文档视界 最新最全的文档下载
当前位置:文档视界 › MAAGPV齿轮箱地设计

MAAGPV齿轮箱地设计

MAAGPV齿轮箱地设计
MAAGPV齿轮箱地设计

实用标准文案

摘要:时下模块化风机齿轮箱的可靠性是一个普遍存在的问题。为此,Maag 开发和试制了一种新型齿轮箱,在平衡刚度和柔性的基础上能更好地实现载荷的分配均匀,具有较小的应力和最佳齿轮接触模式。该设计的特点在于:把主轴载荷支撑在两个预紧的圆锥滚子轴承的齿轮箱输入端;将输入转矩的动力分配为两个行星齿轮传动级,同时减少齿轮上的单位载荷;另外,它适用于单壁行星架,且每个单壁行星架配备一排柔性的“集成式柔性销轴承”,以确保行星齿轮之间载荷均匀,且消除了双支撑行星架由于发生扭转变形而引起的不对中问题。如今,经过一年的场地试验,Maag 公司的其中一种PV齿轮箱已经在位于苏格兰奥克尼岛(Orkney Island)的全球最大风力开发项目中得到应用,并被证明非常成功。其应用结果将在本文中予以讲述。

前言:行星轮系的设计挑战

Maag 齿轮有限公司现将增速齿轮箱PV纳入风力发电机业务,其独特设计和不断改良的性能引发了工业界的广泛兴趣和持续关注。

在决定设计之前,Maag 认真地考虑了原始设备制造商和风电场运行人员提出的要求,了解了传动装置中可能发生的损坏形式。通过这些调查,还掌握到齿轮箱的特殊要求:·在某种程度上还没有充分了解其高动态载荷

·驱动系和机架内的软结构会直接影响传动装置

·风机恶劣的运行条件

从这些调查中得出的结论是:齿轮箱的可靠性问题必须通过引进新的、创造性的理念加以解决。

双支撑行星轮架的扭转变形

在当今的风电齿轮箱中,行星轮系的典型结构是采用销轴支撑双壁托架的两端,该设计方式有时被称作双支撑安装。见图1。每个行星齿轮处于一个固定的与邻近行星齿轮相关的位置,形成一个至少在径向和圆周方向具有相当刚性的排列。

精彩文档.

实用标准文案

图1:双支撑行星架设计

由此,行星齿轮之间的载荷分配取决于对制造公差和零部件间隙的控制,以此来实现所有啮合点处的间隙均匀。如图2所示,某种程度的载荷不均匀是不可避免的。

精彩文档.

实用标准文案

图2:啮合间隙的差异

众所周知,这种行星架会出现相对不同程度的相对行星轴线扭转和偏心,程度与行星架的强度和施加的转矩有关。一个普遍的做法是对行星齿轮的齿面实施前期校正,用以在与施加的转矩的同一水平上补偿这个偏心。但是对于其它的载荷情况,这个前期校正可能小于理想情况。

遵循长期建立的设计惯例能部分地优化这种设计,但不幸的是有时仍然会发现由于偏心而引起的齿轮边缘损坏,如图3所示。

精彩文档.

实用标准文案

图3:齿轮边缘的损坏

MAAG PV齿轮箱的设计特性

在认真考虑了所有这些因素以后,Maag 设计采用了行星轮分流,后面再加一级直齿轮传动。

Ⅱ级传动中的齿圈和I级传动中的行星齿轮由转子驱动。I级传动中传输的动力经过分流,一部分被传输到随转子转动的行星架。相应的Ⅱ级传动的设计是为了传输另外一部分。按照设计选择,在I级传动中达到35%的转矩部分,在Ⅱ级传动中达到65%的转矩部分。这种概念的优点在于能减少齿轮的接触负荷。

所有的关键位置都配备有预紧的圆锥滚子轴承。这样调整的轴承没有初始间隙,当存在起伏的、反向的或无载荷的条件下能很好地控制轴的运动和齿轮的位置。例如,输入轴的位置装有一个大型预紧双排圆锥滚子轴承,将主轴的弯曲载荷传递到支架和框架结构上,从而减少了行星架和齿圈之间的偏心。

需要着重指出的是,每个润滑点,不管是齿轮的接触点或者是轴承的支撑,都应带有强制油润滑系统。除了将润滑油供应到每个转动部件的中心分配系统以外,润滑系统还应该包含一台机械驱动泵,以便确保它独立于外部油泵而单独供油。

为了进一步地减少负荷,I级传动内有5只行星齿轮,Ⅱ级传动内有7只行星齿轮,这也区别于双支撑行星齿轮设计中一般习惯使用的3只或4只行星齿轮。

精彩文档.

实用标准文案

实施所有这些设计措施以后,单个齿轮接触的载荷得以减少。例如同使用 3 只行星齿轮和动力未做分配的设计相比较,其系数是 3.6。这样就能使用更小直径的行星齿轮和更小接触宽度的齿轮,继而接触宽度上的载荷分配得以改善。使用更小直径的和更窄的行星齿轮能为建立更加小巧和更轻重量的设计提供了良好机会。

使用多个带有柔性销结构的行星齿轮

为了分别在I级和II级传动中实现5只或7只行星惰轮之间的载荷平衡,应该加入一只一般称作为“柔性销”的柔性元件。应该指出,在风机齿轮箱中使用柔性销还不是一个惯常的做法,而在Maag,其在为其它工业设备设计的传动装置中,例如水泥磨碎机、轧钢机、海船驱动和涡轮发电机等已经是普遍成功的应用了。

如图4所示,柔性行星轮的设计采用了一个一双相对的悬臂梁系统(销轴从行星架壁悬伸出,而套筒从销轴的尾部悬臂伸出),它们在载荷下的偏斜抵消了它们弯曲时形成的偏心。

图4:对立的悬臂梁抵消了偏心

这个解决方案能固定太阳齿轮和齿圈的径向位置,而行星齿轮则安装在柔性销上。也就是说,每个行星齿轮能在两个中心齿轮之间的径向上实现自我调节。除了径向移动以外,沿圆周方向和平行于行星架的线性移动都是可能的,并能在单个行星齿轮之间达到更均匀的负荷分配,在整个

动力的范围内没有偏心。以上描述的由于扭转变形引起的偏心实际上已被精彩文档.

实用标准文案

消除,对于Maag而言,无须对他们的齿轮进行任何前期校正。

图5中的图线表明,对于II级传动中使用的7只行星齿轮而言,载荷分配系数K-gamma仅大约是1.08(试验测量值),而对于具有7只行星齿轮的双支撑行星轮而言,传统的K-gamma系数是1.47,这就等于在Ⅱ级传动中能够减少设计负荷27%。

图6

柔性销的设计还有助于补偿由于零部件的弹性而引起的传动装置的部分内部变形。例如在由于行星架的扭曲引起行星齿轮偏心的情况下,柔性销就能够使齿轮的接触产生某些重新对准。由于柔性销的刚度是齿轮上施加力的函数,它的变动有助于重新对准的发生。在PV齿轮箱设计中,载荷施加于齿轮中心时的柔性销的刚度比载荷施加于销钉的端部的刚度大4倍。换言之,偏斜误差越大,柔性销钉的补偿柔性也越大。

用于提高行星齿轮工作能力的集成式柔性销轴承设计

为了增大每一传动级的柔性销行星齿轮的功率密度,Maag 同铁姆肯公司合作从事了一项称作集成式柔性销轴承 (IFB) 的设计项目。铁姆肯公司的集成式柔性销轴承是一个子精彩文档.实用标准文案

装配件,是由上个世纪八十年代中期他们所进行的“紧凑轨道齿轮”的工程发展而来。该工程在他们的位于北苏格兰海滩上的 Orkney 岛上的试验基地的风能团队的 3MW 风力涡轮机内建有和应用了配备有柔性销钉的齿轮箱。见图6。

图6:上个世纪八十年代中期的风能团队的3MW风力涡轮机

设计的布置。它由多个零部件组成,以便达到希望的载荷分配特征。虽然外圈同齿轮的集成能够减少总的直径,但是铁姆肯公司的单排圆锥内圈仍然安装在套筒上。圆锥轴承采用手工装配达到预紧,装配件有必要的长度,以便具有所需的柔性,确保足够的载荷平衡。

精彩文档.

实用标准文案

图7:在风能团队的3MW风机齿轮箱上使用的柔性销

图8所示为柔性销轴承的设计。由于外圈同齿轮的集成以及内圈同套筒的集成,就能够采用较大直径的滚子。这样轴承的工作能力能够增加 40%,轴承的 L10 增加一个系数

3。使用缺口销轴(没有示出其它特殊销轴的轮廓)的其它特性能够使柔性销轴承的设计的总长度缩短,并具有足够的柔性从而提高行星齿轮间的载荷平衡。

图8:集成式柔性销轴承

本文作者观察到,对于典型速度下的风机行星轮系统的柔性销轴承的运行而言,预紧的圆锥滚子轴承是滚动接触轴承的首选。预紧设置在轴承制造生产厂进行,通过精确控制使所有集成式柔性销轴承达到非常一致的弹性。

精彩文档.

实用标准文案此外,均匀的预紧能够减小圆柱轴承或调心轴承常有的游隙差异,更为重要的是这有助于减少偏斜载荷所引起的非对中。所示的试验室进行了重大试验,试验目的在于评定实际的集成式柔性销作者在图9

10所示。轴承的偏斜特性,确认偏斜预测与测量结果的相关性,如图

试验室9:铁姆肯公司IFB 图齿轮的偏心测量值/计算值

+22% 径向偏斜

+5% 应力水平+10% 线性程度

+15%

图10:试验结果,测量值与计算值的比较

图11表格来源于一个试验结果,它表明偏斜模式与施加转矩呈线性关系,而在所有的载荷水平下齿轮面的偏心实际上是零。在铁姆肯公司的试验室对300% 以下的载荷进行了测量,并为

Maag试验室的满载试验所证实。

精彩文档.

实用标准文案

图11

预/试生产系列传动装置试验

第一套用于 N60 风机的预/试生产系列齿轮箱, 在与NORDEX的协作下已经建成。该装置必须与现有的装置进行合并,并须加以验证。图12中的第一套两台预/试生产系列传动装置,在不同的载荷条件下,已在满载荷试验台上进行了认真的试验。在这些试验中,对其齿轮载荷、温度形成和噪声传播各方面都给予了充分的关注。在对传动装置进行了某些初始的优化工作后,它的优越性就很快地显现出来。

精彩文档.

实用标准文案

图12:Maag 的满载荷试验

为了满足 Maag 的规范要求,对所有的齿轮接触模式都进行了仔细的检查和确认,正如图13中第2级太阳轮所展现的那样。

精彩文档.

实用标准文案

图13:在功率计试验后第2级太阳轮状态

另外,由于主要润滑点都有润滑油供应,因此,温度特牲对轴承、齿轮接触和总体传动装置的影响总是可以控制的。例如,按以下方式控制轴承温度是可能的,那就是:在最高的轴承温度和其油池温度之间,在冷启动条件下,使其温差(DT)控制在15K,而在操作中,控制在7K。

同样,对噪声的传播也给予了极大的注意,因为须要证明的是:直齿行星轮传动装置也能安静地运行,这也是所有齿轮箱设计者首先必须关注的。事实上,试验证明了:噪声水平都在规定的极限值以下。试验显示出:如果所有的直齿轮的设计和安装都是正确的话,那么,它们都适用

于风机齿轮箱。这一点可归因于PV齿轮箱的以下两种重要的性能:首先,两个齿圈中的任何一个齿圈都不是箱体的一个组成部分,箱体阻止了噪声向环境发出的直接的辐射。其次,集成柔性销轴承相对于箱体的柔性使齿轮接触与箱体没有刚性地接合,柔性销轴承对行星齿轮啮合点的振动起到阻尼的作用。

在奥克尼岛(Orkney Island)的现场试验

自从2004年以来,在奥克尼岛(80年代中期同样在此地,风能集团开展了相同的工程, 采用了紧凑的轨道式齿轮箱设计),第一套齿轮已经在Nordex N60中投入使用,见图14。之所以选择奥克尼岛,是因为那里长期处于苛刻的操作条件。在此,适合于大批量风机的恒定运行是可能的,并且伴有极高的动载荷和极限载荷。在过去近5个月内,平均风速为9.2m/s,最高风速达21.5 m/s。

精彩文档.

实用标准文案

图14:在奥克尼岛对Nordex NO 60 1.2MW力发电机的现场试验

该齿轮箱配有一套在线的状态监视系统(CMS),如图15所示,依靠该系统相关的数据,如温度、振动量和油压,都可测量到。数据分析到目前为止还没有显示性能的改变,并且也没有出现任何即将损坏的迹象。

图15:在奥克尼岛测量温度、振动量和油压等的状态监测器

精彩文档.

实用标准文案

为了验证这一数据,并强化一开始关于齿轮箱可靠性的结论,在2004年8月,进行了现场试验。在这一试验中,对齿轮接触进行了外观检查,还对其接触模式进行了分析。

首先,对直齿轮传动比值进行了检验。在此,对于所有轮齿,在轮齿的全部宽度范围内,对其均匀而又光亮的接触模式进行了检查,见图16。在该图中,人们可以看到:在其承受载荷的齿轮侧面上,仍旧可辨的机加工表面光洁度非常一致。

图16:在输出端啮合处的大齿轮上,所有磨加工痕迹仍清晰可见,且表面状态极佳其次,依靠内窥镜的帮助,对高度受载的行星式二级齿轮进行了检验,见图17。在行星齿轮的全部齿宽范围内,存在着十分清洁的接触表面,没有任何磨损的迹象。机加工表面依然是完整无损,这表明:既没有任何磨损发生,也没有过载的情况出现。暗线表示表面有轻微的磨光现象。载荷模式的痕迹是勉强可以辨认的。

精彩文档.

实用标准文案

图17:第2级行星齿轮齿

太阳轮齿表示的结果与行星齿轮齿的表示结果一样良好,见图18。在这些接触模式中,集成式柔性销轴承的功能令人留下了非常深刻的印象。由于直齿轮和行星齿轮齿接触模式正常,齿轮齿磨损损坏应该不会出现。

精彩文档.

实用标准文案

图18:太阳轮齿

另外,提取了油样品。其分析结果表明:传动装置中不存在任何磨损。在现场,也对状态监测系统(CMS)的可信度进行了检验。

总之,检查并未显示出任何种类的不正常现象,并支持连续的、无限制的运行。

在德国Ihlewitz的现场试验

从2004年8月以来,在德国 Ihlewitz 已经安装了第2套齿轮箱。在此,也安装了一套状态监测系统(CMS),然而,这套状态监视系统具有扩大的监测范围。另外,对上述数据、主轴和发电机轴的扭矩都进行了记录。从这一附加的资料数据中,有关齿轮箱的刚性和动力学性能就可从中推导出来。在2005年四月十五日,依靠内窥镜的协助,进行了外观检查。轴承和齿轮再一次被观察到处于良好状态,如图19所示。

图19a:典型的轴承滚子—原始的光洁度几乎未变

精彩文档.

实用标准文案

图19b:典型的轴承滚子端部—原始的磨加工痕迹依然可见

图19c:大齿轮啮合处与所有原始的光洁度依然明显

至于噪声的问题,除了说在许可范围内目前还无法对总体的一个噪声水平进行更多评述。一旦条件成熟和时间许可,综合性的噪声测定将会进行。

结论

精彩文档.

实用标准文案

在更加详细的载荷资料、更加精确的计算方法和制造质量改进的情况下,人们尝试考虑一个技术系统中的每一种影响。风、高压电网和装置本身的综合效应都会对齿轮箱产生十分巨大的影响,这些影响几乎不可能使装置找到其“正确的”载荷状态,并以此作为齿轮箱的设计基础。

今天,系统所需要的是:它们可以容许其误差和波动在宽广区域的操作范围内存在,而不会使部件损坏,也不会接着发生达到过早失效程度的危险。在开发Maag风电齿轮箱的过程中,需要强调的是:无需过多地、单独地尝试和考虑每一种影响,关键在于开发的齿轮箱在低应力状态

下,能容许存在一组多样的载荷条件,并且可靠性增强。而本文提出的齿轮箱概念能实现这一目标,其可靠性和性能已在本文所述的两套原始的装置上得到了有效的体现。

精彩文档.

机械设计试验报告2(附答案)

实验二、机械设计课程减速器拆装实验报告减速器名称班级日期 同组实验者姓名

回答下列问题 减速器拆装步骤及各步骤中应考虑的问题 一、观察外形及外部结构 1.起吊装置,定位销、起盖螺钉、油标、油塞各起什么作用?布置在什么位置? 答: 定位销:为安装方便,箱座和箱盖用圆锥定位销定位并用螺栓连接固紧 起盖螺钉:为了便于揭开箱盖,常在箱盖凸缘上装有起盖螺钉 起吊装置:为了便于吊运,在箱体上设置有起吊装置箱盖上的起吊孔用于提升箱盖箱座上的吊钩用于提升整个减速器 油标:为了便于检查箱内油面高低,箱座上设有油标 油塞:拔下即可注油,拧上是为了防止杂质进入该油箱,常在箱体顶部位置设置油塞 2.箱体、箱盖上为什么要设计筋板?筋板的作用是什么,如何布置? 答: 原因:为保证壳体的强度、刚度,减小壳体的厚度。 作用:增大减速机壳体刚度。 布置:一般是在两轴安装轴承的上下对称位置分别布置较好。 3.轴承座两侧联接螺栓应如何布置,支承螺栓的凸台高度及空间尺寸应如何确定? 答: 轴承旁凸台高度h 由低速级轴承座外径确定,以便于扳手操作为准。取50mm 轴承旁连接螺栓的距离S 以Md1螺栓和Md3螺钉互不干涉为准尽量靠近一般取S=D。 4.铸造成型的箱体最小壁厚是多少?如何减轻其重量及表面加工面积? 答: 大约10mm左右。减轻重量主要是减少厚度,做加强筋来满足。 5.箱盖上为什么要设置铭牌?其目的是什么?铭牌中有什么内容? 答: 为了显示型号,基本参数,外国的产品还包含序列号,给厂家提供序列号,可以查到出厂时的所有参数,方便使用维护,比如用了几年,你要买备件或备机,提供名牌信息。 二、拆卸观察孔盖 1.观察孔起什么作用?应布置在什么位置及设计多大才是适宜的? 答: 为了检查齿轮与齿轮(或涡轮与蜗杆)的啮合情况、润滑状况、接触斑点、齿侧间隙、齿轮损坏情况,并向减速器箱体内注入润滑油。 应设置在箱盖顶部的适当位置:孔的尺寸大小以便于观察传动件啮合的位置为宜,并允许手伸入箱体内检查齿面磨损情况。

齿轮箱设计

齿轮箱设计 作为风力发电机组主传动关键部件,齿轮箱位于风轮和发电机之间传递动力提高转速,是一种在无规律变向载荷和瞬间强冲击载荷作用下工作的重载齿轮传动装置。 特别需要指出的是,在狭小的机舱空间内减小部件的外形尺寸和减轻重量十分重要,因此齿轮箱设计必须保证在满足可靠性和预期寿命的前提下,使结构简化并且重量最轻 一、设计要求齿轮箱作为传递动力的部件,在运行期间同时承受动、静载荷。其动载荷部分取决于风轮、发电机的特性和传动轴、联轴器的质量、刚度、阻尼值以及发电机的外部工作条件。为此要建立整个机组的动态仿真模型,对启动、运行、空转、停机、正常启动和紧急制动等各种工况进行模拟,针对不同的机型得出相应的动态功率曲线,利用专用的设计软件进行分析计算,求出零部件的设计载荷,并以此为依据,对齿轮箱主要零部件作强度计算。 按照GB/T 19073-2003,对于齿轮箱的使用系数(即动载荷放大因子,考虑原动机和工作机的载荷波动对齿轮传动影响的系数。)推荐如下: 给定载荷谱计算时,通常先确定等效载荷,齿轮箱使用系数KA=1;无法得到载荷谱时,则采用经验数据,对于三叶片风力发电机组取KA=1.3。 风力发电机组增速箱的主要承载零件是齿轮,其轮齿的失效形式主要是轮齿折断和轮齿点蚀、剥落等。

轮齿折断 齿面点蚀 各种标准和规范都要求对齿轮的承载能力进行分析计算,常用的标准是GB/T3480或DIN3990(等效采用ISO6336)中规定的齿根弯曲疲劳和齿面接触疲劳校核计算,对轮齿进行极限状态分析。 齿轮箱设计时,应首先按主要失效形式进行强度计算,确定其主要尺寸,然后对其他失效形式进行必要的校核,软齿面闭式传动通常因齿面点蚀而失效,故

(完整版)圆柱齿轮减速器设计开题报告

一、选题的依据及意义: 齿轮减速器是原动机和工作机之间的独立的闭式传动装置,用来降低转速和增大转矩,以满足工作需要,在某些场合也用来增速,称为增速器。其特点是减速电机和大型减速机的结合。无须联轴器和适配器,结构紧凑。负载分布在行星齿轮上,因而承载能力比一般斜齿轮减速机高。满足小空间高扭矩输出的需要。广泛应用于大型矿山,钢铁,化工,港口,环保等领域。与K、R系列组合能得到更大速比。按照齿形分为圆柱齿轮减速器、圆锥齿轮减速器和圆柱—圆锥齿轮减速器; 二级圆柱齿轮减速器就是按其分类来命名的。圆柱齿轮减速器的设计是按传统方法进行的。设计人员按照各种资料、文献提供的数据,结合自己的设计实验,并对已有减速器做一番对比,初步定出一个设计方案,然后对这个方案进行一些验算,如果验算通过了,方案便被肯定了。显然,这个方案是可采用的。但这往往使设计的减速器有很大的尺寸富余量,造成财力、物力和人力的极大浪费。因此,优化圆柱齿轮减速器势在必行。 圆柱齿轮传动与普通定轴齿轮传动相比较,具有质量小、体积小、传动比大、承载能力大以及传动平稳和传动效率高等优点,这些已被我国越来越多的机械工程技术人员所了解和重视。由于在各种类型的圆柱齿轮传动中均有效的利用了功率分流性和输入、输出的同轴性以及合理地采用了内啮合,才使得其具有了上述的许多独特的优点。圆柱齿轮传动不仅适用于高速、大功率而且可用于低速、大转矩的机械传动装置上。它可以用作减速、增速和变速传动,运动的合成和分解,以及其特殊的应用中;这些功用对于现代机械传动发展有着重要意义。因此,圆柱齿轮传动在起重运输、工程机械、冶金矿山、石油化工、建筑机械、轻工纺织、医疗器械、仪器仪表、汽车、船舶、兵器、和航空航天等工业部门均获得了广泛的应用。对这种减速器进行优化设计,必将获得可观的经济效益。 选做这个毕业设计,一方面对于减速器的内部结构和工作原理也有一定的了解和基础,其次通过对圆柱齿轮减速器这一毕业课题设计可以巩固我大学4年来所学的专业知识,对于我也是一种检验。可以全面检验我大学所学的知识是否全面,是否能灵活运用到实际生活工作中。在做的过程中我还可以不断学习和拓宽视野和思路,做到理论与实际相结合的运用。最重要的是对于即将离校走向社会的我是一种挑战,培养我独立思考,树立全局观念,为以后的我奠定坚实的基础。

风力发电机的增速齿轮箱的设计

摘要 风电产业的飞速发展促成了风电装备制造业的繁荣,风电齿轮箱作为风电机组的核心部件,倍受国内外风电相关行业和研究机构的关注。但由于国内风电齿轮箱的研究起步较晚,技术薄弱,特别是兆瓦级风电齿轮箱,主要依靠引进国外技术。因此,急需对兆瓦级风电齿轮箱进行自主开发研究,真正掌握风电齿轮箱设计制造技术,以实现风机国产化目标。 本文设计的是兆瓦级风力发电机组的齿轮箱,通过方案的选取,齿轮参数计算等对其配套的齿轮箱进行自主设计。 首先,确定齿轮箱的机械结构。选取一级行星派生型传动方案,通过计算,确定各级传动的齿轮参数。对行星齿轮传动进行受力分析,得出各级齿轮受力结果。依据标准进行静强度校核,结果符合安全要求。 其次,基于Pro/E参数化建模功能,运用渐开线方程及螺旋线生成理论,建立斜齿轮的三维参数化模型。 然后,对齿轮传动系统进行了齿面接触应力计算。先利用常规算法进行理论分析计算。关键词:风力发电,风机齿轮箱,结构设计,建模 Abstract The rapid development of wind power industry lead to the prosperity of wind power equipment manufacturing industry.As the core component of wind turbine,the gearbox is received much concern from related industries and research institution both at home and abroad.However, due to the domestic research of gearbox for wind turbine starts late,technology is weak,especially in the gearbox for MW wind turbine,which mainly relied on the introduction of foreign technology.Therefore,it is urgent need to carry out independent development and research on MW wind power gearbox,and truly master the design and manufacturing technology in order to achieve the goal of localization. This paper takes the wind power。The independent design of the gearbox matching for the wind turbine has been carried out by selecting the transmission scheme and calculating the gear parameters。 Firstly, the mechanical structure of gearbox is determined.The two-stage derivation planetary transmission scheme is selected.The gear parameters of every stage transmission is

机械设计基础课程设计报告模板(减速器设计)

机械设计基础课程设计 ——单级斜齿轮圆柱齿轮减速器 学校:海洋大学 专业:轮机工程 学号:1703130103 姓名:*** 指导教师:丽娟

10年,单班制工作,输送带允许误差为5%。 设计工作量: 1.设计计算说明书1份(A4纸20页以上,约6000-8000字); 2.主传动系统减速器装配图(主要视图)1(A2图纸); 3.零件图(轴或齿轮轴、齿轮)2(A3图纸)。 专业科:斌教研室:郭新民指导教师:锋开始日期 20**年5月 5日完成日期20**年 6月 30 日

第一节设计任务 设计任务:设计一带式输送机用单级圆柱齿轮减速器。已知输送拉力F=1200N,带速V=1.7m/s,传动卷筒直径D=270mm。由电动机驱动,工作寿命八年(每年工作300天),两班制,带式输送机工作平稳,转向不变。 设计工作量: 1、减速器装配图1(A0图纸) 2、零件图2(输出轴及输出轴上的大齿轮A1图纸)(按1:1比例绘制) 3、设计说明书1份(25业)

第二节 、传动方案的拟定及说明 传动方案如第一节设计任务书(a )图所示,1为电动机,2为V 带,3为机箱,4为联轴器,5为带,6为卷筒。由《机械设计基础课程设计》表2—1可知,V 带传动的传动比为2~4,斜齿轮的传动比为3~6,而且考虑到传动功率为 KW ,属于小功率,转速较低,总传动比小,所以选择结构简单、制造方便的单级圆柱斜齿轮传动方式。 第三节 、电动机的选择 1.传动系统参数计算 (1) 选择电动机类型. 选用三相异步电动机,它们的性能较好,价廉,易买到,同步转有3000,1500,1000,750r/m 四种,转速低者尺寸大; 为了估计动装置的总传动比围,以便选择合适的传动机构和拟定传动方案,可先由已知条件计算起驱动卷筒的转速n w 经过分析,任务书上的传动方案为结构较为简单、制造成本也比较低的方案。 (2)选择电动机 1)卷筒轴的输出功率Pw 2)电动机的输出功率Pd P =P /η 传动装置的总效率 η=滑联齿轮滚带 ηηηηη????2 =0.96×0.98×0.98×0.99×0.96=0.86 故P =P /η=2.125/0.86=2.4KW 单级圆柱斜齿轮传动 P =2.4KW 12000.75 2.12510001000 FV Pw kw ?===w 601000601000 1.7 n 120.3/min 3.14270v r D ???===?πw n 120.3/min r = 2.125Pw kw =

课程设计报告-二级展开式圆柱齿轮减速器(含全套图纸)

课程设计报告 二级展开式圆柱齿轮减速器 姓名: 学院: 专业: 年级: 学号: 指导教师: 2006年6月29日

一.设计题目 设计一用于卷扬机传动装置中的两级圆柱齿轮减速器。轻微震动,单向运转,在室内常温下长期连续工作。卷筒直径D=500mm,运输带的有效拉力F=10000N, 卷筒效率 5 η=0.96,运输带速度0.3/v m s =,电源380V,三相交流. 二.传动装置总体设计: 1. 组成:传动装置由电机、减速器、工作机组成。 2. 特点:齿轮相对于轴承不对称分布,故沿轴向载荷分布不均匀,要求轴有较大的刚度。 3. 确定传动方案:考虑到电机转速高,传动功率大,将V 带设置在高速级。 其传动方案如下: 三.选择电动机 1.选择电动机类型: 按工作要求和条件,选用三相笼型异步电动机,封闭型结果,电压380V ,Y 型。 2.选择电动机的容量

电动机所需的功率为: W d a P P = η KW 1000 W FV P = KW 所以 1000d a FV P = η KW 由电动机到运输带的传动总功率为 1a 422345 η=η?η?η?η?η 1η—带传动效率:0.96 2η—每对轴承的传动效率:0.99 3η—圆柱齿轮的传动效率:0.96 4 η—联轴器的传动效率:0.99 5 η—卷筒的传动效率:0.96 则:4210.960.990.960.990.960.79a 422345η=η?η?η?η?η=????= 所以 94650.3 3.8100010000.81 d a FV p η= ?==?KW 3.确定电动机转速 卷筒的工作转速为 6010006010000.3 11.46 500V n D ???= ==∏∏?r/min 查指导书第7页表1:取V 带传动的传动比2i =~4带;二级圆柱齿轮减速器传动比840i =~减速器,所以总传动比合理范围为16160i =~总,故电动机转速的可选范围是: n n i =?=(16~160)?11.46=183~1834 总卷筒电机r/min 符合这一范围的同步转速有750、1000和1500r/min 。

齿轮箱设计报告大学论文

齿轮箱设计报告

1 概述 (4) 2 齿轮箱设计 (5) 2.1齿轮箱设计的基本要求 (5) 2.2齿轮箱设计的计算项目 (5) 2.3齿轮箱主要零部件设计 (6) 2.3.1 齿轮 (6) 2.3.1.1齿轮计算 (6) 2.3.1.2齿轮的修形 (7) 2.3.1.3齿轮材料及热处理 (7) 2.3.1.4齿轮的精度 (7) 2.3.1.5齿面粗糙度 (7) 2.3.1.6齿轮的变位系数 (8) 2.3.2 轴承 (8) 2.3.2.1轴承选型 (8) 2.3.2.2轴承静承载能力 (10) 2.3.2.3轴承寿命计算 (11) 2.3.2.4轴承的最大接触应力 (12) 2.3.3 润滑、冷却和加热系统 (12) 2.3.3.1散热器 (12) 2.3.3.2加热器 (14) 2.3.3.3过滤装置 (14) 2.3.4轴 (14) 2.3.5箱体、行星架和扭力臂 (14) 2.3.6轴封 (15) 2.3.7 润滑油 (15) 2.3.7.1润滑油选型 (15) 2.3.7.2润滑油容量 (15) 2.3.7.3润滑油测试 (15) 2.3.7.4润滑油清洁度 (16) 3 国内外主要供应商分析 (16) 3.1齿轮箱设计 (16) 3.2 制造技术 (16) 3.3 试验测试技术 (17) 4 齿轮箱样机试验 (17) 4.1 样机试验规范 (18) 4.1.1 试验前的准备工作 (18) 4.1.2 空载试验 (18) 4.1.3 加载试验 (18) 4.1.4 强化试验 (20) 4.1.5 故障处理 (21) 4.1.6 拆检 (22) 5 包装与运输 (22) 6 油漆及防腐保护 (23) 6.1 油漆 (23)

参考 齿轮箱开题报告

本科学生毕业设计 (论文)开题报告 1、目的及意义(含国内外的研究现状分析) 1.2 选题背景 磨煤机是将煤块破碎并磨成煤粉的机械,它是煤粉炉的重要辅助设备。煤在磨煤机中被磨制成煤粉,主要是通过压碎、击碎和研碎三种方式进行。磨煤机经常运行于高速、重载以及恶劣环境等条件下,齿轮及齿轮箱作为机械设备中必不可少的连接和传递动力部件由于加工工艺复杂,装配精度要求高,又常常在高速度、重载荷的环境下连续工作,出现故障的概率较高。而齿轮的失效又是诱发机械故障的重要因素。齿轮箱在机械设备中是核心部件,出现故障后将会导致整个机械设备的失效。轻则降低生产质量或导致停产,重则会造成事故。据统计传动机械中齿轮引发的故障占 80%左右,旋转机械中约为 10%左右。齿轮箱的故障和失效轻则带来经济损失,重则造成人员伤亡。据日本新日铁会社的统计,在机器的总故障次数中,齿轮故障约占 10.3%左右,而在齿轮箱的失效零件中,齿轮失效占 60%左右,轴承和轴故障约为 30%左右。对齿轮箱进行状态检测与故障诊断中采用这些先进的技术,能够节省大量的人力、物力、财力,提高设备的利用率,可及时发现故障隐患,提高故障诊断效率,降低因为齿轮箱故障而引起的灾难,因此对电厂磨煤机齿轮箱进行状态监测与故障诊断具有重大的意义。 1.2 齿轮箱故障诊断的发展现状 齿轮箱振动与噪声的研究发展比较早,但是将齿轮的振动与噪声运用到齿轮箱的故障诊断中却是在20世纪60年代中期,美国的Buckingham和德国的Niemann,英国学者H.Optiz仔细研究了齿轮振动与噪声的原理,指出其是传动功率和齿轮传动误差及齿轮精度的函数。随后一些简单的齿轮箱故障诊断技术开始出现,这些技术手段主要是通过测量齿轮箱工作过程中一些简单的振动参数,如有效值、振动峰值、均方根值等来对齿轮箱进行直接分析。70年代末到80年代中期,利用频谱来分析齿轮箱的故障取得了重大成果,其中B.Randall和James I.Taylor等人作

有关于变速齿轮箱的设计

第一章引言 1.1机械加工工艺的现状和发展趋势 近年来,机械制造工艺有着飞速的发展。比如,应用人工智能选择零件的工艺规程。因为特种加工的微观物理过程非常复杂,往往涉及电磁场、热力学、流体力学、电化学等诸多领域,其加工机理的理论研究极其困难,通常很难用简单的解析式来表达。近年来,虽然各国学者采用各种理论对不同的特种加工技术进行了深入的研究,并取得了卓越的理论成就,但离定量的实际应用尚有一定的距离。然而采用每一种特种加工方法所获得的加工精度和表面质量与加工条件参数间都有其规律。因此,目前常采用研究传统切削加工机理的实验统计方法来了解特种加工的工艺规律,以便实际应用,但还缺乏系统性。 为了能具体确切的说明过程,使工件能按照零件图的技术要求加工出来,就得制定复杂的机械加工工艺规程来作为生产的指导性技术文件,学习研究制定机械加工工艺规程的意义与作用就是本课题研究目的。 在整个设计过程中,我们将学习到更多的知识。 (1)我们必须仔细了解零件结构,认真分析零件图,培养我们独立识图能力,增强我们对零件图的认识和了解,通过对零件图的绘制,不仅能增强我们的绘图能力和运用AutoCAD软件的能力。 (2)制订工艺规程、确定加工余量、工艺尺寸计算、工时定额计算、定位误差分析等。在整个设计中也是非常重要的,通过这些设计,不仅让我们更为全面地了解零件的加工过程、加工尺寸的确定,而且让我们知道工艺路线和加工余量的确定,必须与工厂实际的机床相适应。这对以前学习过的知识的复习,也是以后工作的一个铺垫。 (3)在这个设计过程中,我们还必须考虑工件的安装和夹紧.安装的正确与否直接影响工件加工精度,安装是否方便和迅速,又会影响辅助时间的长短,从而影响生产率,夹具是加工工件时,为完成某道工序,用来正确迅速安装工件的装置.它对保证加工精度、提高生产率和减轻工人劳动量有很大作用。这是整个设计的重点,也是一个难点。 这是整个设计的重点,也是一个难点。受其限制,目前特种加工的工艺参数只能凭经验选取,还难以实现最优化和自动化,例如,电火花成形电极的沉入式加工工艺,它在占电火花成形机床总数95%以上的非数控电火花成形加工机床和较大尺寸的模具型腔加工中得到广泛应用。虽然已有学者对其CAD、CAPP和CAM原理开展了一些研究,并取得了一些成果,但由于工艺数据的缺乏,仍未有成熟的商品化的CAD/CAM系统问世。通常只能采用手工的方法或部分借助于CAD造型、部分生成复杂电极的三维型面数据。随着模糊数

MAAGPV齿轮箱地设计

实用标准文案 摘要:时下模块化风机齿轮箱的可靠性是一个普遍存在的问题。为此,Maag 开发和试制了一种新型齿轮箱,在平衡刚度和柔性的基础上能更好地实现载荷的分配均匀,具有较小的应力和最佳齿轮接触模式。该设计的特点在于:把主轴载荷支撑在两个预紧的圆锥滚子轴承的齿轮箱输入端;将输入转矩的动力分配为两个行星齿轮传动级,同时减少齿轮上的单位载荷;另外,它适用于单壁行星架,且每个单壁行星架配备一排柔性的“集成式柔性销轴承”,以确保行星齿轮之间载荷均匀,且消除了双支撑行星架由于发生扭转变形而引起的不对中问题。如今,经过一年的场地试验,Maag 公司的其中一种PV齿轮箱已经在位于苏格兰奥克尼岛(Orkney Island)的全球最大风力开发项目中得到应用,并被证明非常成功。其应用结果将在本文中予以讲述。 前言:行星轮系的设计挑战 Maag 齿轮有限公司现将增速齿轮箱PV纳入风力发电机业务,其独特设计和不断改良的性能引发了工业界的广泛兴趣和持续关注。 在决定设计之前,Maag 认真地考虑了原始设备制造商和风电场运行人员提出的要求,了解了传动装置中可能发生的损坏形式。通过这些调查,还掌握到齿轮箱的特殊要求:·在某种程度上还没有充分了解其高动态载荷 ·驱动系和机架内的软结构会直接影响传动装置 ·风机恶劣的运行条件 从这些调查中得出的结论是:齿轮箱的可靠性问题必须通过引进新的、创造性的理念加以解决。 双支撑行星轮架的扭转变形 在当今的风电齿轮箱中,行星轮系的典型结构是采用销轴支撑双壁托架的两端,该设计方式有时被称作双支撑安装。见图1。每个行星齿轮处于一个固定的与邻近行星齿轮相关的位置,形成一个至少在径向和圆周方向具有相当刚性的排列。 精彩文档. 实用标准文案

机械设计综合实践报告

机械设计综合实践报告 —二级圆柱齿轮减速器 姓名:学号:指导老师: ```大学机械工程学院 摘要 摘要内容:根据具体任务,完成了输送系统的减速器设计。设计内容包括传 动系统总体方案的确定,传动系统的设计,重要零件的设计计算,以及箱体的结构设计和一些辅助零件的设计,使自己对机械设计课程内容有了更深刻的认识。初步掌握了机械设计的一般过程,训练了绘图能力以及应用AutoCAD的能力 关键词:机械设计,减速器,传动系统 Abstract The abstract contents: Completed to transport the design of the deceleration machine of the system according to the concrete mission,design a contents to include to spread to move a total project of system to really settle,spread the structure design of the design calculation and box body of ,main spare parts of move the system with some designs that lend support to zero partses.Pass this design makes the oneself design the process contents to have depper understanding to the machine,the first step controlled the general process of the machine design,traning the painting ability and applying an AutoCAD ability.

毕业设计-换向齿轮箱设计

第二章课题题目及主要技术参数说明 2.1毕业设计课题 由于齿轮箱是一种广泛应用于许多行业的基础传动装置,其产品水平及性能直接决定着配套主机的水平及性能,因此多年来人们对有关齿轮箱的设计研究和探索从来没有停止过。我们选择了简单的换向齿轮箱作为这次设计的课题,设计的主要参数要求如下: 1.此齿轮箱为中间传动装置,输入、输出轴均利用为Φ60联轴器与传动轴连接, 不需考虑电动机配置。 该齿轮箱为直交齿轮箱,起换向作用,传动比i=1。 2.最大扭矩=65kg/m 3.该齿轮箱具有离合功能,可实现正、反转。 4.齿轮箱设计要求内部结构紧凑、噪音低于75分贝。 2.2设计步骤 1.根据设计要求在绘出传动示意草图的基础上,开始换向齿轮箱的结构设计。 2.详细介绍齿轮箱箱体的种类,根据设计要求选择所需箱体的类型。 3.详细介绍轴承的种类,根据设计要求选择所需轴承的类型。 4.详细介绍齿轮的种类,根据设计要求选择所需齿轮的类型。 5.对于齿轮箱内其它必须零件(如轴的类型)进行简单介绍。 6.查阅机械设计手册,在确定齿轮的模数、齿数后根据齿轮的大小、轴的外径等其它参数后绘出换向齿轮箱装配图。 7.绘出输入或者输出轴上齿轮的零件图,并编写齿轮加工工艺。 8.绘出箱体零件图,并编写箱体加工工艺。 2.3传动示意图 根据设计要求拟定中间传动装置由轴、圆锥齿轮、轴承等组成。示意图如图所示。

第三章 轴的设计计算 3.1 轴的设计要求 轴在设计中,齿轮轴的运用一般无外乎一下几种情况: 1、齿轮轴一般是小齿轮(齿数少的齿轮)2、齿轮轴一般是在高速级(也就是低扭矩级)3、齿轮轴一般很少作为变速的滑移齿轮,一般都是固定运行的齿轮,一是因为处在高速级,其高速度是不适进行滑移变速的。 4、齿轮轴是轴和齿轮合成一个整体的,但是,在设计时,还是要尽量缩短轴的长度,太长了一是不利于上滚齿机加工,二是轴的支撑太长导致轴要加粗而增加机械强度 3.2输入轴设计 (1的材料和热处理方法 轴采用45钢正火处理。查表σb=600Mpa 。 (2)估算轴的最小直径 已知轴的最大扭矩为65kg.m,则 6500.0689550p n == 查表得C=110 11044.9d mm ≥=?= 考虑键的削弱44.9 1.0547.1d mm =?= 因输入轴与电动机相连,转速高,转矩小,选择弹性套柱销联轴器,根据十弹性套柱销 联轴器的规格取d=60mm (3)轴的结构设计及绘制结构草图 为了满足半联轴器的轴向定位,1-2轴段右端需制出一轴肩,取2-3段的直径2d =64

齿轮箱项目工作总结汇报

齿轮箱项目工作总结汇报 规划设计 / 投资分析

第一章项目总体情况说明 一、经营环境分析 1、自2015年《中国制造2025》发布以来,国家重要机关及部委密集 发布制造业相关文件,旨在为制造业升级指明具体化方向和目标。从日韩 等国际经验来看,政府的产业政策在制造业升级过程中扮演着至关重要的 角色。政策以《中国制造2025》为中心,突破核心技术是关键。其中强化 工业基础能力是首要战略任务:目标到2020/2025年,40%/70%的核心零部件、关键基础材料实现自主保障。“中国制造2025”以促进制造业创新发 展为主题,以提质增效为中心,以加快新一代信息技术与制造业融合为主线,以推进智能制造为主攻方向,以满足经济社会发展和国防建设对重大 技术装备需求为目标,强化工业基础能力,提高综合集成水平,完善多层 次人才体系,促进产业转型升级,实现制造业由大变强的历史跨越。当前,全球制造业发展趋势不断变化,新技术不断出现。随着技术进步和消费者 需求提升,制造业开始从规模化批量生产向定制化服务转变。制造商的商 业模式已从以产品为主转为以客户为主。随着资源稀缺性的加剧和对环境 保护重视程度的加深,制造企业将寻求更加高效、可持续化的生产经营模式。 2、围绕“中国制造2025”已明确的任务和措施,加快启动高端装备创新、智能制造、工业强基、绿色制造、国家制造业创新中心建设等重大工

程,以及质量品牌提升、发展服务型制造行动计划,针对当前产业转型升级的迫切要求,启动实施一批市场潜力大、关联程度高、带动能力强、产业基础好的重大项目。通过工程实施提振需求,改造传统产业,推动重点领域发展,提高产业竞争力。当今世界正处于大发展大变革大调整之中,我国工业发展面临的国际环境更趋复杂,既面临着难得机遇,也伴随着严峻挑战,给我国工业转型升级带来深刻影响。当前和今后一个时期,经济全球化持续深入发展,为我国进一步实施“走出去”战略,提高在全球范围内的资源配置能力,拓展外部发展空间提供了新机遇。同时,国际金融危机影响深远,全球需求结构出现明显变化,贸易保护主义有所抬头,围绕市场、资源等方面的竞争更趋激烈,能源资源、气候变化等全球性问题错综复杂,世界经济的不确定性仍然较大,对我国工业转型升级形成新的压力。从经济发展的国内条件来看,推进经济结构转换的基本推动性因素仍需夯实,经济发展的不平衡、不协调、不可持续问题依然突出。首先,发达国家在科技创新领域的领先优势仍旧是显著的,我国的科技创新能力虽有显著增强,但总体竞争力仍落后于发达国家,总体上尚未形成创新驱动式的增长模式,创新驱动发展的制度环境仍需大力改善。其次,收入分配格局尚未发生根本性改变,居民收入分配差距较大,成为经济结构调整的重要制约因素。再有,经济发展与能源安全、资源供给、生态环境、自然灾害、气候变化等约束矛盾更加突出。

齿轮箱设计基础知识

目录 1 机械制图基础知识 (1) 1.1 尺寸注法的常用简化表示法 (1) 1.2 中心孔表示法 (4) 1.2.1 75°、90°中心孔 (5) 1.2.2 60°中心孔 (6) 1.3 退刀槽 (7) 1.4 焊缝 (8) 1.5 装配通用技术条件 (10) 1.5.1 连接装配方式 (10) 1.5.2 滚动轴承的装配 (11) 1.5.3 齿轮与齿轮箱装配 (12) 2 螺纹及螺纹连接 (13) 2.1 螺纹的标记方法 (13) 2.2 螺塞与连接螺孔尺寸 (13) 2.3 孔沿圆周的配置 (14) 2.4 螺栓和螺钉通孔尺寸 (14) 2.5 六角螺栓和六角螺母用沉孔尺寸 (14) 2.6 普通螺纹的余留长度 (14) 2.7 扳手空间 (15) 3 键连接 (17) 3.1 平键键槽的尺寸与公差 (17) 3.2 普通平键的尺寸与公差 (18) 4 轴承的选型 (19) 4.1 轴承的分类 (19) 4.2 轴承与轴的配合 (19) 4.3 轴承与外壳的配合 (20) 4.4 配合表面的粗糙度和形位公差 (21) 4.5 选择润滑油或润滑脂的一般原则 (22)

4.6 轴承配置 (22) 5 渐开线圆柱齿轮 (27) 5.1 渐开线圆柱齿轮模数 (27) 5.2 传动参数选择 (27) 5.3 变位齿轮传动 (28) 5.4 最少齿数 (30) 5.5 标准齿轮传动的几何计算 (30) 5.6 高变位齿轮传动的几何计算 (31) 5.7 角变位齿轮传动的几何计算 (32) 5.8 端面重合度的确定 (34) 6 减速器设计 (36) 6.1 焊接箱体钢板厚度及焊接尺寸 (36) 6.2 箱体结构设计 (36) 6.3 减速器附件 (40) 6.3.1 油尺和油尺套 (40) 6.3.2 透气塞 (41) 6.3.3 通气罩 (41) 6.3.4 螺塞 (42) 6.3.5 视孔盖 (42) 6.4 齿轮传动的润滑 (42) 6.5 减速器技术要求 (43) 7 齿轮传动设计计算 (45) 7.1 轮齿受力计算 (45) 7.2 齿轮主要尺寸的初步确定 (45) 7.2.1 齿面接触强度 (45) 7.2.2 初步确定模数、齿数 (46) 7.3 齿轮疲劳强度校核计算 (47) 7.3.1 齿面接触强度校核 (47) 7.3.2 轮齿弯曲强度校核 (52) 7.4 计算例题 (53)

风电齿轮箱设计

风电齿轮箱设计 风力发电齿轮箱的作用是将风力带动的槳叶经齿轮箱增速后传给发电机发电,风电齿轮箱是风力发电动力传递的核心装置,一旦齿轮箱出了问题,整台发电设备就处于瘫痪状态,而且齿轮箱处于几十米的高空,维修吊装极为困难,由于齿轮箱使用工况很不稳定,工况极其恶劣,而且要持续每年300天以上运行。这些都应该在齿轮箱的设计中考虑和解决的问题。因此齿轮箱的设计必需安全可靠,经久耐用。 目前我国使用的国内外风电齿轮箱,主要有配套有GE、维德、美德、德雅可夫、维司塔斯、西班牙等各公司齿轮箱,以及在此基础上进行设计的国内生产的风电齿轮箱。 目前这些齿轮箱的适用范围为:发电功率200KW-1660KW,风力带动桨叶的转速为19—28.5r/min(齿轮箱的输入转速),增速齿轮箱的输出转速为1440—1520r/min(发电机转速),齿轮箱的速比范围为:U=36—78(个别达到98) 目前国内外的这些大型风电齿轮箱的主要结构型式有三种:1、二级平行轴,2、三级平行轴,3、一级行星加二级平行轴.在大功率的风电齿轮箱中主要是第3种结构型式,即为一级行星加二级平行轴的结构型式。结构示意图如图一所示: 其传动路线是;桨叶——传动轴——收缩套——行星架——太阳轮——第二级平行轴大齿轮——第二级平行轴小齿轮——第一级平行轴大齿轮——第一级平行轴小齿轮——发电机 齿轮箱的材料:外齿轮材料为优质低碳合金结构钢,如17CrNiMo6,内齿轮材料为42CrM oA,内齿圈磨齿,外齿轮渗碳淬火磨齿,精度在ISO1328之6级以上,轴承全部为SKF、FAG、NSK等进口轴承,且多为双列向心球面滚子轴承,单列园柱滚子轴承等。齿轮箱的润滑为强制润滑系统,设置有油泵、过滤器,下箱体作为油箱使用,油泵从箱体抽油口抽油后经过过滤器通过管系将油送往齿轮箱的轴承,齿轮等各个润滑部位。还设置有电加热器,测油温的热电阻PT100,油位传感器,液压空气滤清器等等,以适于地面监控。无论是从国外进口的风电齿轮箱,还是国内生产的风电齿轮箱,在使用中都出现过质量问题,国内生产的故障率更高,返修比例很大,甚至成百台的返修,这样给用户和制造厂都带来了重大的经济损失,这些严酷的事实使我们清醒地认识到,目前风电齿轮箱的质量还不过硬,如果这个问题不解决,将严重地制约着我国风力发电的发展。 为此我们对国内外的大型风电齿轮箱进行了详细的研究,分析和计算,尽管出现故障部位和情况多种多样,比如说,断轴、齿面点蚀剥落断齿、箱体开裂、漏油等等。但是归根结底还是一个问题:就是齿轮箱设计的安全系数过小,齿轮强度偏低,可靠性差。片面追求高精度,反映了国外风电齿轮箱片面采用高精度换取高强度的设计理念。出了问题也只能头痛医头脚痛医脚,不能从根本上解决问题。 下面从825KW的某风电齿轮箱为例进行的计算结果,计算分两个项目进行,即我们通常进行的接触强度和弯曲强度的计算,为了简化,我们用接触强度系数K和弯曲强度(荷模比)W来表示,计算公式:K=Ft(u+1)/bdu W=Ft/bMn 第一级平行轴齿轮(高速级)K=51W=69 第二级平行轴齿轮(中间级)K=56W=86 第三级行星传动(低速级)K=58、3 W=66 K、W值越大,安全系数越小。 因此根据我们长期设计的经验,根据风电齿轮箱的实际使用工况,风电齿轮的设计值应该为K=45,W=80以下比较合适,K、W值越小,安全系数越大,越安全。 因此风力发电齿轮箱设计思想是:

汽车变速器设计报告

汽车变速器设计报告 姓名: 学号:

目录 一、1轴总成的创建 (1)1轴轴体 (2)1轴轴承 (3)同步锁环 (4)1轴总成 二、中间轴总成 (1)中间轴主体部分 (2)常啮合齿轮 (3)五档齿轮 (4)中间轴轴承 (5)中间轴总成 三、2轴总成 (1)2轴轴体 (2)5档齿轮、5档齿轮接合齿圈、2轴同步齿轮、接合套(3)螺母 (4)2轴总成 四、箱体箱盖总成及其二维工程图 五、变速箱装配总成及爆炸图。

通过对车辆数字化技术课程的学习,我们对数字化设计技术及汽车行业相关软件有了一些了解,这对我们的专业素养有很大的提升。在本次作业中,对一款完整的五档汽车变速箱的结构组成及工作原理进行了充分学习,使用Creo软件对此款变速箱的主体及五档部分结构进行了简略三维模型的创建。 本人主要分1轴总成、中间轴总成、2轴总成、箱体箱盖总成等几个部分对该变速器进行三维模型的创建。 一、 1 轴总成的创建 1轴总成大致有以下几个部分构成:1轴轴体、1轴轴承、同步锁环。 (1)1轴轴体 首先,选定平面草绘出该平面,进行旋转操作,即可得到1轴主体部分。然后合并已绘制好的1轴齿轮、1轴接合齿圈 (2)1轴轴承 草绘如图,旋转得到轴承内圈。 同理绘制轴承外圈,滚珠,并将三部分合并,得到1轴球轴承模型。 (3)同步锁环

(4)建立装配文件,将以上三个部分按位置装配,得到1轴总成。 二、中间轴总成 中间轴总成大致分为以下几部分:中间轴主体、常啮合齿轮、五档齿轮、中间轴轴承等。(1)中间轴主体 首先草绘此截面,进行扫描操作,然后进行倒角处理,得到中间轴主体部分。 (2)常啮合齿轮。针对齿轮,以此齿轮为例,详细记录一下建模过程如下。 ①设置齿轮参数。新建文件后进入三维实体建模的环境。然后选择菜单栏中“工具/参数” 选项,将齿轮的各参数依次添加到参数例表对话框中,如图1所示 ②创建基本草绘曲线。选取FRONT为草绘平面,单击“草绘”按钮进入二维草绘模式。 然后绘制4个任意尺寸的同心圆。分别为181.50mm,183.50mm,196mm,206mm

机械设计课程设计报告

机械设计《课程设计》 课题名称一级圆柱齿轮减速器的设计计算 系别机械系 专业机械设计与制造 班级 17机制17701班 姓名 学号 指导老师 完成日期2018年6月27日

目录 第一章绪论 第二章课题题目及主要技术参数说明 2.1 课题题目 2.2 主要技术参数说明 2.3 传动系统工作条件 2.4 传动系统方案的选择 第三章减速器结构选择及相关性能参数计算 3.1 减速器结构 3.2 电动机选择 3.3 传动比分配 3.4 动力运动参数计算 第四章齿轮的设计计算(包括小齿轮和大齿轮) 4.1 齿轮材料和热处理的选择 4.2 齿轮几何尺寸的设计计算 4.2.1 按照接触强度初步设计齿轮主要尺寸 4.2.2 齿轮弯曲强度校核 4.2.3 齿轮几何尺寸的确定 4.3 齿轮的结构设计 第五章轴的设计计算(从动轴) 5.1 轴的材料和热处理的选择

5.2 轴几何尺寸的设计计算 5.2.1 按照扭转强度初步设计轴的最小直径 5.2.2 轴的结构设计 5.2.3 轴的强度校核 第六章轴承、键和联轴器的选择 6.1 轴承的选择及校核 6.2 键的选择计算及校核 6.3 联轴器的选择 第七章减速器润滑、密封及附件的选择确定以及箱体主要结构尺寸的计算 7.1 润滑的选择确定 7.2 密封的选择确定 7.3减速器附件的选择确定 7.4箱体主要结构尺寸计算 第八章总结 参考文献

第一章绪论 本论文主要内容是进行一级圆柱直齿轮的设计计算,在设计计算中运用到了《机械设计基础》、《机械制图》、《工程力学》、《公差与互换性》等多门课程知识,并运用《AUTOCAD》软件进行绘图,因此是一个非常重要的综合实践环节,也是一次全面的、规范的实践训练。通过这次训练,使我们在众多方面得到了锻炼和培养。主要体现在如下几个方面: (1)培养了我们理论联系实际的设计思想,训练了综合运用机械设计课程和其他相关课程的基础理论并结合生产实际进行分析和解决工程实际问题的能力,巩固、深化和扩展了相关机械设计方面的知识。 (2)通过对通用机械零件、常用机械传动或简单机械的设计,使我们掌握了一般机械设计的程序和方法,树立正确的工程设计思想,培养独立、全面、科学的工程设计能力和创新能力。 (3)另外培养了我们查阅和使用标准、规范、手册、图册及相关技术资料的能力以及计算、绘图数据处理、计算机辅助设计方面的能力。 (4)加强了我们对Office软件中Word功能的认识和运用。

减速齿轮箱设计

减速齿轮箱设计 目录一、传动装配的总体设计电机的选择................................................1 求传动比..................................................2 计算各轴的转速、功率、转矩...............................2 二、齿轮的设计原始数据..................................................3 齿轮的主要参数.. (3) 确定中心距................................................4 齿轮弯曲强度的校核.......................................5 齿轮的结构设计.. (7) 三、轴的设计计算轴的材料的选择和最小直径的初

定............................8 轴的结构设计. (8) 轴的强度校核 (1) 0 四、滚动轴承的选择与计算滚动轴承的选择 (14) 滚动轴承的校核 (14) 五、键连接的选择与计算键连接的选择 (1) 5 键的校核..................................................15 六、联轴器的选择联轴器的选择. (1) 6 联轴器的校核 (1) 6 七、润滑方式、润滑油型号及密封方式的选择润滑方式的选择 (16)

密封方式的选择 (17) 八、箱体及附件的结构设计和选择箱体的结构尺寸 (17) 附件的选择................................................18 九、设计小结. (19) 十、参考资料 (20) 0 机械设计课程设计计算说明书已知条件:项目参数运输带拉力 F 4800 运输带速v 卷筒直径D(mm) 210 结构简图 1 传动装配的总体设计电机的选择类型:Y系列三项异步电动机电动机功率的选择假设:pw—工作机所需功率, kw;pe—电动机的额定功率, kw;pd—电动机所需功率, kw;?1、?2、?3、?4分别为弹性连

二级圆柱齿轮减速器设计报告

青岛理工大学琴岛学院 设计报告 课题名称:带式输送机传动装置设计 学院:机电工程系 专业班级:机械设计制造及其自动化15-4班学号:20150251146 学生:宫瑞兵 指导老师:郇艳 青岛理工大学琴岛学院教务处 2017 年12 月27日

学生宫瑞兵指导老师郇艳 课题名称机械设计课程设 计 设计时间2017.12.11~2017.12.27 设计地点实验楼工业图书馆 设计目的通过机械设计课程设计,进一步巩固和加深所学的理论知识,可以把机械设计及其他课程(机械制图、工程力学、工程材料及机械制造基础)中所学的理论知识在设计中加以综合运用,使理论知识和生产实践密切地结合起来,并使所学知识得到进一步巩固、深化和扩展。本次设计综合运用机械设计及其他先修课的知识,进行机械设计训练,使已学知识得以巩固、加深和扩展;学习和掌握通用机械零件、部件、机械传动及一般机械的基本设计方法和步骤,培养学生工程设计能力和分析问题,解决问题的能力;提高我们在计算、制图、运用设计资料(手册、图册)进行经验估算及考虑技术决策等机械设计方面的基本技能,同时增强电脑绘图的能力。

一、设计过程 (一)传动方案的分析与拟定 工作机轴圆周力F(KN) 2.3 运输带工作速度m/s 1.1 滚筒直径 D/mm 320 传动方案:电动机通过高速轴输入到双级圆柱齿轮减速器,高速级齿轮与低速级齿轮都采用圆柱直齿轮。低速级通过联轴器与滚筒连接。 (二)电动机的选择计算 卷筒所需功率P W =Fv/1000=2.53KW,电动机输出功率为P d =P W /η=2.91KW,根据P d 选择Y132M-4型三相异步电动机,电动机参数如下: 额定功率满载转速同步转速电动机质量 3kw 960r/min 1000r/min 81kg (三)传动比的计算与分配和传动参数的计算 1.计算总传动比 卷筒轴转速n w =60000v/πd=60000×1.1/(π×320)=65.68r/min,总传动比 i=n M /n W =960/65.68=14.62 2.分配传动比 取高速级传动比i 1 =4.52,则低速级传动比i 2 =i/i 1 =3.23 。 3.各轴转速: 轴Ⅰn 1 =n m =960r/min,轴Ⅱn 2 = n m /i 1 =212.39r/min,轴Ⅲn 3 = n 2/i 2 =65.76r/min 各轴输入功率: 轴Ⅰ P 1 =2.88kw,轴Ⅱ P 2 =2.79kw,轴Ⅲ P 3 =2.71kw 各轴输入转矩: 轴Ⅰ T 1 =28.65N·m,轴Ⅱ T 2 =125.45N·m,轴Ⅲ T 3 =393.56N·m, (四)传动零件的设计计算 高速级与低速级大小齿轮均选用软齿面渐开线斜齿轮,高速级与低速级大齿轮均选用45钢,硬度为240HBS,小齿轮均选用40Cr,调质处理后硬度为280HBS。二者材料硬度差为40HBS。

相关文档