文档视界 最新最全的文档下载
当前位置:文档视界 › 植物生理学(王忠)复习笔记

植物生理学(王忠)复习笔记

植物生理学(王忠)复习笔记
植物生理学(王忠)复习笔记

第一章植物细胞的结构与功能

1、细胞膜成分:由蛋白质、脂类、糖、水和无机离子组成。

○1膜脂主要是复合脂类,包括磷脂、糖脂、硫脂和固醇。○2膜蛋白分为两类:外在蛋白(水溶性)和内在蛋白(疏水性)。

○3膜糖,细胞膜中的糖类大部分与膜蛋白共价结合,少部分与膜脂结合,分别形成糖蛋白和糖脂。○4水,植物细胞膜中的水大部分是呈液晶态的结合水○5金属离子在蛋白质与脂类中可能起盐桥的作用

2、细胞膜的功能:

○1分室作用:细胞的膜系统不仅把细胞与外界环境隔开,而且把细胞内的空间分割,使细胞内部区域化,即形成各种细胞器,从而使细胞的代谢活动“按室进行”○2代谢反应的场所:细胞内的许多生理生化过程在膜上有序进行○3物质交换:质膜的另一个重要特性是对物质的透过具有选择性,控制膜内外进行物质交换○4识别功能:质膜上的多糖链分布于其外表面,似“触角“一样能够识别外界物质,并可接收外界的某种刺激或信号,使细胞做出相应的反应

3、细胞壁组成:是由胞间层初生壁以及次生壁组成。植物细胞壁的成分中,90%左右是多糖,10%左右是蛋白质、酶类以及脂肪酸等。多糖主要是纤维素、半纤维素和果胶类,次生细胞壁中还有大量木质素。

4、细胞壁的功能:○1维持细胞形状,控制细胞生长○2物质运输与信息传递○3防御与抗性○4代谢与识别功能

第二章植物的水分生理

1、束缚水:在细胞中被蛋白质等亲水性生物分子组成的胶体颗粒或渗透物质所吸附不能自由移动的水。

2、自由水:是指不被胶体颗粒或渗透物质所吸附或吸附力很小而能自由移动的水。

3、水势:就是每偏摩尔体积水的化学势。单位为N·m-2

Ψw=Ψs+Ψp+Ψm+Ψg(Ψw--水势;Ψs--细胞液渗透势;Ψp--细胞壁对内容物产生的压力势;Ψm—亲水胶体对水分子的吸附产生的衬质势;Ψg--重力势)

4、主动吸水的动力是根压,被动吸水的动力是蒸腾拉力。但无论哪种方式,吸水的基本动力仍然是细胞的渗透作用。

5、影响根系吸水的因素:

1)根系自身因素:根系的有效性决定于根系的范围和总表面积以及表面的透性,而透性又随根龄和发育阶段而变化

2)土壤因素:○1土壤水分状况:当土壤含水量下降时,土壤溶液水势亦下降,土壤溶液与根部之间的水势差减少,根部吸水减慢,引起植物体内含水量下降○2土壤通气状况:在通气良好的土壤中,根系吸水能力强;土壤透气状况差,吸水受抑制(土壤通气不良造成根系吸水困难的原因:1根系环境内O2缺乏,CO2积累,呼吸作用受到抑制,影响根系主动吸水2长时期缺氧下根进行无氧呼吸,产生并积累较多的乙醇,根系中毒受害,吸水更少3土壤处于还原状态,加之土壤微生物的活动,产生一些有毒物质,这对根系生长和吸收都是不利的)○3土壤温度:土壤温度不但影响根系的生理生化活性,也影响土壤水的移动性。因此,在一定的温度范围内,随土温提高,根系吸水加快;反之,则减弱(低温影响根系吸水的原因:1原生质黏性增大,对水的阻力增大,水不易透过生活组织,植物吸水减弱2水分子运动减慢,渗透作用降低3根系生长受抑,吸收面积减少4根系呼吸速率降低,离子吸收减弱,影响根系吸水高温加速根的老化过程,使根的木质化部位几乎到达根尖端,根吸收面积减少,吸收速率也减少)○4土壤溶液浓度:土壤溶液浓度过高,其水势降低。若土壤溶液水势低于根系水势,植物不能吸水,反而要丧失水分

6、蒸腾速率:指植物在一定时间内,单位叶面积上散失的水量,常用g·dm-2·h-1表示

蒸腾比率:指植物在一定时间内干物质的积累量与同期所消耗的水量之比

蒸腾系数:指植物制造1g干物质所消耗的水量(g)

第三章植物的矿质营养

1、植物必须元素的3条标准:○1缺乏该元素,植物生长发育受阻,不能完成其生活史○2缺乏该元素,植物表现出专一的病症,这种却素病症可以加入该土壤元素的方法预防或恢复正常○3该元素在植物营养生理上能表现直接的效果,而不是由于土壤的物理、化学、微生物条件的改善而产生的间接效应。

2、植物细胞吸收矿质元素的方式:被动吸收、主动吸收和胞饮作用

3、通道蛋白:简称通道或离子通道,它是细胞膜中一类由内在蛋白构成的孔道,横跨膜两侧,是离子顺着电化

学势梯度被动单方向跨膜运输的通道。

4、载体蛋白:又称载体、透过酶或运输酶,它是一类跨膜运输物质的内部蛋白,在跨膜区域不形成明显的孔道结构。

5、根系吸收矿质元素的特点:

○1根系对矿质元素吸收和水分吸收的相互关系:根系对矿质元素和水分的吸收并不是同步进行的,二者的吸收是相互独立的

○2根系对矿质元素吸收的选择性:由于根系吸收矿质元素要通过载体,而不同离子的载体数量和活性不同,这就使根系吸收矿质元素具有选择吸收的特点

○3单盐毒害与离子颉颃:将植物培养在单一盐溶液中,不久便会呈现不正常状态,最后整株死亡,这中现象称为单盐毒害。在单盐溶液中若加入少量其他盐类,单盐毒害现象就能减弱或消除,离子间能够互相消除毒害的现象,叫离子颉颃。

6、影响根系吸收矿质元素的土壤因素:○1土壤温度:在一定的范围内,根吸收矿质元素的速率随土壤温度的升高而加快。土温过高或过低,根系吸收矿质元素的速率均下降○2土壤通气状况:通气良好,一方面提高土壤O2分压,另一方面降低土壤CO2分压,十分有利于根的呼吸,促进根对矿质元素的吸收○3土壤PH:土壤对矿质元素的吸收有直接和间接两种影响

第四章植物的呼吸作用

1、呼吸作用的生理意义:○1提供生命活动可利用的能量○2提供其他有机物合成原料3提供还原力○4提高抗病免疫能力

2、糖酵解(EMP):是指淀粉、葡萄糖或果糖在细胞质内,在一系列酶参与下转变为丙酮酸的过程。

作用:1在淀粉、葡萄糖、果糖等转变为丙酮酸的过程中产生一些中间产物,通过它们可与其他物质建立代谢关系2糖酵解的底物水平磷酸化生成看少量ATP,同时,生成了还原力NADH,NADH可在线粒体中被氧化生成ATP。

3、三羧酸循环(TCA):是指在有氧条件下,糖酵解途径的最终产物丙酮酸进入线粒体,经过一个包括二羧酸和三羧酸的循环而完全氧化,形成CO2与H2O的过程。

作用:1生存A TP、NADH和FADH2,NADH和FADH2通过氧化磷酸化作用生成大量的ATP,为植物生命活动提供足够的能量2是植物体内糖、脂肪、蛋白质和核酸及其他物质的共同代谢过程,这些物质降解为丙酮酸、乙酰-CoA都可以通过三羧酸循环彻底氧化分解;三羧酸循环产生许多中间产物又可以合成许多重要物质。

4、戊糖磷酸途径(PPP):是指葡萄糖在细胞质内进行进行的直接氧化降解的酶促反应过程

作用:1为物质的合成提供还原剂(每氧化1mol的葡萄糖-6-磷酸可产生12mol的NADPH+H+,它可参与脂肪酸和固醇的生物合成)2为物质合成提供原料(该途径的中间产物3C、4C、5C、6C和7C糖的碳骨架是细胞内不同的结构糖分子的来源,其中核糖是合成核酸及ATP、NAD、CoA等重要生物分子的原料)3提高植物的抗病力和适应力(植物在干旱、染病和受损伤等逆境条件下,戊糖磷酸途径所占比例要比正常情况下有所提高)5、抗氰呼吸:当氰化物(CN-)做抑制剂可以阻断NADH和FADH呼吸链的电子传递,大多数有机体的有氧呼吸途径被强烈抑制。但在许多高等植物中,CN-对有氧呼吸的抑制作用很小,这种对于CN-不敏感的呼吸作用称为抗氰呼吸。

6、氧化磷酸化:就是呼吸链上的磷酸化作用,也就是底物脱下的氢,经过呼吸链电子传递,氧化放能并伴随ADP 磷酸化生成A TP的过程。

7、呼吸代谢的多样性:

○1底物氧化降解的多途径(不同环境条件下,植物呼吸底物的氧化降解可走不同的途径。缺氧条件下植物可以通过糖酵解、酒精发酵或乳酸发酵进行无氧呼吸;有氧条件下进行三羧酸循环和戊糖磷酸途径,植物染病时戊糖磷酸途径加强)

○2电子传递途径的多条(植物处于正常情况下,主要以NADH和FADH呼吸链提供能量,当某些植物开花或某些种子萌发时则以抗氰呼吸链提供热能,植物受到创伤时,酚氧化酶催化的呼吸链加强)

○3末端氧化酶的多种(不同的末端氧化酶对O2的亲和力不同,细胞色素氧化酶对氧的亲和力最强,因此在低氧浓度情况下,仍能发挥良好的作用。而抗坏血酸氧化酶和乙醇酸氧化酶对氧的亲和力弱,则可在较高氧浓度下顺利发挥作用)

意义:以上三方面构成了完整的呼吸代谢途径。糖酵解-三羧酸循环-NADH 和FADH 呼吸链是植物有氧呼吸的主路,当它受阻时可以从其他的支路进行,它们互相联系,互相制约,组成了极其复杂、调节自如的代谢网络,从而使植物能在多变的环境条件下生长发育。

8、呼吸商(RQ ):或称呼吸系数,指植物组织在一定时间内放出CO 2的量与吸收O 2的量之比。它可以反应呼吸底物的性质和O 2供应状况。

第五章 植物的光合作用

1、反应中心色素:它是少数叶绿素a 分子,与特定的蛋白相结合,处于特殊状态,能进行光化学反应,将光能转换为电能。

2、光合作用的三个阶段:○1光能的吸收、传递和转换阶段(原初反应)○2电能转换为活跃的化学能(电子传递和光和磷酸化)○3活跃的化学能转变为稳定的化学能(CO 2同化)

3、红降:在叶绿素吸收光谱范围内,大多数波长下其量子产额是相对恒定的,但对于大于680nm (长波红光)时,虽然光量子仍被叶绿素大量吸收,光合效率却急剧下降,这种现象被称为红降。

4、爱默生效应:在长波红光(>685nm )照射下补照短波红光(约650nm ),则光合效益明显增加,大于两种波长单独照射时的光合效率之和,这种现象称为双光增益效应或爱默生效应。

5、两个光系统:放氧光合生物中存在两个不同的色素系统,所吸收的光推动两个不同的光化学反应。一个光系统多680nm 的短波红光有较好吸收,称为光系统Ⅱ(PS Ⅱ);另一个光系统优先吸收700nm 的长波红光,称为光系统Ⅰ(PS Ⅰ)。

6、光合磷酸化:是指叶绿体利用光能驱动电子传递,建立跨类囊体膜的质子动力势(PMF ),然后利用质子动力势将ADP 和Pi 合成ATP 的过程。根据光合电子传递的途径,光能磷酸化可以分为三个类型:非环式磷酸化、环式磷酸化和假环式磷酸化。

7、光呼吸:是指植物绿色细胞进行的依赖光的吸收O 2,释放CO 2的过程。发生在叶绿体、过氧化体和线粒体中。

8、C3植物与C4植物的比较

(1).形态结构的区别:两类植物在叶绿体的结构及分布上不同(见表1),因C3植物的维管束不含叶绿体,叶脉颜色较浅;C4植物的维管束含叶绿体,叶脉绿色较深有呈“花环型”的两圈细胞。表1 C3和C4植物的叶绿体分布、结构与功能比较 植物

分 布 结 构 功 能 C3

叶肉细胞 为典型叶绿体 既可进行光反应,也能进行暗反应 C4 叶肉细胞 为典型叶绿体 能进行光反应,通过C4途径固定CO 2 维管束鞘细胞 较多、较大,叶绿体不含类囊体

不进行光反应,能够进行暗反应 ( 2).光合作用途径的区别:C3植物与C4植物在光反应阶段完全相同,都通过光反应产生O2、[H](实质是NADPH )和A TP ,为暗反应阶段提供同化力[H]和ATP 。但其暗反应途径不一样,见表2。 C3植物与C4植物光合作用暗反应阶段的场所与过程比较

( 3).光合作用产物积累部位的区别C3植物整个光合作用过程都是在叶肉细胞

里进行的,光合作用的产物只积累在叶肉细胞中。C4植物中C4途径固定的CO 2

转移到C3途径是在维管束鞘细胞中进行的,光合作用的暗反应过程也是在维管束鞘细胞中进行的,光合作用的产物也主要积累在维管束鞘细胞中。

(4).适应能力的区别:○1是因C4植物叶肉细胞的叶绿体固定CO2的酶——磷酸烯醇式丙酮酸羧化酶(简称PEP 羧化酶)与CO 2的亲和力强于C3植物叶绿体内固定CO 2的酶○2是C4植物与C3植物相比,光照较强时,其光呼吸明显弱于C3植物,因而在光照较强的环境中,前者的产量较高。

基于以上原因,在高温、光照强烈和干旱的条件下,绿色植物的气孔关闭。此时,C4植物能够利用叶片内细胞间隙中含量很低的CO 2进行光合作用、光呼吸较弱,而C3植物不仅不能利用细胞间隙中的CO 2进行光合作用、植物 分类 场 所 暗 反 应 途径 反 应 过 程

C3 叶肉细胞叶绿体 C3 C5+CO 2→2C3+ATP+[H]→C5+(CH 2O )+H 2O C4 叶肉细胞叶绿体 C4 C3(PEP )+CO 2→C4 维管束鞘细胞叶绿体 C3 C5+CO 2→2C3+ATP+[H]→C5+(CH 2O )+H 2O

光呼吸也较强,因而,C4植物比C3植物更能适应高温、光照强烈和干旱的环境

9、为什么C4植物比C3植物光呼吸低:C4植物通过叶肉细胞的PEP羧化酶固定HCO-3,PEP羧化酶对HCO-3的亲和力远大于RuBP羧化酶对CO2的亲和力。此外,HCO-3在溶液中的溶解度也远大于CO2,有利于PEP羧化酶对碳的固定;C4途径起”CO2泵”的作用将PEP羧化酶于叶肉细胞中固定的CO2“压进”维管束鞘薄壁细胞中,增加了维管束鞘薄壁细胞中的CO2/O2的比率,降低了C4植物的光呼吸。

10、CO2补偿点:当植物光合速率与呼吸速率相等时,外界环境的CO2浓度称为CO2补偿点。

11、光合速率:是指单位时间、单位叶面积吸收CO2的量或放出O2的量。

光合生产率:又称净同化率(NAR),是指植物在较长时间内,单位叶面积生产的干物质量。净光合速率的缩写---PN

12、影响光合作用的因素:○1叶龄○2光合产物输出○3光照(光照强度和光质)○4二氧化碳○5温度○6水分○7矿质元素○8光合作用的日变化

第六章植物同化物的运输与分配

1、比集运量:即物质在单位时间内通过单位韧皮部或筛管横截面积运输的量,一般以生长器官的干重增加量来度量。

2、压力学说:认为筛管的液流是靠源端和库端渗透作用所产生的压力势差而推动的。

3、同化物的分配规律:○1优先供应生长中心○2就近供应,同侧运输○3功能叶之间无同化物供应关系○4同化物的再分配与再利用

第七章植物基因表达和细胞信号转导

1、细胞信号转导:是指外界信号作用于细胞表面受体,引起胞内信使的浓度变化,进而导致细胞应答反应的一系列过程,其最终目的是使机体在整体上对外界环境的变化做出最为适宜的反应。

2、膜上信号转换系统主要由受体、G-蛋白和效应器构成。

3、胞内信号:也称第二信使,是由膜上信号转换系统产生的有调节性的细胞内因子。

第八章植物的生长物质

1、植物激素:是一些在植物体内合成的,并经常从产生部位转移到作用部位,在低浓度下对生长发育起调节作用的有机物质。

2、植物生长调节剂:是指一些具有植物激素活性的人工合成的物质。

3、生长素的极性运输:是指生长素只能从植物形态学上端向下端的运输。

4、生长素(IAA):合成前体主要是色氨酸,生理效应:○1促进伸长生长○2引起顶端优势○3促进器官和组织的分化○4诱导单性结实○5影响性别分化○6参与植物向性反应的调节。

5、生长素的存在形式:一是游离型生长素,存在与植物旺盛生长与代谢强烈的部位,是发挥生理效应的主要形式,生长素多以游离状态存在。另一种是结合型或束缚型生长素,生物活性极低或无活性,通常是生长素的储存形式,存在在种子等贮藏器官中。

束缚型生长素在植物体内的作用:1作为贮藏形式,吲哚乙酸与葡萄糖形成吲哚乙酰葡萄糖,在种子和贮藏器官中非常丰富2作为运输形式,吲哚乙酸与肌醇结合形成吲哚乙酰肌醇储存于种子中,发芽时,比吲哚乙酸更容易于运输到地上部3解毒作用,游离型生长素过多时,往往对植物产生毒害,吲哚乙酸和天门冬氨酸结合形成的吲哚乙酰天冬氨酸具有解毒作用4调节游离型生长素含量。

6、赤霉素(GA):合成前体主要是贝壳杉烯,生理效应:○1促进茎的伸长生长○2促进细胞分裂与分化○3打破休眠○4促进抽薹开花○5促进座果○6诱导单性结实○7影响性别分化。

7、细胞分裂素(CTK):合成前体是甲羟戊酸和AMP,生理效应:○1促进细胞分裂与扩大○2促进色素的生物合成○3促进芽的分化○4延迟叶片衰老○5促进侧芽发育○6促进果树花芽分化。

8、脱落酸(ABA):合成前体是甲瓦龙酸,生理效应:○1抑制生长○2促进休眠,抑制种子萌发○3促进脱落○4增强抗逆性○5促进气孔关闭○6影响开花

9、乙烯(ETH):合成前体是蛋氨酸,生理效应:○1三重反应(抑制茎的伸长生长、促进茎或根的增粗及茎的横向生长)与偏上生长(器官的上部生长速度快于下部)○2促进果实成熟○3促进脱落与衰老○4促进某些植物的开花与雌花分化○5其他效应(诱导插枝不定根的形成,促进根的生长和分化,打破种子和芽的休眠,诱导次生物质分泌)

第九章 植物的生长与运动

1、植物组织培养:是指在无菌培养条件下,将离体的植物组织、器官或细胞进行培养,最后形成完整植株的技术。理论基础是植物细胞具有全能性。

2、影响种子萌发的条件:足够的水分、充足的氧气和适宜的温度,有些种子还需要光照条件

1)水分:1水分能软化种皮,有利于氧气供应和和胚根突破种皮2种子吸水达到一定程度时可使原生质由凝胶态转变为溶胶态,促进各种代谢进行3水分促进可溶性糖、氨基酸等物质运输到胚,供胚呼吸、生长所需4水分促进束缚型激素转变为自由型,调节胚的生长

2)温度:温度影响种子吸水、气体交换和酶的活性,从而影响呼吸代谢和胚的生长

3)氧气:种子萌发是非常活跃的生命活动,通过旺盛呼吸作用不断地供给生长代谢所需的能量。因此,O2成为种子萌发必不可少的条件。如果种子萌发期间供氧不足,则会导致无氧呼吸,一方面贮藏物质消耗过快,另一方面产生酒精引起中毒。

4)光照:光对大多数植物种子的萌发没有明显影响。但有些植物种子的萌发需要光,在暗中不能萌发或萌发率很低,这类种子称为需光种子。而另一类种子萌发受光的抑制,在黑暗下易萌发,称之为嫌光种子或需暗种子。

3、植物生长的相关性:高等植物各个部分之间保持着相当恒定的比例和相对确定的空间位置,植株不同部分的生长既相互依赖、相互促进,又相互制约,植物各个部分在生长上的相互促进和相互制约的现象称为生长的相关性。

4、地下与地上器官的相关性:主要变现为相互依赖相互促进的关系,原因是二者有营养物质和微量生理活性物质的交流。

5、影响根冠比的环境条件: ○1土壤水分:增加土壤水分供应促进地上部分生长,使根/冠比变小,减少水分供应,抑制地上生长,促进地下生长,使根冠变大 ○2氮肥:增加氮素供应使根/冠比变小,减少氮素供应使根/冠比变大。其原因是根系吸收的氮素首先满足自己的需要,多余部分才向上运输。 ○3磷肥:增施磷肥使根/冠比变大,减少磷肥使根/冠比变小。其原因是磷在碳水化合物的运输中起着重要作用,促进叶内光合产物向根系运输,有利于根系生长,使根冠比增大。 ○4光照:在一定范围内,光照强度提高使光合产物增多,对地上部分和地下部分的生长都有利。但在强光下大气相对湿度下降,植物地上部分蒸腾作用增加,往往使水分亏缺,加之强光下对生长素的破坏,地上部分的生长收到了不同程度的抑制,使根冠比增大。光照不足时,光合产物减少,地上部分合成的光合产物先满足自己的需要,输送给根系的光合产物很少,对根系生长的影响比地上部分生长的影响大,使根冠比降低。

○5修剪:合理的修剪或整枝有减缓根系生长而促进地上部分生长的作用,使根冠比下降。

6、光态建成:指依赖光调节和控制的植物生长、分化和发育过程

7、光敏素(PHY )光学和生物化学性质:光敏素是一种能够接受光周期信号可溶于水的色素蛋白,它由生色基团(色素)和脱辅机蛋白质(Ap )共价结合而成。生色团是由四个开链的吡咯环连接成的直链结构,具有独特的吸光特性。光敏素中的蛋白质,带有带有许多极性基,并且带有电荷。光敏素在植物体内有两种存在形式,一种是红光吸收型(Pr ),最大吸收波长在660nm ;一种是远红光吸收型(Pfr ),最大吸收波长在730nm 。两种形式的光敏素吸收相应波长的光后可相互转化。

8、种子休眠的原因:○1种皮障碍○2胚未完全发育○3种子未完成后熟○4种子内含有抑制萌发的物质

9、向性运动:是指植物器官对环境因素单方向刺激引起的定向运动。

10、感性运动:是指无一定方向的外界因素均匀作用于植物或某些器官所引起的运动。

第十章 植物的生殖与成花

1、植物开花的过程:○1成花诱导,指经某种信号诱导后,特异基因启动,使植物改变发育过程,进入成花决定态,即进行营养生长的顶端分生组织转向生殖生长○2成花启动,指分生组织在形成花原基之前发生的一系列反应,以及分生组织分化成可辨认的花原基○3花发育,指花器官的形成过程

2、花器官发育基因控制的ABC 模型:典型的花器官从内到 外分为花萼、花瓣、雄蕊和

心皮4轮结构,控制其发育的同源异型基因划分为ABC3大组。花的4轮结构花萼、花瓣、

雄蕊和心皮分别由A 、AB 、BC 、C 组基因决定,而A 组与C 组基因在功能上颉颃。因此若A 组基因发生突变而丧失功能,C 组基因的功能即扩大到整个花的分生组织;相反,若C 组基因发生突变而丧失功能,A 组基因的功能即扩大到整个花的分生组织。即A 组基因功能丧失会使萼片变 B A C 花萼 花瓣 雄蕊 心皮

为心皮,花瓣变成雄蕊;B组基因功能丧失会使花瓣变为萼片,雄蕊变为心皮;C组基因功能丧失会使雄蕊变为花瓣,心皮变为萼片。

3、春化作用:低温诱导植物开花的过程。在春化过程中,植物感受低温的部位是分生组织和进行细胞分裂的部位。

4、植物对光周期反应的类型:○1长日植物(LDP)○2短日植物(SDP)○3日中性植物(DNP)

5、临界日长:某些植物的开花不能能超过一定的日照长度,只有短于这个日照长度的光周期下,才能开花,这个日照长度称为临界日长。

6、暗期:光周期中的黑暗时段

第十一章植物的成熟与衰老

1、种子成熟过程中贮藏物质的变化:

○1糖类的变化:在成熟过程中淀粉种子伴随着可溶性碳水化合物含量的逐渐降低,而不溶性碳水化合物含量则不断增加

○2脂肪的变化:在种子成熟过程中,初期先合成饱和脂肪酸,以后在去饱和酶的作用下饱和脂肪酸转化为不饱和脂肪酸

○3蛋白质的变化:叶片或其他器官中的氮素以氨基酸或氨酰的形式运至荚果,在荚皮中氨基酸或酰胺合成蛋白质,暂时贮藏;然后,暂存的蛋白质分解,以氨酰态运至种子,转变为氨基酸,再合成蛋白质,用于贮藏

○4非丁的变化:种子成熟过程中,由茎叶运来的有机物,大多数是与磷酸结合的,如磷酸蔗糖。磷酸蔗糖在种子中转变为淀粉时要脱下磷酸,可是游离的磷酸却不利于淀粉的合成。因此要使游离出来的无机磷酸转化为结合态的磷。其主要途径是通过磷酸与肌醇及钙、镁结合为肌醇磷酸钙镁----非丁或称植酸钙镁,而实现的。

2、呼吸跃变:果实在成熟前呼吸突然增高的现象。标志着果实生长发育阶段的结束与衰老阶段的开始。

3、跃变果与非跃变果的区别:

它们的主要区别在于对乙烯的反应上。乙烯对跃变果的刺激作用,只有在跃变前期才能发生,它可引起呼吸出现跃变与乙烯的自我催化作用,但不改变跃变高峰的高度,它所引起的反应是不可逆的,一旦反应发生后,即可自动进行下去,即使将乙烯除去,反应仍可进行,而且反应的程度与所使用乙烯的浓度无关。非跃变型果实在任何时候都可以对乙烯发生反应,乙烯引起的呼吸反应大小,与所用乙烯浓度的高低成比例,但乙烯处理不能触发果实内源乙烯的产生,一旦出去外源乙烯,其影响也就消失。

4、植物衰老的类型:1整体衰老2地上部分衰老3落叶衰老4渐进衰老。

5、程序性细胞死亡(PCD):是指胚胎发育、细胞分化及许多病理过程中,细胞遵循其自身的程序,主动结束其生命的生理性死亡过程,也称细胞凋亡。它以DNA降解为特征,通过主动的生化过程使某些细胞衰老。

6、影响器官脱落的激素:

○1生长激素(IAA):IAA对器官脱落的效应与IAA的浓度、处理部位有关。较高浓度IAA抑制器官脱落,而较低浓度IAA则促进器官脱落。用四季豆切取具叶柄的茎段试验发现,如果处理离层远茎端(距茎远的一端)可降低脱落率;若IAA处理离层近茎端(距茎近的一端)可提高脱落率○2乙烯(ETH):ETH不仅能诱发果胶酶、纤维素酶的合成,而且能提高这两种酶的活性,从而促进离层细胞壁的溶解,引起器官的脱落。

第十二章植物抗性的生理基础

1、御逆性:亦称避逆性,是指植物通过各种途径摒拒逆境对植物产生的直接效应,维持植物在逆境条件下正常

生理活动的能力。其本质是植物不与逆境达到热力学平衡。

2、耐逆性:是指植物虽然受逆境的直接效应,但可通过代谢反应阻止、降低或修复逆境造成的伤害的能力。具

有耐逆性的植物,在逆境条件下不能避免与逆境达到热力学平衡,但可避免或减轻达到平衡后产生的伤害。

3、渗透调节的作用及特点:植物渗透调节作用的存在是,可以在一定范围内维持细胞的膨压和一定的含水量,

这对蒸腾作用、光合作用、呼吸作用、细胞生长、细胞膜运输、酶活性都是十分重要的。但是渗透调节作用具有一定的局限性,主要表现在渗透调节作用的暂时性、调节幅度的有限性,此外,植物渗透调节能力的表达还需要逐步的诱导,将植物突然置于高强度的渗透胁迫下(渗透休克)植物表现不出来渗透条件能力。4、渗透调节物质:

○1脯氨酸:是水溶性最大的氨基酸,具有较强的与水结合的能力。正常生长条件下,植物体内的脯氨酸含量较低,在植物受到干旱、盐低温胁迫时,其含量明显增加。○2甜菜碱:是植物的一种重要的渗透调节物质。

在干旱、高盐、低温胁迫下,许多植物细胞中积累甜菜碱类物质,以维持细胞的正常膨压。○3多元醇:在植物中普遍存在,具有多个羟基,亲水力强,在细胞中积累,能有效维持细胞的膨压。

5、活性氧(ROS):是指化学性质活泼、氧化能力极强的含氧自由基及衍生的含氧物质的总称。

6、活性氧的伤害:活性氧引发细胞膜中不饱和脂肪酸发生膜脂过氧化作用,这个反应是一个链式循环反应,将

导致膜脂的分解,破坏膜的结构,同时产生丙二醛(MDA)等产物。MDA可以与蛋白质进行反应,使蛋白发生内部交联反应或蛋白质之间发生交联,使蛋白质发生变性失活。活性氧还对蛋白质和核酸产生破坏作用。

第十三章植物的理化逆境生理

1、干旱胁迫的类型:○1土壤干旱:是指土壤中可利用的水分不足或缺乏,植物根系吸收的水分满足不了叶片的

蒸腾失水,植物组织处于缺水状态,不能维持正常的生理活动,使植物生长停止或引起植株干枯死亡。○2大气干旱:是指空气过度干燥,相对湿度过低,常伴随高温和干风,使蒸腾加快,破坏植物体内水分平衡,从而使植物受到危害。○3生理干旱:是由于不利的环境条件抑制根系的正常吸水,从而使植物发生水分亏缺的现象。

2、膜脂相变:在正常情况下,细胞膜处于液晶态(相),随着温度的降低,由液晶相向固相转变,这种变化称

为膜脂相变。

3、过冷作用:当温度缓慢降低时,组织的温度可降至冰点以下而不结冰,这种现象称为过冷作用。

4、抗冻锻炼:当冬季严寒来临之前,随气温的降低,植物体内会发生一系列适应低温的生理变化,从而提高了

植物的抗病能力,这种逐步形成抗冻能力的过程称为抗冻锻炼,其主要生理生化变化有:○1呼吸作用减弱○2植株含水量下降○3光合产物积累○4积累保护性物质○5内源激素的变化

5、植物避盐的生理机制:○1拒盐○2泌盐○3稀盐○4隔离盐

质外体(apoplast) 由细胞壁及细胞间隙等空间(包含导管与管胞)组成的体系。

化学势(chemical potential)偏摩尔自由能被称为化学势,以希腊字母μ表示,组分j的化学势(μj)为:μj=( G/ nj)t.p. ni.ni≠nj,其含义是:在等温等压保持其它组分不变时,体系自由能随组分j的摩尔变化率。换句话说,在一个庞大的体系中,在等温等压以及保持其他各组分浓度不变时,加入1摩尔j物质所引起体系自由能的增量。

溶质势ψs(solute potential,ψs)由于溶质颗粒的存在而引起体系水势降低的数值。溶质势表示溶液中水分潜在的渗透能力的大小,因此,溶质势又可称为渗透势(osmotic potential,ψπ)。溶质势可用ψs=RTlnNw/Vw.m 公式计算,也可按范特霍夫公式ψπ=-π=-iCRT计算。

衬质势(matrix potential,ψm)由于衬质(表面能吸附水分的物质,如纤维素、蛋白质、淀粉等)的存在而使体系水势降低的数值。

压力势(pressure potential,ψp)由于压力的存在而使体系水势改变的数值。若加正压力,使体系水势增加,加负压力,使体系水势下降。

重力势(gravity potential,ψg) 由于重力的存在而使体系水势增加的数值。

集流(mass flow或bulk flow) 指液体中成群的原子或分子(例如组成水溶液的各种物质的分子)在压力梯度(水势梯度)作用下共同移动的现象。

渗透作用(osmosis)溶液中的溶剂分子通过半透膜扩散的现象。对于水溶液而言,是指水分子从水势高处通过半透膜向水势低处扩散的现象。

水通道蛋白(water channel protein)存在在生物膜上的具有通透水分功能的内在蛋白。水通道蛋白亦称水孔蛋白(aquaporins,AQPs)。

吸胀吸水(imbibing absorption of water)依赖于低的衬质势而引起的吸水。干种子的吸水为典型的吸胀吸水。吸胀作用(imbibition)亲水胶体物质吸水膨胀的现象称为吸胀作用。胶体物质吸引水分子的力量称为吸胀力。蛋白质类物质吸胀力最大,淀粉次之,纤维素较小。

根压(root pressure) 由于植物根系生理活动而促使液流从根部上升的压力。它是根系与外液水势差的表现和量度。根系活力强、土壤供水力高、叶的蒸腾量低时,根压较大。伤流和吐水现象是根压存在证据。

伤流(bleeding)从受伤或折断的植物组织伤口处溢出液体的现象。伤流是由根压引起的,是从伤口的输导组织中溢出的。伤流液的数量和成分可作为根系生理活性高低的指标。

吐水(guttation) 从未受伤的叶片尖端或边缘的水孔向外溢出液滴的现象。吐水也是由根压引起的。作物生长健壮,根系活动较强,吐水量也较多,所以,吐水现象可以作为根系生理活动的指标,并能用以判断苗长势的好坏。蒸腾作用(transpiration) 植物体内的水分以气态散失到大气中去的过程。蒸腾作用可以促进水分的吸收和运转,降低植物体的温度,促进盐类的运转和分布。

小孔扩散律(small opening diffusion law) 指气体通过多孔表面扩散的速率,不与小孔的面积成正比,而与小孔的周长或直径成正比的规律。气孔蒸腾速率符合小孔扩散律。

内聚力学说(cohesion theory)该学说由狄克逊(H.H.Dixon,)和伦尼尔(O.Renner,)在20世纪初提出,是以水分的内聚力(相同分子间相互吸引的力量)来解释水分在木质部中上升的学说。内聚力学说的基本论点是:①水分子之间有强大的内聚力,当水分被局限于具有可湿性内壁的细管(如导管或管胞)中时,水柱可经受很大的张力而不致断裂;②植物体内的水分是在被水饱和的细胞壁和木质部运输的,水分子从叶的蒸发表面到根的吸水表面形成一个连续的体系;③叶肉细胞蒸腾失水后细胞壁水势下降,使木质部的水分向蒸发表面移动,木质部的水分压力势下降而产生张力;④蒸发表面水势的降低,经连续的导水体系传递到根,使土壤水分通过根部循茎上升,最后到达叶的蒸腾表面。内聚力学说也称蒸腾流-内聚力-张力学说(transpiration cohesion tension theory)。

水分临界期(critical period of water)植物在生命周期中,对缺水最敏感、最易受害的时期。一般而言,植物的水分临界期多处于花粉母细胞四分体形成期,这个时期一旦缺水,就使性器官发育不正常。作物的水分临界期可作为合理灌溉的一种依据。

2.植物体内水分存在的形式与植物的代谢、抗逆性有什么关系?

答:植物体内的水分存在两种形式,一种是与细胞组分紧密结合而不能自由移动、不易蒸发散失的水,称为束缚水,另一种是与细胞组分之间吸附力较弱,可以自由移动的水,称为自由水。自由水可参与各种代谢活动,

因此,当自由水/束缚水比值高时,细胞原生质呈溶胶状态,植物的代谢旺盛,生长较快,抗逆性弱;反之,自由水少时,细胞原生质呈凝胶状态,植物代谢活性低,生长迟缓,但抗逆性强。

4.土壤溶液和植物细胞在水势的组分上有何异同点?

答:(1)共同点:土壤溶液和植物细胞水势的组分均由溶质势、衬质势和压力势组成。

(2)不同点:①土壤中构成溶质势的成分主要是无机离子,而细胞中构成溶质势的成分除无机离子外,还有有机溶质;②土壤衬质势主要是由土壤胶体对水分的吸附所引起的,而细胞衬质势则主要是由细胞中蛋白质、淀粉、纤维素等亲水胶体物质对水分的吸附而所引起的;③土壤溶液是个开放体系中,土壤的压力势易受外界压力的影响,而细胞是个封闭体系,细胞的压力势主要受细胞壁结构和松驰情况的影响。

5.植物吸水有哪几种方式?

答:植物吸水主要有三种方式:

⑴渗透吸水指由于ψs的下降而引起的细胞吸水。含有液泡的细胞吸水,如根系吸水、气孔开闭时保卫细胞的吸水主要为渗透吸水。

⑵吸胀吸水依赖于低的ψm而引起的吸水。无液泡的分生组织和干燥种子中含有较多衬质(亲水物体),它们可以氢键与水分子结合,吸附水分。

⑶降压吸水这里是指因ψp的降低而引发的细胞吸水。如蒸腾旺盛时,木质部导管和叶肉细胞(特别是萎蔫组织)的细胞壁都因失水而收缩,使压力势下降,从而引起细胞水势下降而吸水。失水过多时,还会使细胞壁向内凹陷而产生负压,这时ψp<0,细胞水势更低,吸水力更强。

6.温度为什么会影响根系吸水?

答:温度尤其是土壤温度与根系吸水关系很大。过高过低对根系吸水均不利。

(1)低温使根系吸水下降的原因:①水分在低温下粘度增加,扩散速率降低,同时由于细胞原生质粘度增加,水分扩散阻力加大;②根呼吸速率下降,影响根压产生,主动吸水减弱;③根系生长缓慢,不发达,有碍吸水面积扩大。

(2)高温使根系吸水下降的原因:①土温过高会提高根的木质化程度,加速根的老化进程;②使根细胞中的各种酶蛋白变性失活。

土温对根系吸水的影响还与植物原产地和生长发育的状况有关。一般喜温植物和生长旺盛的植物的根系吸水易受低温影响,特别是骤然降温,例如在夏天烈日下用冷水浇灌,对根系吸水很为不利。

7.以下论点是否正确,为什么?

(1)一个细胞的溶质势与所处外界溶液的溶质势相等,则细胞体积不变。

答:该论点不完全正确。因为一个成熟细胞的水势由溶质势和压力势两部分组成,只有在初始质壁分离ψp =0时,上述论点才能成立。通常一个细胞的溶质势与所处外界溶液的溶质势相等时,由于压力势(常为正值)的存在,使细胞水势高于外界溶液的水势(也即它的溶质势),因而细胞失水,体积变小。

(2)若细胞的ψp=-ψs,将其放入某一溶液中时,则体积不变。

答:该论点不正确。因为当细胞的ψp=-ψs时,该细胞的ψw = 0。把这样的细胞放入任溶液中,细胞都会失水,体积变小。

(3)若细胞的ψw=ψs,将其放入纯水中,则体积不变。

答:该论点不正确。因为当细胞的ψw =ψs时,该细胞的ψp = 0,而ψs为负值,即其ψw < 0,把这样的细胞放入纯水中,细胞吸水,体积变大。

8.气孔开闭机理如何?植物气孔蒸腾是如何受光、温度、CO2浓度调节的?

答:关于气孔开闭机理主要有两种学说:

⑴无机离子泵学说又称K+泵假说。光下K+由表皮细胞和副卫细胞进入保卫细胞,保卫细胞中K+浓度显著增加,溶质势降低,引起水分进入保卫细胞,气孔就张开;暗中, K+由保卫细胞进入副卫细胞和表皮细胞,使保卫细胞水势升高而失水,造成气孔关闭。这是因为保卫细胞质膜上存在着H+_ATP酶,它被光激活后,能水解保卫细胞中由氧化磷酸化或光合磷酸化生成的ATP,产生的能量将H+从保卫细胞分泌到周围细胞中,使得保卫细胞的pH值升高,质膜内侧的电势变低,周围细胞的pH值降低,质膜外侧电势升高,膜内外的质子动力势驱动K+从周围细胞经过位于保卫细胞质膜上的内向K+通道进入保卫细胞,引发开孔。

⑵苹果酸代谢学说在光下, 保卫细胞内的部分CO2被利用时,pH值上升至8.0~8.5,从而活化了PEP羧化

酶, PEP羧化酶可催化由淀粉降解产生的PEP与HCO3-结合形成草酰乙酸,并进一步被NADPH还原为苹果酸。苹果酸解离为2H+和苹果酸根,在H+/K+泵的驱使下,H+与K+交换,保卫细胞内K+浓度增加,水势降低;苹果酸根进入液泡和Cl-共同与K+在电学上保持平衡。同时,苹果酸的存在还可降低水势,促使保卫细胞吸水,气孔张开。当叶片由光下转入暗处时,该过程逆转。

气孔蒸腾显著受光、温度和CO2等因素的调节。

⑴光光是气孔运动的主要调节因素。光促进气孔开启的效应有两种,一种是通过光合作用发生的间接效应;另一种是通过光受体感受光信号而发生的直接效应。光对蒸腾作用的影响首先是引起气孔的开放,减少内部阻力,从而增强蒸腾作用。其次,光可以提高大气与叶子温度,增加叶内外蒸气压差,加快蒸腾速率。

(2)温度气孔运动是与酶促反应有关的生理过程,因而温度对蒸腾速率影响很大。当大气温度升高时,叶温比气温高出2~10℃,因而,气孔下腔蒸气压的增加大于空气蒸气压的增加,这样叶内外蒸气压差加大,蒸腾加强。当气温过高时,叶片过度失水,气孔就会关闭,从而使蒸腾减弱。

⑶CO2 CO2对气孔运动影响很大,低浓度CO2促进气孔张开,高浓度CO2能使气孔迅速关闭(无论光下或暗中都是如此)。在高浓度CO2下,气孔关闭可能的原因是:①高浓度CO2会使质膜透性增加,导致K+泄漏,消除质膜内外的溶质势梯度,②CO2使细胞内酸化,影响跨膜质子浓度差的建立。因此CO2浓度高时,会抑制气孔蒸腾。

9.高大树木导管中的水柱为何可以连续不中断?假如某部分导管中水柱中断了,树木顶部叶片还能不能得到水分?为什么?

答:蒸腾作用产生的强大拉力把导管中的水往上拉,而导管中的水柱可以克服重力的影响而不中断,这通常可用蒸腾流-内聚力-张力学说,也称"内聚力学说"来解释,即水分子的内聚力大于张力,从而能保证水分在植物体内的向上运输。水分子的内聚力很大,可达几十MPa。植物叶片蒸腾失水后,便向导管吸水,而水本身有重量,受到向下的重力影响,这样,一个上拉的力量和一个下拖的力量共同作用于导管水柱上就会产生张力,其张力可达-3.0MPa,但由于水分子内聚力远大于水柱张力,同时,水分子与导管或管胞壁的纤维素分子间还有附着力,因而维持了输导组织中水柱的连续性,使得水分不断上升。

导管水溶液中有溶解的气体,当水柱张力增大时,溶解的气体会从水中逸出形成气泡。在张力的作用下,气泡还会不断扩大,产生气穴现象。然而,植物可通过某些方式消除气穴造成的影响。例如气泡在某一些导管中形成后会被导管分子相连处的纹孔阻挡,而被局限在一条管道中。当水分移动遇到了气泡的阻隔时,可以横向进入相邻的导管分子而绕过气泡,形成一条旁路,从而保持水柱的连续性。另外,在导管内大水柱中断的情况下,水流仍可通过微孔以小水柱的形式上升。同时,水分上升也不需要全部木质部参与作用,只需部分木质部的输导组织畅通即可。

13.一个细胞的ψw为-0.8MPa,在初始质壁分离时的ψs为-1.6MPa,设该细胞在发生初始质壁分离时比原来体积缩小4%,计算其原来的ψπ和ψp各为多少MPa?

答:根据溶液渗透压的稀释公式,溶质不变时,渗透压与溶液的体积成反比,有下列等式:

π1V1=π2V2 或ψπ1V1=ψπ2V2

ψπ原来× 100% = ψπ质壁分离× 96%

ψπ原来= (-1.65MPa×96 )/100 = -1.536MPa

ψP = ψW -ψm = -0.8MPa -( -1.536MPa) = 0.736MPa

原来的ψπ为-1.536 MPa, ψP 为 0.736MPa.

14.将ψm为-100MPa的干种子,放置在温度为27℃、RH为60%的空气中,问干种子能否吸水?

答:气相的水势可按下式计算:

ψW = (RT/Vw,m )·lnRH =[ 8.3cm3·MPa·mol-1·K-1·(273+27)K/18cm3·mol-1] ·ln60%

= 138.33MPa ·(-0.5108) = -70.70MPa

由于RH为60%的气相水势大于-100MPa干种子的水势,因此干种子能从RH为60%空气中吸水.

15.一组织细胞的ψs为-0.8MPa,ψp为0.1MPa,在27℃时,将该组织放入0.3mol·kg-1的蔗糖溶液中,问该组织的重量或体积是增加还是减小?

答:细胞的水势ψW =ψs +ψp = -0.8MPa + 0.1MPa = -0.7 MPa

蔗糖溶液的水势ψW溶液 = -RTC =0.0083 dm3·MPa ·mol-1·k-1·(273+27)K·0.3 mol·kg-1

= -0.747 MPa

由于细胞的水势>蔗糖溶液的水势 ,因此细胞放入溶液后会失水,使组织的重量减少,体积缩小。

(一)名词解释

灰分元素(ash element)干物质充分燃烧后,剩余下一些不能挥发的灰白色残渣,称为灰分。构成灰分的元素称为灰分元素。灰分元素直接或间接来自土壤矿质,所以又称为矿质元素。

必需元素(e ssential element)植物生长发育中必不可少的元素。国际植物营养学会规定的植物必需元素的三条标准是:①由于缺乏该元素,植物生长发育受阻,不能完成其生活史;②除去该元素,表现为专一的病症,这种缺素病症可用加入该元素的方法预防或恢复正常;③该元素在植物营养生理上表现直接的效果,不是由于土壤的物理、化学、微生物条件的改善而产生的间接效果。

有益元素(beneficial element)并非植物生命活动必需,但能促进某些植物的生长发育的元素。如Na、Si、Co、Se、V等。

初级共运转(primary cotransport)质膜H+-ATPase把细胞质的H+向膜外"泵"出的过程。又称为原初主动运转。原初主动运转在能量形式的转化上是把化学能转为渗透能。

次级共运转(secondary cotransport)以△μH+作为驱动力的离子运转称为次级共运转。离子的次级运转是使质膜两边的渗透能增减,而这种渗透能是离子或中性分子跨膜运输的动力。

扩散作用(diffusion)分子或离子沿着化学势或电化学势梯度转移的现象。电化学势梯度包括化学势梯度和电势梯度两方面,细胞内外的离子扩散决定于这两种梯度的大小;而分子的扩散决定于化学势梯度或浓度梯度。单盐毒害(toxicity of single salt)植物培养在单种盐溶液中所引起的毒害现象。单盐毒害无论是营养元素或非营养元素都可发生,而且在溶液很稀时植物就会受害。

离子颉颃(ion antagonism)离子间相互消除毒害的现象,也称离子对抗。

生理酸性盐(physiologically acid salt)植物根系从溶液中有选择地吸收离子后使溶液酸度增加的盐类。如供给(NH4)2SO4,植物对其阳离子(NH4+)的吸收大于阴离子(SO42-),根细胞释放的H+与NH4+交换,使介质pH值下降,这种盐类被称为生理酸性盐,如多种铵盐。

生理碱性盐(physiologically alkaline salt)植物根系从溶液中有选择地吸收离子后使溶液酸度降低的盐类。如供给NaNO3,植物对其阴离子(NO3-)的吸收大于阳离子(Na+),根细胞释放OH-或HCO3-与NO3-交换,从而使介质pH值升高,这种盐类被称为生理碱性盐,如多种硝酸盐。

表观自由空间(apparent free space,AFS)根部的自由空间体积占根的总体积的百分数。豌豆、大豆、小麦等植物的AFS在8%~14%之间。

重复利用(repetitious use)已参加到生命活动中去的矿质元素,经过一个时期后再分解并调运到其它部位去重新利用的过程。

硝酸还原(nitrate reduction)硝酸在硝酸还原酶和亚硝酸还原酶的相继作用下还原成氨(铵)的过程。

植物进行正常生命活动需要的必需的矿质(含氮)元素有13种,它们是氮、磷、钾、钙、镁、硫、铁、铜、硼、锌、锰、钼、氯(也有文献将钠和镍归为必需元素)。

2.试述氮、磷、钾的生理功能及其缺素病症。

答:(1) 氮

生理功能:①氮是蛋白质、核酸、磷脂的主要成分,而这三者又是原生质、细胞核和生物膜等细胞结构物质的重要组成部分。②氮是酶、ATP、多种辅酶和辅基(如NAD+、NADP+、FAD等)的成分,它们在物质和能量代谢中起重要作用。③氮还是某些植物激素如生长素和细胞分裂素、维生素如B1、B2、B6、PP等的成分,它们对生命活动起调节作用。④氮是叶绿素的成分,与光合作用有密切关系。

缺氮病症:①植株瘦小。缺氮时,蛋白质、核酸、磷脂等物质的合成受阻,影响细胞的分裂与生长,植物生长矮小,分枝、分蘖很少,叶片小而薄,花果少且易脱落。②黄化失绿。缺氮时影响叶绿素的合成,使枝叶变黄,叶片早衰,甚至干枯,从而导致产量降低。③老叶先表现病症。因为植物体内氮的移动性大,老叶中的氮化物分解后可运到幼嫩的组织中去重复利用,所以缺氮时叶片发黄,并由下部叶片开始逐渐向上。

(2) 磷

生理功能:①磷是核酸、核蛋白和磷脂的主要成分,并与蛋白质合成、细胞分裂、细胞生长有密切关系。②磷是

许多辅酶如NAD+、NADP+等的成分,也是ATP和ADP的成分。③磷参与碳水化合物的代谢和运输,如在光合作用和呼吸作用过程中,糖的合成、转化、降解大多是在磷酸化后才起反应的。④磷对氮代谢有重要作用,如硝酸还原有NAD和FAD的参与,而磷酸吡哆醛和磷酸吡哆胺则参与氨基酸的转化。⑤磷与脂肪转化有关,脂肪代谢需要NADPH、ATP、CoA和NAD+的参与。

缺磷病症:①植株瘦小。缺磷影响细胞分裂,使分蘖分枝减少,幼芽、幼叶生长停滞,茎、根纤细,植株矮小,花果脱落,成熟延迟。②叶呈暗绿色或紫红色。缺磷时,蛋白质合成下降,糖的运输受阻,从而使营养器官中糖的含量相对提高,这有利于花青素的形成,故缺磷时叶子呈现不正常的暗绿色或紫红色。③老叶先表现病症。磷在体内易移动,能重复利用,缺磷时老叶中的磷能大部分转移到正在生长的幼嫩组织中去。因此,缺磷的症状首先在下部老叶出现,并逐渐向上发展。

(3)钾

生理功能:①酶的活化剂。钾在细胞内可作为60多种酶的活化剂,如丙酮酸激酶、果糖激酶、苹果酸脱氢酶、淀粉合成酶、琥珀酰CoA合成酶、谷胱甘肽合成酶等。因此钾在碳水化合物代谢、呼吸作用以及蛋白质代谢中起重要作用。②钾能促进蛋白质的合成,与糖的合成也有关,并能促进糖类向贮藏器官运输。③钾是构成细胞渗透势的重要成分,如对气孔的开放有着直接的作用。

缺钾病症:①抗性下降。缺钾时植株茎杆柔弱,易倒伏,抗旱、抗寒性降低。②叶色变黄叶缘焦枯。缺钾叶片失水,蛋白质、叶绿素被破坏,叶色变黄而逐渐坏死;缺钾有时也会出现叶缘焦枯,生长缓慢的现象,但由于叶中部生长仍较快,所以整个叶子会形成杯状弯曲,或发生皱缩。③老叶先表现病症。钾也是易移动而可被重复利用的元素,故缺素病症首先出现在下部老叶。

4.植物缺素病症有的出现在顶端幼嫩枝叶上,有的出现在下部老叶上,为什么?举例加以说明。

答:植物体内的矿质元素,根据它在植株内能否移动和再利用可分为二类。一类是非重复利用元素,如钙、硫、铁、铜等;一类是可重复利用的元素,如氮、磷、钾、镁等。在植株旺盛生长时,如果缺少非重复利用元素,缺素病症就首先出现在顶端幼嫩叶上,例如,大白菜缺钙时心叶呈褐色。如果缺少重复利用元素,缺素病症就会出现在下部老叶上,例如,缺氮时叶片由下而上褪绿发黄。

5.植物根系吸收矿质有哪些特点?

答:(1)根系吸收矿质与吸收水分是既相互关联又相互独立的两个过程相互关联表现在:①盐分一定要溶于水中,才能被根系吸收,并随水流进入根部的质外体,随水流分布到植株各部分;②矿质的吸收,降低了根系细胞的渗透势,促进了植物的吸水。相互独立表现在:①矿质的吸收不与水分的吸收成比例;②二者的吸收机理不同,水分吸收主要是以蒸腾作用引起的被动吸水为主,而矿质吸收则是以消耗代谢能的主动吸收为主;③二者的分配方向不同,水分主要分配到叶片用于蒸腾作用,而矿质主要分配到当时的生长中心。

(2)根对离子吸收具有选择性植物对同一溶液中不同离子或同一盐的阳离子和阴离子吸收的比例不同,从而引起外界溶液pH发生变化。

(3)根系吸收单盐会受毒害任何植物,假若培养在某一单盐溶液中,不久即呈现不正常状态,最后死亡。这种现象称为单盐毒害。单盐毒害无论是营养元素或非营养元素都可发生,而且在溶液很稀时植物就会受害。若在单盐溶液中加入少量其它盐类,这种毒害现象就会清除,这被称为离子间的颉颃作用。

10.试述矿质元素在光合作用中的生理作用(可在学习第四章后思考)。

答:矿质营养在光合作用中的功能极为广泛,归纳起来有以下方面:

(1)叶绿体结构的组成成分如N、P、S、Mg是叶绿体结构中构成叶绿素、蛋白质以及片层膜不可缺少的元素。(2)电子传递体的重要成分如PC中含Cu、Fe-S中心、Cytb、Cytf和Fd中都含有Fe,因而缺Fe会影响光合电子传递速率。

(3)磷酸基团在光、暗反应中具有突出地位如构成同化力的ATP和NADPH,光合碳还原循环中所有的中间产物,合成淀粉的前体ADPG,合成蔗糖的前体UDPG等,这些化合物中都含有磷酸基团。

(4)光合作用所必需的辅酶或调节因子如Rubisco,FBPase的活化需要Mg2+;放氧复合体不可缺少Mn2+和Cl-;而K+和Ca2+调节气孔开闭;另外,Fe3+影响叶绿素的合成;K+促进光合产物的转化与运输等。

11.试分析植物失绿的可能原因。

答:植物呈现绿色是因其细胞内含有叶绿体,而叶绿体中含有绿色的叶绿素的缘故。因而凡是影响叶绿素代谢的因素都会引起植物失绿。可能的原因有:

(1)光光是影响叶绿素形成的主要条件。从原叶绿素酸酯转变为叶绿酸酯需要光,而光过强,叶绿素反而会受光氧化而破坏。

(2)温度叶绿素的生物合成是一系列酶促反应,受温度影响。叶绿素形成的最低温度约为2℃,最适温度约30℃,最高温度约40℃。高温和低温都会使叶片失绿。高温下叶绿素分解加速,褪色更快。

(3)营养元素氮和镁都是叶绿素的组成成分,铁、锰、铜、锌等则在叶绿素的生物合成过程中有催化功能或其它间接作用。因此,缺少这些元素时都会引起缺绿症,其中尤以氮的影响最大,因此叶色的深浅可作为衡量植株体内氮素水平高低的标志。

(4)氧缺氧能引起Mg-原卟啉Ⅸ或Mg-原卟啉甲酯的积累,影响叶绿素的合成。

(5)水缺水不但影响叶绿素的生物合成,而且还促使原有叶绿素加速分解。

此外,叶绿素的形成还受遗传因素控制,如水稻、玉米的白化苗以及花卉中的花叶不能合成叶绿素。有些病毒也能引起花叶病。

12.为什么在叶菜类植物的栽培中常多施用氮肥,而栽培马铃薯和甘薯则较多地施用钾肥?

答:叶菜类植物的经济产量主要是叶片部分,受氮素的影响较大。氮不仅是蛋白质、核酸、磷脂的主要成分,而且是叶绿素的成分,与光合作用有密切关系。因此,氮的多寡会直接影响细胞的分裂和生长,影响叶面积的扩大和叶鲜重的增加。且氮素在土壤中易缺乏,因此在叶菜类植物的栽培中要多施氮肥。氮肥充足时,叶片肥大,产量高,汁多叶嫩,品质好。

钾与糖类的合成有关。钾肥充足时,蔗糖、淀粉、纤维素和木质素含量较高,葡萄糖积累则较少。钾也能促进糖类运输到贮藏器官中,所以在富含糖类的贮藏器官(马铃薯块茎和甘薯块根)中钾含量较多,种植时钾肥需要量也较多。

13.为什么水稻秧苗在栽插后有一个叶色先落黄后返青的过程?

答:植物体内的叶绿素在代谢过程中一方面合成,一方面分解,在不断地更新。水稻秧苗根系在栽插过程中受伤,影响植株对构成叶绿素的重要矿质元素N和Mg的吸收,使叶绿素的更新受到影响,而分解过程仍然进行。另一方面, N和Mg等矿质元素是可重复利用元素,根系受伤后,新叶生长所需的N和Mg等矿质元素依赖于老叶中叶绿素分解后的转运,即新叶向老叶争夺N和Mg等矿质元素,这就加速了老叶的落黄,因此水稻秧苗在栽插后有一个叶色落黄过程。当根系恢复生长后,新根能从土壤中吸收N、Mg等矿质元素,使叶绿素合成恢复正常。随着新叶的生长,植株的绿色部分增加,秧苗返青。

第四章植物的光合作用复习思考题与答案

(一)解释名词

光合作用(photosynthesis)通常是指绿色植物吸收光能,把二氧化碳和水合成有机物,同时释放氧气的过程。从广义上讲,光合作用是光养生物利用光能把二氧化碳合成有机物的过程。

希尔反应(Hill reaction)希尔(Robert.Hill)发现在分离的叶绿体(实际是被膜破裂的叶绿体)悬浮液中加入适当的电子受体(如草酸铁),照光时可使水分解而释放氧气,这个反应称为希尔反应(Hill reaction) 。其中的电子受体被称为希尔氧化剂(Hill oxidant)。

光反应(light reaction) 光合作用中需要光的反应。为发生在类囊体上的光的吸收、传递与转换、电子传递和光合磷酸化等反应的总称。

暗反应(dark reaction) 光合作用中的酶促反应,即发生在叶绿体间质中的同化CO2反应。

同化力(assimilatory power)ATP和NADPH是光合作用光反应中由光能转化来的活跃的化学能,具有在黑暗中同化CO2为有机物的能力,所以被称为"同化力"。

量子效率 (quantum efficiency) 又称量子产额(quantum yield),是指光合作用中吸收一个光量子所能引起的光合产物量的变化,如放出的氧分子数或固定的CO2的分子数。

量子需要量(quantum requirement) 量子效率的倒数,即释放1个O2和还原1个CO2所需吸收的光量子数。一般认为最低量子需要量为8~10,这个数值相当于0.12~0.08的量子效率。

光合单位(photosynthetic unit)最初是指释放1个O2分子所需要的叶绿素数目,测定值为2500chl/O2。若以吸收1个光量子计算,光合单位为300个叶绿素分子;若以传递1个电子计算,光合单位为600个叶绿素分子。而现在把存在于类囊体膜上能进行完整光反应的最小结构单位称为光合单位。它应是包括两个反应中心的约600

个叶绿素分子(300×2)以及连结这两个反应中心的光合电子传递链。它能独立地捕集光能,导致氧的释放和NADP 的还原。

光合膜(photosynthetic membrane) 即为类囊体膜,这是因为光合作用的光反应是在叶绿体中的类囊体膜上进行的。

红降现象(red drop) 光合作用的量子产额在波长大于680nm时急剧下降的现象。

双光增益效应或爱默生增益效应(Emerson enhancement effect)-在用远红光照射时补加一点稍短波长的光(例如650nm的光),则量子产额大增,比用这两种波长的光单独照射时的总和还要高。这种在长波红光之外再加上较短波长的光促进光合效率的现象被称为双光增益效应,因这一现象最初由爱默生(Emerson)发现的,故又叫爱默生增益效应。

原初反应(primary reaction) 指光合作用中最初的反应,从光合色素分子受光激发起到引起第一个光化学反应为止的过程,它包括光能的吸收、传递与光化学反应。原初反应的结果使反应中心发生电荷分离。

荧光(fluorescence)和磷光(phosphorescence)激发态的叶绿素分子回到基态时,可以光子形式释放能量。处在第一单线态的叶绿素分子回至基态时所发出的光称为荧光,而处在三线态的叶绿素分子回至基态时所发出的光称为磷光。

激子传递(exciton transfer) 激子通常是指非金属晶体中由电子激发的量子,它能转移能量但不能转移电荷。在由相同分子组成的聚光色素系统中,其中一个色素分子受光激发后,高能电子在返回原来轨道时也会发出激子,此激子能使相邻色素分子激发,即把激发能传递给了相邻色素分子,激发的电子可以相同的方式再发出激子,并被另一色素分子吸收,这种在相同分子内依靠激子传递来转移能量的方式称为激子传递。

共振传递(resonance transfer) 在色素系统中,一个色素分子吸收光能被激发后,其中高能电子的振动会引起附近另一个分子中某个电子的振动(共振),当第二个分子的电子振动被诱导起来,就发生了电子激发能的传递,第二个分子又能以同样的方式激发第三、第四个分子,这种依靠电子振动在分子内传递能量的方式称共振传递。反应中心(reaction center) 发生原初反应的最小单位,它是由反应中心色素分子、原初电子受体、次级电子受体与次级电子供体等电子传递体,以及维持这些电子传递体的微环境所必需的蛋白质等组分组成的。

反应中心色素分子(reaction center pigment) 是处于反应中心中的一种特殊性质的叶绿素a分子,它不仅能捕获光能,还具有光化学活性,能将光能转换成电能。

聚(集)光色素(light harvesting pigment) 又称天线色素(antenna pigment),指在光合作用中起吸收和传递光能作用的色素分子,它们本身没有光化学活性。

原初电子供体(primary electron donor) 反应中心色素分子是光化学反应中最先向原初电子受体供给电子的,因此反应中心色素分子又称原初电子供体。

原初电子受体(primary electron acceptor) 直接接收反应中心色素分子传来电子的电子传递体。PSⅠ的原初电子受体是叶绿素分子(A0),PSⅡ的原初电子受体是去镁叶绿素分子(Pheo)。

光合链(photosynthetic chain)定位在光合膜上的,由多个电子传递体组成的电子传递的总轨道。

"Z"方案("Z" scheme) 指光合电子传递途径由两个光系统串联起来的方案。由于此光合电子传递途径中的电子传递体按氧化还原电位高低排列时呈侧写的"Z"字形,故称此方案为"Z"方案。

非环式电子传递(noncyclic electron transport) 指水中的电子经PSⅡ与PSⅠ一直传到NADP+的电子传递途径。

环式电子传递(cyclic electron transport) 一般指PSⅠ中电子由经Fd、PQ、Cytb6/f等电子递体返回到PSⅠ的循环电子传递途经。

假环式电子传递(pseudocyclic electron transport) 指水中的电子经PSⅡ与PSⅠ传给Fd后再传给O2的电子传递途径。

光合磷酸化(photosynthetic phosphorylation,photophosphorylation)光下在叶绿体(或载色体)中发生的由ADP与Pi合成ATP的反应。

非环式光合磷酸化(noncyclic photophosphorylation) 与非环式电子传递偶联产生的磷酸化反应。在反应中,体系除生成ATP外,同时还有NADPH的产生和氧的释放。

环式光合磷酸化(cyclic photophosphorylation) 与环式电子传递偶联产生ATP的反应。环式光合磷酸化是非光合放氧生物光能转换的唯一形式,主要在基质片层内进行。

假环式光合磷酸化(pseudocyclic photophosphorylation) 与假环式电子传递偶联产生ATP的反应。此种光合磷酸化既放氧又吸氧,还原的电子受体最后又被氧所氧化。

解偶联剂(uncoupler) 能消除类囊体膜或线粒体内膜内外质子梯度,解除磷酸化反应与电子传递之间偶联的试剂。

光能转化效率光合产物中所贮存的化学能占光合作用所吸收的有效辐射能的百分率。

C3途径(C3 pathway)和C3植物(C3 plant) C3途径亦称卡尔文-本森(Calvin-Benson)循环。整个循环由RuBP开始至RuBP再生结束,共有14步反应,均在叶绿体的基质中进行。全过程分为羧化、还原、再生3个阶段。由于这条光合碳同化途径中CO2固定后形成的最初产物3-磷酸甘油酸(PGA)为三碳化合物,所以称C3途径,也叫做C3光合碳还原循环(C3 photosynthetic carbon reduction cycle, C3-PCR循环),并把只具有C3途径的植物称为C3植物。C3植物大多为温带和寒带植物。水稻、小麦、棉花、大豆、油菜等为C3植物。

C4途径(C4 pathway) 和C4植物(C4 plant) C4途径亦称哈奇-斯莱克(Hatch-Slack)途径,整个循环由PEP开始至PEP再生结束,要经叶肉细胞和维管束鞘细胞两种细胞,循环反应虽因植物种类不同而有差异,但基本上可分为羧化、还原或转氨、脱羧和底物再生四个阶段。由于这条光合碳同化途径中CO2固定后形成的最初产物草酰乙酸(OAA)为C4-二羧酸化合物,所以叫做C4双羧酸途径(C4 dicarboxylic acid pathway),简称C4途径,并把具有C4途径的植物称为C4植物。C4植物大多为热带和亚热带植物,如玉米、高梁、甘蔗、稗草、苋菜等。景天科酸代谢途径(Crassulacean acid metabolism pathway,CAM途径)和CAM 植物(CAM plant) 景天科、仙人掌科等科中的植物,夜间固定CO2产生有机酸,白天有机酸脱羧释放CO2,进行CO2固定,这种与有机酸合成日变化有关的光合碳代谢途径称为景天科酸代谢途径。把具有CAM 途径的植物称为CAM植物。常见的CAM植物有菠萝、剑麻、兰花、百合、仙人掌、荟芦等。

C3- C4中间植物指形态解剖结构和生理生化特性介于C3植物和C4植物之间的植物。C3-C4中间型可能是由C3植物演化到C4植物的过渡类型。C3-C4中间植物都有一个含叶绿体的维管束鞘细胞层,PEPC和Rubisco两类羧化酶在叶肉细胞和维管束鞘细胞中均有分布,主要途径仍是C3途径,但具有一个"有限的C4循环"(limited C4 cycle)起着CO2浓缩作用。C3-C4中间植物CO2补偿点显著地高于C4植物,而低于C3植物,约在5~40μl·L -1之间。C3-C4中间植物光呼吸速率和光合速率被21%氧的抑制率也介于C3植物与C4植物之间。

光呼吸(photorespiration) 植物的绿色细胞在光照下吸收氧气释放CO2的过程,由于这种反应仅在光下发生,需叶绿体参与,并与光合作用同时发生,故称作为光呼吸。因为光呼吸的底物乙醇酸和其氧化产物乙醛酸,以及后者经转氨作用形成的甘氨酸皆为C2化合物,因此光呼吸途径又称为C2光呼吸碳氧循环(C2 photorespiration carbon oxidation cycle,PCO循环),简称C2循环。

光合速率(photosynthetic rate) 亦称光合强度。通常是指单位时间、单位叶面积的CO2吸收量或O2的释放量,也可用单位时间、单位叶面积上的干物质积累量来表示。实际所测到的光合速率称表观光合速率(apparent photosynthetic rate)或净光合速率(net phosynthetic rate) 。如把表观光合速率加上光、暗呼吸速率,便得到总光合速率(gross photosyntheticrate)或真光合速率(true photosynthetic rate)。

光补偿点(light compensation point) 随着光强的增高,光合速率相应提高,当到达某一光强时,叶片的光合速率等于呼吸速率,即CO2吸收量等于O2释放量,表观光合速率为零,这时的光强称为光补偿点。

光饱和点(light saturation point) 当达到某一光强时,光合速率就不再随光强的增高而增加,这种现象称为光饱和现象。开始达到光合速率最大值时的光强称为光饱和点。

光抑制(photoinhibition) 当光合机构接受的光能超过它所能利用的量时,光会引起光合效率的降低,这个现象就叫光合作用的光抑制。

光合滞后期(lag phase of photosynthesis) 置于暗中的植物材料(叶片或细胞)照光,起初光合速率很低或为负值,要光照一段时间后,光合速率才逐渐上升,并趋于稳态。从照光开始至光合速率达到稳态值这段时间,称为光合滞后期,又称光合诱导期。

CO2补偿点(CO2 compensation point) 指光合速率与呼吸速率相等时,也就是净光合速率为零时环境中的CO2浓度。

CO2饱和点(CO2 saturation point)当CO2达到某一浓度时,光合速率达到最大值,开始达到光合最大速率时的CO2浓度称为CO2饱和点。

"午睡现象"(midday depression) 指植物的光合速率在中午前后下降的现象。引起光合"午睡"的主要因素是大气

干旱和土壤干旱。另外,中午及午后的强光、高温、低CO2浓度等条件也会使光合速率在中午或午后降低。

光能利用率(efficiency for solar energy utilization)植物光合作用积累的有机物中所含的化学能占光能投入量的百分比。

(二)写出下列符号的中文名称,并简述其主要功能或作用

ATPase ATP酶(腺苷三磷酸酶 adenosine triphosphatase) ,又叫ATP合成酶(ATP synthase), ATPase的功能是催化ADP和Pi合成ATP,另外ATP酶还可水解ATP,释放能量。

BSC 维管束鞘细胞(bundle sheath cell)。C4植物的BSC中含有大而多的叶绿体,还含有Rubisco等参与C3途径的酶, BSC与相邻叶肉细胞间的胞间连丝丰富。这些结构特点有利于C4植物的叶肉细胞与BSC间的物质交换,以及光合产物向维管束的就近转运。

CAM 景天科酸代谢(Crassulacean acid metabolism),是景天科等植物的特殊的CO2同化方式:夜间固定CO2产生有机酸,白天有机酸脱羧释放CO2,用于光合作用,这样的光合碳代谢途径使CAM植物能适应高温、干旱的环境。

Chl 叶绿素(chlorophyll)是使植物呈现绿色的色素,也是最主要的光合色素,在光能吸收、传递和转化方面起重要作用。

CF1-CFo 偶联因子(coupling factor)也称CF1-CFo复合体,即ATP酶,由两个蛋白复合体组成:一个是突出于膜表面的亲水性的CF1,是合成或水解ATP的部位;另一个是埋置于膜中的疏水性的CFo ,为质子转移的通道。Cyt b6/f Cyt b6/f复合体(cytochrome b6/f complex),它作为连接PSⅠ与PSⅡ两个光系统的中间电子载体系统,含有Cyt f、Cyt b6(2个,为电子传递循环剂)和〔Fe-S〕R,主要催化PQH2的氧化和PC的还原,并把质子从类囊体膜外间质中跨膜转移到膜内腔中。因此 Cyt b6/f复合体又称PQH2·PC氧还酶。

DCMU 二氯苯基二甲基脲(dichlorophenyl dimethylures),电子传递抑制剂,一种除草剂,商品名为敌草隆(diuron),它能抑制PSⅡ的QB到PQ的电子传递,因而也是非环式光合磷酸化与假环式光合磷酸化的抑制剂。F6P 果糖-6-磷酸(fructose-6-phosphate),光合碳代谢和呼吸代谢中的重要中间产物,在叶绿体中是淀粉合成的起始物,在细胞质中F6P是蔗糖合成的前体。

FBP 果糖-1,6-二磷酸(fructose-1,6-bisphosphate),光合碳代谢和呼吸的重要中间产物,参于淀粉和蔗糖的合成。

Fd 铁氧还蛋白(ferrdoxin),是存在类囊体膜表面的蛋白质。通过它的2铁-2硫活性中心中的铁离子的氧化还原传递电子,是电子传递的分岔点。

(Fe-S)R Rieske铁硫蛋白,是由Rieske发现的非血红素的Fe蛋白质,它是Cyt b6/f复合体中的电子传递体。FNR 铁氧还蛋白-NADP+还原酶(ferrdoxin-NADP+reductase ) 是存在类囊体膜表面的蛋白质,也是光合电子传递链的末端氧化酶,接收Fd传来的电子和基质中的H+,还原NADP+为NADPH。

LHC 聚光色素复合体( light harvesting pigment complex),为色素与蛋白质结合的复合体,它接受光能,并把光能传给反应中心。

Mal 苹果酸(malate),在C4途径中由OAA还原而成,是重要的中间产物。

OAA 草酰乙酸(oxaloacetic acid),C4途径中光合碳同化形成的最初产物。

P700、P680 PSⅠ和PSⅡ反应中心色素,即原初电子供体,分别用P700、P680来表示,都是由两个叶绿素a分子组成的二聚体。这里P代表色素(pigment),700、680则代表P氧化时其吸收光谱中变化最大的波长位置是近700nm或680nm处,也即用氧化态吸收光谱与还原态吸收光谱间的差值最大处的波长来作为反应中心色素的标志。PC 质蓝素(plastocyanin),是位于类囊体膜内侧表面的含铜的蛋白质,氧化时呈蓝色。它是介于Cyt b6/f复合体与PSⅠ之间的电子传递成员。通过蛋白质中铜离子的氧化还原变化来传递电子。

PEP 磷酸烯醇式丙酮酸(phosphoenolpruvate),C4途径中CO2的受体。

PEPC 磷酸烯醇式丙酮酸羧化酶(phosphoenolpyruvate carboxylase),主要存在C4植物叶肉细胞的细胞质中,催化PEP与HCO-3形成草酰乙酸的反应。

PGA 3-磷酸甘油酸(3-phosphoglycerate ), C3途径中光合碳同化形成的最初产物。

Pheo 去镁叶绿素(pheophytin),叶绿素的卟啉环中的镁可被H+、Cu2+、Zn2+等所置换。当为H+所置换后,即形成褐色的去镁叶绿素,它也是PSⅡ的原初电子受体。

Pmf 质子动力(proton motive force),它是电化学势差与法拉第常数的比值(pmf=△μH+/F = 0.0238RT△pH + △

E),其单位为电势(V)。质子动力是磷酸化反应、以及其它离子、分子跨膜转移的推动力。

Pn 净光合速率(net photosynthetic rate) 或称表观光合速率(apparent photosynthetic rate), 指实际所测到的光合速率,它等于总光合速率(gross photosyntheticrate)或真光合速率(true photosynthetic rate)减去光、暗呼吸速率。

PQ 质醌(plastoquinon)也叫质体醌,是PSⅡ反应中心的末端电子受体,也是介于PSⅡ复合体与Cyt b6/f复合体间的电子传递体。质体醌为脂溶性分子,在膜中含量很高,能在类囊体膜中自由移动,它是双e-和双H+传递体,在光合膜上转运电子与质子,对类囊体膜内外建立质子梯度起着重要的作用。另外,PQ库作为电子、质子的缓冲库,能均衡两个光系统间的电子传递,可使多个PSⅡ复合体与多个Cyt b6/f复合体发生联系,使得类囊体膜上的电子传递成网络式地进行。

PSⅠ光系统Ⅰ(photosystem Ⅰ),高等植物的PSⅠ由反应中心、LHCⅠ、铁硫蛋白、Fd、FNR等组成。PSⅠ的生理功能是吸收光能,进行光化学反应,产生强的还原剂,用于还原NADP+,实现PC到NADP+的电子传递。

PSⅡ光系统Ⅱ(photosystem Ⅱ),是含有多亚基的蛋白复合体,它由聚光色素复合体Ⅱ、中心天线、反应中心、放氧复合体、细胞色素和多种辅助因子组成。PSⅡ的生理功能是吸收光能,进行光化学反应,产生强的氧化剂,使水裂解释放氧气,并把水中的电子传至质体醌。

RuBP 核酮糖-1,5 -二磷酸(ribulose-1,5-bisphosphate), C3 途径中CO2的受体。

Rubisco 1,5 -二磷酸核酮糖羧化酶/加氧酶(ribulose-1,5-bisphosphate carboxylase/oxygenase),该酶具有双重功能,既能使RuBP与CO2起羧化反应,推动C3碳循环,又能使RuBP与O2起加氧反应, 而引起C2氧化循环即光呼吸的进行。

TP 磷酸丙糖(triose phosphate),光合作用初产物,包括甘油醛-3-磷酸和二羟丙酮磷酸,它们是光合产物输出叶绿体的形式。

LAI 叶面积系数(leaf area index),指作物的总叶面积和土地面积的比值,是衡量作物群体大小的指标。

4.如何证明光合电子传递由两个光系统参与?

答:以下几方面的事例可证明光合电子传递由两个光系统参与。

⑴红降现象和双光增益效应红降现象是指用大于680nm的远红光照射时,光合作用量子效率急剧下降的现象;而双光效应是指在用远红光照射时补加一点稍短波长的光(例如650nm的光),量子效率大增的现象,这两种现象暗示着光合机构中存在着两个光系统,一个能吸收长波长的远红光,而另一个只能吸收稍短波长的光。

⑵光合放氧的量子需要量大于8从理论上讲一个量子引起一个分子激发,放出一个电子,那么释放一个O2,传递4个电子只需吸收4个量子(2H2O→4H++4e+O2↑)而实际测得光合放氧的最低量子需要量为8~12。这也证实了光合作用中电子传递要经过两个光系统,有两次光化学反应。

⑶类囊体膜上存在PSⅠ和PSⅡ色素蛋白复合体现在已经用电镜观察到类囊体膜上存在PSⅠ和PSⅡ颗粒,能从叶绿体中分离出PSⅠ和PSⅡ色素蛋白复合体,在体外进行光化学反应与电子传递,并证实PSⅠ与NADP+的还原有关,而PSⅡ与水的光解放氧有关。

5.根据图4-37所示,简述光合作用过程以及光反应与暗反应的关系?

答:根据对光的需要情况,把光合作用可以分为需光的光反应和不需光的暗反应两个阶段。光反应是在叶绿体的类囊体膜上进行的,而暗反应是在叶绿体的基质中进行的。

位于叶绿体的类囊体膜上的光系统受光激发,引起电子传递。电子传递的结果,是引起水的裂解放氧,并产生类囊体膜内外的H+电化学势差。依H+电化学势差,H+从ATP酶流出类囊体时,发生磷酸化作用。光反应的结果产生了ATP和NADPH,这两者被称为同化力。依靠这种同化力,在叶绿体基质中发生CO2的固定,暗反应的初产物是磷酸丙糖(TP), TP是光合产物运出叶绿体的形式。

可见,光反应的实质在于产生同化力去推动暗反应的进行,而暗反应的实质在于利用同化力将无机碳(CO2)转化为有机碳(CH2O)。当然,光暗反应对光的需求不是绝对的,在光反应中有不需光的过程(如电子传递与光合磷酸化),在暗反应中也有需要光调节的酶促反应。现在认为,光反应不仅产生同化力,而且产生调节暗反应中酶活性的调节剂,如还原性的铁氧还蛋白。

6.电子传递为何能与光合磷酸化偶联?

答:根据化学渗透学说,ATP的合成是由质子动力(或质子电化学势差)推动形成的,而质子动力的形成是H+跨膜

转移的结果。在光合作用过程中随着类囊体膜上的电子传递会伴随H+从基质向类囊体膜腔内转移,形成质子动力,由质子动力推动光合磷酸化的进行。

用以下实验也可证实电子传递是与光合磷酸化偶联的:在叶绿体体系中加入电子传递抑制剂如DCMU,光合磷酸化就会停止;如果在体系中加入ADP与Pi磷酸化底物则会促进电子传递。

7.为什么说光呼吸与光合作用是伴随发生的?光呼吸有何生理意义?

答:光呼吸是植物的绿色细胞在光照下吸收氧气释放CO2的反应,这种反应需叶绿体参与,仅在光下与光合作用同时发生,光呼吸底物乙醇酸主要由光合作用的碳代谢提供。

光呼吸与光合作用伴随发生的根本原因主要是由Rubisco的性质决定的,Rubisco是双功能酶,它既可催化羧化反应,又可以催化加氧反应,即CO2和O2竞争Rubisco同一个活性部位,并互为加氧与羧化反应的抑制剂。因此在O2和CO2共存的大气中,光呼吸与光合作用同时进行,伴随发生,既相互抑制又相互促进,如光合放氧可促进加氧反应,而光呼吸释放的CO2又可作为光合作用的底物。

光呼吸在生理上的意义推测如下:

⑴回收碳素通过C2碳氧化环可回收乙醇酸中3/4的碳(2个乙醇酸转化1个PGA,释放1个CO2)。

⑵维持C3光合碳还原循环的运转在叶片气孔关闭或外界CO2浓度低时,光呼吸释放的CO2能被C3途径再利用,以维持光合碳还原环的运转。

⑶防止强光对光合机构的破坏作用在强光下,光反应中形成的同化力会超过CO2同化的需要,从而使叶绿体中NADPH/NADP、ATP/ADP的比值增高。同时由光激发的高能电子会传递给O2,形成的超氧阴离子自由基会对光合膜、光合器有伤害作用,而光呼吸却可消耗同化力与高能电子,降低超氧阴离子自由基的形成,从而保护叶绿体,免除或减少强光对光合机构的破坏。

8.C3途径可分为哪三个阶段? 各阶段的作用是什么? C4植物与CAM植物在碳代谢途径上有何异同点?

答:C3途径可分为羧化、还原、再生3个阶段。

(1) 羧化阶段指进入叶绿体的CO2与受体RuBP结合,生成PGA的过程。

(2) 还原阶段指利用同化力将3-磷酸甘油酸还原为甘油醛-3-磷酸的反应过程。

(3) 再生阶段甘油醛-3-磷酸重新形成核酮糖-1,5-二磷酸的过程。

CAM植物与C4植物固定与还原CO2的途径基本相同,二者都是由C4途径固定CO2 ,C3途径还原CO2,都由PEP 羧化酶固定空气中的CO2,,由Rubisco羧化C4二羧酸脱羧释放的CO2,二者的差别在于:C4植物是在同一时间(白天)和不同的空间(叶肉细胞和维管束鞘细胞)完成CO2固定(C4途径)和还原(C3途径)两个过程;而CAM植物则是在不同时间(黑夜和白天)和同一空间(叶肉细胞)完成上述两个过程的。

10.试述光、温、水、气与氮素对光合作用的影响。

答:(1)光光是光合作用的动力,也是形成叶绿素、叶绿体以及正常叶片的必要条件,光还显著地调节光合酶的活性与气孔的开度,因此光直接制约着光合速率的高低。光能不足可成为光合作用的限制因素,光能过剩会引起光抑制使光合活性降低。光合作用还被光照诱导,即光合器官要经照光一段时间后,光合速率才能达正常范围。

(2)温度光合过程中的暗反应是由酶所催化的化学反应,因而受温度影响。光合作用有一定的温度范围和三基点,即最低、最高和最适温度。光合作用只能在最低温度和最高温度之间进行。

(3)水分①直接影响:水为光合作用的原料,没有水不能进行光合作用。②间接影响:水分亏缺会使光合速率下降。因为缺水会引起气孔导度下降,从而使进入叶片的CO2减少;光合产物输出变慢;光合机构受损,光合面积扩展受抑等。水分过多会使叶肉细胞处于低渗状态,另外土壤水分太多,会导致通气不良而妨碍根系活动等,这些也都会影响光合作用的正常进行。

(4)气体 CO2是光合作用的原料, CO2不足往往是光合作用的限制因子,对C3植物光合作用的影响尤为显著。O2对光合作用有抑制作用,一方面O2促进光呼吸的进行,另一方面高氧下形成超氧阴离子自由基,对光合膜、光合器有伤害作用。

(5)氮素氮素是叶绿体叶绿素的组成成分,也是Rubisco 等光合酶以及构成同化力的ATP和NADPH等物质的组成成分。在一定范围内,叶的含N量、叶绿素含量、Rubisco 含量分别与光合速率呈正相关。

14.为什么C4植物的光呼吸速率低?

答:(1)维管束鞘细胞中有高的CO2浓度 C4植物的光呼吸代谢是发生在BSC中,由于C4途径的脱羧使BSC中CO2浓度提高,这就促进了Rubisco 的羧化反应,抑制了Rubisco 的加氧反应。

(2) PEPC对CO2的亲和力高由于C4植物叶肉细胞中的PEPC对CO2的亲和力高, 即使BSC中有光呼吸的CO2释放,CO2在未跑出叶片前也会被叶肉细胞中的PEPC再固定。

15.影响光能利用率的因素有哪些?如何提高光能利用率?

答:影响光能利用率的因素大体有以下几方面:

⑴光合器官捕获光能的面积占土地面积的比例,作物生长初期植株小,叶面积不足,日光的大部分直射于地面而损失。

⑵光合有效幅射照射能占整个辐射能的比例只有53%,其余的47%不能用于光合作用。

⑶照射到光合器官上的光不能被光合器官全部吸收,要扣除反射、透射及非叶绿体组织吸收的部分。

⑷吸收的光能在传递到光合反应中心色素过程中会损失,如发热、发光的损耗。

⑸光合器将光能转化为同化力,进而转化为稳定化学能过程中的损耗。

⑹光、暗呼吸消耗以及在物质代谢和生长发育中的消耗。

⑺内外因素对光合作用的影响,如作物在生长期间,经常会遇到不适于作物生长与进行光合的逆境,如干旱、水涝、低温、高温、阴雨、缺CO2、缺肥、盐渍、病虫草害等。在逆境条件下,作物的光合生产率要比顺境下低得多,这些也会使光能利用率大为降低。

提高作物光能利用率的主要途径为:

⑴提高净同化率如选择高光效的品种、增施CO2、控制温湿度、合理施肥等。

⑵增加光合面积通过合理密植或改变株型等措施,可增大光合面积。

⑶延长光合时间如提高复种指数、适当延长生育期,补充人工光源等。

16.假定中国长江流域年总辐射量为5.0×106kJ·m-2,一年二熟,水稻产量每100m2为75kg,小麦产量每100m2为60kg。经济系数水稻为0.5,小麦为0.4,含水量稻谷13%,小麦籽粒为12%,干物量含能均按1.7×104kJ·kg -1计算,试求该地区的光能利用率。

答:光能利用率 = (光合产物中积累的能量/辐射总量)×100%

光合产物中积累的能量 = [ 75 kg·100m-2÷0.5×(1-13%) + 60 kg·100m-2÷0.4× (1-12%)] × 1.7×104kJ·kg -1= 4.4625×104kJ· m-2

光能利用率 =(4.4625×104kJ·m-2/ 5.0×106kJ·m-2) ×100% = 0.89%

(一)名词解释

呼吸作用(respiration)生活细胞内的有机物,在酶的参与下,逐步氧化分解并释放能量的过程。

有氧呼吸(aerobic respiration)生活细胞利用分子氧,将某些有机物质彻底氧化分解,形成CO2和H2O,同时释放能量的过程。

无氧呼吸(anaerobic respiration)生活细胞在无氧条件下,把某些有机物分解成为不彻底的氧化产物,同时释放能量的过程。微生物的无氧呼吸通常称为发酵(fermentation)。

糖酵解(glycolysis)己糖在细胞质中分解成丙酮酸的过程。为纪念在研究这途径中有贡献的三位生物化学家,又称为Embden-Meyerhof-Parnas途径,简称EMP途径(EMP pathway)。

三羧酸循环(tricarboxylic acid cycle,TCAC)在有氧条件下丙酮酸在线粒体基质中彻底氧化分解的途径。因柠檬酸是其中一重要中间产物所以也称为柠檬酸循环(citric acid cycle),这个循环是英国生物化学家克雷布斯(H.Krebs)发现的,所以又名Krebs 循环(Krebs cycle)。

戊糖磷酸途径(pentose phosphate pathway,PPP)葡萄糖在细胞质内直接氧化分解,并以戊糖磷酸为重要中间产物的有氧呼吸途径。又称己糖磷酸途径(hexose monophosphate pathway,HMP)。

生物氧化(biological oxidation)有机物质在生物体细胞内所进行的一系列传递氢和电子的氧化还原过程称为生物氧化。生物氧化与体外的非生物氧化或燃烧的化学本质是相同的,都是脱氢、失去电子、或与氧直接化合并释放能量的过程。然而,生物氧化是在细胞内、常温、常压、近于中性pH和有水的环境中,在一系列的酶作用下进行的,能量是逐步释放的,释放的能量可贮存在高能化合物(如ATP、GTP等)中,以满足机体需能生理过程的需要。

呼吸链(respiratory chain)即呼吸电子传递链(electron transport chain),指线粒体内膜上由呼吸传递体组成的电子传递的总轨道。

氧化磷酸化(oxidative phosphorylation) 在线粒体内膜上电子经电子传递链传递给分子氧生成水,并偶联ADP

和Pi生成ATP的过程。它是需氧生物生物氧化生成ATP的主要方式。

抗氰呼吸(cyanide resistant respiration)对氰化物不敏感的那一部分呼吸。抗氰呼吸可以在某些条件下与电子传递主路交替运行,因此,这一呼吸支路又称为交替途径(alternative pathway)。

末端氧化酶(terminal oxidase)处于生物氧化一系列反应的最末端的氧化酶。除了线粒体内膜上的细胞色素氧化酶和抗氰氧化酶之外,还有存在于细胞质中的酚氧化酶、抗坏血酸氧化酶和乙醇酸氧化酶等。

巴斯德效应(Pasteur effect)法国的科学家巴斯德(L.Pasture)最早发现从有氧条件转入无氧条件时酵毋菌的发酵作用增强,反之, 从无氧转入有氧时酵毋菌的发酵作用受到抑制,这种氧气抑制酒精发酵的现象叫做巴斯德效应。

呼吸速率(respiratory rate)指单位时间单位重量(干重或鲜重)的植物组织(或单位细胞、毫克氮)所放出的CO2的量或吸收的O2的量。常用的单位有:μmolCO2·g-1FW·h-1 ,μmolO2·g-1FW·h-1,μmolO2·mg-1Pr·h-1,μlO2·g-1DW·h-1等。呼吸速率是用来代表呼吸强弱的最常用的生理指标。

呼吸商(respiratory quotient,RQ) 植物组织在一定时间内,放出二氧化碳的量与吸收氧气的量的比值叫做呼吸商,又称呼吸系数(respiratory coefficient)。

呼吸作用的氧饱和点(respiration oxygen saturation point)在氧浓度较低的情况下,呼吸速率(有氧呼吸)随氧浓度的增大而增强,但氧浓度增至一定程度时,呼吸速率不再随氧浓度的增大而增强,这时候的氧浓度称为呼吸作用的氧饱和点。

无氧呼吸消失点(anaerobic respiration extinction point)无氧呼吸停止进行的最低氧浓度(10%左右)称为无氧呼吸消失点。

呼吸效率(respiratory ratio)植物每消耗1克葡萄糖可合成生物大分子物质的克数。

维持呼吸(maintenance respiration)用以维持细胞活性的那部分呼吸,维持呼吸是相对稳定的,每克干重植物约消耗15~20mg葡萄糖。

生长呼吸(growth respiration)用来合成细胞组成成分以及进行细胞分裂、分化和生长的那部分呼吸。种子萌发到苗期,生长呼吸占总呼吸比例较高,随着营养体的生长,比例逐渐下降,而维持呼吸所占的比例增加。(二)写出下列符号的中文名称,并简述其主要功能或作用

EMP 糖酵解途径(Embden-Meyerhof-Parnas pathway) ,己糖在细胞质中分解成丙酮酸的过程。EMP是有氧呼吸和无氧呼吸共同经过的生化历程,通过EMP能为生物体的生命活动提供部分能量和中间产物。

PPP 戊糖磷酸途径(pentose phosphate pathway),葡萄糖在细胞质内直接氧化分解,并以戊糖磷酸为重要中间产物的有氧呼吸途径。PPP途径普遍存在于高等植物中,能为生命活动提供能量与中间产物。

TCAC 三羧酸循环(tricarboxylic acid cycle),在有氧条件下丙酮酸在线粒体基质中彻底氧化分解的途径。三羧酸循环又称柠檬酸循环(citric acid cycle)或 Krebs 循环(Krebs cycle)。它是需氧生物利用糖或其它物质获得能量的最有效方式,是糖、脂、蛋白质等物质转化的枢纽。

GAC 乙醛酸循环(glyoxylic acid cycle),脂肪酸氧化分解生成的乙酰CoA,在乙醛酸体内生成琥珀酸、乙醛酸和苹果酸等化合物的循环过程。此循环发生在某些植物和微生物中。乙醛酸循环中生成的琥珀酸可用以生成糖,生成的二羧酸与三羧酸可参与三羧酸循环。通过乙醛酸循环,可将脂肪转变为糖,这在油料作物种子萌发时尤为重要。

Cyt 细胞色素(cytochrome),一类含有铁卟啉的复合蛋白,有典型的吸收光谱,辅基中的铁能通过价态的变化可逆地传递电子,是生物氧化中重要的电子传递体。

CoQ或UQ 泛醌(ubiquinone) 是一种脂溶性的醌类化合物,广泛存在于生物界,其分子中的苯醌结构能可逆地氧化还原,是呼吸链中重要的递氢体。

P/O 磷氧比,氧化磷酸化的活力指标,指每吸收一个氧原子所能酯化的无机磷的数目,即有几个无机磷与ADP形成了ATP。呼吸链中两个质子和两个电子从NADH+H+开始传至氧生成水,一般可形成3分子的ATP,其P/O比为3。

RQ 呼吸商(respiratory quotient),植物组织在一定时间内,放出二氧化碳的量与吸收氧气的量的比值,呼吸商又称呼吸系数(respiratory coefficient)。由于呼吸商与呼吸底物性质以及代谢类型有关,因些可根据呼吸商的大小来推测呼吸所用的底物及其呼吸类型。

DNP 2,4-二硝基酚(dinitrophenol),磷酸化的解偶联剂,脂溶性,它可以携带H+穿透线粒体或叶绿体的内膜,

植物生理学重点

1 含水量 束缚水、自由水及其表现 吸水三种方式:渗透吸水、吸胀吸水、代谢性吸水 水势及其单位,水势组成 渗透作用 渗透势 压力势 衬质势 质壁分离及复原;质壁分离现象实验意义(利用质壁分离现象完成检测) ψw =ψs+ψp+ψm+ψg 植物细胞水势变化、体积变化、吸水失水变化 水通道蛋白(水孔蛋白) 水势的测定 2主动吸水和被动吸水;根压和蒸腾拉力 吐水和伤流 共质体和质外体 根压的产生 蒸腾拉力的产生 影响吸水的土壤因素(水、温、通气、浓度)

永久萎蔫系数 蒸腾作用 蒸腾强度;蒸腾效率;蒸腾系数 小孔律 影响气孔运动的因素(光、温、CO2、水、风) 3.气孔运动的机理(三个学说) 影响蒸腾作用的因素(光、湿度、温度、风) 内聚力张力学说 概念:水分平衡,SPAC,水分临界期 4.概念:矿质元素;必需元素;大量元素;微量元素;缺素症 必需元素三条标准 判定必需元素的方法 N P K Ca Fe B Zn的生理作用及缺素症,N肥过多;其它元素最典型症状 元素的重复利用 概念:被动吸收;主动吸收;简单扩散;协助扩散 5.概念:通道;载体;主动吸收;离子吸收饱和效应;离子吸收竞争现象;初级主动运输;次级主动运输 主动吸收存在的证据

吸水和吸盐的关系 概念:生理酸性盐;生理碱性盐;生理中性盐;单盐毒害;离子拮抗;平衡溶液 自由空间;表观自由空间 根系吸收矿质的过程 概念:根外营养 影响根系吸收矿质的因素(温,通气,溶液浓度,酸度,微生物) 矿质的运输:根系吸收木质部;叶面吸收韧皮部 概念:生长中心;最大生产效率期 Cu 抗坏血酸氧化酶,多酚氧化酶; Mo 硝酸还原酶; Zn 碳酸酐酶,核糖核酸酶; Fe 过氧化物酶,过氧化氢酶。 6. 碳素同化作用 叶绿体结构 叶绿体色素及其比例 叶绿体色素性质 叶绿素荧光现象和磷光现象 影响叶绿素形成的因素

植物生理学笔记整理

《现代植物生理学》 绪论 1、植物生理学:是研究植物生命活动规律及其与环境相互关系、揭示植物生命现象本质的科学。 植物生理学的研究对象是高等植物。高等植物的生命活动主要分为生长发育与形态建成、物质与能量代谢、信息传递和信号转导3个方面。 2、萨克斯于1882年撰写出《植物生理学讲义》并开设课程,他的弟子费弗尔1904年出版三卷本《植物生理学》著作。这两部著作的问世,标志着植物生理学从植物学中脱胎而出,独立成为一门新兴的科学体系。 细胞生理 3、水势(Ψw ):同温同压下,每偏摩尔体积纯水与水的化学势差。(细胞水势由三部分组成:溶质势(ψs),衬质势(ψm)和压力势(ψp),即Ψw=ψs+ψm+ψp) 4、溶质势(ψs ):由于溶质的存在而使水势降低的值称为溶质势。 压力势(ψp):细胞壁对原生质体产生压力引起的水势变化值。 衬质势(ψm):由于亲水物质对水的吸引而降低的水势。 5、蒸腾作用的生理意义:a.水分吸收和运输的主要动力; b.是矿质元素和有机物运输的动力; c.降低叶温。 d.有利于气体交换 6、现已确定有17种元素是植物的必需元素:碳(C)、氢(H)、氧(O)、氮(N)、磷(P)、硫(S)钾(K)、钙(Ca)、镁(Mg)、铁(Fe)、锰(Mn)、锌(Zn)、铜(Cu)、硼(B)、钼(Mo)、镍(Ni)、氯(Cl)。 根据植物对必需元素需要量的大小,通常把植物必需元素划分为两大类,即大量元素和微量 8、缺素症

9、单盐毒害:将植物培养在单一盐溶液中(即溶液中只含有一种金属离子),不久植物就会呈现不正常状态,最终死亡,这种现象称为单盐毒害。 离子对抗:在单盐溶液中若加入少量含有其他金属离子的盐类,单盐毒害现象就会减弱或消除,离子间的这种作用称为离子对抗。 (单盐毒害和离子对抗的内容也要看下及书上面的什么是“生理酸性盐”、“生理碱性盐”、“生理中性盐”也要看P81) 11、植物的光合作用过程 光合作用:是绿色植物大规模地利用太阳能把CO?和H2O合成富能的有机物,并释放出O2的过程。 12、C4植物比C3植物光合作用强的原因 ⑴结构原因:C3:维管束鞘细胞发育不好,无花环型,叶绿体无或少; 光合在叶肉细胞中进行,淀粉积累影响光合。 C4:维管束鞘细胞发育良好,有花环型,叶绿体较大; 光合在维管束鞘细胞中进行。有利于光合产物的就近运输,防止淀粉积累影响光合。 ⑵生理原因:①PEPC对CO2的Km(米氏常数)远小于Rubisico,所以C4对CO2的亲合力大,低CO2浓度(干旱)下,光合速率更高。 ②C4植物将CO2泵入维管束鞘细胞,改变了CO2/O2比率,改变了Rubisico的作用方向,降低了光呼吸。 13.光补偿点:当达到某一光强度时,叶片的光合速率与呼吸速率相等,净光合速率为零,这时的光强度称为光补偿点。 光饱和点:光合速率开始达到最大值时的光强度称为光饱和点。——P132 CO?补偿点:当光合速率与呼吸速率相等时,外界环境中的CO?浓度即为CO?补偿点(图中C 点)。

植物生理复习资料简介(doc 10页)

植物生理复习资料简介(doc 10页)

植物生理复习资料,只供参考。 一、水分代谢 1.根压——是指由于根系自身的生理代谢活动所引起的吸水并压水向上的力量。 2. 暂时萎蔫——靠降低蒸腾即能消除水分亏缺以恢复原状的萎蔫。 3.水分临界期——指植物在生命周期中,对缺水最敏感、最易受害的时期,一般而言,植物的水分临界期多处于花粉母细胞四分体形成期 4. 永久萎蔫——如果由于土壤已无可资植物利用的水,虽降低蒸腾仍不能消除水分亏缺以恢复原状的萎蔫。 5.蒸腾作用——指植物体内水分以气态方式通过植物体表面散失到大气中去的过程。 6. 冬季越冬作物组织内自由水/束缚水比值(B)。A升高/ B降低/C变化不大 7. 土壤通气不良使根系吸水量减少的原因是(A)。A缺乏氧气/B水分不足/ C. C02浓度过高 8. 根部吸水主要在根尖进行,吸水能力最大是(C)。A分生区/B伸长区/C根毛区 9. 植物蒸腾作用的生理意义及其方式。 (1)生理意义:是植物对水分吸收和运输的主要动力;有助于植物对矿物质和有机物的吸收;能降低叶片的温度;(2)叶片蒸腾方式:角质蒸腾;气孔蒸腾。 10. 影响植物蒸腾失水速度差异的原因。 立于群体之外的单个树木的蒸腾失水更快,其原因是:茂密森林中的树木所处的环境与单个树木相比,由于树木的相互遮蔽,林中的温度低、湿度大、光照弱、空气流动性小,这些都是影响蒸腾作用的直接因素,因而使茂密森林中树木的蒸腾作用明显低于群体之外的单个数。 11.植物细胞吸水主要有(扩散)、(集流)和(渗透作用)三种方式。 12.植物根系吸水的途径有3种,分别是(质外体途径)、(共质体途径)和(跨膜途径),后两种途径统称为细胞途径。 13.目前认为水分沿导管或管胞上升的动力是(根压)和(蒸腾拉力) 14. 种子吸涨吸水和蒸腾作用都是需要呼吸作用直接供能的生理过程。(×) 15.水孔蛋白—— 16.蒸腾强度—— 二、矿质营养 1.溶液培养法——亦称水培法,指在含有全部或部分营养元素的溶液中培养植物的方法。 2. 下列影响植物根毛区主动吸收无机离子的最重要因素是(B)。 A土壤溶液pH值/B土壤中氧浓度C土壤中盐含量

植物生理学重点归纳

植物生理学重点归纳-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

第一章 1.代谢是维持各种生命活动(如生长、繁殖、运动等)过程中化学变化(包括物质合成、转化和分 解)的总称。 2.水分生理包括:水分的吸收、水分在植物体内的运输和水分的排出。 3.水分存在的两种状态:束缚水和自由水。束缚水含量与植物抗性大小有密切关系。 4.水分在生命活动中的作用:1,是细胞质的主要成分2,是代谢作用过程的反映物质3是植物对物 质吸收和运输的溶剂4,能保持植物的固有姿态 5.植物细胞吸水主要有三种方式:扩散,集流和渗透作用。 6.扩散是一种自发过程,指分子的随机热运动所造成的物质从浓度高的区域向浓度低的区域移动,扩 散是物质顺着浓度梯度进行的。适合于短距离迁徙。 7.集流是指液体中成群的原子或分子在压力梯度下共同移动。 8.水孔蛋白包括:质膜内在蛋白和液泡膜内在蛋白。是一类具有选择性、高效转运水分的跨膜通道蛋 白,只允许水通过,不允许离子和代谢物通过。其活性受磷酸化和水孔蛋白合成速度调节。 9.系统中物质的总能量分为;束缚能和自由能。 10.1mol物质的自由能就是该物质的化学势。水势就是每偏摩尔体积水的化学势。纯水的自由能最 大,水势也最高,纯水水势定为零。 11.质壁分离和质壁分离复原现象可证明植物细胞是一个渗透系统。 12.压力势是指原生质体吸水膨胀,对细胞壁产生一种作用力相互作用的结果,与引起富有弹性的细胞 壁产生一种限制原生质体膨胀的反作用力。 13.重力势是水分因重力下移与相反力量相等时的力量。 14.根吸水的途径有三条:质外体途径、跨膜途径和共质体途径。 15.根压;水势梯度引起水分进入中柱后产生的压力。 16.伤流:从受伤或折断的植物组织溢出液体的现象。流出的汁液是伤流液。 17.吐水:从未受伤叶片尖端或边缘向外溢出液滴的现象。由根压引起。 18.根系吸水的两种动力;根压和蒸腾拉力。 19.影响根系吸水的土壤条件:土壤中可用水分,通气状况,温度,溶液浓度。 20.蒸腾作用:水分以气体状态,通过植物体的表面(主要是叶子),从体内散失到体外的现象。 21.蒸腾作用的生理意义:1,是植物对水分吸收和运输的主要动力2,是植物吸收矿质盐类和在体内 运转的动力3,能降低叶片的温度 22.叶片蒸腾作用分为两种方式:角质蒸腾和气孔蒸腾。 23.气孔运动有三种方式:淀粉-糖互变,钾离子吸收和苹果酸生成。 24.影响气孔运动的因素;光照,温度,二氧化碳,脱落酸。 25.影响蒸腾作用的外在条件:光照,空气相对湿度,温度和风。内部因素:气孔和气孔下腔,叶片内 部面积大小。 26.蒸腾速率取决于水蒸气向外的扩散力和扩散途径的阻力。 27.水分在茎叶细胞内的运输有两条途径:经过活细胞和经过死细胞。 28.根压能使水分沿导管上升,高大乔木水分上升的主要动力为蒸腾拉力。 29.这种以水分具有较大的内聚力足以抵抗张力,保证由叶至根水柱不断来解释水分上升原因的学说, 称为内聚力学说亦称蒸腾-内聚力-张力学说。 第三章 1. 为什么说碳素是植物的生命基础? 第一,植物体的干物质中90%以上是有机物质,而有机化合物都含有碳素(约占有机化合物重量的45%),碳素成为植物体内含量较多的一种元素;第二,碳原子是组成所有有机物的主要骨架。碳原子与其他元素有各种不同形式的结合,由此决定了这些化合物的多样性。 2. 按照碳素营养方式的不同分为自养植物和异养植物 3. 自养植物吸收二氧化碳,将其转变成有机物质的过程称为植物的碳素同化作用。植物碳素同化作用包括细菌光合作用、绿色植物光合作用和化能合成作用。

最新植物生理学期末复习资料

植物生理学 一、名词解释 1、水势:每偏摩尔体积水的化学势差。 2、自由水:距离胶粒较远而可以自由流动的水分。 3、束缚水:靠近胶粒而被胶粒吸附束缚不易自由流动的水分。 4、蒸腾作用:是指水分以气体状态通过植物体的表面从体内散失到大气的过程。 5、蒸腾速率:植物在一定时间内单位叶面积蒸腾的水量。 6、小孔扩散规律:当水分子从大面积上蒸发时,其蒸发速率与蒸发面积成正比。但通过气孔表面扩 散的速率,不与小孔的面积成正比,而与小孔的周长成正比。 7、必需元素:维持正常生命活动不可缺少的元素. 8、单盐毒害:任何植物,假若培养在某一单盐溶液中,不久即呈现不正常状态,最后死亡。 9、平衡溶液:植物只有在含有适当比例的多种盐的溶液中才能正常生长发育,这种溶液叫平衡溶 液。 10、生理酸性盐:植物对各种矿质元素的吸收表现出明显的选择性。若供给( NH4 ) 2SO4,植物对其阳离子的吸收大于阴离子,在吸收NH4的同时,根细胞会向外释放氢离子,使PH 下降。 11、生理碱性盐:供给NANO3时,植物吸收,NO3-而环境中会积累,NA+,同时也会积累OH- 或HCO3-,从而使介质PH升高。 12、光合作用:绿色植物吸收太阳光能,同化CO2和H2O,合成有机化合物质,并释放O2的过程。 13、光合磷酸化:叶绿体利用光能将无机磷酸和ADP合成ATP的过程。 14、光补偿点:随着光强的增加光合速率相应提高,当达到某一光强时,叶片的光合速率等 于呼吸速率,即CO2吸收量等于CO2释放量,表现光合速率为0。 15、co2补偿点:随着CO2的浓度增加,当光合作用吸收的CO2与呼吸释放的CO2相等时环境中的CO2浓度。 16、光能利用率:指单位土地面积上,农作物通过光合作用所产生的有机物中所含的能量 ,与这块土地所接受的太阳能的比 17、集流运输速率:是指单位截面积筛分子在单位时间内运输物质的量,常用g/(m2.h)或g/(mm2.s)表示。 18、代谢源与代谢库:是产生和提供同化物的器官或组织;是消耗或积累同化物的器官和组织。 19、呼吸作用:是指一切生活在细胞内的有机物,在一系列酶的参与下,逐步氧化分解为简 单物质,并释放能量的过程。 20:、有氧呼吸:是指生活细胞在氧气的参与下,把某些有机物质彻底氧化分解,放出二氧化碳并形成水,同时释放能量的过程。 21、呼吸速率:每消耗1G葡萄糖可合成的生物大分子的克数。 22、呼吸商:植物组织在一定时间内,放出CO2的量与吸收O2的量的比率。 23、EMP途径:细胞质基质中的已糖经过一系列酶促反应步骤分解成丙酮酸的过程。 24、抗氰呼吸:在氰化物质存在下,某些植物呼吸不受抑制,所以把这种呼吸称为。 25、氧化磷酸化:在生物氧化中,电子经过线粒体电子传递链传递到氧,伴随ATP合酶催化,使ADP和磷酸合成ATP的过程。 26、呼吸跃变:当果实成熟到一定程度时,呼吸速率首先是降低,然后突然升高,然后又降低的现象。

植物生理学复习资料全

植物生理学复习资料 1、名词解释 杜衡:细胞可扩散正负离子浓度乘积等于细胞外可扩散正负离子浓度乘积时的平衡,叫做杜衡。 水势:每偏摩尔体积水的化学势与纯水的化学势的差值。 渗透作用:水分从水势高的系统通过半透膜流向水势低的系统的现象。 蒸腾作用:植物通过其表面(主要是叶片)使水分以气体状态从体散失到体外的现象。 光合作用: 绿色植物利用太阳的光能,将CO2和H2O转化成有机物质,并释放O2的过程 呼吸作用:是植物体一切活细胞经过某些代途径使有机物质氧化分解,并释放能量的过程。有氧呼吸:活细胞利用分子氧(O2 )把某些有机物质彻底氧化分解,生成CO2与H2O,同时释放能量的过程。 无氧呼吸:在无氧(或缺氧)条件下活细胞把有机物质分解为不彻底的氧化产物,同时释放出部分能量的过程。 蒸腾速率:也叫蒸腾强度,是指植物在单位时间、单位叶面积上通过蒸腾而散失的水量。矿质营养:植物对矿质元素的吸收、运转与同化的过程,叫做矿质营养 光合速率:指单位时间、单位叶面积吸收co2的量或放出o2的量,或者积累干物质的量 呼吸速率:呼吸速率又称呼吸强度,是指单位时间单位鲜重(FW)或干重(DW)植物组织吸收O2或放出CO2的数量(ml或mg)。 诱导酶:植物本来不含某种酶,但在特定外来物质(如底物)的影响下,可以生成这种酶。植物激素:是指在植物体合成,并经常从产生部位输送到其它部位,对生长发育产生显著作用的微量有机物。 种子休眠:一个具有生活力的种子,在适宜萌发的外界条件下,由于种子的部原因而不萌向性运动: 春化作用:低温诱导花原基形成的现象(低温促进植物开花的作用) 二、植物在水分中的状态? 在植物体,水分通常以束缚水和自由水两种状态存在。 三、水分在植物生命活动中的作用 1.水是细胞原生质的重要组分 2.水是代过程的反应物质 3.水是植物吸收和运输物质的溶剂 4.水使植物保持挺立姿态 5.水的某些理化性质有利于植物的生命活动 四、水势(ψw):每偏摩尔体积水的化学势与纯水的化学势的差值。 纯水的水势规定为0。水势最大 细胞水势(ψw)、衬质势(ψm )、渗透势(ψπ或ψs )、压力势(ψp)之间的关系为: ψw = ψm + ψπ + ψp 水势单位:Pa(帕)或MPa(兆帕)。 1 MPa =106Pa 五、植物细胞吸水方式③代性吸水②渗透性吸水①吸胀性吸水

植物生理学重点集锦

1、植物生理学的定义和内容 定义:研究植物生命活动规律的科学. 内容:植物的生命活动大致可分为生长发育与形态建成、物质与能量转化、信息传递和信号转导等几个方面。 2、信息传递:植物“感知”环境信息的部位与发生反应的部位可能不完全相同,从信息感受部位将信息传递到发生反应部位的过程。 信号转导:单个细胞水平上,信号与受体结合后,通过信号转导系统产生生理反应 3、植物生理学发展的第一阶段是从探讨植物营养问题开始的。第一个用柳条来探索植物养分来源的是荷兰人凡.海尔蒙。植物生理学发展的第二阶段是以李比希的《化学在农业和生理学上的应用》一书于1840年问世为起始标志。Sachs《植物生理学讲义》(1882年)的问世,Pfeffer巨著《植物生理学》的出版。这两部著作标志着植物生理学成为一门独立的学科。李继侗,罗宗洛,汤佩松. 4、什么是水分代谢 植物对水分的吸收、运输、利用和散失的过程。 植物体内的水分存在状态 靠近胶粒并被紧密吸附而不易流动的水分,叫做束缚水;距胶粒较远,能自由移动的水分叫自由水。 1.水的生理作用(简答) 1)水是细胞的主要组成成分 2)水是植物代谢过程中的重要原料 3)水是各种生化反应和物质吸收、运输和介质 4)水能使植物保持固有的姿态 5)水分能保持植物体正常的体温 水的生态作用 1)水对可见光的通透性 2)水对植物生存环境的调节 渗透作用—水分通过选择透性膜从高水势向低水势移动的现象。 根系吸水的途径有3条. (1)、质外体途径 (2)、跨膜途径 (3)、共质体途径 根压产生的原因:由于根部细胞生理活动的作用,皮层细胞中的离子会不断通过内皮层细胞进入中柱,中柱内细胞的离子浓度升高,水势降低,便向皮层吸收水分。这种由于水势梯度引起水分进入中柱后产生的压力叫根压。 气孔运动的机制 ?淀粉-糖互变、钾离子的吸收和苹果酸生成学说. ?淀粉-糖转化学说: ?认为保卫细胞在光照下进行光下进行光合作用,消耗CO2,细胞质内的PH增高,促 使淀粉磷酸化酶水解淀粉为可溶性糖,保卫细胞水势下降,表皮细胞或副卫细胞的

植物生理学光合作用自我整理笔记

荧光现象叶绿素溶液在透射光下呈绿色,而在反射光下呈红色的现象 光合作用单位:在饱和光照之后,同化一分子CO2或释放一分子O2所需要的叶绿素分子数目。(这个概念是在1932年Emerson提出来的 光合作用单位 = 聚光色素系统 + 作用中心 Emerson双光增益效应:用红光(<680nm)和远红光(>680nm)同时照射时,光合速率高于2种光单独照射时光合速率之和。 光合链是类囊体膜上由两个光系统(PSⅠ和PSⅡ)和若干电子传递体,按一定的氧化还原电位依次排列而成的体系。 光下叶绿体在光合电子传递的同时,使ADP和Pi形成ATP的过程称为光合磷酸化。 以形成的ATP和NADPH作为能量,将CO2同化为碳水化合物的过程。 光呼吸是指高等植物的绿色细胞只有在光下吸收O2放出CO2的过程。 光合速率 (μmolCO2 ( O2 ) /m2·s):每小时每平方分米叶面积吸收CO2的毫克数。 光补偿点:CO2吸收量等于CO2释放量时的光照强度。 光饱和点:光合速率随光照强度的增加而递增,当光合速率达到恒定、不再增加时的光强。CO2补偿点:净光合率等于0时的环境CO2浓度 CO2饱和点:再增加CO2浓度,光合速率不再增加,这时的环境CO2浓度 午休现象光合作用在中午降低的现象 光合色素: 叶绿素:Chl a, b, c, d (a:b;叶:类—3:1) 四个吡咯环,中间Mg Chl b: 环II上甲基被醛基代 类胡萝卜素(Carotenoids): 胡萝卜素 & 叶黄素(1:2) 藻胆素( Phycocobilins) 藻类光合色素 光合色素光学特性 Chl*释放能量的方式: ★处于第二单线态的Chl*以热的形式释放部分能量; ★处于第一单线态的Chl*以3种形式释放能量。 释放能量回到基态;发出荧光回到基态以诱导共振的方式将能量传递给另一个chl分子光合作用 光能的吸收、传递和转换为电能: 原初反应,产生电子; 电能转变为活跃的化学能(ATP & NADPH): e传递和光合磷酸化,产生ATP和NADPH 活跃的化学能转变为稳定的化学能: CO2的同化,形成碳水化合物。 原初过程分为四个连续过程: 1、光能的吸收和色素分子激发能的形成 2、天线色素分子之间电子激发能的传递 3、作用中心对电子激发能的捕获 4、电荷分离。即电子由供体传递给受体。这就是最初的光化学反应。 光合电子传递 在“Z”链的起点,H2O是最终的电子供体;在“Z”链的终点,NADP+是电子的最终受体。电子传递链的5大组成部分: 1、 PS II:接受光能、传递电子、氧化H2O;

植物生理学复习(2016年)课件

2016-2017第一学期《植物生理学》复习资料 一、名词解释 第1章植物的水分代谢 1.自由水:距离胶粒较远而可以自由流动的水分。 2.根压:靠根部水势梯度使水沿导管上升的动力。 3.渗透势:由于溶质颗粒的存在,降低了水的自由能,因而其水势低于纯水的水势。 4.渗透作用:水分从水势高的系统通过半透膜向水势低的系统移动的现象。 5.水分临界期:是指植物在生命周期中,植物对水分不足特别敏感的时期。 6.水势:每偏摩尔体积水的化学势差。 7.蒸腾速率:植物在一定时间内单位叶面积蒸腾的水量。 8.蒸腾效率:植物在一定生长期内积累的干物质与蒸腾失水量的比值,用克(干物质)/公斤 (水)表示,也可以说是植物每消耗1公斤水所形成干物质的克数。 9.蒸腾比率:植物蒸腾作用丧失水分与光合作用同化CO2的物质的量(mol)比值。 10.蒸腾作用Transpiration:指水分以气体状态,通过植物体的表面(主要是叶片),从体内散 失到体外的现象。 11.质壁分离:植物细胞由于液泡失水而使原生质体与细胞壁分离的现象 第2章植物的矿质营养 1.溶液培养法:是在含有全部或部分营养元素的溶液中栽培植物的方法。 2.必需元素:①完成植物整个生长周期不可缺少的;②在植物体内的功能是不能被其他元素 代替的,植物缺乏该元素时会表现专一的症状,并且只有补充这种元素症状才会消失;③这种元素对植物体内所起的作用是直接的,而不是通过改变土壤理化性质、微生物生长条件等原因所产生的间接作用。 3.单盐毒害:溶液中只有一种金属离子时,对植物起有害作用的现象。 4.载体运输学说 5.生物固氮:某些微生物把空气中的游离氮固定转化为含氮化合物的过程。 6.诱导酶(适应酶):指植物本来不含某种酶,但在特定外来物质的诱导下,可以生成这种酶。 这种现象就是酶的诱导形成(或适应形成),所形成的酶便叫做诱导酶。 第3章植物的光合作用 7.CO2饱和点: 8.CO2补偿点:。 9.光饱和点:。 10.光补偿点: 11.光合磷酸化Photophosphorylation: 12.光合作用Photosynthesis: 13.光呼吸Photorespiration: 14.光能利用率

植物生理学重点归纳

第一章 1.代谢是维持各种生命活动(如生长、繁殖、运动等)过程中化学变化(包括物质合成、转化和分解)的总称。 2.水分生理包括:水分的吸收、水分在植物体内的运输和水分的排出。 3.水分存在的两种状态:束缚水和自由水。束缚水含量与植物抗性大小有密切关系。 4.水分在生命活动中的作用:1,是细胞质的主要成分2,是代谢作用过程的反映物质3是植物对物质吸收和运输的 溶剂4,能保持植物的固有姿态 5.植物细胞吸水主要有三种方式:扩散,集流和渗透作用。 6.扩散是一种自发过程,指分子的随机热运动所造成的物质从浓度高的区域向浓度低的区域移动,扩散是物质顺着 浓度梯度进行的。适合于短距离迁徙。 7.集流是指液体中成群的原子或分子在压力梯度下共同移动。 8.水孔蛋白包括:质膜内在蛋白和液泡膜内在蛋白。是一类具有选择性、高效转运水分的跨膜通道蛋白,只允许水 通过,不允许离子和代谢物通过。其活性受磷酸化和水孔蛋白合成速度调节。 9.系统中物质的总能量分为;束缚能和自由能。 10.1mol物质的自由能就是该物质的化学势。水势就是每偏摩尔体积水的化学势。纯水的自由能最大,水势也最高, 纯水水势定为零。 11.质壁分离和质壁分离复原现象可证明植物细胞是一个渗透系统。 12.压力势是指原生质体吸水膨胀,对细胞壁产生一种作用力相互作用的结果,与引起富有弹性的细胞壁产生一种限 制原生质体膨胀的反作用力。 13.重力势是水分因重力下移与相反力量相等时的力量。 14.根吸水的途径有三条:质外体途径、跨膜途径和共质体途径。 15.根压;水势梯度引起水分进入中柱后产生的压力。 16.伤流:从受伤或折断的植物组织溢出液体的现象。流出的汁液是伤流液。 17.吐水:从未受伤叶片尖端或边缘向外溢出液滴的现象。由根压引起。 18.根系吸水的两种动力;根压和蒸腾拉力。 19.影响根系吸水的土壤条件:土壤中可用水分,通气状况,温度,溶液浓度。 20.蒸腾作用:水分以气体状态,通过植物体的表面(主要是叶子),从体内散失到体外的现象。 21.蒸腾作用的生理意义:1,是植物对水分吸收和运输的主要动力2,是植物吸收矿质盐类和在体内运转的动力3, 能降低叶片的温度 22.叶片蒸腾作用分为两种方式:角质蒸腾和气孔蒸腾。 23.气孔运动有三种方式:淀粉-糖互变,钾离子吸收和苹果酸生成。 24.影响气孔运动的因素;光照,温度,二氧化碳,脱落酸。 25.影响蒸腾作用的外在条件:光照,空气相对湿度,温度和风。内部因素:气孔和气孔下腔,叶片内部面积大小。 26.蒸腾速率取决于水蒸气向外的扩散力和扩散途径的阻力。 27.水分在茎叶细胞内的运输有两条途径:经过活细胞和经过死细胞。 28.根压能使水分沿导管上升,高大乔木水分上升的主要动力为蒸腾拉力。 29.这种以水分具有较大的内聚力足以抵抗张力,保证由叶至根水柱不断来解释水分上升原因的学说,称为内聚力学 说亦称蒸腾-内聚力-张力学说。 第三章 1. 为什么说碳素是植物的生命基础? 第一,植物体的干物质中90%以上是有机物质,而有机化合物都含有碳素(约占有机化合物重量的45%),碳素成为植物体内含量较多的一种元素;第二,碳原子是组成所有有机物的主要骨架。碳原子与其他元素有各种不同形式的结合,由此决定了这些化合物的多样性。 2. 按照碳素营养方式的不同分为自养植物和异养植物 3. 自养植物吸收二氧化碳,将其转变成有机物质的过程称为植物的碳素同化作用。植物碳素同化作用包括细菌光合作用、绿色植物光合作用和化能合成作用。 4. 光合作用:绿色植物吸收阳光的能量,同化二氧化碳和水,制造有机物质并释放氧气的过程。

植物生理学笔记

绪论 1、植物生理学:是研究植物生命活动规律及其与外界环境相互关系的一门科学。植物的生 命活动是十分复杂的,它的内容大致可分为生长发育与形态建成、物质与能量转化、信息传递和信号转导等3个方面。 2、生长:是指增加细胞数目和扩大细胞体积而导致植物体和质量的增加。 3、发育:是指细胞不断分化,形成新组织、新器官,即形态建成,具体表现为种子萌发, 根、茎、叶生长,开花,结实,衰老死亡等过程。 4、代谢:是维持各种生命活动(如生长、繁殖和运动等)过程中化学变化(包括物质合成、 转化和分解)的总称。 5、植物生理学发展趋势:横向:整体→器官→细胞→分子水平;纵向:个体→群体→生态 →生物圈。 6、植物生理学研究内容:细胞生理、代谢生理、生长发育生理、逆境生理、植物生理的分 子基础和生产应用。 7、植物生理学的任务:以高等绿色植物为主要研究对象,以揭示自养生物的生命现象本质 及其与外界条件相互关系,并为生产实际服务作为主要任务。 8、植物生理学的发展大致可分为:孕育时期、奠基与成长时期【J.von Sachs《植物生理 学讲义》以及W.Pfeffer的《植物生理学》标志着植物生理学作为一门学科的诞生。】、发展时期等3个时期。 9、近年来,植物生理学发展的4大特点:①研究层次越来越广;②学科之间相互渗透;③ 理论联系实际;④研究手段现代化。 10、我国植物生理学家咋国民经济中的任务是:①深入基础理论研究;②大力开展应用基础 研究和应用研究。 第一章水分和矿质营养 1、植物的含水量:①水生植物>草本植物>木本植物>干旱环境中的植物;②根尖、嫩梢、幼 苗和绿叶>树干>休眠芽>风干种子(同一植株)。 2、植物体内水的存在状态:束缚水和自由水。①束缚水:是指凡被原生质组分吸附、束缚 不能自由移动的水分;②自由水:是指不被原生质组分吸附、束缚能自由移动的水分; ③自由水/束缚水是衡量植物代谢强弱和抗性的生理指标之一。 3、水在植物生命活动中的作用:①水是原生质的主要成分;②水直接参与植物体内重要的 代谢过程;③水是植物吸收、运输的良好介质;④水保持植物的固有形态;⑤细胞的分裂和生长需要足够的水;⑥水有特殊的理化性质(高比热:稳定植物体温;高汽化热:降低体温,避免高温危害;介电常数高:有利于离子的溶解)。 4、植物有3种吸水方式:渗透性吸水、吸胀吸水【蛋白质>淀粉>纤维素,干燥种子、未 形成液泡的根尖、茎间分生的细胞】和代谢性吸水。 5、水势①水势:是指每偏摩尔体积水的化学势差。②水的偏摩尔体积:是指在一定温度 和压力下,1mol水中加入1mol某溶液后,该1mol水所占的有效体积。③水势=水的化学势/水的偏摩尔体积=N.m.mol/m.mol=N/m=Pa。1bar=0.1MPa=0.987atm。④纯水的水 势为0,任何溶液的水势都小于0,水一定是从高势能流向低势能。 6、渗透作用:水分从水势高的系统通过半透膜向水势低的系统移动的现象,称为渗透作用。 7、质壁分离能够解决一下问题:①说明原生质层是半透膜;②判断细胞的死活;③测定细 胞的渗透势。 8、典型细胞水势:Ψw=Ψs+Ψp+Ψg+Ψm。式中:Ψw为细胞水势,Ψs为溶质势,Ψp为

(完整版)植物生理学笔记复习重点剖析

绪论 1、植物生理学:研究植物生命活动规律及其机理的科学。 2、植物生命活动:植物体物质转化、能量转换、形态建成及信息传递的综合反应。 3、植物生理学的基本内容:细胞生理、代谢生理、生长发育生理和逆境生理。 4、历程:近代植物生理学始于荷兰van Helmont(1627)的柳条试验,他首次证明了水直接参与植物有机体的形成; 德国von Liebig(1840)提出的植物矿质营养学说,奠定了施肥的理论基础; 植物生理学诞生标志是德国von Sachs和Pfeffer所著的两部植物生理学专著; 我国启业人是钱崇澍,奠基人是李继侗、罗宗洛、汤佩松。 第二章植物的水分关系 1、束缚水:存在于原生质胶体颗粒周围或存在于大分子结构空间中被牢固吸附的水分。 2、自由水:存在于细胞间隙、原生质胶粒间、液泡中、导管和管胞内以及植物体其他间隙的水分。 3、束缚水含量增高,有利于提高植物的抗逆性;自由水含量增加,植物的代谢加强而抗逆性降低。 4、水分在植物体内的生理作用:①水分是原生质的主要成分;②水是植物代谢过程中重要的反应物质;③水是植物体内各种物质代谢的介质;④水分能够保持植物的固有姿态;⑤水分能有效降低植物的体温;⑥水是植物原生质良好的稳定剂;⑦水与植物的生长和运动有关。 5、植物细胞的吸水方式:渗透性吸水和吸胀吸水。 6、渗透作用:溶剂分子通过半透膜扩散的现象。 7、水的偏摩尔体积:指加入1mol水使体系的体积发生的变化。 8、水势:溶液中每偏摩尔体积水的化学势差。 9、水通道蛋白调节水分以集流的方式快速进入细胞的细微孔道。 10、溶质势:由于溶质颗粒与水分子作用而引起细胞水势降低的数值。Ψs = -icRT。 11、衬质势:细胞中的亲水物质对水分子的束缚而引起水势下降的数值,为负值。Ψm 12、压力势:由于细胞吸水膨胀时原生质向外对细胞壁产生膨压,细胞壁产生的反作用力——壁压使细胞水势增加的数值。Ψp 13、Ψw = Ψs + Ψm + Ψp + Ψg + …。 14、吸胀吸水:植物细胞壁中的纤维素以及原生质中的蛋白质、淀粉等大分子亲水性物质与极性的水分子以氢键结合而引起细胞吸水膨胀的现象。蛋白质>淀粉>纤维素 15、植物根系由表皮、皮层、内皮层和中柱组成,吸水途径有共质体途径和质外体途径。 16、主动吸水:仅由植物根系本身的生理活动而引起的吸水。分为伤流和吐水。 17、根压:由于植物根系生理活动而促使液流从根部上升的压力。 18、被动吸水(主要方式):通过蒸腾拉力进行的吸水。枝叶的蒸腾作用使水分沿导管上升的力量称为蒸腾拉力。 19、植物蒸腾作用是产生蒸腾拉力并促进根系吸水的根本原因 20、影响根系吸水的因素:(1)内部:导管水势、根系大小、根系对水的透性、根系对水吸收速率;(2)外部:土壤水分、土壤温度、土壤通气状况、土壤溶液浓度。

植物生理学重点

一.成花诱导 春化作用(vernalization):低温诱导促进植物开花的作用。 温度: 相对低温型:低温处理促进植物开花,如冬性一年生植物,种子吸涨后即可感受低温 绝对低温型:若不经低温处理,植物绝对不能开花,如二年生植物,营养体达到一定大小才能感受低温。 低温与条件: 各类植物通过春化时要求低温持续的时间不同,在一定时间内,春化的效应随低温处理时间的延长而增加。 (2)需要充足的氧气、适量的水分和作为呼吸底物的糖分 (3)光照 春化之前,充足的光照可促进二年生和多年生植物通过春化。 时期、部位和刺激传导 (1)时期 大多数一年生植物(冬小麦)在种子吸胀后即可接受低温诱导,在种子萌发和苗期均可进行。而需低温的二年生植物(胡萝卜、月见草等)只有绿苗达到一定大小才能通过春化。 (2)部位 感受低温的部位:茎尖端的生长点 春化过程中的生理生化变化 (1)呼吸速率—春化处理的较高 (2)核酸代谢 在春化过程中核酸(特别是RNA)含量增加,代谢加速,而且RNA性质有所变化。 (3)蛋白质代谢 可溶性Pr及游离AA含量(Pro)增加。 (4)GA含量增加 一些需春化的植物(如天仙子、白菜、胡萝卜等)未经低温处理,若施用GA也能开花。GA 以某种方式部分代替低温的作用。 春化作用的机理 前体物低温中间产物低温最终产物(完成春化) 高温 中间产物分解(解除春化) 春化作用在农业生产中的应用 A、人工春化,加速成花,提早成熟 (1)“闷麦法” —春天补种冬小麦 (2)春小麦低温处理—早熟,躲开干热风,利于后季作物的生长 (3)加速育种过程—冬性作物的育种 B、指导引种 引种时应注意原产地所处的纬度,了解品种对低温的要求。如北种南引,只进行营养生长而不开花结实。

植物生理学复习提纲(综合版)

植物生理学复习提纲(2016年夏) (13/14级水保13级保护区14级梁希材料) 第一章植物水分代谢 1、植物体内水分存在形式及其与细胞代谢的关系: 1)水分在植物体内通常以自由水和束缚水两种形式存在。自由水是距离胶体颗粒较远,可以自由移动的水分。束缚水是较牢固地被细胞胶体颗粒吸附,不易流动的水分。 2)代谢关系:自由水参与各种代谢作用。可用于蒸腾,可作溶剂,作反应介质,转运可溶物质,故它的含量制约着植物的代谢强度;自由水占总含水量的比例越大则植物代谢越旺盛。束缚水不参与代谢活动,不易丧失,不起溶剂作用,高温不易气化,低温不易结冰,但是植物要求低微的代谢强度度过不良的外界条件,因此束缚水含量越大植物的抗逆性越大。 2、植物生理学水势的概念(必考):同温度下物系中的水与纯水间每偏摩尔体积的化学势差。 3、植物细胞水势的组成(逐一解释):植物细胞水势由溶质势、压力势、衬质势和重力势构成。(溶质势是指由于溶质颗粒的存在而使水势降低的值;压力势是指由于细胞壁压力的作用增大的细胞水势值;衬质势是指由衬质所造成的水势降低值;重力势是指水分因重力下降与相反力量相等时的力量,增加细胞水势的自由能,提高水势的值。) 成熟细胞水势组成:溶质势、压力势 典型细胞水势组成:溶质势、压力势、衬质势 干燥种子水势组成:衬质势 4、细胞吸收水分的三种方式及动力: 渗透吸水(主要方式),主要动力是水势差(压力势和溶质势); 吸胀吸水,主要动力是水势差(衬质势); 代谢吸水,主要动力是呼吸供能。 5、细胞在纯水中的水势变化:外界水势> 细胞水势,细胞吸水,细胞溶质势上升,压力势上升;细胞水势与外界水势平衡时,细胞水势=外界水势=0 ,细胞水势=溶质势+压力势=0,溶质势=压力势; 细胞在高浓度蔗糖(低水势)溶液中的水势变化:外界水势<细胞水势,细胞失水,浓度上升,溶质势下降,压力势下降,原生质持续收缩,当压力势下降=0,发生质壁分离,细胞水势=溶质势+压力势,细胞水势=溶质势+0,细胞水势=细胞溶质势,外界水势=外界溶质势(开放溶液系统),外界水势=细胞水势,外界溶质势=细胞溶质势(可测定渗透势); 细胞间的水分流动方向:相邻两细胞的水分移动,取决于两细胞间的水势差异,水势高的细胞中的水分向水势低的细胞流动。 6、植物吸水的器官:根系,主要部位根尖(根冠,分生区,根毛区和伸长区) 植物吸水的途径:两种途径 非质体途径(质外体途径):没有原生质的部分,包括细胞壁、细胞间隙和木质部导管或管胞。水分自由扩散,又称自由空间。 共质体途径(细胞途径,跨膜途径):生活细胞的原生质通过胞间连丝组成整体。

植物生理学复习资料

植物生理学 名词解释: 水势:每偏摩尔体积水的化学势差。 渗透势:由于溶质颗粒的存在,降低了水的自由能,因而其水势低于纯水的水势。 根压:靠根部水势梯度使水沿导管上升的动力。 水分临界期:植物对水分不足特别敏感的时期。 渗透作用:水分从水势高的系统通过半透膜向水势低的系统移动的现象。 矿质营养:植物对矿物质的吸收、转运、和同化。 胞饮作用:细胞通过膜的内陷从外界直接摄取物质进入细胞的过程。 生物固氮:某些微生物把空气中的游离氮固定转化为含氮化合物的过程。 诱导酶:指植物本来不含某种酶,但在特定外来物质的诱导下,可以生成这种酶。 营养元素临界含量:作物获得最高产量的最低养分含量。 光合作用:绿色植物吸收阳光的能量,同化二氧化碳和水,制造有机物质并释放氧气的过程。吸收光谱:反映某种物质吸收光波的光谱。 增益效应:两种波长的光协同作用而增加光和效率的现象。 希尔反应:离体叶绿体在光下进行水解并放出氧的反应。 反应中心:是光能转变化学能的膜蛋白复合体,包含参与能量转换的特殊叶绿素a. 聚光色素:聚光复合物中的色素(没有光化学活性,只有吸收和传递光能的作用)。 Co2补偿点:当光合吸收的co2量等于呼吸放出的co2量,这个时候外界的co2含量就叫做co2补偿点。 呼吸作用:指活细胞内的有机物,再酶的参与下逐步氧化分解并释放能量的过程。 糖酵解:细胞质基质中的己糖经过一系列酶促反应步骤分解成丙酮酸的过程。 呼吸商:植物在一定的时间内,放出二氧化碳的物质的量与吸收氧气的物质的量的比率。巴斯的效应:氧可以降低糖类的分解代谢和减少糖酵解产物的积累的现象。 能荷:A TP-ADP-AMP系统中可利用的高能磷酸键的度量。 代谢源:能够制造并输出同化物的组织,器官或部位。 代谢库:指消耗或贮藏同化物的组织,器官或部位。 库强度:等于库容量和库活力的乘积。 植物生长物质:一些调节植物生长发育的物质。 生长素的极性运输:指生长素只能从植物体的形态学上端向下端运输。 三重反应:乙烯抑制伸长生长,促进横向生长,地上部分失去负向重力性生长。 植物生长调解剂:一些具有植物激素活性的人工合成的物质。 生物胁迫:指病害、虫害和杂草等对植物产生伤害的生物环境。 植物抗性生理:指逆境对植物生命活动的影响,以及植物对逆境的抵抗性能力。 耐逆性:指植物在不良环境中,通过代谢的变化来阻止、降低甚至修复由逆境造成的损伤,从而保证正常的生理活动。 避逆性:指植物通过各种方式避开或部分避开逆境的影响。 1.灌溉 答:农业上用灌溉来保证作物水分供应,作物需水量因物种种类而异:大豆和水稻的需水量较多,高粱和玉米的最少。同一作物在不同生长发育时期对水分的需要量也有很大的差别。叶片水势、细胞汁液浓度、渗透势和气孔开度都能比较灵敏地反映出作物体的水分状况,可作为灌溉生理指标。我国提出节水农业,用较少的水源得到较大的收益,提高水分利用率;有以下几种节水技术:喷灌、滴灌、调亏灌溉以及控制性分根交替灌溉。

浙江农林大学植物生理复习资料重点(植物生理学)

第一章 1.水分在植物细胞内通常呈为束缚水和自由水两种状态。他们与细胞质状态有密切关系 靠近胶粒而被胶粒吸附束缚不易自由流动的水分,称为束缚水。 距离胶粒较远而可以自由流动的水分,称为自由水。 2.植物细胞吸水主要有3种方式:扩散、集流和渗透作用渗透作用为主 扩散是物质浓度梯度向下移动、集流是物质压力梯度向下移动、渗透作用是物质水势梯度向下移动 3.水溶液的化学势(μw)与纯水的化学势(μo w)之差(△μw),除以水的偏摩尔体积(Vw)所得的商,称为水势。 4.细胞的水势公式:ψw=ψs+ψp 水势=渗透式+压力势 … 细胞间的水分移动决定与相邻两细胞间的水势差异,水势高的细胞中的水分向水势低的细胞流动 Ψs= Ψs= Ψp= + →Ψp= + Ψw= Ψw=- 5.根吸水主要在哪进行 根尖进行,根毛区的吸水能力最大,根冠,分生区和生长区最小原因:与细胞质浓厚,输导组织不发达,对水分移动阻力大等因素有关。 6.根系吸水的途径定义 质外体途径:是指水分通过细胞壁、细胞间隙等没有细胞质部分的移动,阻力小,所以这种移动方式速度快。? 跨膜途径:是指水分从一个细胞移动到另一个细胞,要两次通过质膜,还要通过液泡膜,故称跨膜途径。共质体途径:是指水分从一个细胞的细胞质经过胞间连丝,移动到另一个细胞的细胞质,形成一个细胞质的连续体,移动速度较慢。跨膜途径和共质体途径统称为细胞途径。 7.根系吸水的动力:根压和蒸腾拉力蒸腾拉力较为重要 离子吸收学说 日本学者于1967年发现,照光时,K+从周围细胞进入保卫细胞,保卫细胞中K+浓度增加,溶质势降低,吸水,气孔张开;暗中则相反,K+由保卫细胞进入表皮细胞,保卫细胞水势升高,失水,气孔关闭。 9.影响蒸腾作用的外、内条件 1)外界条件:内外蒸汽压差、光、温度、空气相对湿度、风 2)内部因素:气孔、气孔下腔、气孔频度、气孔大小,叶片内部面积 — 直接影响蒸腾速率直接影响内部阻力 第二章 1. 大量元素、微量元素 大量元素:C、H、O、 N、 P、 K、 Ca、Mg 、S、Si约占植物体干重的%~10%, 微量元素:Fe、Mn、Zn、Cu、B、Mo、Cl、Ni、Na约占植物体干重的10-5%~10-3%。 的作用 1)氮在植物生命活动中占有首要的地位,又称为生命元素。 ^ 2)构成蛋白质的主要成分:16~18%; 3)细胞质、细胞核和酶的组成成分 4)其它:核酸、辅酶、叶绿素、激素、维生素、生物碱等组成元素 5)当N肥供应充足时,植物叶大而鲜绿,叶片功能期长,分枝多,营养体壮健,花多,量高。 的作用 1)细胞中许多重要化合物的组成成分。如核酸、核蛋白和磷脂的主要成分。

完整版植物生理学复习题

第一章水分生理 一、选择题 1、每消耗1 kg 的水所生产的干物质克数,称为()。 A. 蒸腾强度 B. 蒸腾比率 C. 蒸腾系数 D. 相对蒸腾量 2、风干种子的水势为()。 A . ψW =ψs B. ψW =ψm C. ψW =ψp D. ψW=ψs+ψp 3、微风促进蒸腾,主要因为它能()。 A. 使气孔大开 B. 降低空气湿度 C. 吹散叶面水汽 D. 降低叶温 4、植物从叶尖、叶缘分泌液滴的现象称为()。 A. 吐水 B. 伤流 C. 排水 D. 流水 5、一植物细胞的ψw = - 0.37 MPa,ψp = 0.13 MPa,将其放入ψs = - 0.42 MPa的溶液(体积很大)中,平衡时该细胞的水势为()。 A. -0.5 MPa B. -0.24 MPa C. -0.42 MPa D. -0.33 MPa 6、在同一枝条上,上部叶片的水势要比下部叶片的水势()。 A. 高 B. 低 C. 差不多 D. 无一定变化规律 7、植物细胞吸水后,体积增大,这时其Ψs()。 A. 增大 B. 减小 C. 不变 D. 等于零 8、微风促进蒸腾,主要因为它能()。 A. 使气孔大开 B. 降低空气湿度 C. 吹散叶面水汽 D. 降低叶温 9、一植物细胞的ψW = - 0.3 MPa,ψp = 0.1 MPa,将该细胞放入ψs = - 0.6 MPa的溶液中,达到平衡时细胞的()。 A. ψp变大 B. ψp不变 C. ψp变小 D. ψW = -0.45 Mpa 10、植物的水分临界期是指()。 A. 植物需水最多的时期 B. 植物水分利用率最高的时期 C. 植物对水分缺乏最敏感的时期 D . 植物对水分需求由低到高的转折时期 11、在土壤水分充分的条件下,一般植物的叶片的水势为()。 A. - 0.2~ - 0.8 MPa B. - 2 ~ - 8 MPa C. - 0.02 ~ - 0.08 MPa D. 0.2~0.8 MPa 12、根据()就可以判断植物组织是活的。 A. 组织能吸水 B. 表皮能撕下来 C. 能质壁分离 D. 细胞能染色 二、是非题 1、等渗溶液就是摩尔数相等的溶液。() 2、细胞间水分流动的方向取决于它们的水势差。() 3、蒸腾拉力引起被动吸水,这种吸水与水势梯度无关。() 4、将一充分吸水饱和的细胞放入比其细胞浓度低10倍的溶液中,其体积变小。() 5、蒸腾效率高的植物,一定是蒸腾量小的植物。() 6、根系是植物吸收水和矿质元素唯一的器官。() 7、空气相对湿度增大,空气蒸汽压增大,蒸腾加强。() 8、没有半透膜即没有渗透作用。() 9、植物对水分的吸收、运输和散失过程称为蒸腾作用。()

相关文档
相关文档 最新文档