文档视界 最新最全的文档下载
当前位置:文档视界 › 高中不等式例题(超全超经典)

高中不等式例题(超全超经典)

高中不等式例题(超全超经典)
高中不等式例题(超全超经典)

一.不等式的性质:

二.不等式大小比较的常用方法:

1.作差:作差后通过分解因式、配方等手段判断差的符号得出结果; 2.作商(常用于分数指数幂的代数式);3.分析法;4.平方法;5.分子(或分母)有理化; 6.利用函数的单调性;7.寻找中间量或放缩法 ;8.图象法。其中比较法(作差、作商)是最基本的方法。

三.重要不等式

1.(1)若R b a ∈,,则ab b a 22

2

≥+ (2)若R b a ∈,,则2

2

2b a ab +≤(当且仅当b a =时取“=”)

2. (1)若*,R b a ∈,则ab b a ≥+2

(2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”)

(3)若*

,R b a ∈,则2

2??

? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则1

2x x

+≥ (当且仅当1x =时取“=”

); 若0x <,则1

2x x

+

≤- (当且仅当1x =-时取“=”

) 若0>ab ,则2≥+a

b b

a (当且仅当

b a =时取“=”)

4.若R b a ∈,,则2

)2(222b a b a +≤

+(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求

它们的积的最小值,正所谓“积定和最小,和定积最大”.

(2)求最值的条件“一正,二定,三取等”

(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 2ab a +b ≤ab ≤ a +b 2 ≤ a 2+b 22 应用一:求最值

例1:求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1

x 解题技巧:

技巧一:凑项 例1:已知5

4x <,求函数14245

y x x =-+-的最大值。

评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。 技巧二:凑系数

例1. 当时,求(82)y x x =-的最大值。

技巧三: 分离 例3. 求2710

(1)1

x x y x x ++=

>-+的值域。 技巧四:换元

解析二:本题看似无法运用基本不等式,可先换元,令t =x +1,化简原式在分离求最值。

22(1)7(1+10544=5t t t t y t t t t

-+-++==++)

,即t =

时,4

259y t t

≥?

+=(当t =2即x =1时取“=”号)。 技巧五:注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数()a

f x x x

=+的单调性。例:求函数22

54

x y x +=

+的值域。

解:令24(2)x t t +=≥,则2

254

x y x +=+221

1

4(2)4x t t t x =++

=+≥+

因10,1t t t >?=,但1

t t =解得1t =±不在区间[)2,+∞,故等号不成立,考虑单调性。

因为1y t t =+在区间[)1,+∞单调递增,所以在其子区间[)2,+∞为单调递增函数,故5

2y ≥。

所以,所求函数的值域为5,2??

+∞????

2.已知01x <<,求函数(1)y x x =-的最大值.;3.2

03

x <<,求函数(23)y x x =-的最大值. 条件求最值

1.若实数满足2=+b a ,则b a 33+的最小值是 .

分析:“和”到“积”是一个缩小的过程,而且b a 33?定值,因此考虑利用均值定理求最小值, 解: b a 33和都是正数,b a 33+≥632332==?+b a b a

当b a 33=时等号成立,由2=+b a 及b a 33=得1==b a 即当1==b a 时,b a 33+的最小值是6. 变式:若44log log 2x y +=,求

11

x y

+的最小值.并求x ,y 的值 技巧六:整体代换:多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错。。

2:已知0,0x y >>,且19

1x y

+=,求x y +的最小值。

应用二:利用基本不等式证明不等式

1.已知c b a ,,为两两不相等的实数,求证:ca bc ab c b a ++>++2

2

2

1)正数a ,b ,c 满足a +b +c =1,求证:(1-a )(1-b )(1-c )≥8abc

例6:已知a 、b 、c R +∈,且1a b c ++=。求证:1111118a b c ??????

---≥ ???????????

分析:不等式右边数字8,使我们联想到左边因式分别使用基本不等式可得三个“2”连乘,又

1121a b c bc

a a a a

-+-==≥

,可由此变形入手。 解:Q a 、b 、c R +∈,1a b c ++=。∴

1121a b c bc a a a a -+-==≥

。同理121ac b b -≥,121ab

c c

-≥。上述三个不等式两边均为正,分别相乘,得

1112221118bc ac ab a b c a b c ??????---≥= ???????????

g g 。当且仅当13a b c ===时取等号。 应用三:基本不等式与恒成立问题

例:已知0,0x y >>且19

1x y

+=,求使不等式x y m +≥恒成立的实数m 的取值范围。

解:令,0,0,

x y k x y +=>>191x y +=,99 1.x y x y kx ky ++∴+=1091y x k kx ky

∴++= 103

12k k

∴-

≥? 。16k ∴≥ ,(],16m ∈-∞ 应用四:均值定理在比较大小中的应用:

例:若)2

lg(),lg (lg 21,lg lg ,1b

a R

b a Q b a P b a +=+=?=>>,则R Q P ,,的大小关系是 .

分析:∵1>>b a ∴0lg ,0lg >>b a 2

1

=Q (p b a b a =?>+lg lg )lg lg

Q ab ab b a R ==>+=lg 2

1lg )2lg( ∴R >Q

四.不等式的解法.

1.一元一次不等式的解法。

2.一元二次不等式的解法

3.简单的一元高次不等式的解法:标根法:其步骤是:(1)分解成若干个一次因式的积,并使每一

个因式中最高次项的系数为正;(2)将每一个一次因式的根标在数轴上,从最大根的右上方依次通过每一点画曲线;并注意奇穿过偶弹回;(3)根据曲线显现()f x 的符号变化规律,写出不等式的解集。如

(1)解不等式2(1)(2)0x x -+≥。

(答:{|1x x ≥或2}x =-);

(2)不等式2(2)230x x x ---≥的解集是____

(答:{|3x x ≥或1}x =-);

(3)设函数()f x 、()g x 的定义域都是R ,且()0f x ≥的解集为{|12}x x ≤<,()0g x ≥的解集为?,则不等式()()0f x g x >g 的解集为______

(答:(,1)[2,)-∞+∞U );

(4)要使满足关于x 的不等式0922<+-a x x (解集非空)的每一个x 的值至少满足不等式08603422<+-<+-x x x x 和中的一个,则实数a 的取值范围是______.

(答:81

[7,)8

4.分式不等式的解法:分式不等式的一般解题思路是先移项使右边为0,再通分并将分子分母分

解因式,并使每一个因式中最高次项的系数为正,最后用标根法求解。解分式不等式时,一般不能去分母,但分母恒为正或恒为负时可去分母。如

(1)解不等式25123

x

x x -<---

(答:(1,1)(2,3)-U ); (2)关于x 的不等式0>-b ax 的解集为),1(+∞,则关于x 的不等式

02

>-+x b

ax 的解集为____________

(答:),2()1,(+∞--∞Y ).

5.指数和对数不等式。 6.绝对值不等式的解法:

(1)含绝对值的不等式|x|<a 与|x|>a 的解集

(2)|ax+b|≤c(c >0)和|ax+b|≥c(c >0)型不等式的解法 ①|ax+b|≤c ?-c ≤ax+b ≤c;

②| ax+b|≥c ? ax+b ≥c 或ax+b ≤-c.

(3)|x-a|+|x-b|≥c(c >0)和|x-a|+|x-b|≤c(c >0)型不等式的解法 方法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想; 方法二:利用“零点分段法”求解,体现了分类讨论的思想;

方法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想。 方法四:两边平方。

例1:解下列不等式:2(1).2x x x -> 1

(2). -3<<2x

【解析】:(1)解法一(公式法)

原不等式等价于x2-2x>x 或x2-2x<-x 解得x>3或x<0或03﹜ 解法2(数形结合法)

作出示意图,易观察原不等式的解集为﹛x ︱x<0或03﹜

第(1)题图 第(2)题图

【解析】:此题若直接求解分式不等式组,略显复杂,且容易解答错误;若能结合反比例函数

图象,则解集为1|2x x ?

?>???

?1或x<-3,结果一目了然。

例2:解不等式:1

||x x

【解析】作出函数f(x)=|x|和函数g(x)=1

x 的

图象,

易知解集为01∞?∞(-,)[,+)

例3:

.|1||1|3

2x x +--≥

解不等式 。

【解法1】令

2(1)()|1||1|2(11)

2(1)x g x x x x x x -<-??

=+--=-≤≤??>?

()32h x =

,分别作出函数g(x)和h(x)

的图象,知原不等式的解集为

3

[,)4+∞

|1||1|3

2x x +≥

+-

【解法2】原不等式等价于

3

()|1|,()|1|2g x x h x x =+=-+

分别作出函数g(x)和h(x)的图象,易求出g (x )和h (x )的图象的交点坐标为37

(,)

44

所以不等式|1||1|3

2x x +--≥

的解集为3[,)4+∞

【解法3】 由

|1||1|3

2x x +--≥

的几何意义可设F1(-1,0),F2(1,0),M(x ,y ),

123

2MF MF -=

,可知M的轨迹是以F1、F2为焦点的双曲线的右支,其中右顶点为

(,0),由双曲线的图象和|x+1|-|x-1|

≥知x≥.

7.含参不等式的解法:求解的通法是“定义域为前提,函数增减性为基础,分类讨论是关键.”注意解完之后要写上:“综上,原不等式的解集是…”。注意:按参数讨论,最后应按参数取值分别说明其解集;但若按未知数讨论,最后应求并集. 如

(1)若2log 13a <,则a 的取值范围是__________(答:1a >或2

03

a <<);

(2)解不等式

2

()1

ax x a R ax >∈- (答:0a =时,{|x 0}x <;0a >时,1{|x x a >或0}x <;0a <时,1

{|0}x x a

<<或0}x <)

提醒:(1)解不等式是求不等式的解集,最后务必有集合的形式表示;(2)不等式解集的端点值往往是不等式对应方程的根或不等式有意义范围的端点值。如关于x 的不等式0>-b ax 的解

集为)1,(-∞,则不等式02

>+-b ax x 的解集为__________(答:

(-1,2)) 例2.(1)求函数13+--=x x y 的最大和最小值; (2)设R a ∈,函数())11(2≤≤--+=x a x ax x f . 若1≤a ,求()x f 的最大值

例3.两个施工队分别被安排在公路沿线的两个地点施工,这两个地点分别位于公路路牌的第10km 和第20km 处.现要在公路沿线建两个施工队的共同临时生活区,每个施工队每天在生活区和施工地点之间往返一次.要使两个施工队每天往返的路程之和最小,生活区应该建于何处?

七.证明不等式的方法:比较法、分析法、综合法和放缩法(比较法的步骤是:作差(商)后通过

分解因式、配方、通分等手段变形判断符号或与1的大小,然后作出结论。).

常用的放缩技巧有:21111111

1(1)(1)1n n n n n n n n n -

=<<=-++-- 111

11121k k k k k k k k k

+-=<<=-+++-+

如(1)已知c b a >>,求证:222222ca bc ab a c c b b a ++>++ ; (2) 已知R c b a ∈,,,求证:)(222222c b a abc a c c b b a ++≥++;

(3)已知,,,a b x y R +∈,且11

,x y a b

>>,求证:x y x a y b >++; (4)若a 、b 、c 是不全相等的正数,求证:lg lg lg lg lg lg 222a b b c c a

a b c +++++>++;

(5)已知R c b a ∈,,,求证:2222a b b c +22

()c a abc a b c +≥++;

(6)若*n N ∈,求证:2(1)1(1)n n ++-+<21n n +-;

(7)已知||||a b ≠,求证:||||||||

||||

a b a b a b a b -+≤-+;

(8)求证:222111

1223n

++++

八.不等式的恒成立,能成立,恰成立等问题:不等式恒成立问题的常规处理方式?(常应用函数

方程思想和“分离变量法”转化为最值问题,也可抓住所给不等式的结构特征,利用数形结合法)

1).恒成立问题

若不等式()A x f >在区间D 上恒成立,则等价于在区间D 上()min f x A >

若不等式()B x f <在区间D 上恒成立,则等价于在区间D 上()max f x B <

如(1)设实数,x y 满足22(1)1x y +-=,当0x y c ++≥时,c 的取值范围是______

(答:)

21,?-+∞?)

; (2)不等式a x x >-+-34对一切实数x 恒成立,求实数a 的取值范围_____

(答:1a <);

(3)若不等式)1(122->-x m x 对满足2≤m 的所有m 都成立,则x 的取值范围_____

(答:(

712-,31

2

+)); (4)若不等式n

a n n

1

)1(2)1(+-+<-对于任意正整数n 恒成立,则实数a 的取值范围是_____

(答:3

[2,)2

-);

(5)若不等式2

2210x mx m -++>对01x ≤≤的所有实数x 都成立,求m 的取值范围.

⑹若不等式

21

log ,(0,)

2a x x x <∈对恒成立,则实数a 的取值范围是 此题直接求解无从着手,结合函数

21

y y=log 0,2

a x x =及在()上的图象

易知,a 只需满足条件:

0<a <1,且

11log 24a

≥即可从而解得

1[,1)16a ∈

2). 能成立问题

若在区间D 上存在实数x 使不等式()A x f >成立,则等价于在区间D 上()max f x A >; 若在区间D 上存在实数x 使不等式()B x f <成立,则等价于在区间D 上的()min f x B <.如

已知不等式a x x <-+-34在实数集R 上的解集不是空集,求实数a 的取值范围____

(答:1a >)

3). 恰成立问题

若不等式()A x f >在区间D 上恰成立, 则等价于不等式()A x f >的解集为D ; 若不等式()B x f <在区间D 上恰成立, 则等价于不等式()B x f <的解集为D .

例:若不等变2

-2x -2ax+62≤≤恰有一解,求实数a 的值

引导分析:此题若解不等式组,就特别麻烦了。结合二次函数的图形就会容易得多。 图解:

由图象易知:a=2或者a=-2 九.线性规划

高一数学不等式解法例题.doc

典型例题一 例 1 解不等式:( 1)2x3 x2 15 x 0 ;(2) ( x 4)( x 5)2 (2 x)3 0 . 分析:如果多项式 f (x) 可分解为 n 个一次式的积,则一元高次不等式 f ( x) 0 (或f (x) 0 )可用“穿根法”求解,但要注意处理好有重根的情况. 解:( 1)原不等式可化为 x(2x 5)( x 3)0 把方程 x(2 x 5)( x 3) 0 的三个根 x1 0, x2 5 , x3 3顺次标上数轴.然后从右上2 开始画线顺次经过三个根,其解集如下图的阴影部分. ∴原不等式解集为x 5 0或 x 3 x 2 ( 2)原不等式等价于 ( x 4)( x 5)2 (x 2)3 0 x 5 0 x 5 (x 4)( x 2) 0 x 4或 x 2 ∴原不等式解集为x x 5或 5 x 4或x 2 说明:用“穿根法”解不等式时应注意:①各一次项中x 的系数必为正;②对于偶次或 奇次重根可转化为不含重根的不等式,也可直接用“穿根法”,但注意“奇穿偶不穿” ,其法如下图. 典型例题二 例 2 解下列分式不等式: ( 1) 3 1 2 ;(2) x2 4x 1 1 x 2 x 2 3x2 7x 2 分析:当分式不等式化为f (x) 0(或0) 时,要注意它的等价变形g( x)

① f ( x) f ( ) g ( ) 0 g( x) x x ② f ( x) f (x) g(x) f ( x) f ( x ) 0或 ( ) ( ) 0 或 g( x) g (x) 0 g (x) f x g x ( 1)解: 原不等式等价于 3 x 3 x 0 x 2 x 2 x 2 x 2 3( x 2) x( x 2) x 2 5x 6 ( x 2)( x 2) (x 2)( x 2) ( x 6)( x 1) 0 (x 6)( x 1)( x 2)(x 2) 0 ( x 2)( x 2) (x 2)( x 2) 0 用“穿根法” ∴原不等式解集为 ( , 2) 1,2 6, 。 ( 2)解法一 :原不等式等价于 2x 2 3x 1 0 3x 2 7x 2 (2x 2 3x 1)(3x 2 7 x 2) 0 2x 2 3x 1 0 2x 2 3x 1 3x 2 7x 2 或 3x 2 7x 2 1 或 1 x 或 x 2 x 2 1 3 ∴原不等式解集为 ( , 1 ) ( 1 ,1) (2, ) 。 3 2 解法二:原不等式等价于 ( 2x 1)( x 1) 0 (3x 1)( x 2) (2x 1)( x 1)(3x 1) (x 2) 0 用“穿根法” ∴原不等式解集为 ( , 1) ( 1 ,1) (2, ) 3 2 典型例题三 例 3 解不等式 x 2 4 x 2

高中不等式所有知识及典型例题(超全)

一.不等式的性质: 二.不等式大小比较的常用方法: 1.作差:作差后通过分解因式、配方等手段判断差的符号得出结果; 2.作商(常用于分数指数幂的代数式);3.分析法;4.平方法;5.分子(或分母)有理化; 6.利用函数的单调性;7.寻找中间量或放缩法 ;8.图象法。其中比较法(作差、作商)是最基本的方法。 三.重要不等式 1.(1)若R b a ∈,,则ab b a 22 2≥+ (2)若R b a ∈,,则2 22b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则1 2x x +≥ (当且仅当1x =时取“=”); 若0x <,则1 2x x + ≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2 (2 22b a b a +≤+(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求 它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 5.a 3+b 3+c 3≥3abc (a,b,c ∈ R +), a +b +c 3 ≥3abc (当且仅当a =b =c 时取等号); 6. 1 n (a 1+a 2+……+a n )≥12n n a a a (a i ∈ R +,i=1,2,…,n),当且仅当a 1=a 2=…=a n 取等号; 变式:a 2+b 2+c 2≥ab+bc+ca; ab ≤( a +b 2 )2 (a,b ∈ R +) ; abc ≤( a +b +c 3 )3(a,b,c ∈ R +) a ≤ 2a b a +b ≤ab ≤ a +b 2 ≤ a 2+b 2 2 ≤b.(0b>n>0,m>0; 应用一:求最值 例1:求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1 x

高中数学不等式解法15种典型例题

不等式解法15种典型例题 例1 解不等式:(1)01522 3>--x x x ;(2)0)2()5)(4(3 2 <-++x x x . 分析:如果多项式)(x f 可分解为n 个一次式的积,则一元高次不等式0)(>x f (或0)(-+x x x 把方程0)3)(52(=-+x x x 的三个根3,2 5,0321=-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分. ∴原不等式解集为? ?????><<- 3025x x x 或 (2)原不等式等价于 ?? ?>-<-≠????>-+≠+?>-++2 450)2)(4(050 )2()5)(4(32x x x x x x x x x 或 ∴原不等式解集为{} 2455>-<<--+-+-x x x x 2 12 1 310 2730 132027301320 )273)(132(2 22222><<+->+-?>+-+-?x x x x x x x x x x x x x x x 或或或∴原不等式解集为),2()1,21()31,(+∞??-∞。 解法二:原不等式等价于 0) 2)(13() 1)(12(>----x x x x 0)2()13)(1)(12(>-?---?x x x x 用“穿根法”∴原不等式解集为),2()1,2 1()31 ,(+∞??-∞ 典型例题三 例3 解不等式242+<-x x 分析:解此题的关键是去绝对值符号,而去绝对值符号有两种方法:一是根据绝对值的意义? ??<-≥=)0() 0(a a a a a 二是根据绝对值的性质:a x a x a x a a x >?<<-?<.,或a x -<,因此本题有如下两种解法. 解法一:原不等式?????+<-<-?????+<-≥-?2 40 4240422 22x x x x x x 或 即? ? ?>-<<<-???<<--≤≥1222222x x x x x x x 或或或 ∴32<≤x 或21<-+<-) 2(42 422x x x x ∴312132<<<-x x x x 故或. 典型例题四 例4 解不等式 04125 62 2<-++-x x x x . 分析:这是一个分式不等式,其左边是两个关于x 二次式的商,由商的符号法则,它等价于下列两个不等式组: ?????>-+<+-041205622x x x x 或?????<-+>+-0 4120 562 2x x x x 所以,原不等式的解集是上面两个不等式级的解集的并集.也可用数轴标根法求解.

(完整)高中数学不等式练习题

高中数学不等式练习题 一.选择题(共16小题) 1.若a>b>0,且ab=1,则下列不等式成立的是() A.a+<<log2(a+b))B.<log2(a+b)<a+ C.a+<log2(a+b)<D.log2(a+b))<a+< 2.设x、y、z为正数,且2x=3y=5z,则() A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z 3.若x,y满足,则x+2y的最大值为() A.1 B.3 C.5 D.9 4.设x,y满足约束条件,则z=2x+y的最小值是()A.﹣15 B.﹣9 C.1 D.9 5.已知x,y满足约束条件,则z=x+2y的最大值是()A.0 B.2 C.5 D.6 6.设x,y满足约束条件,则z=x+y的最大值为() A.0 B.1 C.2 D.3 7.设x,y满足约束条件则z=x﹣y的取值范围是()A.[﹣3,0]B.[﹣3,2]C.[0,2]D.[0,3] 8.已知变量x,y满足约束条件,则z=x﹣y的最小值为()A.﹣3 B.0 C.D.3

9.若变量x,y满足约束条件,则目标函数z=﹣2x+y的最大值为()A.1 B.﹣1 C.﹣ D.﹣3 10.若a,b∈R,且ab>0,则+的最小值是() A.1 B.C.2 D.2 11.已知0<c<1,a>b>1,下列不等式成立的是() A.c a>c b B.a c<b c C.D.log a c>log b c 12.已知x>0,y>0,lg2x+lg8y=lg2,则的最小值是() A.2 B.2 C.4 D.2 13.设a>0,b>2,且a+b=3,则的最小值是() A.6 B.C.D. 14.已知x,y∈R,x2+y2+xy=315,则x2+y2﹣xy的最小值是() A.35 B.105 C.140 D.210 15.设正实数x,y满足x>,y>1,不等式+≥m恒成立,则m的最大值为() A.2 B.4 C.8 D.16 16.已知两正数x,y 满足x+y=1,则z=的最小值为()A.B.C.D. 二.解答题(共10小题) 17.已知不等式|2x﹣3|<x与不等式x2﹣mx+n<0的解集相同. (Ⅰ)求m﹣n; (Ⅱ)若a、b、c∈(0,1),且ab+bc+ac=m﹣n,求a+b+c的最小值. 18.已知不等式x2﹣2x﹣3<0的解集为A,不等式x2+x﹣6<0的解集为B.(1)求A∩B;

(完整版)高中数学不等式习题及详细答案

第三章 不等式 一、选择题 1.已知x ≥2 5 ,则f (x )=4-25+4-2x x x 有( ). A .最大值45 B .最小值4 5 C .最大值1 D .最小值1 2.若x >0,y >0,则221+)(y x +221 +)(x y 的最小值是( ). A .3 B . 2 7 C .4 D . 2 9 3.设a >0,b >0 则下列不等式中不成立的是( ). A .a +b + ab 1≥22 B .(a +b )( a 1+b 1 )≥4 C 22 ≥a +b D . b a ab +2≥ab 4.已知奇函数f (x )在(0,+∞)上是增函数,且f (1)=0,则不等式x x f x f ) ()(--<0 的解集为( ). A .(-1,0)∪(1,+∞) B .(-∞,-1)∪(0,1) C .(-∞,-1)∪(1,+∞) D .(-1,0)∪(0,1) 5.当0<x <2 π时,函数f (x )=x x x 2sin sin 8+2cos +12的最小值为( ). A .2 B .32 C .4 D .34 6.若实数a ,b 满足a +b =2,则3a +3b 的最小值是( ). A .18 B .6 C .23 D .243 7.若不等式组?? ? ??4≤ 34 ≥ 30 ≥ y x y x x ++,所表示的平面区域被直线y =k x +34分为面积相等的两部分,则k 的值是( ). A . 7 3 B . 37 C . 43 D . 34 8.直线x +2y +3=0上的点P 在x -y =1的上方,且P 到直线2x +y -6=0的距离为

(完整版)高中不等式试题和答案

不等式 一、选择题: 1.不等式(1+x )(1-|x |)>0的解集是 A .{x |0≤x <1} B .{x |x <0且x ≠-1} C .{x |-1<x <1} D .{x |x <1且x ≠-1} 2.直角三角形ABC 的斜边AB =2,内切圆半径为r ,则r 的最大值是 A . 2 B .1 C . 22 D .2-1 3.给出下列三个命题 ①若1->≥b a ,则 b b a a +≥ +11 ②若正整数m 和n 满足n m ≤,则2 )(n m n m ≤ - ③设),(11y x P 为圆9:2 2 1=+y x O 上任一点,圆2O 以),(b a Q 为圆心且半径为1. 当1)()(2 12 1=-+-y b x a 时,圆1O 与圆2O 相切 其中假命题的个数为 A .0 B .1 C .2 D .3 4.不等式|2x -log 2x |<2x +|log 2x |的解集为 A .(1,2) B .(0,1) C .(1,+∞) D .(2,+∞) 5.如果x ,y 是实数,那么“xy <0”是“|x -y |=|x |+|y |”的 A .充分条件但不是必要条件 B .必要条件但不是充分条件 C .充要条件 D .非充分条件非必要条件 6.若a =ln22,b =ln33,c =ln5 5,则 A .a B .c b a ()-<0 C .c b a b 22 < D .0)(<-c a ac 8.设10<

高中基本不等式的十一类经典题型

高中基本不等式的十一类经典题型 类型一:基本不等式的直接运用 类型二:分式函数利用基本不等式求最值 类型三:分式与整式乘积构造的基本不等式 类型四:1的妙用 类型五:利用整式中和与积的关系来求最值 类型六:两次运用基本不等式的题型 类型七: 负数的基本不等式 类型八: 化成单变量形式☆ 类型九:与函数相结合 类型十: 判别式法 类型十一:构造 高考真题 10.已知a =()x f x a =,若实数m 、n 满足()()f m f n >,则m 、n 的大小关系为 ▲ . [解析] 考查指数函数的单调性. (0,1)a =,函数()x f x a =在R 上递减.由()()f m f n >得:m>y x y x 则xy 的最小值是 3 ,141,0,0=+>>y x y x 则y x +的最小值是 4已知x ,y 为正实数,且x 2+y 22 =1,求x 1+y 2 的最大值 5.如果函数f (x )=(m ﹣2)x 2+(n ﹣8)x +1(m ≥0,n ≥0)在区间[ ]上单调递减, 则mn 的最大值为 18 .

【解答】解:∵函数f (x )=(m ﹣2)x 2+(n ﹣8)x +1(m ≥0,n ≥0)在区间[,2]上单调递减, ∴f ′(x )≤0,即(m ﹣2)x +n ﹣8≤0在[,2]上恒成立. 而y=(m ﹣2)x +n ﹣8是一次函数,在[,2]上的图象是一条线段. 故只须在两个端点处f ′()≤0,f ′(2)≤0即可.即, 由②得m ≤(12﹣n ), ∴mn ≤n (12﹣n )≤=18, 当且仅当m=3,n=6时取得最大值,经检验m=3,n=6满足①和②. ∴mn 的最大值为18. 故答案为:18. 类型二、分式函数利用基本不等式求最值 1设1->x ,求函数1 )2)(5(+++=x x x y 的最值 2 已知1x >-,求2311 x x y x -+=+的最值及相应的x 的值 3 不等式13 22<+-x x 的解集为 类型三、分式与整式乘积构造的基本不等式 1 若c b a >>,求使 11k a b b c a c +≥---恒成立的k 的最大值. 2 若0,0>>b a 且11121=+++b b a ,求b a 2+的最小值 3 函数y =log a (x +3)-1 (a >0,a ≠1)的图象恒过点A ,若点A 在直线mx +ny +1=0上,其 中mn >0,则1m +2n 的最小值为________. 4. 设,1,1,,>>∈b a R y x 若,4,22=+==b a b a x x 则y x 12+的最大值为

高中数学基本不等式练习题

一.选择题 1.(2016?济南模拟)已知直线ax+by=1经过点(1,2),则2a+4b的最小值为()A. B.2C.4 D.4 2.(2016?乌鲁木齐模拟)已知x,y都是正数,且xy=1,则的最小值为() A.6 B.5 C.4 D.3 3.(2016?合肥二模)若a,b都是正数,则的最小值为() A.7 B.8 C.9 D.10 4.(2016?宜宾模拟)下列关于不等式的结论中正确的是() A.若a>b,则ac2>bc2 B.若a>b,则a2>b2 C.若a<b<0,则a2<ab<b2 D.若a<b<0,则> 5.(2016?金山区一模)若m、n是任意实数,且m>n,则() A.m2>n2B.C.lg(m﹣n)>0 D. 6.(2015?福建)若直线=1(a>0,b>0)过点(1,1),则a+b的最小值等于 () A.2 B.3 C.4 D.5 7.(2015?红河州一模)若直线mx+ny+2=0(m>0,n>0)截得圆(x+3)2+(y+1)2=1的弦长为2,则+的最小值为() A.6 B.8 C.10 D.12 8.(2015?江西一模)已知不等式的解集为{x|a<x<b},点A(a,b)在直线 mx+ny+1=0上,其中mn>0,则的最小值为() A.B.8 C.9 D.12 9.(2015?南市区校级模拟)若m+n=1(mn>0),则+的最小值为() A.1 B.2 C.3 D.4 10.(2015?湖南模拟)已知x+3y=2,则3x+27y的最小值为() A.B.4 C.D.6 11.(2015?衡阳县校级模拟)若x<0,则x+的最大值是() A.﹣1 B.﹣2 C.1 D.2 12.(2015春?哈尔滨校级期中)已知a,b,c,是正实数,且a+b+c=1,则的最小值 为() A.3 B.6 C.9 D.12 二.填空题 1.(2016?吉林三模)已知正数x,y满足x+y=1,则的最小值为. 2.(2016?抚顺一模)已知a>0,b>0,且a+b=2,则的最小值为. 3.(2016?丰台区一模)已知x>1,则函数的最小值为.4.(2016春?临沂校级月考)设2<x<5,则函数的最大值 是. 5.(2015?陕西校级二模)函数f(x)=1+log a x(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny﹣2=0上,其中mn>0,则的最小值为.

不等式练习题_高一数学

不等式题组训练 [A 组] 一、选择题 1.若02522>-+-x x ,则221442 -++-x x x 等于( ) A .54-x B .3- C .3 D .x 45- 2.函数y =log 21(x +11+x +1) (x > 1)的最大值是 ( ) A .-2 B .2 C .-3 D .3 3.不等式x x --213≥1的解集是 ( ) A .{x| 43≤x ≤2} B .{x|4 3≤x <2} C .{x|x >2或x ≤43} D .{x|x <2} 4.设a >1>b >-1,则下列不等式中恒成立的是 ( ) A .b a 11< B . b a 11> C .a >b 2 D .a 2>2b 5.如果实数x,y 满足x 2+y 2=1,则(1-xy) (1+xy)有 ( ) A .最小值 21和最大值1 B .最大值1和最小值4 3 C .最小值43而无最大值 D .最大值1而无最小值 6.二次方程x 2+(a 2+1)x +a -2=0,有一个根比1大,另一个根比-1小, 则a 的取值范围是 ( ) A .-3<a <1 B .-2<a <0 C .-1<a <0 D .0<a <2 二、填空题 1.不等式组???->-≥3 2x x 的负整数解是____________________。 2.一个两位数的个位数字比十位数字大2,若这个两位数小于30, 则这个两位数为____________________。 3.不等式0212<-+x x 的解集是__________________。 4.当=x ___________时,函数)2(22x x y -=有最_______值,其值是_________。 5.若f(n)=)(21)(,1)(,122N n n n n n n g n n ∈= --=-+?,用不等号 连结起来为____________. 三、解答题(四个小题,每题10分,共40分) 1.解log (2x – 3)(x 2-3)>0

高中不等式例题(超全超经典)

一. 不等式的性质: 二.不等式大小比较的常用方法: 1.作差:作差后通过分解因式、配方等手段判断差的符号得出结果; 2.作商(常用于分数指数幂的代数式);3.分析法;4.平方法;5.分子(或分母)有理化; 6.利用函数的单调性;7.寻找中间量或放缩法 ;8.图象法。其中比较法(作差、作商)是最基本的方法。 三.重要不等式 1.(1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则1 2x x + ≥ (当且仅当1x =时取“=”); & 若0x <,则1 2x x + ≤- (当且仅当1x =-时取“=”) 若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) 4.若R b a ∈,,则2 )2(2 22b a b a +≤+(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求 它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 2ab a +b ≤ab ≤ a +b 2 ≤ a 2+b 22 应用一:求最值 例 1:求下列函数的值域(1)y =3x 2+ 12x 2 (2)y =x +1x 解题技巧: . 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。 技巧二:凑系数 例1. 当时,求(82)y x x =-的最大值。 技巧三: 分离 例3. 求2710 (1)1 x x y x x ++= >-+的值域。 技巧四:换元 解析二:本题看似无法运用基本不等式,可先换元,令t =x +1,化简原式在分离求最值。 22(1)7(1+10544=5t t t t y t t t t -+-++==++)

高一数学不等式练习题

高一数学不等式练习题 1、不等式1 1 2x <的解集是( ) A .(,2)-∞ B .(2,)+∞ C .(0,2) D .()0,∞-?(2,)+∞ 2、不等式2 01x x -+≤的解集是( ) A .(1)(12]-∞--,, B .[12]-, C .(1)[2)-∞-+∞,, D .(12]-, 3、已知集合M ={x |x 2<4},N ={x |x 2-2x -3<0},则集合M ∩N =( ) (A ){x |x <-2} (B ){x |x >3} (C ){x |-1<x <2} (D ){x |2<x <3} 4( ) A. D. 5、不等式2 03x x ->+的解集是( ) (A)(-3,2) (B)(2,+∞) (C) (-∞,-3)∪(2,+∞) (D) (-∞,-2)∪(3,+∞) 6、若不等式210x ax ++≥对一切102x ??∈ ???,成立,则a 的最小值为( ) A.0 B.2- C.5 2- D.3- 7、设x 、y 为正数,则有(x+y)(1 x +4 y )的最小值为( ) A .15 B .12 C .9 D .6 8、.若对任意∈x R ,不等式x ≥ax 恒成立,则实数a 的取值范围是( ) (A)a <-1 (B)a ≤1 (C) a <1 (D )a ≥1 9、下面给出的四个点中,位于? ??>+-<-+01, 01y x y x 表示的平面区域内的点是( ) (A )(0,2) (B)(-2,0) (C)(0,-2) (D)(2,0) 10、已知函数()???≥-<+-=0101x x x x x f ,则不等式()()111≤+++x f x x 的解集是( ) (A) {}12 1|-≤≤-x x (B) { }1|≤x x (C) {}12|-≤x x (D) {}1212|-≤≤--x x 11、求函数f(x)=3+lgx+4/(lgx)的最大值 其中(0

不等式的解法·典型例题及详细答案

. 不等式的解法·典型例题 【例1】 (x+4)(x+5)2(2-x)3<0.【例2】解下列不等式: 【例3】解下列不等式 1 x 5 x2 )2(;3 x 1 x 1+ > + - ≤ - ) ( 【例4】解下列不等式:

【例5】 |x 2-4|<x+2. 【例6】 解不等式1)123(log 2122<-+-x x x .

不等式·典型例题参考答案 【例1】 (x+4)(x+5)2(2-x)3<0. 【分析】如果多项式f(x)可分解为n个一次式的积,则一元高次不等式f(x)>0(或f(x)<0)可用“区间法”求解,但要注意处理好有重根的情况. 原不等式等价于(x+4)(x+5)2(x-2)3>0 ∴原不等式解集为{x|x<-5或-5<x<-4或x>2}. 【说明】用“穿针引线法”解不等式时应注意: ①各一次项中x的系数必为正; ②但注意“奇穿偶不穿”.其法如图(5-2). 【例2】解下列不等式: 解:(1)原不等式等价于 用“穿针引线法” ∴原不等式解集为(-∞,-2)∪〔-1,2)∪〔6,+∞).(2) 【例3】解下列不等式 1 x 5 x2 )2(;3 x 1 x 1+ > + - ≤ - ) ( 解:(1)原不等式等价于

∴原不等式解集为{x|x ≥5}. (2)原不等式等价于 【说明】 解无理不等式需从两方面考虑:一是要使根式有意义,即偶次根号下被开数大 于或等于零;二是要注意只有两边都是非负时,两边同时平方后不等号方向才不变. 【例4】 解下列不等式: 解:(1)原不等式等价于 令2x =t(t >0),则原不等式可化为 (2)原不等式等价于 ∴原不等式解集为(-1,2〕∪〔3,6). 【例5】 |x 2-4|<x+2. 解:原不等式等价于-(x+2)<x 2-4<x+2. 故原不等式解集为(1,3).

高二数学不等式练习题及答案经典

不等式练习题 一、选择题 1、若a,b 是任意实数,且a >b,则 ( ) (A )a 2>b 2 (B )a b <1 (C )lg(a-b)>0 (D )(21)a <(21 )b 2、下列不等式中成立的是 ( ) (A )lgx+log x 10≥2(x >1) (B )a 1 +a ≥2 (a ≠0) (C )a 1<b 1 (a >b) (D )a 21+t ≥a t (t >0,a >0,a ≠1) 3、已知a >0,b >0且a +b =1, 则()11 )(1122--b a 的最小值为 ( ) (A )6 (B ) 7 (C ) 8 (D ) 9 4、已给下列不等式(1)x 3+ 3 >2x (x ∈R ); (2) a 5+b 5> a 3b 2+a 2b 3(a ,b ∈R ); (3) a 2+b 2≥2(a -b -1), 其中正确的个数为 ( ) (A ) 0个 (B ) 1个 (C ) 2个 (D ) 3个 5、f (n ) = 12+n -n , ?(n )=n 21 , g (n ) = n 12--n , n ∈N ,则 ( ) (A ) f (n )

高中不等式习题精选精解及答案

高中不等式习题精选精解 一、求取值范围 1、已知31,11≤-≤≤+≤-y x y x ,求y x -3的取值范围。 解: )(*2)(*13y x y x y x -++=- 根据已知条件:731,3*2132*11≤-≤+≤-≤+-y x y x 所以y x -3的取值范围是[]7,1 2、已知c b a >>,且0=++c b a ,求a c /的取值范围。 解:由已知条件,显然0,0<>c a 2/1/,0,02,-<∴>=++<+∴>a c a c b a c a c b 2/,0,2,02,->∴>->=++>+∴>a c a a c c b a c a b a 综上所述a c /的取值范围是()2/1,2-- 3、正数y x ,满足12=+y x ,求y x /1/1+的最小值。 解:2/2/1)/1/1)(2()/1/1(*1/1/1+++=++=+=+x y y x y x y x y x y x 223)/2)(/(23+=+≥x y y x (y x , 为正数) 4、设实数y x ,满足1)1(2 2 =-+y x ,当0≥++c y x 时,求c 的取值范围。 解:方程1)1(22 =-+y x 表示的是以点(0,1)为圆心的圆,根据题意当直线0=++c y x (c 为常数)与圆在第二象限相切时,c 取到最小值;(此时,切点的坐标),(y x 满足 0=++c y x ,其它圆上的点都满足0≥++c y x (因为在直线的上方),当c 增大,直线向 下方平移,圆上的全部点满足0≥++c y x , 因此:12,0)21(0min min -==+-+c c 所以c 的取值范围是 [)+∞-,12 x y

高一不等式及其解法习题及答案

一元二次不等式的解法 【教学目标】 1. 会解一元二次不等式、高次不等式和分式不等式 2. 利用分类讨论的思想解含参不等式 【教学重难点】 分类讨论的数学思想 【教学过程】 题型一.解一元二次不等式 例1. 解下列不等式 (1)02322>--x x (2)0262≥+--x x (3)07422<+-x x (4)0962>+-x x 方法总结: 【变式练习】 1-1.已知不等式02>++c bx ax 的解集为(2,3),求不等式02<++a bx cx 的解集 题型二.解高次不等式 例2.求不等式0)6)(4(2 2≤--x x 的解集

方法总结: 【变式练习】 2-1. 解不等式0)2()1()1(3 2≥++-x x x x 题型三.解分式不等式 例3-1.解下列不等式 (1)012<-+x x ; (2)22 1≤-+x x ; (3)12731422<+-+-x x x x 方法总结: 题型四.解含参数的一元二次不等式 例4-1:解关于x 的不等式)(0222 R a ax x ∈>++ 方法总结: 【变式练习】1.已知a ∈R ,解关于x 的不等式01)1(2<++-x a ax

2.解不等式 12 )1(>--x x a 题型五.不等式恒成立问题 例5-1:若不等式02)1()1(2>+-+-x a x a ,对x ∈R 恒成立,求a 的取值范围 方法总结: 【变式练习】 1. 已知x a x x x f ++=2)(2对任意的0)(),,1[≥+∞∈x f x 恒成立,求a 的取值范围。

高中数学不等式证明典型例题

不等式证明典型例题 例1 若10<-(0>a 且1≠a ). 分析1 用作差法来证明.需分为1>a 和10<a 时, 因为 11,110>+<---=x a . (2)当10<+<--=x a . 综合(1)(2)知)1(log )1(log x x a a +>-. 分析2 直接作差,然后用对数的性质来去绝对值符号. 解法2 作差比较法. 因为 )1(log )1(log x x a a +-- a x a x lg ) 1lg(lg )1lg(+- -= [])1lg()1lg(lg 1 x x a +--= [])1lg()1lg(lg 1x x a +---=0)1lg(lg 12>--=x a , 所以)1(log )1(log x x a a +>-. 例2 设0>>b a ,求证:.a b b a b a b a > 证明:b a a b b a a b b a b a b a b a b a ---=?=)( ∵0>>b a ,∴.0,1>->b a b a ∴1)(>-b a b a . ∴a b b a b a b a .1> 又∵0>a b b a , ∴.a b b a b a b a >. 例3 对于任意实数a 、b ,求证 444 ()22 a b a b ++≥(当且仅当a b =时取等号) 证明:∵ 222a b ab +≥(当且仅当22 a b =时取等号) 两边同加4 4 4 4 2 22 ():2()()a b a b a b ++≥+,

高中不等式练习题与答案

不等式 1、解不等式: 2 x 2 x 9x 2x 11 1 ≥ 7. 4 -2x 3-3x 2<0. 2、解不等式: x 3、解不等式: 9x 2 x x 5 5 6 ≥ - 2. 4、解不等式: 2 6 2 9 x x x >3. 2 x 5、解不等式: x 3 2 >x +5. 2 +y 2=1,求 (1+xy)(1 -xy) 的最大、最小值。 6、若 x 7、若 x,y > 0,求 x x y y 的最大值。 2 +(m 2-1)x +m -2=0 的一个根比- 1 小,另一个根比 1 大, 8、已知关于 x 的方程 x 求参数 m 的 取。 9、解不等式: log a (x +1-a)>1. 10 解不等式 8 x x 3 . 2 -3)> 0 11.解 log (2x – 3)(x 2 x 8x 20 12.不等式 的R ,求实数 m 的取。 2 mx 2(m 1)x 9m 4 y x, 13.求 x y 1, y 1.

14在函数y 1 x 1 的图象上,求使 x 1 y 1 5函数 2 x5 y 的最小值? 2 x4 16.若a-1≤log x≤a的解集是[ 1 2 1 4 2x x 17.设0a1,解不等式:log a a a20

18.已知函数y= 2 mx 4 2 x 3x 1 n 的最大值为7,最小值为-1,求此函数式。 19.已知a 2 ,求证:log a 1 a log a a 1 3(x 1) 1 2 x , 2x 3 2 20.已知集合A= x | 2 ,B x|l og (9 x ) log (6 2x) 1 1 2 3 3 又A ∩B={x|x 2+ax+b<0},求a+b 等于多少?

基本不等式经典例题(含知识点和例题详细解析)

基本不等式专题 知识点: 1. (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ (当且仅当 b a =时取“=”) 2. (1)若* ,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+ (当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则1 2x x + ≥ (当且仅当1x =时取“=” ) 若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”)若0ab ≠,则22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 5.若R b a ∈,,则2 )2(222b a b a +≤ +(当且仅当b a =时取“=”) 注意: (1)当两个正数的积为定植时,可以求它们的和的最小值, 当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用 应用一:求最值 例:求下列函数的值域 (1)y =3x 2+ 1 2x 2 (2)y =x +1 x 解:(1)y =3x 2+ 1 2x 2 ≥23x 2· 1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2;

高中不等式练习题及答案

不等式 1、解不等式:1 211 922+-+-x x x x ≥7. 2、解不等式:x 4 -2x 3 -3x 2 <0. 3、解不等式: 6 55 92+--x x x ≥-2. 4、解不等式:2269x x x -+->3. 5、解不等式:232+-x x >x +5. 6、若x 2 +y 2 =1,求(1+xy)(1-xy)的最大、最小值。 7、若x,y >0,求 y x y x ++的最大值。 8、已知关于x 的方程x 2 +(m 2 -1)x +m -2=0的一个根比-1小,另一个根比1大, 求参数m 的取值范围。 9、解不等式:log a (x +1-a)>1. 10解不等式38->-x x . 11.解log (2x – 3)(x 2 -3)>0 12.不等式04 9)1(220 82 2<+++++-m x m mx x x 的解集为R,求实数m 的取值范围。 13.求y x z +=2的最大值,使式中的x 、y 满足约束条件?? ? ??-≥≤+≤.1,1,y y x x y

14在函数x y 1=的图象上,求使y x 1 1+取最小值的点的坐标。 15函数4 52 2++=x x y 的最小值为多少? 16.若a -1≤x 2 1log ≤a 的解集是[ 41,2 1 ],则求a 的值为多少? 17.设,10<

18.已知函数y =1 3422+++x n x mx 的最大值为7,最小值为-1,求此函数式。 19.已知2>a ,求证:()()1log log 1+>-a a a a 20.已知集合A=??????-<-=?? ??????????? ??<---)26(log )9(log |,212|31 2 31) 1(3322x x x B x x x x , 又A ∩B={x|x 2 +ax+b <0},求a+b 等于多少?

相关文档
相关文档 最新文档