler ; TIM8 Capture Compare

DCD ADC3_IRQHandler ; ADC3

DCD FSMC_IRQHandler ; FSMC

DCD SDIO_IRQHandler ; SDIO

DCD TIM5_IRQHandler ; TIM5

DCD SPI3_IRQHandler ; SPI3

DCD UART4_IRQHandler ; UART4

DCD UART5_IRQHandler ; UART5

DCD TIM6_IRQHandler ; TIM6

DCD TIM7_IRQHandler ; TIM7

DCD DMA2_Channel1_IRQHandler ; DMA2 Channel1

DCD DMA2_Channel2_IRQHandler ; DMA2 Channel2

DCD DMA2_Channel3_IRQHandler ; DMA2 Channel3

DCD DMA2_Channel4_5_IRQHandler ; DMA2 Channel4 & Channel5 __Vectors_End ;向量表结束标志

__Vectors_Size EQU __Vectors_End - __Vectors ;计算向量表地址空间大小,得到向量表的大小,304个字节也就是0x130个字节

;|.text| 用于表示由 C 编译程序产生的代码段,或用于以某种方式与 C 库关联的代码段。

AREA |.text|, CODE, READONLY ;定义C编译器源代码的代码段,只读 ;定义一个代码段,可读,段名字是.text

; Reset handler

Reset_Handler PROC;利用PROC、ENDP这一对伪指令把程序段分为若干个过程,使程序的结构加清晰

EXPORT Reset_Handler ;此处表示弱定义,在外部没有定义该符号时导出该符号Reset_Handler

IMPORT __main ;IMPORT:伪指令用于通知编译器要使用的标号在其他的源文件中定义

;但要在当前源文件中引用,而且无论当前源文件是否引用该标号

;该标号均会被加入到当前源文件的符号表中

IMPORT SystemInit

LDR R0, =SystemInit ; 装载寄存器指令

BLX R0 ; 带链接的跳转,切换指令集

LDR R0, =__main ;__main为运行时库提供的函数;完成堆栈,堆的初始话等工作,会调用下面定义的__user_initial_stackheap

BX R0 ; 切换指令集,main函数不返回,跳到__main,进入C的世界 ENDP

; Dummy Exception Handlers (infinite loops which can be modified)

;WEAK声明其他的同名标号优先于该标号被引用,就是说如果外面声明了的话,;会调用外面的

NMI_Handler PROC

EXPORT NMI_Handler

B .

ENDP

HardFault_Handler\

PROC

EXPORT HardFault_Handler

B .

ENDP

MemManage_Handler\

PROC

EXPORT MemManage_Handler

ENDP

BusFault_Handler\

PROC

EXPORT BusFault_Handler B .

ENDP

UsageFault_Handler\

PROC

EXPORT UsageFault_Handler B .

ENDP

SVC_Handler PROC

EXPORT SVC_Handler

B .

ENDP

DebugMon_Handler\

PROC

EXPORT DebugMon_Handler

ENDP

PendSV_Handler PROC ;OS_CPU_PendSV_Handler PROC

EXPORT PendSV_Handler ; EXPORT OS_CPU_PendSV_Hand ler

B . ; B

ENDP ; ENDP

SysTick_Handler PROC ;OS_CPU_SysTick_Handler PROC

EXPORT SysTick_Handler ; EXPORT OS_CPU_SysTick_ Handler

B . ; B

ENDP ; ENDP

Default_Handler PROC

; 输出异常向量表标号,方便外部实现异常的具体功能,是弱定义的意思,如果外部定义了,优先执行外部定义,否则下面的函数定义

EXPORT WWDG_IRQHandler

EXPORT PVD_IRQHandler

EXPORT TAMPER_IRQHandler

EXPORT RTC_IRQHandler

EXPORT FLASH_IRQHandler

EXPORT RCC_IRQHandler

EXPORT EXTI0_IRQHandler

EXPORT EXTI1_IRQHandler

EXPORT EXTI2_IRQHandler

EXPORT EXTI3_IRQHandler

EXPORT EXTI4_IRQHandler

EXPORT DMA1_Channel1_IRQHandler EXPORT DMA1_Channel2_IRQHandler EXPORT DMA1_Channel3_IRQHandler EXPORT DMA1_Channel4_IRQHandler EXPORT DMA1_Channel5_IRQHandler EXPORT DMA1_Channel6_IRQHandler EXPORT DMA1_Channel7_IRQHandler EXPORT ADC1_2_IRQHandler

EXPORT USB_HP_CAN1_TX_IRQHandler EXPORT USB_LP_CAN1_RX0_IRQHandler EXPORT CAN1_RX1_IRQHandler

EXPORT EXTI9_5_IRQHandler

EXPORT TIM1_BRK_IRQHandler

EXPORT TIM1_UP_IRQHandler

EXPORT TIM1_TRG_COM_IRQHandler EXPORT TIM1_CC_IRQHandler

EXPORT TIM2_IRQHandler

EXPORT TIM3_IRQHandler

EXPORT TIM4_IRQHandler

EXPORT I2C1_EV_IRQHandler

EXPORT I2C1_ER_IRQHandler

EXPORT I2C2_EV_IRQHandler

EXPORT I2C2_ER_IRQHandler

EXPORT SPI1_IRQHandler

EXPORT SPI2_IRQHandler

EXPORT USART1_IRQHandler

EXPORT USART2_IRQHandler

EXPORT USART3_IRQHandler

EXPORT EXTI15_10_IRQHandler

EXPORT USBWakeUp_IRQHandler EXPORT TIM8_BRK_IRQHandler

EXPORT TIM8_UP_IRQHandler

EXPORT TIM8_TRG_COM_IRQHandler EXPORT TIM8_CC_IRQHandler

EXPORT ADC3_IRQHandler

EXPORT FSMC_IRQHandler

EXPORT SDIO_IRQHandler

EXPORT TIM5_IRQHandler

EXPORT SPI3_IRQHandler

EXPORT UART4_IRQHandler

EXPORT UART5_IRQHandler

EXPORT TIM6_IRQHandler

EXPORT TIM7_IRQHandler

EXPORT DMA2_Channel1_IRQHandler EXPORT DMA2_Channel2_IRQHandler EXPORT DMA2_Channel3_IRQHandler EXPORT DMA2_Channel4_5_IRQHandler

05_STM32F4通用定时器详细讲解精编版

STM32F4系列共有14个定时器,功能很强大。14个定时器分别为: 2个高级定时器:Timer1和Timer8 10个通用定时器:Timer2~timer5 和 timer9~timer14 2个基本定时器: timer6和timer7 本篇欲以通用定时器timer3为例,详细介绍定时器的各个方面,并对其PWM 功能做彻底的探讨。 Timer3是一个16位的定时器,有四个独立通道,分别对应着PA6 PA7 PB0 PB1 主要功能是:1输入捕获——测量脉冲长度。 2 输出波形——PWM 输出和单脉冲输出。 Timer3有4个时钟源: 1:内部时钟(CK_INT ),来自RCC 的TIMxCLK 2:外部时钟模式1:外部输入TI1FP1与TI2FP2 3:外部时钟模式2:外部触发输入TIMx_ETR ,仅适用于TIM2、TIM3、TIM4,TIM3,对应 着PD2引脚 4:内部触发输入:一个定时器触发另一个定时器。 时钟源可以通过TIMx_SMCR 相关位进行设置。这里我们使用内部时钟。 定时器挂在高速外设时钟APB1或低速外设时钟APB2上,时钟不超过内部高速时钟HCLK ,故当APBx_Prescaler 不为1时,定时器时钟为其2倍,当为1时,为了不超过HCLK ,定时器时钟等于HCLK 。 例如:我们一般配置系统时钟SYSCLK 为168MHz ,内部高速时钟 AHB=168Mhz ,APB1欲分频为4,(因为APB1最高时钟为42Mhz ),那么挂在APB1总线上的timer3时钟为84Mhz 。 《STM32F4xx 中文参考手册》的424~443页列出与通用定时器相关的寄存器一共20个, 以下列出与Timer3相关的寄存器及重要寄存器的简单介绍。 1 TIM3 控制寄存器 1 (TIM3_CR1) SYSCLK(最高 AHB_Prescaler APBx_Prescaler

STM32启动文件详解

STM32启动文件详解 (2012-07-28 11:22:34) 转载▼ 分类:STM32 标签: stm32 启动 在<>,用的是STM32F103RBT6,所有的例程都采用了一个叫STM32F10x.s的启动文件,里面定义了STM32的堆栈大小以及各种中断的名字及入口函数名称,还有启动相关的汇编代码。STM32F10x.s是MDK提供的启动代码,从其里面的内容看来,它只定义了3个串口,4个定时器。实际上STM32的系列产品有5个串口的型号,也只有有2个串口的型号,定时器也是,做多的有8个定时器。比如,如果你用的 STM32F103ZET6,而启动文件用的是STM32F10x.s的话,你可以正常使用串口1~3的中断,而串口4和5的中断,则无**常使用。又比如,你TIM1~4的中断可以正常使用,而5~8的,则无法使用。 而在固件库里出现3个文件 startup_stm32f10x_ld.s startup_stm32f10x_md.s startup_stm32f10x_hd.s 其中,ld.s适用于小容量产品;md.s适用于中等容量产品;hd适用于大容量产品; 这里的容量是指FLASH的大小.判断方法如下: 小容量:FLASH≤32K 中容量:64K≤FLASH≤128K 大容量:256K≤FLASH ;******************** (C) COPYRIGHT 2011 STMicroelectronics ******************** ;* File Name : startup_stm32f10x_hd.s ;* Author : MCD Application Team ;* Version : V3.5.0 ;* Date : 11-March-2011 ;* Description : STM32F10x High Density Devices vector table for MDK-ARM ;* toolchain. ;* This module performs: ;* - Set the initial SP ;* - Set the initial PC == Reset_Handler ;* - Set the vector table entries with the exceptions ISR address ;* - Configure the clock system and also configure the external ;* SRAM mounted on STM3210E-EVAL board to be used as data ;* memory (optional, to be enabled by user) ;* - Branches to __main in the C library (which eventually ;* calls main()). ;* After Reset the CortexM3 processor is in Thread mode,

Keil4 建立STM32工程详解

Keil4 建立STM32工程详解 1:安装mdk412,用注册机注册,这个过程不详细叙述了。 2:在本地某个路径下建立STM32工程文件夹,命名:my_STM32,并在my_STM32下建立rvmdk文件夹,并在rvmdk文件夹内建立 obj,list两个文件夹。 3: 打开Keil4. 4: 选择Project菜单->New uVision Project...,选择.../my_STM32/rvmdk文件夹的路径,并命名工程文件:my_STM32,回车 5:选择器件名称,见图1

图1 单击OK。 6:如图2所示:选择否,不添加Startup.s,以后自己添加。 图2 7:如图3,建立几个Group:startup(即将装入启动文件等),usr(即将装入应用程序文件),FWlib(即将装入库文件的.c文件),doc(即将装入说明文档)

图3 8:右键单击FWlib,Add Files to Group 'FWlib',选择库文件的路径下的src 文件内的所有文件,并点击Add,如图4所示:

图4 9:将cortexm3_macro.s,stm32f10x_vector.s,stm32f10x_it.c, stm32f10x_it.h,stm32f10x_conf.h,main.c,readme.txt拷贝到my_STM32文件夹内。 10:右键单击usr,Add Files to Group 'usr',选择main.c,stm32f10x_it.c,stm32f10x_it.h,stm32f10x_conf.h,并Add,如图5所示

STM32启动文件的选择及宏定义及芯片型号更改IAP总结(精)

STM32启动文件的选择及宏定义及芯片型号更改 IAP总结 startup_stm32f10x_cl.s 互联型的器件,STM32F105xx,STM32F107xx startup_stm32f10x_hd.s 大容量的STM32F101xx,STM32F102xx,STM32F103xx startup_stm32f10x_hd_vl.s 大容量的STM32F100xx startup_stm32f10x_ld.s 小容量的STM32F101xx,STM32F102xx,STM32F103xx startup_stm32f10x_ld_vl.s 小容量的STM32F100xx startup_stm32f10x_md.s 中容量的STM32F101xx,STM32F102xx,STM32F103xx startup_stm32f10x_md_vl.s 中容量的STM32F100xx startup_stm32f10x_xl.s FLASH在512K到1024K字节的STM32F101xx, STM32F102xx,STM32F103xx cl:互联型产品,stm32f105/107系列 vl:超值型产品,stm32f100系列 xl:超高密度产品,stm32f101/103系列 ld:低密度产品,FLASH小于64K md:中等密度产品,FLASH=64 or 128 hd:高密度产品,FLASH大于128 在KEIL下可以在项目的选项C/C++/PREPROMCESSOR symbols的Define栏里定义,比如STM32F10X_CL 也可以在STM32F10X.H里用宏定义 #if !defined (STM32F10X_LD && !defined (STM32F10X_LD_VL && !defined (STM32F10X_MD && !defined (STM32F10X_MD_VL && !defined (STM32F10X_HD && !defined (STM32F10X_XL && !defined (STM32F10X_CL #define STM32F10X_HD #endif

STM32通用定时器_15-1-6

通用定时器的相关配置 1、预装入(Preload) 预装入实际上是设置TIMx_ARR寄存器有没有缓冲,根据“The auto-reload register is preloaded。Writing to or reading from the auto-reload register accesses the preload register。”可知: 1)如果预装入允许,则对自动重装寄存器的读写是对预装入寄存器的存取,自动重装寄存器的值在更新事件后更新; 2)如果预装入不允许,则对自动重装寄存器的读写是直接修改其本身,自动重装寄存器的值立刻更新; 3)设置方式:TIMx_CR1 →ARPE(1) 2、更新事件(UEV) 1)产生条件:①定时器溢出 ②TIMx_CR1→ UDIS = 0 ③或者:软件产生,TIMx_EGR→ UG = 1 2)更新事件产生后,所有寄存器都被“清零”,注意预分频器计数 器也被清零(但是预分频系数不变)。若在中心对称模式下或DIR=0(向上计数)则计数器被清零;若DIR=1(向下计数)则计数器取TIMx_ARR的值。 3)注意URS(复位为0)位的选择,如下:

如果是软件产生更新,则URS→1,这样就不会产生更新请求 和DMA请求。 4)更新标志位(UIF)根据URS的选择置位。 5)可以通过软件来失能更新事件: 3、计数器(Counter) 计数器由预分频器的输出时钟(CK_CNT)驱动,TIMx_CR1→CEN = 1 使能,注意:真正的计数使能信号(CNT_EN)在 CEN 置位后一个周期开始有效。 4、预分频器(Prescaler) 预分频器用来对时钟进行分频,分频值由TIMx_PSC决定,计数器的时钟频率CK_CNT= fCK_PSC / (PSC[15:0] + 1)。 根据“It can be changed on the fly as this control register

STM32固件库详解42324

STM32固件库详解 最近考试较多,教材编写暂停了一下,之前写了很多,只是每一章都感觉不是特别完整,最近把其中的部分内容贴出来一下,欢迎指正。本文内容基于我对固件库的理解,按照便于理解的顺序进行整理介绍,部分参考了固件库的说明,但是也基本上重新表述并按照我理解的顺序进行重新编写。我的目的很简单,很多人写教程只是告诉你怎么做,不会告诉你为什么这么做,我就尽量吧前因后果都说清楚,这是我的出发点,水平所限,难免有很大的局限性,具体不足欢迎指正。基于标准外设库的软件开发 STM32标准外设库概述 STM32标准外设库之前的版本也称固件函数库或简称固件库,是一个固件函数包,它由程序、数据结构和宏组成,包括了微控制器所有外设的性能特征。该函数库还包括每一个外设的驱动描述和应用实例,为开发者访问底层硬件提供了一个中间API,通过使用固件函数库,无需深入掌握底层硬件细节,开发者就可以轻松应用每一个外设。因此,使用固态函数库可以大大减少用户的程序编写时间,进而降低开发成本。每个外设驱动都由一组函数组成,这组函数覆盖了该外设所有功能。每个器件的开发都由一个通用API (application programming interface 应用编程界面)驱动,API对该驱动程序的结构,函数和参数名称都进行了标准化。

ST公司2007年10月发布了版本的固件库,MDK 之前的版本均支持该库。2008年6月发布了版的固件库,从2008年9月推出的MDK 版本至今均使用版本的固件库。以后的版本相对之前的版本改动较大,本书使用目前较新的版本。 使用标准外设库开发的优势 简单的说,使用标准外设库进行开发最大的优势就在于可以使开发者不用深入了解底层硬件细节就可以灵活规范的使用每一个外设。标准外设库覆盖了从GPIO到定时器,再到CAN、I2C、SPI、UART和ADC 等等的所有标准外设。对应的C源代码只是用了最基本的C编程的知识,所有代码经过严格测试,易于理解和使用,并且配有完整的文档,非常方便进行二次开发和应用。 STM32F10XXX标准外设库结构与文件描述 1. 标准外设库的文件结构 在上一小节中已经介绍了使用标准外设库的开发的优势,因此对标准外设库的熟悉程度直接影响到程序的编写,下面让我们来认识一下STM32F10XXX的标准外设库。STM32F10XXX的标准外设库经历众多的更新目前已经更新到最新的版本,开发环境中自带的标准外设库为版本,本书中以比较稳定而且较新的版本为基础介绍标准外设库的结构。

stm32定时器的区别

STM32高级定时器、通用定时器(TIMx) 、基本定时器(TIM6和TIM7) 区别? 高级定时器TIM1和TIM8、通用定时器(TIM2,TIM3,TIM4,TIM5) 、基本定时器(TIM6和TIM7) 区别? TIM1和TIM8主要特性TIM1和TIM8定时器的功能包括: ● 16位向上、向下、向上/下自动装载计数器 ● 16位可编程(可以实时修改)预分频器,计数器时钟频率的分频系数为1~65535之间的任意数值 ● 多达4个独立通道:─ 输入捕获─ 输出比较─ PWM生成(边缘或中间对齐模式) ─ 单脉冲模式输出 ● 死区时间可编程的互补输出 ● 使用外部信号控制定时器和定时器互联的同步电路 ● 允许在指定数目的计数器周期之后更新定时器寄存器的重复计数器 ● 刹车输入信号可以将定时器输出信号置于复位状态或者一个已知状态 ● 如下事件发生时产生中断/DMA:─ 更新:计数器向上溢出/向下溢出,计数器初始化(通过软件或者内部/外部触发) ─ 触发事件(计数器启动、停止、初始化或者由内部/外部触发计数) ─ 输入捕获─ 输出比较─ 刹车信号输入 ● 支持针对定位的增量(正交)编码器和霍尔传感器电路 ● 触发输入作为外部时钟或者按周期的电流管理 TIMx主要功能通用TIMx (TIM2、TIM3、TIM4和TIM5)定时器功能包括: ● 16位向上、向下、向上/向下自动装载计数器 ● 16位可编程(可以实时修改)预分频器,计数器时钟频率的分频系数为1~65536之间的任意数值 ● 4个独立通道:─ 输入捕获─ 输出比较─ PWM生成(边缘或中间对齐模式) ─ 单脉冲模式输出 ● 使用外部信号控制定时器和定时器互连的同步电路 ● 如下事件发生时产生中断/DMA:─ 更新:计数器向上溢出/向下溢出,计数器初始化(通过软件或者内部/外部触发) ─ 触发事件(计数器启动、停止、初始化或者由内部/外部触发计数) ─ 输入捕获─ 输出比较 ● 支持针对定位的增量(正交)编码器和霍尔传感器电路 ● 触发输入作为外部时钟或者按周期的电流管理 TIM6和TIM7的主要特性TIM6和TIM7定时器的主要功能包括: ● 16位自动重装载累加计数器 ● 16位可编程(可实时修改)预分频器,用于对输入的时钟按系数为1~65536之间的任意数值分频 ● 触发DAC的同步电路注:此项是TIM6/7独有功能. ● 在更新事件(计数器溢出)时产生中断/DMA请求 强大,高级定时器应该是用于电机控制方面的吧

STM32学习笔记通用定时器PWM输出

STM32学习笔记(5):通用定时器PWM输出 2011年3月30日TIMER输出PWM 1.TIMER输出PWM基本概念 脉冲宽度调制(PWM),是英文“Pulse Width Modulation”的缩写,简称脉宽调制,是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术。简单一点,就是对脉冲宽度的控制。一般用来控制步进电机的速度等等。 STM32的定时器除了TIM6和TIM7之外,其他的定时器都可以用来产生PWM输出,其中高级定时器TIM1和TIM8可以同时产生7路的PWM输出,而通用定时器也能同时产生4路的PWM输出。 1.1PWM输出模式 STM32的PWM输出有两种模式,模式1和模式2,由TIMx_CCMRx寄存器中的OCxM位确定的(“110”为模式1,“111”为模式2)。模式1和模式2的区别如下: 110:PWM模式1-在向上计数时,一旦TIMx_CNTTIMx_CCR1时通道1为无效电平(OC1REF=0),否则为有效电平(OC1REF=1)。 111:PWM模式2-在向上计数时,一旦TIMx_CNTTIMx_CCR1时通道1为有效电平,否则为无效电平。 由此看来,模式1和模式2正好互补,互为相反,所以在运用起来差别也并不太大。 而从计数模式上来看,PWM也和TIMx在作定时器时一样,也有向上计数模式、向下计数模式和中心对齐模式,关于3种模式的具体资料,可以查看《STM32参考手册》的“14.3.9 PWM模式”一节,在此就不详细赘述了。 1.2PWM输出管脚 PWM的输出管脚是确定好的,具体的引脚功能可以查看《STM32参考手册》的“8.3.7 定时器复用功能重映射”一节。在此需要强调的是,不同的TIMx有分配不同的引脚,但是考虑到管脚复用功能,STM32提出了一个重映像的概念,就是说通过设置某一些相关的寄存器,来使得在其他非原始指定的管脚上也能输出PWM。但是这些重映像的管脚也是由参考手册给出的。比如

STM32F10x 启动代码文件选择

startup_stm32f10x_xx.s 启动代码文件选择startup_stm32f10x_cl.s 互联型的器件,STM32F105xx,STM32F107xx startup_stm32f10x_hd.s 大容量的STM32F101xx,STM32F102xx,STM32F103xx startup_stm32f10x_hd_vl.s 大容量的STM32F100xx startup_stm32f10x_ld.s 小容量的STM32F101xx,STM32F102xx,STM32F103xx startup_stm32f10x_ld_vl.s 小容量的STM32F100xx startup_stm32f10x_md.s 中容量的STM32F101xx,STM32F102xx,STM32F103xx startup_stm32f10x_md_vl.s 中容量的STM32F100xx startup_stm32f10x_xl.s FLASH在512K到1024K字节的STM32F101xx,STM32F102xx,STM32F103xx 固件库中的Release_Notes_for_STM32F10x_CMSIS.html写到: STM32F10x CMSIS Startup files: startup_stm32f10x_xx.s Add new startup files for STM32 Low-density Value line devices: startup_stm32f10x_ld_vl.s Add new startup files for STM32 Medium-density Value line devices: startup_stm32f10x_md_vl.s SystemInit() function is called from startup file (startup_stm32f10x_xx.s) before to branch to applic ation main. To reconfigure the default setting of SystemInit() function, refer to system_stm32f10x.c file GNU startup file for Low density devices (startup_stm32f10x_ld.s) is updated to fix compilation err ors. 例如我用STM32F103RB,那么选启动文件为startup_stm32f10x_md.s

用STM32一步一步点亮led灯

STM32之一步一步点亮led (2011-05-09 19:40) 标签: stm32led v3.4MDK 4.12入门分类:stm32 入手stm32以来,一直想快速上手,所以在各大论坛闲逛,各个达人的blog 上学习,正所谓欲速则不达,心急是吃不了热豆腐的!有木有? 最终决定使用st官网的库开发,据大侠们写道使用库可以快速上手,貌似的确如此,一个个教程写的那么好,直接拿过来用就是了。可是那么多个库,聪明的你请告诉到底选择哪一个啊?My God!实话实说,我被这些库折腾了个够!好吧,我最后还是承认最后用的是v3.4的库,是很方便! 切入正题,点亮LED。 硬件:红牛开发板,STM32F103ZET6(144封装). 软件:RealView MDK 4.12 stm32固件库:v3.4 附上自己整理后的库: V3.4_clean.rar 根据官网库自己整理了下,新建了工程模板如下图:(主要参考文章《在 Keil MDK+环境下使用STM32 V3.4库.pdf》)在KeilMDK+环境下使用STM32V3.4库.pdf 入图所示:新建一个目录01_ProLed,建议放在英文路径下,避免不必要的麻烦。将上面的库v3.4解压到此目录,再新建一个project目录,存放工程。 说明: CMSIS:最底层接口。StartUp:系统启动文件。StdPeriph_Lib:stm32外围设

备驱动文件。Project:工程文件。User:用户文件。新建工程步骤:此处略去300字。 简单说明: 1.core_cm3.c/core_cm3.h 该文件是内核访问层的源文件和头文件,查看其中的代码多半是使用汇编语言编写的。在线不甚了解。--摘自《在Keil MDK+环境下使用STM32 V3.4库》 2.stm32f10x.h 该文件是外设访问层的头文件,该文件是最重要的头文件之一。就像51里面的reg51.h一样。例如定义了 CPU是哪种容量的 CPU,中断向量等等。除了这些该头文件还定义了和外设寄存器相关的结构体,例如: 1.typedef struct

STM32启动概述

STM32启动代码概述 一般嵌入式开发流程就是先建立一个工程,再编写源文件,然后进行编译,把所有的*.s文件和*.c文件编译成一个*.o文件,再对目标文件进行链接和定位,编译成功后会生成一个*.hex文件和调试文件,接下来要进行调试,如果成功的话,就可以将它固化到flash里面去。 启动代码是用来初始化电路以及用来为高级语言写的软件作好运行前准备的一小段汇编语言,是任何处理器上电复位时的程序运行入口点。 比如,刚上电的过程中,PC机会对系统的一个运行频率进行锁定在一个固定的值,这个设计频率的过程就是在汇编源代码中进行的,也就是在启动代码中进行的。与此同时,设置完后,程序开始运行,注意,程序是在内存中运行的。这个时候,就需要把一些源文件从flash里面copy到内存中,又要对它们进行初始化读写,这又有频率的设置。这些都是初始化。 初始化完成后,我们又要设置一些堆栈,要跳到C语言的main函数里面运行。这就需要堆栈。对普通的ARM CPU有这样一个要求:在绝对地址为零的地方要放置一个异常向量表,但并不是所有的ARM CPU都留有这个一个空间,这就需要用到映射的功能。我们可以将其它地方的一些空间映射到绝对地址里面。当发生异常时,ARM核来读取异常中断表的时候,它会使用映射之后的那个表,这个就可以接着往下执行,否则在绝对地址零的地方找不到任何信息,程序就会死掉。这些运行的环境全部建立好后,程序就会跳转到我们的main函数里面。 总之,启动代码,就是对最小系统的初始化。包括晶振,CPU频率等。 启动代码的最小系统是:异常向量表的初始化–存储区分配–初始化堆栈–高级语言入口函数调用– main()函数。 程序的启动过程:

STM32_V3.5的固件库工程模板

准备工作如下: 1:下载STM32_V3.5的固件库去论坛上找,很多 2:准备Keil uVision4 软件,并安装到电脑上。 3:不要带板凳了,带上你的脑袋就行,因为板凳不会思考。 开始: 1:首先解压缩下载的固件库(保留一个备份,你懂的) 里面有, _htmresc : ST的 logo完全无用,不用理会, Libraries:比较重要的文件包含STM32的系统文件和大量头文件,也就是库文件了。 Project:包含大量外设的例程,和各个软件版本的评估版工程模板。 KEIL对应的就是 MDK-ARM 文件下的工程模板。你也可以利用这个工程模板来修改,得到你自己的工程模块,本文不用此法。 Utilities:就是评估版的相关文件:本文也不会用到,无视既可。 这四个文件,(先去掉文件的只读属性吧,相信你会的) 2:安照一般的方法,建立工程模板先建立一些文件夹,比如工程模板要建在D盘,下面的 D:\STM32\PRO1(项目名字,自己随便定)再该文件夹下面新建以下文件夹 Libraries:直接复制上述的的Libraries文件夹,把其中的CMSIS剪切出来,放到PRO1目录下,直接成为另一个文件夹。另外把STM32F10x_StdPeriph_Driver下的inc和src文件夹剪切出来,放在Libraries目录下,STM32F10x_StdPeriph_Driver文件夹就可以删除了。会发现里面就只剩下头文件了。 CMSIS:就是从上面粘贴来的。在CMSIS\CM3\DeviceSupport\ST\STM32F10x目录下直接将Sta rtu p文件剪切出来,放在Libraries目录下,其他的不需要动。里面存放的就是重要的系统文件,先不要理会是什么作用吧,慢慢就明白了。 Startup 就是从上面粘贴来的。我们要用的比如是:STM32F103VC,只要把startup\arm目录下的startup_stm32f10x_hd.s文件剪切出来,放到Startup 下面就好。Startup只要这个文件,

stm32启动文件详解

STM32启动文件详解 一、启动文件的作用 1.初始化堆栈指针SP; 2.初始化程序计数器指针PC; 3.设置堆、栈的大小; 4.设置异常向量表的入口地址; 5.配置外部SRAM作为数据存储器(这个由用户配置,一般的开发板可没有外部SRAM); 6.设置C库的分支入口__main(最终用来调用main函数); 7.在版的启动文件还调用了在文件中的SystemIni()函数配置系统时钟。

二、汇编指令

三、启动代码 ----- 栈 Stack_Size EQU 0x00000400 ; 栈的大小 AREA STACK, NOINIT, READWRITE,ALIGN=3 Stack_Mem SPACE Stack_Size ; 分配栈空间 __initial_sp ; 栈的结束地址(栈顶地址) 分配名为STACK,不初始化,可读可写,8(2^3)字节对齐的1KB空间。 栈:局部变量,函数形参等。栈的大小不能超过内部SRAM大小。 AREA:汇编一个新的代码段或者数据段。STACK段名,任意命名;NOINIT表示不初始化;READWRITE可读可写;ALIGN=3(2^3= 8字节对齐)。 __initial_sp紧挨了SPACE放置,表示栈的结束地址,栈是从高往低生长,结束地址就是栈顶地址。

----- 堆 Heap_Size EQU 0x00000200 ; 堆的大小(512Bytes) AREA HEAP, NOINIT, READWRITE,ALIGN=3 __heap_base ; 堆的起始地址 Heap_Mem SPACE Heap_Size ; 分配堆空间 __heap_limit ; 堆的结束地址 分配名为HEAP,不初始化,可读可写,8(2^3)字节对齐的512字节空间。__heap_base堆的起始地址,__heap_limit堆的结束地址。堆由低向高生长。动态分配内存用到堆。 PRESERVE8 -- 指定当前文件的堆/栈按照8 字节对齐。 THUMB-- 表示后面指令兼容THUMB 指令。THUBM 是ARM 以前的指令集,16bit;现在Cortex-M 系列的都使用THUMB-2 指令集,THUMB-2 是32 位的,兼容16 位和32 位的指令,是THUMB 的超级。 3.向量表 AREA RESET, DATA, READONLY EXPORT __Vectors E XPORT __Vectors_End E XPORT __Vectors_Size 定义一个名为RESET,可读的数据段。并声明__Vectors、__Vectors_End 和__Vectors_Size 这三个标号可被外部的文件使用。 __Vectors DCD __initial_sp ; Top of Stack DCD Reset_Handler ; Reset Handler

STM32入门篇之通用定时器彻底研究

STM32入门篇之通用定时器彻底研究 STM32的定时器功能很强大,学习起来也很费劲儿,本人在这卡了5天才算看明白。写下下面的文字送给后来者,希望能带给你点启发。在此声明,本人也是刚入门,接触STM32不足10天,所以有失误的地方请以手册为准,欢迎大家拍砖。 其实手册讲的还是挺全面的,只是无奈TIMER的功能太复杂,所以显得手册很难懂,我就是通过这样看手册:while(!SUCCESS){看手册…}才搞明白的!所以接下来我以手册的顺序为主线,增加一些自己的理解,并通过11个例程对TIMER 做个剖析。实验环境是STM103V100的实验板,MDK3.2 +Library2.东西都不怎么新,凑合用…… TIMER主要是由三部分组成: 1、时基单元。 2、输入捕获。 3、输出比较。 还有两种模式控制功能:从模式控制和主模式控制。 一、框图 让我们看下手册,一开始是定时器的框图,这里面几乎包含了所有定时器的信息,您要是能看明白,那么接下来就不用再看别的了… 为了方便的看图,我对里面出现的名词和符号做个注解: TIMx_ETR:TIMER外部触发引脚ETR:外部触发输入 ETRP:分频后的外部触发输入ETRF:滤波后的外部触发输入 ITRx:内部触发x(由另外的定时器触发) TI1F_ED:TI1的边沿检测器。 TI1FP1/2:滤波后定时器1/2的输入 TRGI:触发输入TRGO:触发输出 CK_PSC:应该叫分频器时钟输入 CK_CNT:定时器时钟。(定时周期的计算就靠它) TIMx_CHx:TIMER的输入脚TIx:应该叫做定时器输入信号x

ICx:输入比较x ICxPS:分频后的ICx OCx:输出捕获x OCxREF:输出参考信号 关于框图还有以下几点要注意: 1、影子寄存器。 有阴影的寄存器,表示在物理上这个寄存器对应2个寄存器,一个是程序员可以写入或读出的寄存器,称为preload register(预装 载寄存器),另一个是程序员看不见的、但在操作中真正起作用的寄存 器,称为shadow register(影子寄存器);(详细请参考版主博客 https://www.docsj.com/doc/9c5904172.html,/STM32/401461/message.aspx) 2、输入滤波机制 在ETR何TIx输入端有个输入滤波器,它的作用是以采样频率 Fdts来采样N次进行滤波的。(具体也请参考版主博客 https://www.docsj.com/doc/9c5904172.html,/STM32/263170/message.aspx ) 3、输入引脚和输出引脚是相同的。 二、时基单元 时基单元有三个部分:CNT、PSC、ARR。CNT的计数方式分三种:向上、向下、中央对齐。通俗的说就是0—ARR、ARR—0、0—(ARR-1)—ARR—1. 三、时钟源的选择 这个是难点之一。从手册上我们看到共有三种时钟源: 1、内部时钟。 也就是选择CK_INT做时钟,这个简单,但是有一点要注意,定 时器的时钟不是直接来自APB1或APB2,而是来自于输入为

STM32启动过程分析

STM32启动 ARM7和ARM9启动时从绝对地址0X00000000开始执行复位中断程序,即固定了复位后的起始地址,但中断向量表的位置是可变的。 而STM32则不同,M3内核规定起始地址必须存放栈顶地址,第二个地址必须是复位中断向量的入口地址,这样CPU复位后会自动从下一个32位地址取出复位中断向量的入口地址,PC就跳转到中断服务程序,所以M3是固定了中断向量表的位置而地址是可变的。 M3的中断向量表有三个位置,通过BOOT引脚进行启动设置。 BOOT1=x BOOT0=0 从用户闪存启动,这是正常的工作模式。中断向量表定位于FLASH区,复位后PC=0x80000000. OOT1=0 BOOT0=1 从系统存储器启动(相当于厂家在存储器中固化了BOOTLOADER),这种模式启动的程序功能由厂家设置。 BOOT1=1 BOOT0=1 从内置SRAM启动,这种模式可以用于调试。这种模式下,中断向量表位于SRAM区,起始地址为0x20000000.复位为PC=0x20000000. startup_stm32f10x_XX.s 这个文件里面首先定义了复位中断(复位入口矢量被硬件固定在地址 0x0000_0004)的处理函数:Reset_Handler,它的作用就是将保存于flash中的初始化数据复制到sram中,调用上面说到的SystemInit来初始化时钟,接着跳转到main执行。 接着定义了Default_Handler,这个是作为其他所有中断的默认处理函数,作用就是死循环,所以你假如开启了某个中断,请按照这里面的中断函数名给它写中断处理函数,例如串口中断处理函数名是USART1_IRQHandler,你开了串口中断,如果不重写USART1_IRQHandler,就默认执行Default_Handler,死循环了。而如果你有重写,那么中断向量表中的处理函数的地址就会更新为你自己写的那个函数的地址了。为什么会这样呢?因为此文件的末尾用了类似这样的语句:.weak USART1_IRQHandler .thumb_set USART1_IRQHandler,Default_Handler 它给中断处理函数提供了弱(weak)别名(Default_Handler),如果不重写,中断了默认执行Default_Handler,如果重写了,因为是弱别名,所以会被你写的同名函数覆盖。 在中断向量表中第一个存放的是复位中断向量,STM32MDK环境中 Reset_Handler PROC EXPORT Reset_Handler [WEAK] IMPORT __main IMPORT SystemInit LDR R0, =SystemInit BLX R0 LDR R0, =__main BX R0

STM32通用定时器

STM32通用定时器 一、定时器的基础知识 三种STM32定时器区别 通用定时器功能特点描述: STM3 的通用 TIMx (TIM2、TIM3、TIM4 和 TIM5)定时器功能特点包括: 位于低速的APB1总线上(APB1) 16 位向上、向下、向上/向下(中心对齐)计数模式,自动装载计数器(TIMx_CNT)。 16 位可编程(可以实时修改)预分频器(TIMx_PSC),计数器时钟频率的分频系数 为 1~65535 之间的任意数值。 4 个独立通道(TIMx_CH1~4),这些通道可以用来作为: ①输入捕获 ②输出比较 ③ PWM 生成(边缘或中间对齐模式) ④单脉冲模式输出 可使用外部信号(TIMx_ETR)控制定时器和定时器互连(可以用 1 个定时器控制另外一个定时器)的同步电路。 如下事件发生时产生中断/DMA(6个独立的IRQ/DMA请求生成器): ①更新:计数器向上溢出/向下溢出,计数器初始化(通过软件或者内部/外部触发) ②触发事件(计数器启动、停止、初始化或者由内部/外部触发计数) ③输入捕获 ④输出比较 ⑤支持针对定位的增量(正交)编码器和霍尔传感器电路 ⑥触发输入作为外部时钟或者按周期的电流管理 STM32 的通用定时器可以被用于:测量输入信号的脉冲长度(输入捕获)或者产生输出波形(输出比较和 PWM)等。 使用定时器预分频器和 RCC 时钟控制器预分频器,脉冲长度和波形周期可以在几个微秒到几个毫秒间调整。 STM32 的每个通用定时器都是完全独立的,没有互相共享的任何资源。 定时器框图:

倍频得到),外部时钟引脚,可以通过查看数据手册。也可以是TIMx_CHn,此时主要是实现捕获功能; 框图中间的时基单元 框图下面左右两部分分别是捕获输入模式和比较输出模式的框图,两者用的是同一引脚,不能同时使用。

STM32之启动文件详细解析(V3.5.0)讲解

在<>,用的是STM32F103RBT6,所有的例程都采用了一个叫STM32F10x.s的启动文件,里面定义了STM32的堆栈大小以及各种中断的名字及入口函数名称,还有启动相关的汇编代码。STM32F10x.s是MDK提供的启动代码,从其里面的内容看来,它只定义了3个串口,4个定时器。实际上STM32的系列产品有5个串口的型号,也只有有2个串口的型号,定时器也是,做多的有8个定时器。比如,如果你用的STM32F103ZET6,而启动文件用的是STM32F10x.s的话,你可以正常使用串口1~3的中断,而串口4和5的中断,则无**常使用。又比如,你TIM1~4的中断可以正常使用,而5~8的,则无法使用。 而在固件库里出现3个文件 startup_stm32f10x_ld.s startup_stm32f10x_md.s startup_stm32f10x_hd.s 其中,ld.s适用于小容量产品;md.s适用于中等容量产品;hd适用于大容量产品; 这里的容量是指FLASH的大小.判断方法如下: 小容量:FLASH≤32K 中容量:64K≤FLASH≤128K 大容量:256K≤FLASH ;******************** (C) COPYRIGHT 2011 STMicroelectronics ******************** ;* File Name : startup_stm32f10x_hd.s ;* Author : MCD Application Team ;* Version : V3.5.0 ;* Date : 11-March-2011 ;* Description : STM32F10x High Density Devices vector table for MDK-ARM ;* toolchain. ;* This module performs: ;* - Set the initial SP ;* - Set the initial PC == Reset_Handler ;* - Set the vector table entries with the exceptions ISR address ;* - Configure the clock system and also configure the external ;* SRAM mounted on STM3210E-EVAL board to be used as data ;* memory (optional, to be enabled by user) ;* - Branches to __main in the C library (which eventually ;* calls main()). ;* After Reset the CortexM3 processor is in Thread mode, ;* priority is Privileged, and the Stack is set to Main. ;* 说明: 此文件为STM32F10x高密度设备的MDK工具链的启动文件 ;* 该模块执行以下操作: ;* -设置初始堆栈指针(SP)

STM32入门C语言详解精编版

阅读flash:芯片内部存储器flash操作函数我的理解——对芯片内部flash进行操作的函数,包括读取,状态,擦除,写入等等,可以允许程序去操作flash上的数据。 基础应用1,FLASH时序延迟几个周期,等待总线同步操作。推荐按照单片机系统运行频率,0—24MHz时,取Latency=0;24—48MHz时,取Latency=1;48~72MHz时,取Latency=2。 所有程序中必须的 用法:FLASH_SetLatency(FLASH_Latency_2); 位置:RCC初始化子函数里面,时钟起振之后。 基础应用2,开启FLASH预读缓冲功能,加速FLASH的读取。 所有程序中必须的 用法:FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable); 位置:RCC初始化子函数里面,时钟起振之后。 3、阅读lib:调试所有外设初始化的函数。 我的理解——不理解,也不需要理解。只要知道所有外设在调试的时候,EWRAM需要从这个函数里面获得调试所需信息的地址或者指针之类的信息。 基础应用1,只有一个函数debug。所有程序中必须的。 用法:#ifdef DEBUG debug(); #endif 位置:main函数开头,声明变量之后。 4、阅读nvic:系统中断管理。 我的理解——管理系统内部的中断,负责打开和关闭中断。 基础应用1,中断的初始化函数,包括设置中断向量表位置,和开启所需的中断两部分。 所有程序中必须的。 用法:void NVIC_Configuration(void) { NVIC_InitTypeDef NVIC_InitStructure; //中断管理恢复默认参数 #ifdef VECT_TAB_RAM //如果C/C++ Compiler\Preprocessor\Defined symbols中的定义了 VECT_TAB_RAM(见程序库更改内容的表格) NVIC_SetVectorTable(NVIC_VectTab_RAM, 0x0); //则在RAM调试 #else //如果没有定义VECT_TAB_RAM NVIC_SetVectorTable(NVIC_VectTab_FLASH, 0x0);//则在Flash里调试 #endif //结束判断语句 //以下为中断的开启过程,不是所有程序必须的。 //NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); //设置NVIC优先级分组,方式。 //注:一共16个优先级,分为抢占式和响应式。两种优先级所占的数量由此代码确定, NVIC_PriorityGroup_x可以是0、1、2、3、4,分别代表抢占优先级有1、2、4、8、16个和响应优先级有16、8、4、2、1个。规定两种优先级的数量后,所有的中断级别必须在其中选择,抢占级别高的会打断其他中断优先执行,而响应级别高的会在其他中断执行完优先执行。 //NVIC_InitStructure.NVIC_IRQChannel = 中断通道名; //开中断,中断名称见函数库 //NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; //抢占优先级 //NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; //响应优先级

相关文档