文档视界 最新最全的文档下载
当前位置:文档视界 › 湍流理论若干问题研究进展

湍流理论若干问题研究进展

第15卷第4期水利水电科技进展1995年8月

湍流理论若干问题研究进展

刘兆存 金忠青

(河海大学 南京 210098)

摘要 本文对近年来湍流理论在某些方面的研究进展作了概要介绍,对拟序结构发现后人们对湍流内部结构的新认识和近年来发展很快的从微分方程分析角度出发对湍流机理新的探索进行了评价,说明引入混沌后在时、空演化方面对湍流机理的模拟,最后阐述了流动稳定性和层流向湍流的转捩。

关键词 湍流 N-S方程 流动结构 流动机理 封闭性

近年来,在围绕湍流结构和统计两条主线的研究工作中出现了新观点和新趋势,虽然从历史的观点来看有些可能是错的——在科学容忍的范围内,但在现阶段却是研究的主流。

1 简要回顾及发展

1.1 半经验理论和模式理论

湍流的控制方程是N-S方程,但和层流相比,方程不封闭。为满足工程需要,发展了一系列的以普朗特混合长理论为代表的湍流半经验理论或早期模式理论。这种理论虽然对于增进对湍流机理的了解没有提供更多的贡献,但对解决工程实际问题却起了重大的作用[1]。半经验理论是一种唯像理论,并不涉及湍流内部机理。以速度分布公式为例,半经验理论的速度分布公式大致有对数型和指数型。对数型速度分布得到的假定是充分发展的剪切湍流中主流区(不含边界层的)的流速梯度和分子粘性无关,指数型(或渐近指数型)则假定分子粘性不能忽略[2],两种类型的流速分布公式在工程实践中都获得了非常广泛的应用。半经验理论的一个发展方向是吸收统计理论的成果,用统计理论的精细成果丰富半经验理论不足并保留便于应用的优点,如文[3]所作的工作。

近代的模式理论在封闭湍流基本方程组时特别吸收了统计理论的成果,如二方程模型、应力通量代数模型、应力通量方程模型等。关于这方面的详细论述,将另文给出。

1.2 统计理论

湍流的统计理论的目标则是从最基本的物理守恒定律——N-S方程和连续性方程出发,探讨湍流的机理。理查逊-柯尔莫哥洛夫湍流图像部分被实验所证实。统计理论中湍流的能量传递关系被更符合实际的U. Fr isch等所提出的B-模型所代替。湍流统计理论历时半个多世纪的发展,经泰勒、陶森德等人的努力,取得丰硕的成果,但仍不能绕过封闭性的困难,所得成果都还是很不完善的。湍流统计理论的重要性目前已有所下降[1]。我国周培源等提出了均匀各向同性湍流的准相似性条件以及相应均匀各向同性湍流的涡旋结构统计理论并得到实验的验证[4],进一步将在均匀各向同性湍流中得到的准相似性条件推广到一般的剪切湍流中,然后对关联方程的耗散项作出假定,利用逐级近似方法发展了湍流的统计理论[5],所得结果部分经实验证实。文[6]采用逐级迭代法对湍流平均运动方程和脉动速度关联方程

·

12·

进行求解,解决了以往求高阶脉动关联函数时须联立求解一系列不同阶脉动速度关联方程所带来的方程不封闭性。

统计理论由研究均匀各向同性湍流到研究一般的剪切湍流是一个巨大的进步,但这种探索毕竟刚刚起步,有些困难目前还难以克服。虽然用统计理论方法封闭湍流方程组似乎难似登天,但统计学派所得的成果和所用的方法对后来湍流的研究有深远的影响。

2 湍流的描述

2.1 N-S方程的层次结构[7~10]

湍流直接数值模拟的一个重要观点是N-S方程完整地描述了湍流,它提供了湍流运动的一切信息。然而完整的N-S方程的数学分析相当困难,可以从物理分析出发,按流场中长度尺度分布、惯性项和粘性项的相对大小及数量级比较和划分流动区域的原则进行简化。虽然简化结果有十多种层次结构,然而从数学特征而言只有椭圆型、扩散抛物化和抛物化三类,并可给出每型的数学特征,且提出了流场的三层结构的简化的数学模型和力学特征,按不同精度要求,得出一个简化系统。由简单的边界层方程逐渐到完整的N-S方程,为从N-S方程分析湍流提供了依据。

2.2 湍流机理的模拟

以法国科学家T mam为首的里昂学派证明二维的N-S方程的解在时间演化过程中会被逐渐吸收到一个有限维的吸收集中,并证明这系统有有限维的整体吸引子。引入惯性流形的概念,奇怪吸引子就是被嵌入到这种光滑的流形中。惯性流形的存在标志着奇怪吸引子的存在。T mam表示,从物理学观点来看,惯性流形就是把湍流中小涡和大涡联系起来的一种相互作用规律。

三维的N-S方程

5u

5t

+(u?y)u=f-1

Qyp+My

2u

(1)对所有的t,使方程(1)的解u(x,t)都无界的点x的集合,维数最多为1

1

2

(分数维)。

湍流中的涡输运系数,即布西涅斯克方程中的M t,可采用非平衡态统计物理方法加以理论确定[11]。模式理论中的二方程模型中的k-E模型中的系数可用重整化群RNG方法加以理论确定。这说明用RNG方法研究湍流时,确实揭示了湍流的部分物理实质[12]。有趣的是用RNG方法得到的对柯尔莫哥洛夫的5/3定律的偏移,最终值为7/3,出现这种情况的原因有待查明。

近来人们认识到偏微分方程的解只在有限时间内存在一类奇异性的问题。在物理世界中,如湍流中的猝发现象、涡管的瞬时断裂和重联均在有限的时间内完成。偏微分方程解的规则性和奇异性及其演化过程中空间结构和分布特性与湍流演变机制有某种对应性。从物理上看,偏微分方程对应的动力系统的极限状态代表现实世界的不同的相(状态)。在用微分方程表达的牛顿运动定律中,牛顿定律制约因素关系所满足的偏微分方程中,本身就蕴含了这种性态。为解释湍流的相干结构现象,人们把研究重点转向有序的时空结构上,特别是有关空间结构的图像动力学上(pattern dynamics)。这种空间图像具有时间演化的某种动态过程。湍流本身内部结构可用图像方程模拟[13]。

分维动力学揭示了无序系统被长期忽略的通性,即在充分无序系统中能量的传播以波粒二重性取代了有序系统在粘弹性网络中的周期波传播。最大的区别在于能量激发的当地性及能量传播的滞后性。

刘式适等人认为,用B-kdv方程描述一

·

13

·

维湍流其意义是深刻的,进一步分析指出[14~16],B-kdv方程

u t+uu x-M u x x+B u xxx=0(2)含有三种因素:非线性、耗散和色散。非线性可以使能量集中,也是产生混沌的重要因素。耗散对应着熵增,它使过程具有不可逆性。色散使能量可聚可散。非线性、耗散、色散三种因子的互相作用可以解释湍流的许多性状。如能量级串散裂是耗散作用占主导地位,小涡形成大涡的能量逆转现象则是非线性和色散共同作用的结果。采用非线性、耗散和色散相互作用的机制,可以解释湍流的许多现象。至于湍流中是否确实含有这三种因子及其作用规律,有待实验进一步证实。

人们对三维的N-S方程的数学特性还不是很清楚。Landau和Lifshitz等认为,湍流的随机性主要是因为N-S方程的吸引子的结果。直接从N-S方程出发在定解条件下解析地分析湍流目前条件还不成熟。

2.3 湍流和混沌

拟序(或相干)结构对认识湍流的重要性愈来愈受到人们的关注。如剪切湍流的扩散和发展,不仅仅是小尺度随机扩散的结果,更主要是由大尺度拟序结构的相干干涉、卷并造成的。数值模拟发现,对充分发展的湍流仍有涡管状的拟序结构,但还没有被实验证实。湍流并非是一个真正的随机系统。

湍流的数学描述是一个无穷维的动力系统,是无穷维的混沌。混沌理论告诉我们,在确定性的非线性动力系统中可以同时存在规则的有序结构和不规则的混沌状态,而且它们有时往往是相互交织在一起不可分割的,都是受系统本身的同一种非线性规律支配,在没有系统外部任何影响时也会出现。湍流是典型的耗散系统,它通往混沌的道路除倍周期迭加和间隙外,还有其它途径。Frisch等认为,湍流间隙可用强度变化的一些特定项表示,这些项包含于有分数维的内波集上。

间隙、湍流斑这些拟序结构表现出统计意义上的自相似性。分形理论指出,简单图形的变换会形成和原始图形性质截然不同的结果并表现出两者之间的自相似性。分形在湍流中有广泛的应用[17],随机分形的生长能类比于湍流的拟序结构,这要用计算机来模拟,Frisch等作了大量的工作,但远不能模拟出真实的湍流来。

耗散系统的奇怪吸引子对初始条件有非常敏感的依赖性,且它的功率谱是一个宽谱,表明系统中已被激发出无穷多个特征频率。湍流系统中存在马蹄,马蹄的存在意味着双曲不动点的存在,意即存在不稳定流形。此外耗散系统中的奇怪吸引子有非常奇特的拓扑结构和几何结构——具有无穷多层次的自相似结构的为非整数几何维数的一个集合。简单耗散系统中的逻辑斯梯阶映射显现的混沌呈现出规则有时是无序的倒分叉现象、窗口现象和间隙现象的特征。

采用计算机模拟混沌时首先要构造模型,如CML模型[18],对湍流而言,更有用的是CCM模型1

混沌的理论分析困难较大,在湍流中都是针对一些具体问题作出的。这一方面是由于湍流实验专家还对实验中所观察到的现象是否是真正的混沌意见并未统一,另一方面对认为是混沌现象的实验研究还很困难。重要的是,混沌机理并未完全探明而是刚刚起步。用混沌模拟湍流,或者说,研究湍流中的混沌现象,还处于积累经验的时期。有人乐观估计,混沌理论的重大突破性进展可导致湍流问题的根本性解决。

2.4 流动稳定性

流动稳定性虽然有广泛的应用于工程技术的价值,但仍主要是探索层流向湍流转捩

·

14·1何国威等.模拟流动复杂性的耦合映射.见:第四届全国湍流与流动稳定性学术会议论文集,南京,1994

的机理。具体作法是在原流动中叠加一扰动,判别扰动随时空的演化,据以说明稳定和不稳定性。当为不稳定性时找到失稳的临界雷诺数和其它控制参数。对于平行流的稳定性分析主要采用线性理论和非线性理论。在非线性理论中若设扰动是二维的,又可分为朗道法、能量法、形状假定理论、弱非线性理论、分叉理论。如果设扰动是三维的,又可分为二次失稳理论、共振三波理论、一般共振理论、直接共振理论。

具体应用分叉理论时要处理的问题主要有:1找出对应于分叉点的临界参数值;o找出该参数值在临界值附近的分叉解;?判明新分叉解的稳定性。常见的分叉主要有:1对称鞍结点分叉;o鞍结点分叉;?跨临界分叉;?滞后分叉;?Hopf分叉;?周期倍分叉;?同宿或异宿分叉。在用计算机计算时问题转化为:1如何实现对解曲线的追踪;o怎样判断与搜索奇异点;?计算分叉点处的分叉方向,实现对分叉后解曲线的追踪。上述表述可以采用矢量场、流形的几何观点,把非线性代数方程组的解流形与相应矢量场的不变流形联系起来,叙述可简洁明了。

稳定性理论成功的一个例子是解释湍流边界层底层低速条纹产生的机理。和实验相当吻合。在湍流控制中,稳定性理论获得了非常广泛的应用。

3 结 语

众多方法都从不同的侧面揭示了湍流的机理,但距问题真正解决还很遥远。随着新技术在湍流实验方面的广泛应用,人们对湍流整体的认识必将更为深入——揭示新的实验现象、验证发展已有的理论成果。混沌的出现为解决湍流带来了新的希望,并有可能导致对湍流认识的根本性解决。

参考文献

1 是勋刚等.湍流.天津:天津大学出版社,1994 2 Bar enblatt G I.Scaling laws for fully developed turbulent shear flow.J. F.M.1993,248:513~529

3 窦国仁.紊流力学(下册).北京:高等教育出版社,1987

4 魏中磊等.网格湍流微结构的实验研究.力学学报,1988,20(3):200~205

5 周培源等.不可压缩流体的湍流理论,中国科学

(A),1987(4):369~380

6 林建忠等.求解脉动速度关联函数的新方法及其在平面湍尾流中的应用.力学学报,1993,25

(6):643~650

7 高智.流体力学基本方程组(BEF M)的层次结构理论和简化Navier-Stokes方程组.力学学报,1988,20(2):107~116

8 高智.简化N-S方程的结构及内涵.中国科学

(A),1988(6):625~640

9 陈国谦等.简化N-S方程的一般理论.中国科学(A),1990(12):1272~1281

10 田纪伟等.简化Navier-Stokes(SNS)方程在二维层流边界层分离点邻域的特性.中国科学

(A),1992(3):282~292

11 钱俭.确定湍流的涡输运系数的新方法.中国科学(A),1992(11):1169~1176

12 Zhou Ye,et al.R enormalization-group t heo-ry for the eddy viscosity in subgrid modelling.

Physical R eview A,198837(7):2590~2598 13 Newell A C,et al.Order para meter equat ion for patter ns.Annu Rev F luid Mech,1993,25:

399~453

14 熊树林.Bur gers-kdv方程的一类解析解.科学通报,1989(1):26~29

15 刘式达等.孤立波和同宿轨道.力学与实践, 1991,13(4):9~15

16 刘式达等.湍流的kdv-Burgers方程模型.中国科学(A),1991(9):938~946

17 Str eenivasan K R.Fr actals and multifr actals in fluid tur bulence.Annu Rev F luid Mech,1991,

·

15

·

湍流模型概述

大多数飞行器都是在高Re数下飞行,表面的流态是湍流。为了准确地确定湍流流态下的摩阻、热流,湍流成为一个重要而困难的研究课题。 (一)DNS 目前处理湍流数值计算问题有三种方法,第一种方法即所谓直接数值模拟方法(DNS方法),直接求解湍流运动的N-S方程,得到湍流的瞬时流场,即各种尺度的随机运动,可以获得湍流的全部信息。随着现代计算机的发展和先进的数值方法的研究,DNS方法已经成为解决湍流的一种实际的方法。但由于计算机条件的约束,目前只能限于一些低Re数的简单流动,不能用于工程应用。目前国际上正在做的湍流直接数值模拟还只限于较低的需诺数(Re~200)和非常简单的流动外形,如平板边界层、完全发展的槽道流,以及后台阶流动等。用直接数值模拟方法处理工程中的复杂流动问题,即使是当前最先进的计算机也还差三个量级。 (二)LES 另一种方法称做大涡模拟方法(LES方法)。这是一种折衷的方法,即对湍流脉动部分直接地模拟,将N-S方程在一个小空间域内进行平均(或称之为滤波),以使从流场中去掉小尺度涡,导出大涡所满足的方程。小涡对大涡的影响会出现在大涡方程中,再通过建立模型(亚格子尺度模型)来模拟小涡的影响。由于湍流的大涡结构强烈地依赖于流场的边界形状和边界条件,难以找出普遍的湍流模型来描述具有不同的边界特征的大涡结构,宜做直接模拟。相反地,小尺度涡对边界条件不存在直接依赖关系,而且一般具有各向同性性质。所以亚格子模型具有更大的普适性,比较容易构造,这是它比雷诺平均方法要优越的地方。自从1970年Deardorff第一次给出具有工程意义的LES计算以来,LES方法已经成为计算湍流的最强有力的工具之一,应用的方向也在逐步扩展,但是仍然受计算机条件等的限制,使之成为解决大量工程问题的成熟方法仍有很长的路要走。 (三)RANS 目前能够用于工程计算的方法就是模式理论。所谓湍流模式理论,就是依据湍流的理论知识、实验数据或直接数值模拟结果,对Reynolds应力做出各种假设,即假设各种经验的和半经验的本构关系,从而使湍流的平均Reynolds方程封闭。随着计算流体力学的发展,湍流模式理论也有了很大的进步,有了非常丰硕的成果。从对模式处理的出发点不同,可以将湍流模式理论分类成两大类:一类称为二阶矩封闭模式,另一类称涡粘性封闭模式。 (1)雷诺应力模式 所谓二阶矩封闭模式,是从Reynolds应力满足的方程出发,将方程右端未知的项(生成项,扩散项,耗散项等)用平均流动的物理量和湍流的特征尺度表示出来。典型的平均流动的变量是平均速度和平均温度的空间导数。这种模式理论,由于保留了Reynolds应力所满足的方程,如果模拟的好,可以较好地反映Reynolds应力随空间和时间的变化规律,因而可以较好地反映湍流运动规律。因此,二阶矩模式是一种较高级的模式,但是,由于保留了Reynolds应力的方程,加上平均运动的方程整个方程组总计15个方程,是一个庞大的方程组,应用这样一个庞大的方程组来解决实际工程问题,计算量很大,这就极大地限制了二阶矩模式在工程问题中的应用。 (2)涡粘性模式

湍流研究简史-温景嵩

湍流研究简史-温景嵩 长春实验所发现的湍流不连续性及其对柯尔莫果洛夫理论基础的冲击具有十分重要的意义。(长春实验是指作者1972年9月在长春郊区采用类似热线风速仪的仪器测量大气湍流的温度脉动,也称温度脉动仪,然后通过频谱分析仪进行各谱段频谱分析。作者从中发现了湍流不连续性,也称间歇性。)因为湍流不仅是流体运动中的一个重大的世纪性的前沿课题,不仅它普遍存在于自然界,也普遍地存在于工程界,它是基础科学中一个重大的前沿分支---20世纪下半叶兴起的非线性科学的先驱和归宿。正由于以上两个原因,所以湍流问题的研究不仅吸引了众多的流体力学家,力学家的兴趣,而且也吸引了众多的数学家,物理学家,大气科学家,甚至包括了众多的工程技术界的专家学者的兴趣,大家都想在这一领域里一显身手。可以说湍流这一领域真正是“江山如此多娇,引无数英雄竞折腰”。自1883年英国曼彻斯特大学著名流体力学大师雷诺发表他的现代湍流开创性工作以来,一百二十多年里在湍流领域中已积累起浩如烟海的文献,发表了成百上千种的学说和理论,尽管如此,由于湍流这一课题固有的十分严重的困难,一百二十多年的众多科学家的奋斗结果,真正成功的理论并不多,算起来也就四个。 1. 普朗特的半经验混合长理论 第一个是1925年普朗特发表的半经验混合长理论,以及由此而导出的平板平均流速与所在高度的对数成正比的对数分布律。(冯. 卡尔曼1930,普朗特1933)这个对数分布律已由大量实验所证明。在工程上有很好的应用,可以用以计算平板表面所受的摩擦阻力,经过推广后,现在还可以用以计算飞船模型表面所受摩擦阻力。应该承认普朗特的半经验混合长理论解决了工程应用上的一大难题。后来前苏联学者莫宁(Monin)和奥布霍夫又把它成功地推广到近地面边界层大气风速的分布问题中去,为解决大气物理中的大气扩散等难题开辟了道路。然而普朗特的混合长理论并不是在工程应用中产生,也不是在大气中应用产生,也不是由实验带出来的结果。相反,它是在解决湍流这一学科发展中所面对的难题而产生的。它产生了以后,才有了工程的应用,才有了在大气中的应用,并且也才有了实验的证实。普朗特的半经验混合长理论是为解决雷诺方程的不闭合难题而创造出。1895年,也就是雷诺用实验证明湍流发生规律工作后的十二年,同样是由他研制成著名的雷诺方程。该方程从支配黏性流体运动的基本方程---纳维-斯托克斯方程出发,然后把瞬时流场分解为平均流场和湍流脉动速度流场的和,把这个和式代入到纳维-斯托克斯方程再取平均就形成了雷诺方程,这是一个支配湍流场中平均流场变化的方程,不幸方程不闭合。因为除了待求的平均流场外,又多了一个未知数,即同一点上湍流脉动速度的两个分量相关矩,它具有应力的量纲,又叫雷诺应力。它表征了湍流脉动场对平均场的影响,相关矩肯定不为0 ,即雷诺应力不是0。否则有湍流发生后的平均流场分布规律就应和没有湍流发生时的层流流场规律相同。而实验已证实,两者确实不同,这就证实湍流场的雷诺应力对平均场确有重要影响。可惜这是未知的。于是一个雷诺方程无法同时解出平均场和雷诺应力两个未知数,形成湍流研究中著名的不闭合难题,这个难题是由纳维-斯托克斯的非线性,以及湍流特有的随机性,在对方程求取平均值过程中必然产生。所以是湍流研究中固有的一个难点。用同样的雷诺方法,原则上可以求出湍流脉动速度两个分量相关矩的方程,这样方程就多了一个,此时和原来的雷诺方程一起现在有了两个方程,两个未知数,似乎可以闭合,其实不然。从纳维-斯托克斯方程的非线性特点,可以断定在建立两个分量的二阶相关矩方程时,必然又会增加一个新的未知的三阶相关矩,方程仍然不闭合,依此类推,若建立三阶相关矩方程,则同样还会多出一个未知的四阶相关矩,可以断言,沿着这条路线下去,未知数永远要比方程多一个,方程不可能闭合。这样下去,湍流问题就无法严格在数学上求解。雷诺方程建立后又过了三十年,即1925年由普朗特用混合长理论解决了这个难题。他的解决办法就是用物理模型方法来切断雷诺方程在数学上的不封闭链条,在雷诺方程那里就打住,引入混合长的物理模型,使雷诺

湍流模型概述

大多数飞行器都是在高Re数下飞行,表面的流态是湍流.为了准确地确定湍流流态下的摩阻、热流,湍流成为一个重要而困难的研究课题。 (一)DNS 目前处理湍流数值计算问题有三种方法,第一种方法即所谓直接数值模拟方法(DNS方法),直接求解湍流运动的N-S方程,得到湍流的瞬时流场,即各种尺度的随机运动,可以获得湍流的全部信息。随着现代计算机的发展和先进的数值方法的研究,DNS方法已经成为解决湍流的一种实际的方法。但由于计算机条件的约束,目前只能限于一些低Re数的简单流动,不能用于工程应用.目前国际上正在做的湍流直接数值模拟还只限于较低的需诺数(Re~200)和非常简单的流动外形,如平板边界层、完全发展的槽道流,以及后台阶流动等。用直接数值模拟方法处理工程中的复杂流动问题,即使是当前最先进的计算机也还差三个量级.(二)LES 另一种方法称做大涡模拟方法(LES方法).这是一种折衷的方法,即对湍流脉动部分直接地模拟,将N—S方程在一个小空间域内进行平均(或称之为滤波),以使从流场中去掉小尺度涡,导出大涡所满足的方程.小涡对大涡的影响会出现在大涡方程中,再通过建立模型(亚格子尺度模型)来模拟小涡的影响。由于湍流的大涡结构强烈地依赖于流场的边界形状和边界条件,难以找出普遍的湍流模型来描述具有不同的边界特征的大涡结构,宜做直接模拟。相反地,小尺度涡对边界条件不存在直接依赖关系,而且一般具有各向同性性质。所以亚格子模型具有更大的普适性,比较容易构造,这是它比雷诺平均方法要优越的地方。自从1970年Deardorff第一次给出具有工程意义的LES计算以来,LES方法已经成为计算湍流的最强有力的工具之一,应用的方向也在逐步扩展,但是仍然受计算机条件等的限制,使之成为解决大量工程问题的成熟方法仍有很长的路要走。 (三)RANS 目前能够用于工程计算的方法就是模式理论。所谓湍流模式理论,就是依据湍流的理论知识、实验数据或直接数值模拟结果,对Reynolds应力做出各种假设,即假设各种经验的和半经验的本构关系,从而使湍流的平均Reynolds方程封闭.随着计算流体力学的发展,湍流模式理论也有了很大的进步,有了非常丰硕的成果。从对模式处理的出发点不同,可以将湍流模式理论分类成两大类:一类称为二阶矩封闭模式,另一类称涡粘性封闭模式。 (1)雷诺应力模式 所谓二阶矩封闭模式,是从Reynolds应力满足的方程出发,将方程右端未知的项(生成项,扩散项,耗散项等)用平均流动的物理量和湍流的特征尺度表示出来。典型的平均流动的变量是平均速度和平均温度的空间导数.这种模式理论,由于保留了Reynolds应力所满足的方程,如果模拟的好,可以较好地反映Reynolds应力随空间和时间的变化规律,因而可以较好地反映湍流运动规律。因此,二阶矩模式是一种较高级的模式,但是,由于保留了Reynolds应力的方程,加上平均运动的方程整个方程组总计15个方程,是一个庞大的方程组,应用这样一个庞大的方程组来解决实际工程问题,计算量很大,这就极大地限制了二阶矩模式在工程问题中的应用。 (2)涡粘性模式

湍流的研究进展

湍流的研究进展 XXX (XXX大学化工学院,青岛 266042) 摘要:本文对一百多年来湍流研究的进展作了简要回顾,并概述了湍流产生的原因及湍流对流体造成的影响,从不同的方向阐述了当今流体湍流的研究成果,展现了湍流研究的深入对于科学技术与社会发展产生的重要作用,展望了对于湍流研究的前景,并对湍流研究的发展提出了一些建议和设想。 关键词:湍流;湍流模式;流体湍流;湍流强度; The Turbulence of Research Progress XXXXX (Qingdao University of Science and Technology, Qingdao 266042) Abstract: Stupid hundred years Turbulence Research progress made brief review and an overview of the the turbulence causes and turbulent fluid caused today's fluid turbulence research, elaborated from a different direction, to show the turbulentdepth study of the important role of science and technology and social development, the future prospects for turbulence research, development and turbulence research has made some suggestions and ideas. Keywords: Turbulence; Turbulence models; Fluid turbulence; Turbulence intensity; 一、湍流研究的历史进程 人类很久前就已经观察到湍流运动了,但对它系统地进行研究则仅仅有一百多年的历史。经过一百多年的研究工作,人们的认识日益深化, 预测方法不断改进。回顾一下湍流研究取得进展的历程对于进一步揭示这一十分复杂流动现象是有益的。 涡团粘度概念首先是由波希尼斯克(Boussinesq)于1877年提出的,他的观点是湍流是一团杂乱无章的涡团。而现代湍流理论的创始人O.Reynolds则认为,湍流是由层流不稳定性发展起来的。这两位湍流研究的先驱者对湍流的认识有所不同。 本世纪二十年代湍流研究取得了巨大进展,有电子管补偿线路的热线风速计为湍流实验研究提供了有效的手段。 从四十年代到六十年代末湍流研究在理论和实验两方面都没有很大的突破。但是应用热线风速计测量各种湍流特性的资料大大充实了湍流的数据库。 六十年代末以后, 湍流研究又出现了一个新高潮,切变湍流中拟序结构的发现,复杂的湍流模式的建立和发展。湍流的直接数值模拟的尝试以及在方程中发现奇异吸引子或其它混沌现象的探索是近二十多年来湍流研究中的重大突破。

湍流与层流_湍流研究概述

第一篇 大气的组成与物理特性 第一章 第二章 第三章 第四章 第五章 大气的气体成份 大气中的粒子群 大气的运动、能量与构造 大气的光学特性 大气的电学特性
1

第二篇 大气湍流
粘性流体的两种形态: 层流和湍流。 层流是流体运动中较简单的状态, 普遍的却是湍流。
2

湍流研究的意义
湍流的研究与国防建设和国民经济中 的航空、船运、环境保护、气象、化工、 冶金、水利、医学等学科密切相关,如果 能掌握它的运动规律,对它进行合理的应 用和有效的控制,那么对基础研究与实际 应用将有重大的意义。
3

湍流研究的成果
人们对湍流结构、湍流边界层、湍流 剪切流、湍流的传热传质、湍流扩散、湍 流统计模型、大气湍流、晴空湍流、等离 子湍流、湍流测量等问题进行了广泛的研 究,并取得了丰硕的成果。
4

本节的内容
湍流的一般定义和描述; 湍流与层流的区别; 湍流理论发展的历史; 湍流理论简介; 湍流的特点; 大气湍流的复杂性; 湍流研究技术的发展。
5

湍流的一般定义和描述
1. 湍流是随机的(Reynolds,Taylor,Von Karman ,Hinze等),又具有拟序结 构。 2. 流体的湍流运动是由各种大小和涡量 不同的涡旋叠加而成的,其中最大涡 尺度与流动环境密切相关,最小涡尺 度则由粘性确定;流体在运动过程中, 涡旋不断破碎、合并,流体质点轨迹 不断变化。
6

中国湍流研究的发展史_中国科学家早期湍流研究的回顾

中国湍流研究的发展史 I 中国科学家早期湍流研究的回顾 黄永念 北京大学力学与工程科学系,湍流与复杂系统国家重点实验室,北京,100871 摘要总结了二十世纪三十年代到六十年代中国老一辈科学家(包括物理学家,力学家)周培源、王竹溪、张国藩、林家翘、谢毓章、张守廉、黄授书、胡宁、柏实义、陈善模、庄逢甘、陆祖荫、李政道、蔡树棠、是勋刚、李松年、谈镐生、包亦和等诸位先生的湍流研究工作。介绍他们对流体力学中最为困难的湍流问题所作出的努力和贡献。 关键词湍流统计理论,能量衰变规律,均匀各向同性湍流,剪切湍流。 引言 湍流一直被认为是物理学中最难而又久未解决的基础理论研究的一个课题。从1883年Reynolds圆管湍流实验研究算起已经跨越了两个世纪,湍流问题仍未得到解决。在跨入二十一世纪时,很多从事湍流研究工作的科学家都在思考这样的问题:二十世纪的湍流研究留给我们哪些宝贵财富?二十一世纪又应该如何面对这个老大难问题?Yaglom在2000年法国举行的一次湍流讲习班上回顾了二十世纪的湍流理论发展过程[1],指出了其中两个最重要的成就:一个是Kolmogorov的局部均匀各向同性湍流理论,另一个是von Karman的湍流平均速度的对数分布律。同时又一次向世人介绍著名科学家Lamb在临终前对解决湍流问题的悲观看法。由于中国与世界各国在文字和语言上的差异和长期缺乏国际间的交流,历次湍流研究工作的总结和回顾中,人们往往忽略了中国科学家的作用。只有周培源教授在1995年流体力学年鉴上发表了“中国湍流研究50年”才打破了这种隔阂[2]。但是这篇文章也只局限于周培源教授率领的北京大学研究组所做的系列研究工作。实际上有很多中国科学家在上一世纪中做了非常出色的工作。本文仅就半个世纪前的三十年代到六十年代他们的湍流研究工作做一个简单的介绍,目的是要引起大家关注中国科学家的湍流研究和对湍流研究所做的贡献。 中国科学家的湍流研究工作可以分成两个方面,一是在国内极其困难的条件下坚持开展的研究工作,这方面的工作国际上鲜为人知。另一方面是在国外开展的研究工作,这部分工作国内也不很熟悉。因此,本文将把他们的不懈努力介绍给大家。 胡非在1995年发表的专著《湍流,间隙性与大气边界层》中曾专门介绍了中国学者的湍流研究工作[3],但他的介绍还不够全面,特别是缺少对早期工作的报道。本文可以弥补其中的不足。 1 三十年代的研究工作 在我国最早发表湍流论文的是当时在清华大学的王竹溪先生。他在周培源先生的指导下

关于湍流理论研究进展精品资料

关于湍流理论研究进展 摘要本文对近年来湍流理论在某些方面的研究进展作了概要介绍,对具有代表性的理论假设的思想方法,进行了扼要阐述,指出了相应的实用价值和局限性。 关键词湍流湍流统计理论混沌理论湍流拟序结构湍流剪切流动 1 无处不在的湍流现象 湍流是自然界中流体的一种最普遍的运动现象,它广泛的存在于我们生活周围。在大风吹过地面障碍物的旁边,在湍急的河水流过桥墩的后面,在烟囱中冒出的浓烟随风渐渐扩散等地方,都能观察到湍流运动现象。简单地说,湍流运动就是流体的一种看起来很不规则的运动。由于湍流现象广泛存在于自然界和工程技术的各个领域,因此湍流基础理论研究取得的进展就可能为经济建设和国防建设的广泛领域带来巨大的效益。例如,提高各种运输工具的速度以大量节约能源,提高各种流体机械的效益;改善大气和水体的环境质量,降低流体动力噪声,防止流体相互作用引发的结构振动乃至破坏;加强反应器内部物质的热交换与化学反应的速度等等。 然而像湍流这样,虽经包括许多著名科学家在内长达一个世纪多的顽强努力,正确反映客观规律的系统的湍流理论至今还没有建立,在整个科学研究史上也是不多见的。因此,可以说湍流是力学中没有解决的最困难的难题之一。因此,世界上许多国家一直坚持把湍流研究列为需要最优先发展的若干重大基础研究课题之一。 2 湍流理论的发展历史 湍流理论从它的思路来说大体可分为两类[1]。一类是先把流体动力学方程组平均以后,然后再设法使方程组封闭,求解后再和实验结果比较,看封闭办法是否正确。湍流中绝大部分理论是属于这一类型。另一类是先求解,取特殊模型,再引进平均,得到要求的物理量,和相应的实验结果进行比较。 2.1 Reynolds方程和混合长度理论 十九世纪70年代是Maxwell-Boltzmann分子运动理论取得辉煌成果的时代。它成功地解释了气体状态方程、气体粘性、气体热传导和气体扩散等

湍流模型发展综述

湍流模型发展综述 摘要:在概述了湍流问题的基础上,本文简要介绍了湍流的四种模型,对湍流模型在不同情况下的模拟能力进行了对比,最后简述了湍流模型的发展方向。 关键词:湍流模型;Navier-Stokes方程组;J-K模型 Abstract:On the basis of introducing the problems of turbulence, this paper briefly analyzed four kinds of turbulence models and compared their ability of simulation in different situations. At last, the paper expounded the development direction of the turbulence model. Key words:Turbulence model; Navier-Stokes equations; J-K model 一、引言 湍流又称紊流,是自然界中常见的一种很不规则的流动现象。当粘性阻尼无法消除惯性的影响时,自然界中的绝大部分流动都是湍流。 湍流运动的实验研究表明,虽然湍流结构十分复杂,但它仍然遵循连续介质的一般动力学规律,湍流流动的各物理量的瞬时值也应该服从一般的N-S方程。对粘性流体服从的N-S方程进行时均化,就可以得到雷诺平均方程。与定常的N-S方程相比,不同之处是在该式右边多了九项与脉动量有关的项,这脉动量的乘积的平均值与密度的乘积是湍流流动中的一种应力,称为湍流应力或雷诺应力。其中,法向雷诺应力和切向雷诺应力各有三个。 湍流问题就是在给定的边界条件下解雷诺方程。由于雷诺平均方程中未知数个数远多于方程个数而出现了方程不封闭的问题,这就需要依据各种半经验理论提出相应的补充方程式,即各种湍流模型。一般按照所用湍流量偏微分方程的物理含义或者数量进行区分,分别称为梅罗尔—赫林方法和雷诺方法。而后者又将湍流模型分成四类。(1)零方程模型;(2)一方程模型;(3)二方程模型;(4)应力方程模型。下面就对这些模型进行简单的描述。 二、湍流模型简介 1、零方程模型 最初的湍流模型只考虑了一阶湍流计算统计量的动力学微分方程,即平均方程,没有引进高阶统计量的微分方程,因而称之为一阶封闭模式或零方程模型。零方程模型又称为代数模型,代数模型又可以分成以下几种模型:(1)Cebeci —Smith 模型,(2)Baldwin—Lomax 模型,(3)Johnson—King 模型。 其中,B-L与C-S模型的不同之处在于外层湍流粘性系数取法不同。后者适用于湍流边界层,而前者则可用于 N-S方程的计算。此两模型已在工程计算中

湍流理论发展概述

. 湍流理论发展概述

一、湍流模型的研究背景 自然环境和工程装置中的流动常常是湍流流动,模拟任何实际过程首先遇到的就是湍流问题,而湍流问题本身又是流体力学理论上的难题。对于某些简单的均匀时均流场,如果湍流脉动是各向均匀及各向同性的,可以用经典的统计理论来分析,但实际上的湍流往往是不均匀的,这就给理论分析带来了极大地困难。这也就引发了对湍流过程进行模拟的想法。 对湍流最根本的模拟方法是在湍流尺度的网格尺寸内求解瞬态的三维N-S 方程的全模拟方法,此时无需引进任何模型。然而由于计算方法及计算机运算水平的限制,该种方法不易实现。另一种要求稍低的方法是亚网格尺寸度模拟即大涡模拟(LES),也是由N-S方程出发,其网格尺寸比湍流尺度大,可以模拟湍流发展过程的一些细节,但由于计算量仍然很大,只能模拟一些简单的情况,直接应用于实际的工程问题也存在很多问题[1]。目前数值模拟主要有三种方法:1.平均N-S方程的求解,2.大涡模拟(LES),3.直接数值模拟(DNS),而模拟的前提是建立合适的湍流模型。 所谓的湍流模型,就是以雷诺平均运动方程与脉动运动方程为基础,依靠理论与经验的结合,引进一系列模型假设,而建立起的一组描写湍流平均量的封闭方程组。目前常用的湍流模型可根据所采用的微分方程数进行分类为:零方程模型、一方程模型、两方程模型、四方程模型、七方程模型等。对于简单流动而言,一般随着方程数的增多,精度也越高,计算量也越大、收敛性也越差。但是,对于复杂的湍流运动,则不一定。湍流模型可根据微分方程的个数分为零方程模型、一方程模型、二方程模型和多方程模型。这里所说的微分方程是指除了时均N-S 方程外,还要增加其他方程才能是方程封闭,增加多少个方程,则该模型就被成为多少个模型。 二、基本湍流模型 常用的湍流模型有: 零方程模型:C-S模型,由Cebeci-Smith给出;B-L模型,由Baldwin-Lomax 给出。 一方程模型:来源由两种,一种从经验和量纲分析出发,针对简单流动逐步发展起来,如Spalart-Allmaras(S-A)模型;另一种由二方程模型简化而来,如Baldwin-Barth(B-B)模型。

湍流理论若干问题研究进展

第15卷第4期水利水电科技进展1995年8月 湍流理论若干问题研究进展 刘兆存 金忠青 (河海大学 南京 210098) 摘要 本文对近年来湍流理论在某些方面的研究进展作了概要介绍,对拟序结构发现后人们对湍流内部结构的新认识和近年来发展很快的从微分方程分析角度出发对湍流机理新的探索进行了评价,说明引入混沌后在时、空演化方面对湍流机理的模拟,最后阐述了流动稳定性和层流向湍流的转捩。 关键词 湍流 N-S方程 流动结构 流动机理 封闭性 近年来,在围绕湍流结构和统计两条主线的研究工作中出现了新观点和新趋势,虽然从历史的观点来看有些可能是错的——在科学容忍的范围内,但在现阶段却是研究的主流。 1 简要回顾及发展 1.1 半经验理论和模式理论 湍流的控制方程是N-S方程,但和层流相比,方程不封闭。为满足工程需要,发展了一系列的以普朗特混合长理论为代表的湍流半经验理论或早期模式理论。这种理论虽然对于增进对湍流机理的了解没有提供更多的贡献,但对解决工程实际问题却起了重大的作用[1]。半经验理论是一种唯像理论,并不涉及湍流内部机理。以速度分布公式为例,半经验理论的速度分布公式大致有对数型和指数型。对数型速度分布得到的假定是充分发展的剪切湍流中主流区(不含边界层的)的流速梯度和分子粘性无关,指数型(或渐近指数型)则假定分子粘性不能忽略[2],两种类型的流速分布公式在工程实践中都获得了非常广泛的应用。半经验理论的一个发展方向是吸收统计理论的成果,用统计理论的精细成果丰富半经验理论不足并保留便于应用的优点,如文[3]所作的工作。 近代的模式理论在封闭湍流基本方程组时特别吸收了统计理论的成果,如二方程模型、应力通量代数模型、应力通量方程模型等。关于这方面的详细论述,将另文给出。 1.2 统计理论 湍流的统计理论的目标则是从最基本的物理守恒定律——N-S方程和连续性方程出发,探讨湍流的机理。理查逊-柯尔莫哥洛夫湍流图像部分被实验所证实。统计理论中湍流的能量传递关系被更符合实际的U. Fr isch等所提出的B-模型所代替。湍流统计理论历时半个多世纪的发展,经泰勒、陶森德等人的努力,取得丰硕的成果,但仍不能绕过封闭性的困难,所得成果都还是很不完善的。湍流统计理论的重要性目前已有所下降[1]。我国周培源等提出了均匀各向同性湍流的准相似性条件以及相应均匀各向同性湍流的涡旋结构统计理论并得到实验的验证[4],进一步将在均匀各向同性湍流中得到的准相似性条件推广到一般的剪切湍流中,然后对关联方程的耗散项作出假定,利用逐级近似方法发展了湍流的统计理论[5],所得结果部分经实验证实。文[6]采用逐级迭代法对湍流平均运动方程和脉动速度关联方程 · 12·

湍流调研报告——高等流体力学

高等流体力学 湍流调研报告 学生姓名:********** 学号:********** 专业班级:********** 2015年 12月1日

前言 自1839年G.汉根在实验室中首次观察到由层流向湍流的转变现象以来,对湍流的研究已有近两百年历史,但由于湍流流动的复杂性,至今仍存在一些基本问题亟待解决。但从检索有关湍流文章过程中发现,绝大多数文章均是介绍有关湍流的数值模拟问题,鲜有文章报道关于湍流理论的基础研究。一方面的原因是由于湍流理论研究其固有的困难性,我想还有另一方面的原因便是当今学术界乃至整个社会风气的浮躁。物欲横流金钱至上的社会风气下,Paper至上的学术氛围下,基础学科的发展及基础理论的研究深受其害。基础研究学者得不到应有的精神上、物质上的尊重,青年科学家为了将来的发展避开基础学科,中年科学家为了避免家庭经济上的负担放弃理论研究,当今只有部分老一辈的科学家坚持着自己的原则和理想,我想这也是他们为什么仍是我国科学技术发展中流砥柱的原因吧。纵然如今之风气已被众多学者所诟病,但已根深蒂固,不可能将之迅速扭转,当下应从政策上给予基础研究支持和鼓励,予现行之风以纠正,方可促我民族之复兴。在前任上海交通大学校长谢绳武先生给杨本洛先生《湍流及理论流体力学的理性重构》[1]一书的序中以及施红辉先生《湍流初级教程》[2]的前言中均提到切实支持原创性基础研究的重要性。 本文首先查阅文献了解了湍流的定义,以及人们目前对湍流的认识;然后通过调研梳理了湍流理论的发展过程;最后,就湍流的数值模拟极其未来的发展方向做了简要介绍。

一、湍流的定义 什么是湍流?查阅相关书籍、论著,关于湍流的论述相当多的部分是从1883年Reynolds的圆管内流动实验引出的,通过实验观察,给出了湍流的描述性定义:湍流是复杂的、无规则的、随机的不定常运动。随后详细说明了湍流的一些主要特征,包括其扩散性、耗散性、大雷诺数、记忆性、间歇性等等,但对湍流严格意义的科学定义没有叙述,我想这也是湍流能成为跨世纪难题的一个反映吧。从各论著的叙述来看,随着湍流理论的发展,湍流的定义是不断修正和补充的,19世纪初,湍流被认为是完全不规则的随机运动,Reynolds称之为“波动”[3],首创统计平均法描述湍流运动;1937年,Taylor 和von Karman则认为湍流是一种不规则运动,于流体流过固壁或相邻不同速度流体层相互流过时产生;Hinze认为湍流除了不规则运动外,其各个量在空间、时间上具有随机性;我国著名科学家周培源先生则主张湍流为一种不规则的涡旋运动;自20世纪70年代开始,很多学者又指出湍流不是完全的随机运动,其存在一种可以被检测和显示的拟序结构。由清华大学出版社出版,林建忠等人编著的《流体力学》[4]一书中提到,目前大多数学者的观点是:湍流场有各种大小和涡量不同的漩涡叠加而成,其中最大涡尺度与流体环境密切相关,最小涡尺度则由粘性确定;流体在运动过程中,涡旋不断破碎、合并,流体质点轨迹不断变化;在某些情况下,流场做完全随机的运动,在另一些情况下,流场随机运动与拟序运动并存。 值得一提的是,杨本洛先生所著的《湍流及理论流体力学的理性重构》一书中从形式逻辑考虑,对湍流的本质,包括其物理本质、物理机制、形式特征做了论述,并提出一切宏观物质总是粒子的(宏观力学中基本假设之一是连续介质假设),认为流体是大数粒子的集合,湍流研究困难的本质在于基于微分方程所表现的连续宏观表象与宏观流体的粒子本质之间存在的根本矛盾,著作中含有大量的逻辑讨论及哲学层次的思考。二、湍流理论发展简史 1839年,G.汉根在实验中首次观察到流动由层流到湍流的转变,这便揭开了湍流这一科学难题的第一幕。在其后百余年的理论发展中Reynolds、Prandtl、von Karman、Taylor、Kolmogorov、Landau、Heisenberg、Onsager、Chandrasekhar、Hopf、周培源、李政道、林家翘、谈镐生等如雷贯耳的大师们纷纷登上这一广阔的舞台,在湍流的金色大厅里演

湍流理论发展概述

湍流理论发展概述 一、湍流模型的研究背景 自然环境和工程装置中的流动常常是湍流流动,模拟任何实际过程首先遇到的就是湍流问题,而湍流问题本身又是流体力学理论上的难题。对于某些简单的均匀时均流场,如果湍流脉动是各向均匀及各向同性的,可以用经典的统计理论来分析,但实际上的湍流往往是不均匀的,这就给理论分析带来了极大地困难。这也就引发了对湍流过程进行模拟的想法。 对湍流最根本的模拟方法是在湍流尺度的网格尺寸内求解瞬态的三维N-S 方程的全模拟方法,此时无需引进任何模型。然而由于计算方法及计算机运算水平的限制,该种方法不易实现。另一种要求稍低的方法是亚网格尺寸度模拟即大涡模拟(LES),也是由N-S 方程出发,其网格尺寸比湍流尺度大,可以模拟湍流发展过程的一些细节,但由于计算量仍然很大,只能模拟一些简单的情况,直接应用于实际的工程问题也存在很多问题[1]。目前数值模拟主要有三种方法:1. 平均N-S方程的求解,2.大涡模拟(LES),3.直接数值模拟(DNS),而模拟的前提是建立合适的湍流模型。 所谓的湍流模型,就是以雷诺平均运动方程与脉动运动方程为基础,依靠理论与经验的结合,引进一系列模型假设,而建立起的一组描写湍流平均量的封闭方程组。目前常用的湍流模型可根据所采用的微分方程数进行分类为:零方程模型、一方程模型、两方程模型、四方程模型、七方程模型等。对于简单流动而言,一般随着方程数的增多,精度也越高,计算量也越大、收敛性也越差。但是,对于复杂的湍流运动,则不一定。湍流模型可根据微分方程的个数分为零方程模型、一方程模型、二方程模型和多方程模型。这里所说的微分方程是指除了时均N-S 方程外,还要增加其他方程才能是方程封闭,增加多少个方程,则该模型就被成为多少个模型。

湍流的研究进展论文

湍流的研究进展 丁立新 (青岛科技大学) 摘要本文重点就湍流的理论研究进展作一阐述,从湍流的相干结构、表征及发展由来,到上世纪末湍流研究进展的雷诺方程,本世纪湍流的统计理论和半经验理论发展,湍流的模式理论,湍流的高级数值模拟分别论述,并为主要的工程应用做简要的介绍。 关键词湍流理论研究工程应用 Research process of turbulence Dinglixin Qingdao University of Science & technology Abstract This article focuses on the turbulence of research process as elaborated. From coherent structure of turbulence, characterization and development of turbulence to Reynolds equation about research process of turbulence on the end of the century, the development of semi-empirical theory and statistical theory of turbulence of this century, mode theory of turbulence, advanced numerical simulation of turbulence. Finally, brief description of turbulence industrial applications is suggested. Keywords Turbulence, Theoretical research of turbulence, Engineering applications 湍流是自然界和工程中最常出现的流动形态,湍流的出现将使动量、质量、能量的输送速率极大地加快,一方面造成能量消耗加快,污染物加快扩散等严重消极

湍流简史

湍流简史精选 已有 3889 次阅读2012-9-22 10:40|个人分类:学术探讨|系统分类:科研笔记|关键词:湍流简介 湍流理论发展简史: N-S方程的导出: 描述粘性不可压缩流体动量守恒的运动方程,简称N-S方程。因1821年由 C.-L.-M.-H.纳维(基于分子运动)和1845年由G.G.斯托克斯(基于连续介质假定)分别导出而得名。后人在此基础上又导出适用于可压缩流体的N-S方程。N-S方程包含两个假设:第一连续介质假定;第二是所有涉及到的场,全部是可微的假定。N-S方程和连续方程共同构成了一个闭合的非线性方程组。该方程组是质量守恒定律和牛顿运动定律在流体力学中的一种应用形式,由于其高度非线性,因此很难求得其解析解。一般认为无论流体运动多么复杂,方程组都能够描述流体的运动。 湍流的发现: 1839年,G.汉根在实验中首次观测到了流动由层流向紊流的转变。 层流向湍流转变的雷诺实验: 1883年英国科学家雷诺(Reynolds)通过实验研究并展示了液体在流动中存在两种内部结构完全不同的流态:层流和紊流。雷诺揭示了重要的流体流动机理,即根据流速的大小,流体有两中不同的形态,并提出了著名的层流向紊流转变的雷诺数(包括分层流动的情况)。当流体流速较小时,流体质点只沿流动方向作一维的运动,与其周围的流体间无宏观的混合即分层流动这种流动形态称为层流或滞流。流体流速增大到某个值后,流体质点除流动方向上的流动外,还向其它方向作随机的运动,即存在流体质点的不规则脉动,这种流体形态称为湍流。并在1885年提出了著名的雷诺平均方法。 湍动能串级过程: 1922年Richardson发现湍动能串级过程。大尺度涡流脉动犹如一个很大的蓄能池,它不断从外界获得能量并输出给小尺度涡能量;小尺度湍流就像一个耗能机械,从大尺度湍流涡输出来的动能在这里全部耗散掉,流体的惯性犹如一个传送机械,把大尺度脉动传给小尺度脉动。流动的雷诺数越大,蓄能的大尺度和耗能的小尺度之间的惯性区域越大。 各项同性湍流理论: 1935年G. I. Taylor在风洞实验的均匀气流中设置一排或者几排规则的格栅,均匀气流垂直流过格栅时产生不规则扰动。这种不规则扰动向下游运动过程中,由于没有外界干扰,逐渐演化为各项同性湍流。发展了各项同性理论。 Karman-Howarth方程的导出: 1938年基于Taylor的各项同性理论导出了著名的K-H方程。但方程中含有的未知数的个数比方程数多,因此无法求解。 Kolmogorov空间尺度标度率: 1941年莫斯科的数学家Kolmogorov更进一步地把G.I.Taylor的均匀各向同性理论发展成局地均匀各向同性统计理论,并在人类历史上第一次导出了湍流微结构的规律:结构函数的-p/3定律。第一次揭示了湍流的空间分布特性。但该理论存在着一些缺陷。

浅谈湍流的认识与发展

浅谈湍流的认识与发展 摘要:本文结合流体力学课程的学习以及对湍流相关书籍的阅读,阐述个人对湍流运动的发展、特点、性质的理解。湍流作为“经典物理学最后的疑团”,人们不断地进行探索,建立湍流模型对其进行研究理论分析。近年来,对于湍流这一不规则运动,人们提出了并且倾向于应用混沌理论进行分析,并取得了一些成果。对湍流的认识在不断深入。 关键字:湍流概念湍流性质湍流强度模型建立混沌理论 在流体力学的学习过程中, 湍流一度被称为“经典物理学最后的疑团”,我对湍流这一流体的状态极其相关的力学性质进行了更深入的了解与学习,结合课堂上老师的讲解以及课后对相关参考文献的阅读理解,在此我想浅谈一下这一阶段我对湍流的学习与认识。 从湍流的定义出发,初识湍流,湍流是流体的一种流动状态。对于流体,大家都知道,当流速很小时,流体分层流动,互不混合,称为层流,也称为稳流或片流;逐渐增加流速,流体的流线开始出现波浪状的摆动,摆动的频率及振幅随流速的增加而增加,此种流况称为过渡流;当流速增加到很大时,流线不再清楚可辨,流场中有许多小漩涡,层流被破坏。这时的流体作不规则运动,有垂直于流管轴线方向的分速度产生,这种运动称为湍流。流体作湍流时,阻力大流量小,能量耗损增加。能量耗损E与速度的关系为△ E= kv2(k是比例系数,它与管道的形状、大小以及管道的材料有关。v是平均流速)。所有流体都存在湍流现象。 我们可以用雷诺数的范围量化湍流。在直径为d的直管中,若流体的平均流速为v,由流体运动粘度v组成的雷诺数有一个临界值(大约为2300~2800),若Re小于该范围则流动是层流,在这种情况下,一旦发生小的随机扰动,随着时间的增长这扰动会逐渐衰减下去;若Re大于该范围,层流就不可能存在了,一旦有小扰动,扰动会增长而转变成湍流。雷诺在1883年用玻璃管做试验,区别出发生层流或湍流的条件。把试验的流体染色,可以看到染上颜色的质点在层流时都走直线。当雷诺数超过临界值时,可以看到质点有随机性的混合,在对时间和空间来说都有脉动时,这便是湍流。不用统计、概率论的方法引进某种量的平均值就难于描述这一流动。除直管中湍流外还有多种多样各具特点的湍流,虽经大量实验和理论研究,但至今对湍流尚未建立起一套统一而完整的理论。在流

湍流模型

湍流模型概述 湍流是一种复杂的非稳态三维流动,通常把瑞流定义为具有随机性、扩散性、高雷诺数、三维祸量脉动性、耗散性及连续性特征的复杂流动。虽然瑞流具有多种特性,但瑞流不是流体本身具有的某些特征而是流体流动的特征,仍是一种连续流动,仍然同层流一样满足流动的基本方程。从数学的观点看,瑞流是N-S方程的 通解,求解端流与求解层流无本质区别,目前己具有足以求解瑞流问题的有关方程式。端流还可以看作是由多种大尺度祸流和小尺度祸流组成的特殊流动。大尺度的祸流主要由流动的边界条件和流动区域的几何形状所决定,是引起流场中低频 脉动的主要原因;小尺度的祸流主要是點性力所决定,是引起流场中高频脉动的主要原因。瑞流的物理量的脉动特点就是由于流体内各种不同尺度祸流的随机运动造成。 用数值方法直接计算瑞流单元运动规律时,计算网格尺寸要小于瑞流单元 尺度,并在瑞流单元尺度内计算N-S方程的通解。但是在实际工程中具有重要意 义的不是端流的精细结构,而是瑞流对于时间的平均(时均)效应。因此,雷诺首先提出了将N-S方程对某一时间比例尺取平均,得到时均N-S方程。虽然瑞流的N-S 方程经过时均化处理后方程式的形式可以保持不变,但是出现了脉动应力项(雷诺应力),因此需要提出相应的端流模型(一个或一组数学方程)使时均方程得到封闭。这种方法按雷诺应力方程模型化方法的不同可分为两类:一类是直接就雷诺应力 建立模型化方程的雷诺应力方程模型;另一类是在雷诺应力与局部时均速度梯度 成比例的Boussinesq假设下引入的瑞流黏度系数模型。另一种瑞流数值计算方法是亚网格尺度模拟,即大祸模拟(LES),由N-S方程出发直接模拟大尺度祸流,小尺度祸流的影响可以通过近似模型来考虑。但是由于大祸模拟计算量仍很大,也只能 模拟一些简单的情况。 工程上通常需要深入了解的是温度场、时均速度场、瑞流脉动时均特性等, 并不需要了解瑞流产生和发展的详细过程。因此,利用雷诺提出的时均值的概念 来研究瑞流运动的方法是一种有效的简化,从N-S方程导出瑞流平均运动方程和 雷诺方程,还导出了连续性方程和能量方程等基本方程。雷诺平均法将瑞流物理 量代入不可压缩瞬态连续性方程、动量方程得到端流平均运动的连续性方程和动量方程。但是在雷诺时均方程组中除了瞬态连续性方程和动量方程外还有一项是

第二章 光在湍流大气中传输的理论概述

2.1 大气折射率 在光学频率范围内,对流层(高度<17km)中的地球大气的空气折射率表示如下: n=1+77.6(1+7.52×10-3λ-2)(p/T)×10-6 (2.1)式中,p是以mbar为单位的大气气压,T是热力学温度,λ是以μm为单位的光波波长,由于地面上温度对n 1 (r)的贡献<1%,故(2.1)式中忽略了与水汽压相关的项,当然这一项对水上传播光路是不可忽略的。 2. 2 大气湍流描述 自然界中的流体运动存在着二种不同的形式:一种是层流,看上去平顺、清晰,没有掺混现象;另一种是湍流,看上去毫无规则,显得杂乱无章。例如,如果流体以一定的速度流过一个管子,我们可以用带颜色的染料对它进行观察,在流体速度低的时候,流线光滑面清晰,流体处于层流状态;不断增加流体速度,当流速达到一定值时,流线就不再是光滑的了,整个流体开始作不规则的随机运动,流体处于湍流状态。自从1883 年Reynolds 做了著名的湍流实验以来,以Monin-Obukhov 提出的相似理论、Deardorff 提出的大涡模拟、美国Kansas 州观测实验等为代表,大气湍流的研究已经取得了很大的进展和丰硕的成果,并在天气、气候研究和工程实际中获得成功地应用。湍流对大气中声、光和其它电磁波的传播具有极为重要的影响,例如湍流风速、温度和湿度的脉动都会引起声音散射和减弱,大气小尺度光折射率的起伏(称为光学湍流),会严重影响光的传播和光学成像的质量等等。长期以来,以Tatarskii 的工作为代表,声光电传播的湍流效应大都是按照Kolmogorov 的均匀、平稳和各向同性假设处理的,而实际的湍流经常不满足这些假设,要建立更加完善的波动传播模型就必须考虑湍流的各向异性、以及间歇性的影响。 2. 3 折射率湍流模型 在湍流大气中,折射率在不同地点、不同时刻都是变化的。一方面,我们还不可能对这些变化作出预测;另一方面,即使已知这些变化,要对所有时刻、所有地点的值作出描述实际上也是不可能的。因此,有必要用统计方法来描述这种介质。考虑到湍流大气的折射率是随空间、时间和波长而变化的,因此可用空间、时间和波长的随机函数来描述湍流大气折射率 n(r,t,λ ) = n 0(r,t,λ ) + n 1 (r,t,λ ) (2. 3.1) 在(2.3.1)式中,n 0是n的确定性部分,对湍流大气而言,可近似地取n ≈1 ,n 1 (r,t,λ)表示n(r,t,λ )围绕平均值E[n] = n ≈1的随机涨落。 大气湍流可以用Kolmogorov 理论描述。大气中大的漩涡的能量被重新分配, 随着能量损失,大的湍流的尺寸减小, 直到消散。n 1 的结构函数定义为

相关文档