文档视界 最新最全的文档下载
当前位置:文档视界 › 13-第十三章压杆稳定讲解

13-第十三章压杆稳定讲解

13-第十三章压杆稳定讲解
13-第十三章压杆稳定讲解

第十三章 压杆稳定

§13.1 压杆稳定的概念

构件受外力作用而处于平衡状态时,它的平衡可能是稳定的,也可能是不稳定的。 一、压杆稳定

直杆在压力作用下,保持原直线状态的性质。 二、失稳(屈曲)

压杆丧失其直线形状的平衡而过渡为曲线平衡。 三、临界压力

压杆保持其直线状态的最小压力,cr F 。

§13.2 两端铰支细长压杆的临界压力

在压杆稳定性问题中,若杆内的应力不超过材料的比例极限,称为线弹性稳定问题。

图示坐标系中,距原点为x 的任一截面的挠度为y , 则该截面得弯矩为:y F M(x)cr =

代入挠曲线近似微分方程,即EI

M(x)

-y d 2

2=dx 得: EI

F k k dx cr y ,0y y d 2

22

2==+ 方程通解为:0cos Asin y =+=kx B kx 由杆端的边界条件:0y 0===时,和l x x

求得 : 0A s i n ,0==kx

B 解得:

),2,1,0(????==n l

n k π2

22F l EI

n cr π= 除n=0外,无论n 取何值,都有对应的cr F ,1n =压杆失稳时的最小荷载是临界载荷

2

2F l

EI cr π=

上式称为两端铰支细长压杆的临界荷载的欧拉公式。杆越细长,其临界载荷越小,即杆越容易失稳。对两端铰支细长压杆,欧拉公式中的惯性矩I 应是横截面最小的惯性矩,即形心主惯性矩中的做小值min I

§13.3其他支座条件下细长压杆的临界压力

几种常见约束方式的细长压杆的长度因数与临界载荷

例题:两端铰支压杆如图11-8所示,杆的直径20mm d =,长度800mm l =,材料为Q235钢,200GPa E =,200MPa p σ=。求压杆的临界载荷cr F 。

解:根据欧拉公式

239412

22

20010201024.2kN ()64(10.8)cr EI F l ππμ-????===??

此时横截面上的正应力

3

cr P 26

424.21077MPa 2010

F A σσπ-??===≤?? 图 11-8

上式表明压杆处于弹性范围,所以用欧拉公式计算无误。

§13.4 压杆的临界压力

一、临界应力和柔度

A

A F 2

2cr )(l EI cr μπσ== 上式中的惯性矩I 可用横截面面积A 和惯性半径i 表示,即2A I

i =代入上式得:

222

22

22λπμπμπσE i

l E l EIi cr ===)()( λ 是一个量纲为1的量,称为压杆的柔度或长细比。 二、欧拉公式的适用范围

欧拉公式的适用范围是临界应力cr σ不超过材料的比例极限p σ,即:

p 22σλ

πσ≤=E cr , p E

σπλ2≥

令: p

p E

σπλ2=

p λ是压杆应用欧拉公式的最小柔度值。满足p λλ≥的压杆,称为大柔度杆或细长杆 p λ仅取决于压杆材料的力学性能,而与截面形状和杆端约束力无关。

三、超过比例极限的压杆稳定性问题

1. 直线公式:λσb a cr

-=(a 、b 是与材料有关的常数)。 令s cr σσ=,则b

a cr

s σλ-=

直线公式的适用范围为: p s λλλ<≤

满足p s

λλλ<≤的压杆称为中柔度杆或中长杆,其临界应力为s σλσ<≤p

2. 抛物线公式 :2

1

1λσb a cr -=(a 、b 是与材料有关的常数)。 对于中、小柔度压杆的临界应力,也可采用抛物线公式计算。 四、临界应力总图

例题

1. 两端用球铰支撑的钢柱,已知其矩形横截面的尺寸为mm 100mm 60?=?h b ,钢的弹

性模量MPa 200=E ,其比例极限MPa 240=p σ。试用欧拉公式计算压杆稳定问题的最短柱长。

解: mm 3.173

260

12A 3min min ====

bh hb I i 7.9010

240102006

9

22=???==πσπλp p E 由p λμλ≥=

i

l

,并注意1=μ,可得:

m 57.13.177.90min =?=≥i l p λ

若柱的长度不超过1.57米,它在失稳时的临界应力就不会超过材料的比例极限。

2. 如图11-10所示,压杆的横截面为15mm d =的圆截面,两端铰支,杆长200mm l =,

材料的210GPa E =,200MPa p σ=,240MPa s σ=,304MPa a =, 1.12MPa b =。试求压杆的临界载荷cr F 。

解:梁为两端铰支的圆截面,

故惯性半径4

d i ===,长度因数1μ=,柔度为

441200

8010

l

l i

d μμλ??=

=

==。 而

s

σp σ

s

p

101.8p λ=== 304240

57.11.12

s s a b σλ--=

==

即p s λλλ<<,该压杆是中柔度杆,其临界应力选用直线公式来计算,为

()304 1.1280214MPa cr a b σλ=-=-?=

压杆的临界载荷为

()

2

2

60.012141016

4

4cr cr cr d F A ππσσ==

=

??=

§13.5 压杆的稳定校核

一、安全因数法

st cr n P

P n ≥=

二、折减因数法

[][]σ?σσ=≤=

W A

F

[]st

n cr

W σσ=,?是折减因数,并且1≤?

例题:

1. 图11-11所示的钢柱长,两端固定,材料是Q235钢,200GPa E =。规定的稳定安全系数3st n =,横截面由两个10号槽钢组成。试求当两槽钢靠紧[如图11-11(a )所示]和离开[如图11-11(b )所示]时钢柱的许可载荷。

x

x

解:由图可知,钢柱两端均为固定端,在xy 、yz 平面内长度因数均为0.5μ=,但

题中给出两槽钢靠紧和离开条件下,其y I 、z I 有所不同,即两平面内柔度不同。

(1) 两槽钢靠紧。从型钢表中查得

()()2212.748225.5cm ,54.92109.8cm y A I =?==?=

()min 2.08cm y i i ==

=

= 柔度为

0.5700

168.32.08

y y

l

i μλ?=

=

= 235Q 的100p λ=,故y p λλ>该钢柱为大柔度杆。采用欧拉普通公式计算临界力,

()()

()22985

22

20010109.810 1.76910176.9kN 0.57cr EI F l ππμ-????===?=? 钢柱的许可载荷为

()176.9

59.0kN 3

cr st F F n ≤

== (2) 两槽钢离开。从型钢表中查得

(

)()42198396cm ,

3.95cm z z I i =?==

()()40025.6cm ,

1.52cm y I z ==

应用平移公式,得

()()2

4225.612.748 1.52 1.5284cm y I ??=?+?+=??

()3.34cm y i ===

比较y i 、z i ,惯性半径应取()min 3.34cm y i i ==。

钢柱的柔度

0.5700

104.81003.34

y p y

l

i μλλλ?==

=

=>= 采用欧拉普通公式计算临界力

()()2298

52001028410 4.5810458kN 0.57cr st EI F n ππ-????===?=?

钢柱的许可载荷为

()458

152.7kN 3cr st F F n ≤

==

2. 图示结构中,AB 梁由两根相同的矩形截面组成,10cm l '=,2cm h '=,0.5cm b '=。

BC 杆是矩形截面,50cm l =

,h =

,b =,是细长杆,垂直于AB 梁。梁与

杆均为Q235钢,206GPa E =,许用应力[]157MPa σ=,[]78MPa τ=。规定稳定安全

系数 1.8st n =,载荷在梁上平移,试校核该结构是否安全。

解:以为AB 杆为研究对象,

()()0

00

A BC y Ay BC M F F l P l x F F F P ''=--==+-=∑∑即,即,

解得,

()BC Ay P l x Px F F l l

'-=

=

'

' 当时0x =,BC 杆受压力最大。此时,

max 4.5kN BC F P ==

(1)效核BC 杆的稳定性要求。

在xy 平面,BC 杆两端固定,长度因素0.5μ=, 惯性半径

z i =

==柔度

150z z

l

i μλ=

=

=

在xz 平面,BC 杆两端铰支,长度因素1μ=, 惯性半径

y

i===

柔度

100

y

y

l

i

μ

λ===

所以,

z y

λλ

>,BC杆在xy平面失稳,压杆柔度150

z

λλ

==。

临界载荷

22

4

22

206109

109.04kN

150

cr cr

E

F A A

ππ

σ

λ

-

??

====

工作安全因素

max

9.04

2.03

4.5

cr

st

BC

F

n n

F

===>

所以,BC杆稳定性满足要求。

(2)效核AB杆切应力的强度要求。

当0

x=和x l'

=时,AB杆有最大切应力

max

4.5kN

Q

F P

==。

最大切应力

[]

3

max4

3 4.510

33.75MPa

2220.210

ττ

-

?

=?=≤

???

故,AB杆满足切应力的要求。

(3)效核AB杆正应力强度要求。

AB杆在载荷P作用处截面弯矩最大,()()

Px

M x l x

l

'

=-

'

,此截面具有最大正应力。当2

l

x

'

=,()

M x达到最大值,

max

112.5N m

M=?

最在正应力

[]

max

max

26

56.25

168.8MPa

1

0.5210

6

z

M

W

σσ

-

===>

???

故,AB杆不满足正应力的强度要求

§13.6 提高压杆稳定性的措施

提高压杆的稳定性,就是提高压杆的临界载荷或临界应力。

措施:

1. 尽量减小压杆的相当长度

在结构允许的条件下应尽量减少压杆的相当长度,这可以通过减少杆长、改善杆端约束或适当增加约束予以实现。

2. 合理选择截面形状

压杆的柔度与横截面的惯性半径成反比。在一定的截面面积下应设法增大惯性矩,以增大惯性半径从而减小柔度,提高临界应力,增加压杆的稳定性。

空心圆环截面就比实心圆截面合理;四根角钢组成的起重臂,其四根角钢分开放置在截面的四个角,而不是集中地放置在截面形心附近;由槽钢组成的桥梁桁架或建筑物中的柱中,把槽型钢分开放置,但槽口相反就不如槽口相对合理。

3. 合理选择材料

由细长杆的欧拉公式知,临界载荷或临界应力与材料的弹性模量有关。选用弹性模量大的材料,自然稳定性墙。

对于细长杆,选用优质钢材和普通钢材在强度方面虽有差异,但在稳定性方面,无多大差异。

对于中长杆,选用高强度材料,有助于提高压杆的稳定性。

对于短粗杆,本身就是强度问题,选择优质钢可以提高承载能力。

材料力学习题册答案-第9章-压杆稳定

第 九 章 压 杆 稳 定 一、选择题 1、一理想均匀直杆受轴向压力P=P Q 时处于直线平衡状态。在其受到一微小横向干扰力后发生微小弯曲变形,若此时解除干扰力,则压杆( A )。 A 、弯曲变形消失,恢复直线形状; B 、弯曲变形减少,不能恢复直线形状; C 、微弯状态不变; D 、弯曲变形继续增大。 2、一细长压杆当轴向力P=P Q 时发生失稳而处于微弯平衡状态,此时若解除压力P ,则压杆的微弯变形( C ) A 、完全消失 B 、有所缓和 C 、保持不变 D 、继续增大 3、压杆属于细长杆,中长杆还是短粗杆,是根据压杆的( D )来判断的。 A 、长度 B 、横截面尺寸 C 、临界应力 D 、柔度 4、压杆的柔度集中地反映了压杆的( A )对临界应力的影响。 A 、长度,约束条件,截面尺寸和形状; B 、材料,长度和约束条件; C 、材料,约束条件,截面尺寸和形状; D 、材料,长度,截面尺寸和形状; 5、图示四根压杆的材料与横截面均相同, 试判断哪一根最容易失稳。答案:( a ) 6、两端铰支的圆截面压杆,长1m ,直径50mm 。其柔度为 ( C ) A.60; B.66.7; C .80; D.50 7、在横截面积等其它条件均相同的条件下,压杆采用图( D )所示截面形状,其稳定性最好。 8、细长压杆的( A ),则其临界应力σ越大。 A 、弹性模量E 越大或柔度λ越小; B 、弹性模量E 越大或柔度λ越大; C 、弹性模量E 越小或柔度λ越大; D 、弹性模量 E 越小或柔度λ越小; 9、欧拉公式适用的条件是,压杆的柔度( C ) A 、λ≤ P E πσ B 、λ≤s E πσ C 、λ≥ P E π σ D 、λ≥s E π σ

第七章压杆稳定

第七章 压杆稳定 一、压杆稳定的基本概念 受压直杆在受到干扰后,由直线平衡形式转变为弯曲平衡形式,而且干扰撤除后,压杆仍保持为弯曲平衡形式,则称压杆丧失稳定,简称失稳或屈曲。 压杆失稳的条件是受的压力cr P P ≥。cr P 称为临界力。 二、学会各种约束情形下的临界力计算 压杆的临界力A P cr cr σ=,临界应力cr σ的计算公式与压杆的柔度i l μλ=所处的范围有关。以三号钢的压杆为例: p λλ≥,称为大柔度杆,22λ πσE cr = p s λλλ≤≤,称为中柔度杆,λσb a cr -=。 s λλ≤,称为小柔度杆,s cr σσ=。 三、压杆的稳定计算有两种方法 1)安全系数法 st cr n P P n ≥=,st n 为稳定安全系数。 2)稳定系数法 ][][σ?σσ=≤=st A P ,?为稳定系数。 四、学会利用柔度公式,提出提高压杆承载能力的措施 根据i l μλ= ,A I i = ,λ愈大,则临界力(或临界应力)愈低。提高压杆承载能力的措施为: 1)减小杆长。 2)增强杆端约束。 3)提高截面形心主轴惯性矩I 。且在各个方向的约束相同时,应使截面的两个形心主轴惯性矩相等。 4)合理选用材料。

§15-1 压杆稳定的概念 构件除了强度、刚度失效外,还可能发生稳定失效。例如,受轴向压力的细长杆,当压 力超过一定数值时,压杆会由原来的直线平衡形式突然变弯(图15-1a ),致使结构丧失承载能力;又如,狭长截面梁在横向载荷作用下,将发生平面弯曲,但当载荷超过一定数值时,梁的平衡形式将突然变为弯曲和扭转(图15-1b );受均匀压力的薄圆环,当压力超过一定数值时,圆环将不能保持圆对称的平衡形式,而突然变为非圆对称的平衡形式(图15-1c )。上述各种关于平衡形式的突然变化,统称为稳定失效,简称为失稳或屈曲。工程中的柱、桁架中的压杆、薄壳结构及薄壁容器等,在有压力存在时,都可能发生失稳。 由稳定平衡转变为不稳定平衡时所受的轴向压力,称为临界载荷,或简称为临界力,用cr P 表示。 为了保证压杆安全可靠的工作,必须使压杆处于直线平衡形式,因而压杆是以临界力作为其极限承载能力。 §15-2 细长压杆的临界力 根据压杆失稳是由直线平衡形式转变为弯曲平衡形式的这一重要概念,可以预料,凡是影响弯曲变形的因素,如截面的抗弯刚度EI ,杆件长度l 和两端的约束情况,都会影响压杆的临界力。确定临界力的方法有静力法、能量法等。本节采用静力法,以两端铰支的中心受压直杆为例,说明确定临界力的基本方法。 1.两端铰支压杆的临界力 两端铰支中心受压的直杆如图15-4a 所示。设压杆处于临界状态,并具有微弯的平衡形式,如图15-4b 所示。建立x v -坐标系,任意截面(x )处的内力(图15-4c )为 ),(压力P N = Pv M = 在图示坐标系中,根据小挠度近似微分方程 EI M dx v d -=22,得到 v EI P dx v d -=2 2

第十一章压杆稳定

第十一章 压杆稳定 是非判断题 1 压杆失稳的主要原因是由于外界干扰力的影响。( ) 2 同种材料制成的压杆,其柔度愈大愈容易失稳。( ) 3 细长压杆受轴向压力作用,当轴向压力大于临界压力时,细长压杆不可能保持平衡。( ) 4 若压杆的实际应力小于欧拉公式计算的临界应力,则压杆不失稳( ) 5 压杆的临界应力值与材料的弹性模量成正比。( ) 6 两根材料、长度、截面面积和约束条件都相同的压杆,则其临界力也必定相同。( ) 7 若细长杆的横截面面积减小,则临界压力的值必然随之增大。( ) 8 压杆的临界应力必然随柔度系数值的增大而减小。( ) 9 对于轴向受压杆来说,由于横截面上的正应力均匀分布,因此不必考虑横截面的合理形状问题。 ( ) 填空题 10 在一般情况下,稳定安全系数比强度安全系数要大,这是因为实际压杆总是不可避免地存在 以及 等不利因素的影响。 11 按临界应力总图,1λλ≥的压杆称为 ,其临界应力计算公式为 ;1 2λλλ≤≤的压杆称为 ,其临界应力计算公式为 ;2λλ≤的压杆称为 ,其临界应力计算公式为 。 12 理想压杆的条件是① ;② ;③ 。 13 压杆有局部削弱时,因局部削弱对杆件整体变形的影响 ;所以在计算临界压力时,都采 用 的横截面面积A 和惯性矩I 。 14 图示两端铰支压杆的截面为矩形,当其失稳时临界压力F cr = ,挠曲线位于 平 面内。 z C 题15图 15 图示桁架,AB 和BC 为两根细长杆,若EI 1>EI 2,则结构的临界载荷F cr = 。 16 对于不同柔度的塑性材料压杆,其最大临界应力将不超过材料的 。 17 提高压杆稳定性的措施有 , ,以及 和 。 18 细长杆的临界力与材料的 有关,为提高低碳钢压杆的稳定性,改用高强度钢不经济, 原因时 。 19 b 为细长杆,结构承载能力将 。 B P

第七章 外压容器设计与压杆稳定性计算

外压薄壁圆筒的厚度设计外压封头的稳定性计算加强圈的设计压杆的稳定性计算 力(信号),保持原有状态的能力。在本课程中是指杆件或压力容器在外力作用下,保持原有结稳定性与前两者的联系:都是构件承载能力:强度、刚度和稳定性;区别:变形更大,以至于明显改变了构件的形状。)受轴向压缩的杆 AB 压杆 稳定性分类:轴向稳定性问题和环向稳定性问题 外压容器横向失稳取决于容器的几何特性和材料的机械性能: 圆筒的外径与有效厚度的比值D 0/δe ;圆筒的长度与外径的比值L/D 0; 材料的机械性能,主要是弹性模量E 泊松常数μ,而不是材料的屈服极限σs ,断裂极限σb 或者是弹性极限σp 。稳定性计算的两种方法:解析法和图表法。 :是指保持容器稳定(或者说不失去稳定)的最大压力。 许用压力:与材料力学的许用应力、许用载荷是同样的3 cr 0 MPa L L e D δ??≥???? 当长圆筒许用压力计算公式 cr mm L L 2.2mp C E +当长圆筒的壁厚设计公式: ”和“短”的区分长度。一般认 为,长圆筒的两端封头对中央筒体部分没有支撑作用,而短圆筒则两端封头有支撑筒体作用。 1.17cr e D L D δ=临界长度计算公式:短圆筒的壁厚设计公式: 0.4 0 mm L L 2.59p L C E D ? ??+≤? ?? 当设计参数的选取讨论 圆筒的计算长度L

有加强圈的筒体的计算长度计算 计算长度的椭圆形封头部分 外压容器:取不小于正常工作过程中可能产生的最有安全控制装置时,取1.25倍最大内外压力差或两者中的较小值;无安全控制装置时,取0.1MPa ; 对带夹套的真空容器,按上述原则再加交通的设液压试验和液压实验压力,容器制造组装完成后,同样 需要进行压力试验,计算公式略。 反应釜 计算公式,并与筒体的实际长度L 相比较,判定筒体是长圆筒或者是短圆筒;设计参数代入长圆筒或短圆筒的许用压力计算公式, 和[p],如果p < [p]且比较接近,则所假 符合要求。否则,再另设δn ,重复计算,直到满2cr MPa L L e o e D δ≤当22 2 2.52.59 2.59()e o o o o e o e E E D L D D D mL D D δδδ== ?? (,)o e o D E L E f A m D m δ?=?ε σ?=E e n e o o A 值; 根据选用的材料,选取相应的B -A 曲线,得值;如果 值在没有画出的斜线部分,根据公式B =2/3EA 计算; 根据下面公式得许用操作压力,比与设计外压p 比较, 稍大于等于p ,则开始所取的名义厚度可以作为计算结果,如果小于p 或者超出p 太多,应重新假设名义[p]稍大于等于p ”条件满足为止。 o e D B p δ? =][

第十四章 轴向压杆的稳定计算

第十四章轴向压杆的稳定计算 【教学要求】 了解压杆稳定与失稳的概念; 理解压杆的临界力和临界应力的概念; 能采用合适的公式计算各类压杆的临界力和临界应力; 熟悉压杆的稳定条件及其应用; 了解提高压杆稳定性的措施。 【重点】 1、计算临界力。 2、掌握折减系数法对压杆进行稳定设计与计算的基本方法【难点】 折减系数法对压杆进行稳定设计与计算的基本方法。 【授课方式】课堂讲解 【教学时数】共计4学时 【教学过程】 ?14.1 压杆稳定的基本概念0.5学时?14.2 压杆的临界力和临界应力 1.5学时★14.3 压杆的稳定条件及其应用 1.5学时?14.4 提高压杆稳定性的措施0.5学时【小结】 【课后作业】 ?14.1 压杆稳定的基本概念 ?

? 有实例提出问题,总结引申新的课题。 1、概念 压杆稳定性:压杆保持其原来直线平衡状态的能力。 压杆不能保持其原来直线平衡状态而突然变弯的现象,称为压杆的直线平衡状态丧失了稳定,简称为压杆失稳。 研究压杆稳定性的意义: 压杆因强度或刚度不足而造成破坏之前一般都有先兆;压杆由于失稳而造成破坏之前没有任何先兆,当压力达到某个临界数值时就会突然破坏,因此这种破坏形式在工程上具有很大的破坏性。 在建筑工程中的受压上弦杆、厂房的柱子等设计中都必须考虑其稳定性要求。 2、平衡状态的稳定性 当P <cr P ,时,是稳定平衡状态 当P =cr P 时,是随遇平衡状态,这种状态称为临界平衡状态 当P >cr P 时,是不稳定平衡状态 当P =cr P 时,压杆的平衡状态是介于稳定和不稳定之间的临界平衡状态,因此定值cr P 。 3、压杆临界力F cr 14.2 压杆的临界力和临界应力 临界力的影响因素 临界力F cr 的大小反映了压杆失稳的难易,而压杆失稳就是直杆变弯,发生弯曲变形,因此临界力的大小与影响直杆弯曲变形的因素有关: 杆的长度l 、抗弯刚度EI 、杆端支承。 14.2.1临界力的欧拉公式 22()cr EI P l πμ= 适用条件:弹性范围内。 式中,EI 称为压杆的抗弯刚度, I 是截面对形心轴最小的惯性矩。

材料力学_陈振中_习题第十四章压杆稳定

第十四章 压 杆 稳 定 14.1某型柴油机的挺杆长度l =25.7cm,圆形横截面的直径d =8mm,钢材的E=210Gpa,MPa p 240=σ。挺杆所受最大压力kN P 76.1=。规定的稳定安全系数 5~2=st n 。试校核挺杆的稳定性。 解:计算柔度,挺杆两端可认为较支,μ=1, 1294 /008.0257.01== =?i l μλ 而 9.926 9 22102401021014.31== = ???p E σπλ 1λλ 用欧拉公式计算临界压力,校核稳定性。 kN P L EI lj 30.62 644 )5108(14.3922 2 ) 257.01(1021014.3)(== = ?? ??-??μπ 58 .376.130 .6=== P P lj n 在2~5之间,安全。 14.4图中所示为某型飞机起落架中承受压力的斜撑杆。杆为空心圆管,外径D=52mm ,内径d =44mm,l =950mm.材料为30CrMnS i N i 2A, 试求斜撑杆的临界压力lj P 和临界应力 lj σ。(原图见教材P173.)(GPa E MPa MPa p b 210,1200,1600===σσ) 解:斜撑两端按铰支座处理, 5 .419 .55017.0044.0052.06 921012001021014.31017.095.01224 1224 1 == = ====+= += ????p E i l m d D i σπμλλ 1λλ ,可用拉欧公式计算 2 )044.0052.0(1040164 ) 044.0052.0(14.3) 95.01(1021014.3)(/665401224 3 4 49 222m MN kN P A P lj l EI lj lj == = =?= = -?-???π σμπ 14.5三根圆截面压杆,直径均为d=160mm,材料为A3钢,E=200Gpa,MPa s 240=σ.两端均为铰支,长度分别为l 1l 2和l 3,且m l l l 532321===。试求各杆的临界压力lj P 。 解:对于A3钢 1.57,10012 .1240 3042===≈--b a s σλλ 分别计算三杆的柔度 3 .31)3(5.62)2(125)1(4 /16.025.114/16.05.214/16.05 13 32 21 1== = ======???i l i l i l μμμλλλ

材料力学章节重点和难点

材料力学章节重点和难点 第一章绪论 1.主要内容:材料力学的任务;强度、刚度和稳定性的概念;截面法、内力、应力,变形和应变的基本概念;变形固体的基本假设;杆件的四种基本变形。 2.重点:强度、刚度、稳定性的概念;变形固体的基本假设、内力、应力、应变的概念。 3.难点: 第二章杆件的内力 1.主要内容:杆件在拉压、扭转和弯曲时的内力计算;杆件在拉压、扭转和弯曲时的内力图绘制;平面弯曲的概念。 2.重点:剪力方程和弯矩方程、剪力图和弯矩图。 3. 难点:绘制剪力图和弯矩图、剪力和弯矩间的关系。 第三章杆件的应力与强度计算 1.主要内容:拉压杆的应力和强度计算;材料拉伸和压缩时的力学性能;圆轴扭转时切应力和强度计算;梁弯曲时正应力和强度计算;梁弯曲时切应力和强度计算;剪切和挤压的实用计算方法;胡克定律和剪切胡克定律。 2.重点:拉压杆的应力和强度计算;材料拉伸和压缩时的力学性能;圆轴扭转时切应力和强度计算;梁弯曲时正应力和强度计算。 3.难点:圆轴扭转时切应力公式推导和应力分布;梁弯曲时应力公式推导和应力分布;

第四章杆件的变形简单超静定问题 1.主要内容:拉(压)杆的变形计算及单超静定问题的求解方法;圆轴扭转的变形和刚度计算;积分法和叠加法求弯曲变形;用变形比较法解超静定梁。 2.重点:拉(压)杆的变形计算;;圆轴扭转的变形和刚度计算;叠加法求弯曲变形;用变形比较法解超静定梁。 3.难点:积分法和叠加法求弯曲变形;用变形比较法解超静定结构。 第五章应力状态分析? 强度理论 1.主要内容:应力状态的概念;平面应力状态分析的解析法和图解法;广义胡克定律;强度理论的概念及常用的四种强度理论。 2.重点:平面应力状态分析的解析法和图解法;广义虎克定律;常用的四种强度理论。 3.难点:主应力方位确定。 第六章组合变形 1.主要内容:拉伸(压缩)与弯曲、斜弯曲、扭转与弯曲组合变形的强度计算; 2.重点: 弯扭组合变形。 3.难点:截面核心的概念 第七章压杆稳定 1.主要内容:压杆稳定的概念;各种支座条件下细长压杆的临界载荷;欧拉公式的适用范围和经验公式;压杆的稳定性校核。

第十三章-压杆稳定

第十三章 压杆稳定 1 基本概念及知识要点 1.1 基本概念 理想受压直杆、理想受压直杆稳定性 、屈曲、 临界压力。 1.2 临界压力 细长压杆(大柔度杆)用欧拉公式计算临界压力(或应力);中柔度杆用经验公式计算临界压力(或应力);小柔度杆发生强度破坏。 1.3 稳定计算 为了保证受压构件不发生稳定失效,需要建立如下稳定条件,进行稳定计算: st cr n F F n ≥= -稳定条件 2 重点与难点及解析方法 2.1临界压力 临界压力与压杆的材料、截面尺寸、约束、长度有关,即和压杆的柔度有关。因此,计算临界压力之前应首先确定构件的柔度,由柔度值确定是用欧拉公式、经验公式还是强度公式计算临界压力。 2.2稳定计算 压杆的稳定计算是材料力学中的重要内容,是本课程学习的重点。 利用稳定条件可进行稳定校核,设计压杆截面尺寸,确定许用外载荷。 稳定计算要求掌握安全系数法。 解析方法:稳定计算一般涉及两方面计算,即压杆临界压力计算和工作压力计算。临界压力根据 柔度由相应的公式计算,工作压力根据压杆受力分析,应用平衡方程获得。 3典型问题解析 3.1 临界压力

mm .h A I i min 55113 2===mm .a A I i 31632===例题13.1材料、受力和约束相同,截面形式不同的四压杆如图图13-1所示,面积均为3.2×103mm 2,截面尺寸分别为(1)、b=40mm 、(2)、a=56.5mm 、(3)、d=63.8mm 、(4)、D=89.3mm,d=62.5mm 。若已知材料的E =200GPa ,σs =235MPa ,σcr =304-1.12λ,λp =100,λs =61.4,试计算各杆的临界荷载。 [解] 压杆的临界压力,取决于压杆的柔度。应根据各压杆的柔度,由相应的公式计算压杆的临界压力。 (1)、两端固定的矩形截面压杆,当b=40mm 时 λ> λP 此压杆为大柔度杆,用欧拉公式计算其临界应力 (2)、两端固定的正方形截面压杆,当a=56.5mm 时 所以 9.12910 55.113 5.031=??==-i l μλkN 37521 21=?=?=A E A F cr cr λπ σ 0.7d 图13-1

材料力学_陈振中_习题第十四章压杆稳定

第十四章压杆稳定 14.1某型柴油机的挺杆长度l=25.7cm,圆形横截面的直径d=8mm,钢材的 E=210Gpa, ;「p =240MPa 。挺杆所受最大压力 n st = 2 ~ 5。试校核挺杆的稳定性。 解:计算柔度,挺杆两端可认为较支, 尸1, ,=银黑=129 用欧拉公式计算临界压力,校核稳定性。 在2~5之间,安全。 14.4图中所示为某型飞机起落架中承受压力的斜撑杆。杆为空心圆管,外径 内径d=44mm,l=950mm.材料为30CrMnS i N i 2A,试求斜撑杆的临界压力 P lj 和临界应力 Gj 。(原图见教材 P173.) (6 =1600MPa,;「p = 1200MPa ,E = 210GPa ) 解:斜撑两端按铰支座处理, i =4-D 2 d 2 =1、0.0522 0.0442 = 0.017m 「縣=55.9 ■ - '1,可用拉欧公式计算 14.5三根圆截面压杆,直径均为 d=160mm,材料为A3钢,E=200Gpa,匚s = 240 MPa 俩 端均为铰支,长度分别为 hb 和b ,且h =212 = 3I 3 =5m 。试求各杆的临界压力 P lj 。 分别计算三杆的柔度 P =1.76kN 。规定的稳定安全系数 =92.9 3.142 210 109 彳14(8 10 色)4 4 (1W.257)2 二 6.30kN P lj 6.30 n = 百=彳76 = 3.58 D=52mm , 3.14 210 109 1200 106 = 41.5 3.142 210 109 (1 0.95) 4 4 3.14(0.052" -0.0444) 64 = 401kN lj _ 401 103 _ -4 '(0.0522 -0.0442) 2 = 665MN /m 2 解:对于A3钢 100,十晋=57.1 '(1) (2) (3) =口 125 i 1 0.16/4 125 二.农=1 2.5 i 2 二— i 0.16/4 二 62.5 =31.3 /. 1 2 9 3.142 210 109 -------------- 6 ---- 240 10 P j

建筑力学第11章压杆稳定

第11章压杆稳定 [内容提要]稳定问题是结构设计中的重要问题之一。本章介绍了压杆稳定的概念、压杆的临界力-欧拉公式,重点讨论了压杆临界应力计算和压杆稳定的实用计算,并介绍了提高压杆稳定性的措施。 11.1 压杆稳定的概念 工程中把承受轴向压力的直杆称为压杆。前面各章中我们从强度的观点出发,认为轴向受压杆,只要其横截面上的正应力不超过材料的极限应力,就不会因其强度不足而失去承载能力。但实践告诉我们,对于细长的杆件,在轴向压力的作用下,杆内应力并没有达到材料的极限应力,甚至还远低于材料的比例极限σP时,就会引起侧向屈曲而破坏。杆的破坏,并非抗压强度不足,而是杆件的突然弯曲,改变了它原来的变形性质,即由压缩变形转化为压弯变形(图11-1所示),杆件此时的荷载远小于按抗压强度所确定的荷载。我们将细长压杆所发生的这种情形称为“丧失稳定”,简称“失稳”,而把这一类性质的问题称为“稳定问题”。所谓压杆的稳定,就是指受压杆件其平衡状态的稳定性。 为了说明平衡状态的稳定性,我们取细长的受压杆来进行研究。图11-2(a)为一细长的理想轴心受压杆件,两端铰支且作用压力P,并使杆在微小横向干扰力作用下弯曲。当P较小时,撤去横向干扰力以后,杆件便来回摆动最后仍恢复到原来的直线位置上保持平衡(图11-2(b))。因此,我们可以说杆件在轴向压力P的作用下处于稳定平衡状态。 P,杆件受到干扰后,总能回复到它原来的直线增大压力P,只要P小于某个临界值 cr P时,杆件虽位置上保持平衡。但如果继续增加荷载,当轴向压力等于某个临界值,即P= cr 然暂时还能在原来的位置上维持直线平衡状态,但只要给一轻微干扰,就会立即发生弯曲并停留在某一新的位置上,变成曲线形状的平衡(图11-2(c))。因此,我们可以认为杆件在P的作用下处在临界平衡状态,这时的压杆实质上是处于不稳定平衡状态。 P= cr

材料力学 压杆稳定答案

9-1(9-2)图示各杆材料和截面均相同,试问杆能承受的压力哪根最大,哪根最小(图f所示杆在中间支承处不能转动)? 解:对于材料和截面相同的压杆,它们能承受的压力与成反比,此处,为与约束情况有关的长度系数。 (a)=1×5=5m (b)=0.7×7=4.9m (c)=0.5×9=4.5m (d)=2×2=4m (e)=1×8=8m (f)=0.7×5=3.5m 故图e所示杆最小,图f所示杆最大。 返回 9-2(9-5) 长5m的10号工字钢,在温度为时安装在两个固定支座之间, 这时杆不受力。已知钢的线膨胀系数。试问当温度升高至多少度时,杆将丧失稳定? 解:

返回 9-3(9-6) 两根直径为d的立柱,上、下端分别与强劲的顶、底块刚性连接,如图所示。试根据杆端的约束条件,分析在总压力F作用下,立柱可能产生的几种失稳形态下的挠曲线形状,分别写出对应的总压力F之临界值的算式(按 细长杆考虑),确定最小临界力的算式。 解:在总压力F作用下,立柱微弯时可能有下列三种情况: (a)每根立柱作为两端固定的压杆分别失稳: (b)两根立柱一起作为下端固定而上 端自由的体系在自身平面内失稳 失稳时整体在面内弯曲,则1,2两杆 组成一组合截面。 (c)两根立柱一起作为下端固定而上端 自由的体系在面外失稳

故面外失稳时最小 =。 返回 9-4(9-7)图示结构ABCD由三根直径均为d的圆截面钢杆组成,在点B铰支,而在点A和点C固定,D为铰接点,。若结构由于杆件在平面ABCD内弹性失稳而丧失承载能力,试确定作用于结点D处的荷载F的临界值。 解:杆DB为两端铰支,杆DA及DC为一端铰支一端固定,选取。此结构为超静定结构,当杆DB失稳时结构仍能继续承载,直到杆AD及DC也失稳时整个结构才丧失承载能力,故 返回 9-5(9-9) 下端固定、上端铰支、长m的压杆,由两根10号槽钢焊接而成,如图所示,并符合钢结构设计规范中实腹式b类截面中心受压杆的要求。已知杆的材料为Q235钢,强度许用应力,试求压杆的许可荷载。

第七章 压杆稳定

第七章压杆稳定 本章重点介绍有关压杆稳定的基本概念和压杆临界力的计算方法,简单说明其它形式构件的稳定性问题。 第一节压杆稳定的概念 考察图7-1所示的受压理想直杆,当压力F小于某一数值时,在任意小的扰动下,压杆偏离其直线平衡位置,产生轻微弯曲,当扰动除去后,压杆又回到原来的直线平衡位置。这表明压杆的直线平衡是稳定的。当压力逐渐增加达到一定数值时,压杆在外界扰动下,偏离直线平衡位置,扰动去除,则不能再回到原来的直线平衡位置,而在某一弯曲状态下达到新的平衡,因此称该直线平衡是不稳定的。从稳定平衡状态过渡到不稳定平衡状态的压力极限值,称为临界载荷或临界力,用F cr表示。压杆丧失直线形式平衡状态的现象称为丧失稳定,简称失稳。 图7-1 杆件失稳后,压力的微小增加将引起弯曲变形的显著增大,从而使杆件丧失承载能力。但细长压杆失稳时,杆内的应力不一定高,有时甚至低于材料的比例极限。可见,压杆失稳并非强度不足,而是区别于强度、刚度失效的又一种失效形式。由于压杆稳定是突然发生的,因此所造成的后果也是严重的。历史上瑞士和俄国的铁路桥,都发生过因为桥桁架中的压杆失稳而酿成的重大事故。因此在工程实际中,对于压杆稳定性问题必须充分重视。 当压杆的材料、尺寸和约束等情况已经确定时,临界力是一个确定的值。因此可根据杆件实际的工作压力是小于还是大于压杆的临界力,来判断压杆是稳定的还是不稳定的。可见解决压杆稳定的关键问题是确定压杆的临界力。 第二节细长压杆的临界载荷

一、两端铰支细长压杆的临界力 取一根两端为球铰的细长压杆,使其处于微弯的平衡状态,选取相应的坐标系(图7-2a)。考察微弯状态下任意一段压杆的平衡(图7-2 b),则杆件横截面上的弯矩为 (a) 根据挠曲线近似微分方程,有 (b) 将式(a)代入式(b),有 (c) 其中 (d) 微分方程(c)的一般解为 (e) 其中C1、C2常数,可根据两端支承的约束边界条件确定,在两端铰支的情况下,边界条件为 (0)=(l)=0 将微分方程的解代入,得 C2=0, C1sinkl=0 (f) 后式表明,C1或者sinkl等于零。但若C1=0,则y=0,杆轴为直线,这与压杆处于微弯的平衡状态相矛盾。因此,只能是 sinkl=0 解得 (n=0,1,2,...) 由此得

工程力学第十三章 压杆稳定

第十三章 压杆稳定 思考题 1 何谓失稳?何谓稳定平衡与不稳定平衡? 2 试判断以下两种说法对否? (1)临界力是使压杆丧失稳定的最小荷载。 (2)临界力是压杆维持直线稳定平衡状态的最大荷载。 3 应用欧拉公式的条件是什么? 4 柔度λ的物理意义是什么?它与哪些量有关系,各个量如何确定 。 5 利用压杆的稳定条件可以解决哪些类型的问题?试说明步骤。 6 何谓稳定系数?它随哪些因素变化?为什么? 7 提高压杆的稳定性可以采取哪些措施?采用优质钢材对提高压杆稳定性的效果如何? 习题 1 图示四根压杆的材料及截面均相同,试判断哪一根杆最容易失稳?哪一根杆最不容易失稳? 2 图示压杆,材料为Q235钢,横截面有四种形式,但其面积均为3.2×103mm2。试计算它们的临界力,并进行比较。已知弹性模量E=200GPa,a=240MPa,b=0.00682MPa。 题1图题2图

3 图示压杆的横截面为矩形,h=60mm,b=40mm,杆长l=2.4m,材料为Q235钢,E=200GPa。杆端约束示意图为:在正视图(a)的平面内两端为铰支;在俯视图(b)的平面内,两端为固定。试求此杆的临界力。 4 已知柱的上端为铰支,下端为固定,外径D=200mm,内径d=100mm,柱长l =9m,材料为Q235钢,许用应力[σ]=160MPa。试求柱的许可荷载[F]。 题3图题4图 5 两端铰支工字钢受到轴向压力F=400kN的作用,杆长l=3m,许用应力[σ]=160MPa,试选择工字钢的型号。 6 压杆由两根∟140×12的等边角钢组成,如图示,杆长l=3m,许用应力[σ]=160MPa,两端固支。承受的轴向压力为F=850kN。试对压杆进行稳定性校核。 7 图示一简单托架,其撑杆AB为圆截面木杆,已知q=50kN/m,许用应力[σ]=11MPa,AB两端为柱形铰,试求撑杆所需的直径d。 题6图题7图 8 图示结构中,AB为刚性梁,A端为水平链杆,在B点和C点分别与直径d=40mm的钢圆杆铰接。已知q=35kN/m,圆杆材料为低碳钢,[σ]=170MPa。试问此结构是否安全? 9 图示结构中钢梁AC及柱BD分别由№22b工字钢和圆木构成,均布荷载集度q=8kN/m。梁的材料为Q235钢,许用应力[σ]=160MPa;柱的材料为杉木,直径d=160mm,[σ]=11MPa,两端铰支。试校核梁的强度和立柱的稳定性。

13-第十三章压杆稳定讲解

第十三章 压杆稳定 §13.1 压杆稳定的概念 构件受外力作用而处于平衡状态时,它的平衡可能是稳定的,也可能是不稳定的。 一、压杆稳定 直杆在压力作用下,保持原直线状态的性质。 二、失稳(屈曲) 压杆丧失其直线形状的平衡而过渡为曲线平衡。 三、临界压力 压杆保持其直线状态的最小压力,cr F 。 §13.2 两端铰支细长压杆的临界压力 在压杆稳定性问题中,若杆内的应力不超过材料的比例极限,称为线弹性稳定问题。 图示坐标系中,距原点为x 的任一截面的挠度为y , 则该截面得弯矩为:y F M(x)cr = 代入挠曲线近似微分方程,即EI M(x) -y d 2 2=dx 得: EI F k k dx cr y ,0y y d 2 22 2==+ 方程通解为:0cos Asin y =+=kx B kx 由杆端的边界条件:0y 0===时,和l x x 求得 : 0A s i n ,0==kx B 解得: ),2,1,0(????==n l n k π2 22F l EI n cr π= 除n=0外,无论n 取何值,都有对应的cr F ,1n =压杆失稳时的最小荷载是临界载荷 2 2F l EI cr π= 上式称为两端铰支细长压杆的临界荷载的欧拉公式。杆越细长,其临界载荷越小,即杆越容易失稳。对两端铰支细长压杆,欧拉公式中的惯性矩I 应是横截面最小的惯性矩,即形心主惯性矩中的做小值min I

§13.3其他支座条件下细长压杆的临界压力 几种常见约束方式的细长压杆的长度因数与临界载荷 例题:两端铰支压杆如图11-8所示,杆的直径20mm d =,长度800mm l =,材料为Q235钢,200GPa E =,200MPa p σ=。求压杆的临界载荷cr F 。 解:根据欧拉公式 239412 22 20010201024.2kN ()64(10.8)cr EI F l ππμ-????===?? 此时横截面上的正应力 3 cr P 26 424.21077MPa 2010 F A σσπ-??===≤?? 图 11-8

第十四章 压杆稳定

一、是非题 14.1 由于失稳或由于强度不足而使构件不能正常工作,两者之间的本质区别在于:前者构件的平衡是不稳定的,而后者构件的平衡是稳定的。() 14.2 压杆失稳的主要原因是临界压力或临界应力,而不是外界干扰力。() 14.3 压杆的临界压力(或临界应力)与作用载荷大小有关。() 14.4 两根材料、长度、截面面积和约束条件都相同的压杆,其临界压力也一定相同。() 14.5 压杆的临界应力值与材料的弹性模量成正比。() 二、选择题 14.6 在杆件长度、材料、约束条件和横截面面积等条件均相同的情况下,压杆采用图()所示的截面形状,其稳定性最好;而采用图()所示的截面形状,其稳定性最差。 14.7一方形横截面的压杆,若在其上钻一横向小孔(如图所示),则该杆与原来相比()。 A. 稳定性降低,强度不变 B. 稳定性不变,强度降低 C. 稳定性和强度都降低 D. 稳定性和强度都不变 14.8 若在强度计算和稳定性计算中取相同的安全系数,则在下列说法中,()是正确的。

A. 满足强度条件的压杆一定满足稳定性条件 B. 满足稳定性条件的压杆一定满足强度条件 C. 满足稳定性条件的压杆不一定满足强度条件 D. 不满足稳定性条件的压杆不一定满足强度条件 三计算题 14.9无缝钢管厂的穿孔顶针如图所示。杆端承受压力。杆长l =4.5m ,横截面直径d =15cm ,材料为低合金钢,E =210 Gpa 。两端可简化为铰支座,规定的稳定安全系数为=3.3 。试求顶杆的许可载荷。 14.10某厂自制的简易起重机如图所示,其压杆BD 为20号槽钢,材料为A3 钢。起重机的最大起重量是P = 40 kN 。若规定的稳定安全系数为=5 ,试校核BD 杆的稳定性。 14.11 10 号工字梁的C 端固定,A 端铰支于空心钢管AB 上。钢管的内径和外径分别为30mm 和40mm ,B 端亦为铰支。梁及钢管同为A3 钢。当重为300N 的重物落于梁的 A 端时,试校核A B 杆的稳定性。规定稳定安全系数=2.5 。

新材料力学习题册答案-第9章 压杆稳定

第 九 章 压 杆 稳 定 一、选择题 1、一理想均匀直杆受轴向压力P=P Q 时处于直线平衡状态。在其受到一微小横向干扰力后发生微小弯曲变形,若此时解除干扰力,则压杆( A )。 A 、弯曲变形消失,恢复直线形状; B 、弯曲变形减少,不能恢复直线形状; C 、微弯状态不变; D 、弯曲变形继续增大。 2、一细长压杆当轴向力P=P Q 时发生失稳而处于微弯平衡状态,此时若解除压力P ,则压杆的微弯变形( C ) A 、完全消失 B 、有所缓和 C 、保持不变 D 、继续增大 3、压杆属于细长杆,中长杆还是短粗杆,是根据压杆的( D )来判断的。 A 、长度 B 、横截面尺寸 C 、临界应力 D 、柔度 4、压杆的柔度集中地反映了压杆的( A )对临界应力的影响。 A 、长度,约束条件,截面尺寸和形状; B 、材料,长度和约束条件; C 、材料,约束条件,截面尺寸和形状; D 、材料,长度,截面尺寸和形状; 5、图示四根压杆的材料与横截面均相同, 试判断哪一根最容易失稳。答案:( a ) 6、两端铰支的圆截面压杆,长1m ,直径50mm 。其柔度为 ( C ) A.60; B.66.7; C .80; D.50 7、在横截面积等其它条件均相同的条件下,压杆采用图( D )所示截面形状,其稳定性最好。 8、细长压杆的( A ),则其临界应力σ越大。 A 、弹性模量E 越大或柔度λ越小; B 、弹性模量E 越大或柔度λ越大; C 、弹性模量E 越小或柔度λ越大; D 、弹性模量 E 越小或柔度λ越小; 9、欧拉公式适用的条件是,压杆的柔度( C ) A 、λ≤ P E πσ B 、λ≤s E πσ C 、λ≥ P E πσ D 、λ≥s E π σ

工程力学答案 第11章 压杆稳定

11-1 两端为铰支座的细长压杆,如图所示,弹性模量E=200GPa,试计算其临界荷载。(1)圆形截面,25,1 d l == mm m;(2)矩形截面2400,1 h b l === m m;(3)16号工字钢,2 l=m l 解:三根压杆均为两端铰支的细长压杆,故采用欧拉公式计算其临界力: (1)圆形截面,25,1 d l == mm m: 2 29 2 22 0.025 20010 6437.8 1 cr EI P l π π π ? ??? === N kN (2)矩形截面2400,1 h b l === m m 当压杆在不同平面约束相同即长度系数相同均为1 μ=时,矩形截面总是绕垂直短边的轴先失稳 2 0.040.02 min(,) 12 y z y I I I I ? ===,故: 2 29 2 22 0.040.02 20010 1252.7 1 cr EI P l π π ? ??? === N kN (3)16号工字钢,2 l=m 查表知:44 93.1,1130 y z I I == cm cm,当压杆在不同平面约束相同即长度系数相同均为1 μ=时 4 min(,)93.1 y z y I I I I ===cm,故: 2298 22 2001093.110 459.4 2 cr EI P l ππ- ???? === N kN 11-3 有一根30mm×50mm的矩形截面压杆,一端固定,另一端铰支,试问压杆多长时可以用欧拉公式计算临界荷载已知材料的弹性模量E=200GPa,比例极限σP=200MPa。 解:(1)计算压杆能采用欧拉公式所对应的 P λ 2 2 99.35 P P P E π σλ λ =→=== (2)矩形截面压杆总是绕垂直于短边的轴先失稳,当其柔度大于 P λ可采用欧拉公式计算临界力。故 0.7 80.83 1.229 0.03 99.35 x P y z l l l l i μ λλ ? ===>> =→mm, 即 1.229 l>mm为细长杆,可采用欧拉公式计算临界力。 11-6 某钢材的比例极限230 P σ=MPa,屈服极限274 s σ=MPa,弹性模量E=200GPa,331 1.09 cr σλ =-。 试求 P s λλ 和,并绘制临界应力总图(0150 λ ≤≤)。

第11章 压杆稳定

第十一章 压杆稳定 11-1 图示压杆在主视图a 所在平面内,两端为铰支,在俯视图b 所在平面内,两端为固定,材料的为Q235钢,弹性模量GPa 210=E 。试求此压杆的临界力。 (a ) (b ) 解: 在主视图所在平面内,如图(a)所示,压杆的柔度为 6.1386240 323212 13=?==?= =h l bh bh l i l a a a μλ 在俯视图所在平面内,如图(b)所示,压杆的柔度为 9.1034240 3312 5.03=?=== =b l bh hb l i l b b b μλ ∵ 100p ≈>>λλλb a ,∴为大柔度压杆,且失稳时在主视图平面内 失稳 故压杆的临界力为 kN 9.258N 40606.1381021023 222cr =????= =πλπA E F a 11-2 两端固定的矩形截面细长压杆,其横截面尺寸为 m m 60=h ,m m 30=b ,材料的比例极限MPa 200p =σ,弹性模量GP a 210=E 。试求此压杆的临界力适用于欧拉公式时的最小长度。 解: 由于杆端的约束在各个方向相同,因此,压杆将在惯性矩最小的平面内失稳,即压杆的横截面将绕其惯性矩为最小的形心主惯性轴转动。 3 2123 min min b bh hb A I i === 欧拉公式适用于max λp λ≥,即 m i n m a x i l μλ=p σπ E ≥ 由此得到 =≥P E i l σμπm i n m 76.1m 10 200102105 .0321030326 9 3p =?????= -π σμπE b 故此压杆适用于欧拉公式时的最小长度为1.76m 。

压杆稳定

1、( )材料相同的压杆,柔度越大,稳定性越差,故它所能承受的外压力就越小。 1、( )压杆的临界应力是压杆处于临界状态维持直线平衡形式时横截面上的正应力。 2、( )材料相同,柔度相等的压杆,空心杆比实心杆的稳定性好,即空心杆所能承受的压力大。 3、对于压杆稳定,下面错误的伦述是( )。 A 、压杆的临界压力是保持稳定直线平衡的最大载荷。 B 、压杆的柔度越大,压杆越不稳定。 C 、大柔度压杆可以使用欧拉公式计算临界压力。 D 、矩形截面细长压杆,已知Iz>Ir ,计算临界载荷时,应取值Iz 为妥。 5、临界应力是压杆失稳时横截面上的应力( ) 6、示Q235钢压杆,截面为矩形,面积为3.2*103mm 2, 已知E=200GPA ,σs =235MPA ,λp=100,λs=61.6,试计算其临界载荷。(15分) 7、( )压杆的稳定性主要与压杆的截面大小和压杆的长度有关。 一、是非判断题 9.1 所有受力构件都存在失稳的可能性。 ( × ) 9.2 在临界载荷作用下,压杆既可以在直线状态保持平衡,也可以在微弯状态下保持平衡。 ( × ) 9.3 引起压杆失稳的主要原因是外界的干扰力。 ( × ) 9.4 所有两端受集中轴向力作用的压杆都可以采用欧拉公式计算其临界压力。 ( × ) 9.5 两根压杆,只要其材料和柔度都相同,则他们的临界力和临界应力也相同。 ( × ) 9.6 临界压力是压杆丧失稳定平衡时的最小压力值。 ( ∨ ) 9.7 用同一材料制成的压杆,其柔度(长细比)愈大,就愈容易失稳。 ( ∨ ) 9.8 只有在压杆横截面上的工作应力不超过材料比例极限的前提下,才能用欧拉公式计算其 临界压力。 ( × ) 9.9 满足强度条件的压杆不一定满足稳定性条件;满足稳定性条件的压杆也不一定满足强度 条件。 ( ∨ ) 9.10 低碳钢经过冷作硬化能提高其屈服极限,因而用同样的方法也可以提高用低碳钢制成 的细长压杆的临界压力。 ( × ) 二、填空题 9.1 压杆的柔度λ综合地反映了压杆的 对临界应力的影响。 9.2 柔度越大的压杆,其临界应力越 小 ,越 容易 失稳。 9.3 影响细长压杆临界力大小的主要因素有 E , I , μ , l 。 长度(l ),约束(μ),横截 面的形状和大小(i ) 有应力集中时 2 2)(l EI F cr μπ=

!第八章压杆稳定性要点

15-1 两端为球铰的压杆,当它的横截面为图示各种不同形状时,试问杆件会在哪个平面内失去稳定(即在失稳时,杆的截面绕哪一根轴转动)? 解:(a),(b),(e)任意方向转动,(c),(d),(f)绕图示Z 轴转动。 15-2 图示各圆截面压杆,横截面积及材料都相同,直径d =1.6cm ,杆材A 3钢的弹性模量E =200MPa ,各杆长度及支承形式如图示,试求其中最大的与最小的临界力之值。 解:(a) 柔度: 230 1500.4 λ?= = 相当长度:20.30.6l m μ=?= (b) 柔度: 150 1250.4 λ?== 相当长度:10.50.5l m μ=?= (c) 柔度: 0.770 122.50.4 λ?= = 相当长度:0.70.70.49l m μ=?= (d) 柔度: 0.590 112.50.4 λ?= = 相当长度:0.50.90.45l m μ=?= (e) 柔度: 145 112.50.4 λ?== 相当长度:10.450.45l m μ=?= 由E=200Gpa 及各柔度值看出:各压杆的临界力可用欧拉公式计算。即:() 22 cr EJ P l πμ=各压杆的EJ 均相同,故相当长度最大的压杆(a)临界力最小,压杆(d)与(e)的临界力最大,分别为: () 2948 2 2 2 320010 1.610640.617.6410cr EJ P l N π ππμ-??? ??= ==?

() 2948 2 2 2 320010 1.610640.4531.3010cr EJ P l N π ππμ-??? ??= ==? 15-3 某种钢材P σ=230MPa ,s σ=274MPa ,E =200GPa ,直线公式λσ22.1338-=cr ,试计算该材料压杆的P λ及S λ值,并绘制1500≤≤λ范围内的临界应力总图。 解: 92.6 33827452.5 p s s a λπσλ===--=== 15-4 6120型柴油机挺杆为45钢制成的空心圆截面杆,其外径和内径分别为,12mm 和10mm ,杆长为383mm ,两端为铰支座,材料的E =210GPa ,P σ=288MPa ,试求此挺杆的临界力cr P 。若实际作用于挺杆的最大压缩力P =2.33kN ,规定稳定安全系数W n =2~5。试校核此挺杆的稳定性。 解:(1)

相关文档
相关文档 最新文档