文档视界 最新最全的文档下载
当前位置:文档视界 › 旋转变压器与数字输出转换器

旋转变压器与数字输出转换器

旋转变压器与数字输出转换器
旋转变压器与数字输出转换器

变压器的工作原理讲课教案

第三章变压器 第一节变压器的工作原理、分类及结构 一、结构 1.铁心 如图,分铁心柱、磁轭两部分。 材料:0.35mm的冷轧有取向硅钢片,如:DQ320,DQ289,Z10,Z11等。 工艺:裁减、截短、去角、叠片、固定。 2.绕组 分同心式和交叠式两大类。 交叠式如右图。 同心式包括圆筒式、连续式、螺旋式等,见上图。 材料:铜(铝)漆包线,扁线。 工艺:绕线包、套线包。 3.其它部分 油箱(油浸式)、套管、分接开关等。

4.额定值 额定容量S N 额定电压U 1N U 2N 额定电流I 1N I 2N 对于单相变压器,有N N N N N I U I U S 2211== 对于三相变压器,有N N N N N I U I U S 221133== 注意一点:变压器的二次绕组的额定电压是指一次绕组接额定电压的电源,二次绕组开路时的线电压。 [讨论题]一台三相电力变压器,额定容量1600kV A ,额定电压10kV/6.3kV ,Y ,d 接法,求一次绕组和二次绕组的额定电流和相电流。 自己看[例3-1]。

总结:熟悉变压器额定值的规定。 二、变压器的工作原理 按照上图规定变压器各物理量的参考方向,有 dt d N e dt d N e φ φ2 211,-=-= 定义变比 2 121N N E E k == 工作原理: (1) 变压器正常工作时,一次绕组吸收电能,二次绕组释放电能; (2) 变压器正常工作时,两侧绕组电压之比近似等于它们的匝数之比; (3) 变压器带较大的负载运行时,两侧绕组的电流之比近似等于它们匝数的反比; (4) 变压器带较大的负载运行时,两侧绕组所产生的磁通,在铁心中的方向相反。 总结:牢记变压器的四条原理。 第二节 单相变压器的空载运行 一、空载运行时的物理情况 如图,变压器一次绕组接额定电压,二次绕组开路,称为变压器空载运行。此时,变压器一次绕组流过一个很小的电流,称为空载电流i 0,大约占额定电流的2%~5%,因此空载时变压器的铜损耗是很小的。为什么? 又, 11144.4N f E U m Φ=≈

控制电机第三版课后习题答案

第二章 1. 为什么直流发电机电枢绕组元件的电势是交变电势而电刷电势是直流电势 P25 2. 如果图2 - 1中的电枢反时针方向旋转, 试问元件电势的方向和 A 、 B 电刷的极性如何 P7 3. 为了获得最大的直流电势, 电刷应放在什么位置 的电刷放在磁极轴线上 P 9-10 4. 为什么直流测速机的转速不得超过规定的最高转速 5. 如果电刷通过换向器所连接的导体不在几何中性线上, 上, 如图2 - 29 输出特性的影响。 6. 具有16个槽, (1) (2) (3) (4) 会出现什么问题 为什么端部对称的鼓形绕组 负载电阻不能小于给定值 而在偏离几何中性线 分析在此情况下对测速机正、 (见图2 - 3) P23 a 角的直线 反转的 所示,试综合应用所学的知识, (提示:在图中作一辅助线。)正反向特性不一致。 16个换向片的两极直流发电机结构如图 2 - 30所示。 试画出其绕组的完整连接图; 试画出图示时刻绕组的等值电路图; 若电枢沿顺时 针方向旋转, 试在上两图中标出感应电势方向和电刷极性; 如果电刷不是位于磁极轴线上, 例如顺时针方向移动一个换向片的距离, ~魚、—_A 2~A__4<5~~p- L 5 卫 J _臂駅 --- W.——Wv ~_W J _Wv ~VA _■- 第三章 7 8 9 10 11 12 1.直流电动机的电磁转矩和电枢电流由什么决定 答 电也电渝嘉的农示式: / _匕一凤小 直流电动机的电枢电流不仅取决于外加电压和本身的内阻,而且还取决于与转速成 正比的反电势(当=常数时) 根据转矩平衡方程式, 当负载转矩不变时, 电磁转矩不变; 加上励磁电流If 不 变,磁通①不变, 所以电枢电流Ia 也不变,直流电动机的电磁转矩和电枢电流由直流电 动机的总阻转矩决定。 T 二T 厂兀 2.如果用直流发电机作为直流电动机的负载来测定电动机的特性 当其他条件不变,而只是减小发电机负载电阻 么原因 RL 时,电动机的转速就下降。 (见图3 - 33),就会发现, 试问这是什 ^发 —— 如果励磁电流和被拖动的负载转矩都不变, 转速变化怎样 n 而仅仅提高电枢端 尺发 1 a 发 3. 一台他励直流电动机, 电压,试问电枢电流、 答:最终电枢电流不变,转速升高 4.已知一台直流电动机, 其电枢额定电压 Ua=110 V ,额定运行时的电枢电流 la= A ,转 速n=3600 r/m in,它的电枢电阻 Ra=50 Q, 空载阻转矩T0=15 mN m 。 试问该电动机额定 负载转矩是多少

旋变数字转换器常见问题解答

旋变数字转换器常见问题解答 编写人CAST (HM) 版本号V1.0_Draft ------------------------------------------------------------------------------------------------------------ 本报告为Analog Devices Inc. (ADI) 中国技术支持中心专用,ADI可以随时修改本报告而不用通知任何使用本报告的人员。 如有任何问题请与china.support@https://www.docsj.com/doc/4e18205326.html,联系。 ------------------------------------------------------------------------------------------------------------

目录 1 ADI公司旋变数字转换器产品概述 (2) 2 RDC原理和主要参数指标 (4) 2.1 旋转变压器 (4) 2.2 RDC的原理 (6) 2.3 RDC的绝对位置和速度输出 (7) 3 应用中的常见问题 (8) 3.1 RDC接口的相关问题 (8) 3.1.1 AD2S12xx系列集成励磁信号的RDC,如何提高励磁驱动能力 (8) 3.1.2 对于旋变的输出,也就是RDC的正余弦输入信号,应如何保护以确保系统精度 (9) 3.2 RDC性能相关的问题 (10) 3.2.1 AD2S12xx系列的串行时钟频率最高为多少 (10) 3.2.2 外部时钟是如何影响跟踪速率的 (10) 3.2.3 AD2S8x系列RDC的数字端口的逻辑电平是多少 (10) 3.2.4 RDC产品的一些相关指标参数的来源 (10) 3.3 RDC调试和应用中的相关问题 (11) 3.3.1 RDC上电和控制时序方面有哪些注意点 (11) 3.3.2 ADI的RDC是否适用于较低转速的应用 (12) 3.3.3 如果手头没有旋变或电机,我们能不能测试或验证RDC的功能 (12) 3.3.4 测量时如何降低外部噪声干扰 (12) 3.3.5 使用RDC中的故障检测指示需要注意的问题 (12) 3.3.6 如果旋变不是单极的,应如何应用RDC实现正确转换 (13) 3.3.7 能否实现两片RDC同步输出励磁信号 (13) 3.3.8 多旋变系统中,用多路器切换旋变需要注意些什么 (13) 3.3.9 如果系统中已有参考激励,则应该用什么型号的RDC,AD2S12xx系列是否合适... (13) 3.3.10 ADI有没有完整的伺服电机控制系统的解决方案 (14) 3.3.11 如果是高电压激励信号(如100V),有什么解决方案 (14) 3.3.12 AD2S8x系列RDC输出时的控制信号INHIBIT、ENABLE和BYTE SELECT应如 何使用 (14)

第四章旋转变压器

第四章 旋转变压器 工作原理:一、二次绕组的电磁感应耦合程度由转子的转角决定。当旋转变压器的一次侧外施单相交流电压励磁时,二次侧的输出电压将与转子转角严格保持某种函数关系。 第一节 旋转变压器的结构特点和分类 结构: 旋转变压器的典型结构由定子和转子两部分构成。 铁心:高磁导率的铁镍软磁合金片或硅钢片经冲制、绝缘、叠装而成。定、转子之间的气隙是均匀的,绕组:两个轴线在空间互相垂直的分布绕组。 转子绕组引出线和滑环相接,滑环应有四个,固定在转轴的一端, 分类: 按照输出电压和转子转角的函数关系来分: 1) 正余弦旋转变压器(代号XZ) 2) 线性旋转变压器(代号XX) 3) 比例式旋转变压器(代号XL) 4) 特殊函数旋转变压器(正切函数、倒数函数、圆函数、对数函数等) 按照电机极对数多少来分:单极对和多极对(可以提高系统的精度)。 按照有无电刷与滑环间的滑动接触来分:接触式和无接触式两类。 第二节 正余弦旋转变压器的工作原理 4.2.1正弦绕组 在旋转变压器中常用的绕组有两种形式,即双层短距分布绕组和同心式正 弦绕组。 双层短距分布绕组能够达到较高的绕组精度并有良好的工艺性,但在绕组中存在一定量的谐波磁动势分量,其所引起的正余弦函数的误差达0.01%-0.07%,再加上工艺因素引起的误差,使旋转变压器的精度受到一定的限制,故双层短距分布绕组只适合对精度要求不很高的旋转变压器。 同心式正弦绕组为高精度绕组,它使各次谐波削弱到相当小,正余弦函数的误差从0.06%降到0.03%以下。缺点为工艺性差,绕组系数低。 正弦绕组是指绕组各元件的导体数沿定子内圆或转子外圆按正弦规律分布的同心式绕组。通常有两种分布形式:第一类是绕组的轴线对准槽的中心线,第二类是绕组的轴线对准齿的中心线。旋转变压器大都采用这两类正弦绕组。 图4-2表示了正弦绕组中各元件在空间沿转子圆周外圆分布的情况及空间磁动势的分布情况。为了使正弦绕组中各元件匝数沿圆周按正弦分布,各元件的匝数应满足 Z )i (cos N N cm ci π 12-= 正弦绕组每相的总匝数为 ])142cos(...3cos [cos 4 1 Z Z Z Z N N N cm Z i ci π ππ-+++==∑= 4.2.2 正余弦旋转变压器的工作原理 正余弦旋转变压器通常为两极结构,定子和转子分别安装两套互相垂直的正弦绕组。 定子绕组:21D D ——励磁绕组,43D D ——交轴绕组(或补偿绕组)。 转子绕组(输出绕组):21Z Z ——正弦绕组,43Z Z ——余弦绕组。定、转子间的气隙是均匀的。 图4-2 正弦绕组 f U α 图4-1 正余弦旋转变压器 的原理示意图

模拟数字转换器的基本原理

模拟数字转换器的基本原理 我们处在一个数字时代,而我们的视觉、听觉、感觉、嗅觉等所感知的却是一个模拟世界。如何将数字世界与模拟世界联系在一起,正是模拟数字转换器(ADC)和数字模拟转换器(DAC)大显身手之处。任何一个信号链系统,都需要传感器来探测来自模拟世界的电压、电流、温度、压力等信号。这些传感器探测到的信号量被送到放大器中进行放大,然后通过ADC把模拟信号转化为数字信号,经过处理器、DSP或FPGA信号处理后,再经由DAC还原为模拟信号。所以ADC和DAC在信号链的框架中起着桥梁的作用,即模拟世界与数字世界的一个接口。 信号链系统概要 一个信号链系统主要由模数转换器ADC、采样与保持电路和数模转换器DAC组成,见图1。DAC,简单来讲就是数字信号输入,模拟信号输出,即它是一种把数字信号转变为模拟信号的器件。以理想的4 bit DAC为例,其输入有bit0 到bit3,其组合方式有16种。使用R-2R梯形电阻的4bit DAC在假定Vbit0到Vbit3都等于1V时,R-2R间的四个抽头电压有四种,分别为V1到V4。 采样保持电路也叫取样保持电路,它的定义是指将一个电压信号从模拟转换成数字信号时需要保持稳定性直到完成转换工作。它有两个阶段,一个是zero phase,一个是compare phase。采样保持电路的比较器通常要求其offset比较小,这样才能使ADC的精度更好。通常在比较器的后面需要放置一个锁存器,其目的是为了保持稳定性。 在采样电压快速变化时,需要用到具有FET开关的采样与保持电路。当FET开关导通时,输入电压保存在某个位置如C1中,当开关关断时,电压仍保持在该位置中进行锁存,直到下一个采样脉冲的到来。 ADC与DAC在功用上正好相反,它是模拟信号输入,数字信号输出,是一个混合信号器件。 模数转换器ADC ADC按结构分有很多种,按其采样速度和精度可分为: 多比较器快速(Flash)ADC; 数字跃升式(Digital Ramp)ADC; 逐次逼近ADC; 管道ADC;

变压器基本工作原理

第1章 变压器的基本知识和结构 1.1变压器的基本原理和分类 一、变压器的基本工作原理 变压器是利用电磁感应定律把一种电压等级的交流电能转换成同频率的另一种电压等级的交流电能。 变压器工作原理图 当原边绕组接到交流电源时,绕组中便有交流电流流过,并在铁心中产生与外加电压频率相同的磁通,这个交变磁通同时交链着原边绕组和副边绕组。原、副绕组的感应分别表示为 dt d N e Φ-=1 1 dt d N e Φ-=2 2 则 k N N e e u u ==≈2 12121 变比k :表示原、副绕组的匝数比,也等于原边一相绕组的感应电势与副边一相绕组的感应电势之比。 改变变压器的变比,就能改变输出电压。但应注意,变压器不能改变电能的频率。 二、电力变压器的分类 变压器的种类很多,可按其用途、相数、结构、调压方式、冷却方式等不同来进行分类。 按用途分类:升压变压器、降压变压器; 按相数分类:单相变压器和三相变压器;

按线圈数分类:双绕组变压器、三绕组变压器和自耦变压器; 按铁心结构分类:心式变压器和壳式变压器; 按调压方式分类:无载(无励磁)调压变压器、有载调压变压器; 按冷却介质和冷却方式分类:油浸式变压器和干式变压器等; 按容量大小分类:小型变压器、中型变压器、大型变压器和特大型变压器。 三相油浸式电力变压器的外形,见图1,铁心和绕组是变压器的主要部件,称为器身见图2,器身放在油箱内部。 1.2电力变压器的结构 一、铁心 1.铁心的材料 采用高磁导率的铁磁材料—0.35~0.5mm厚的硅钢片叠成。 为了提高磁路的导磁性能,减小铁心中的磁滞、涡流损耗。变压器用的硅钢片其含硅量比较高。硅钢片的两面均涂以绝缘漆,这样可使叠装在一起的硅钢片相互之间绝缘。

6_旋变反馈和R_D转换

旋转变压器反馈和 R/D 转换器 1. 旋转变压器 旋转变压器(简称旋变)由定子铁心,转子铁心,励磁绕组,正弦绕组,和余弦绕组组成。旋变有有刷旋变和无刷旋变两种结构形式。有刷旋变的定子铁心装有磁轴互相垂直的正弦绕组和余弦绕组,转子铁心装有励磁绕组,励磁绕组的接线通过导电环和电刷引出。转子在零位时(θ=0),励磁绕组的磁轴与的磁轴重合而与正弦绕组的磁轴垂直,余弦绕组输出电压V2最大,等于励磁电压V 乘变比K ,而正弦绕组输出电压V1为0。当旋变的转子转动时(θ≠0),正/余弦绕组输出电压的关系如下: V1 V V2 励磁绕组:加励磁电压 V = E 0 Sin ωt 正弦绕组: V1 = KV Sin θ 余弦绕组: V2 = KV Cos θ 金线系列电机安装的旋变为无刷旋变,结构如下: 励磁绕组 环形变压器次级绕组 在上图中,无刷旋变的左侧是环形变压器:旋变的励磁绕组作为环形变压器的原级绕组装在定子磁环上,次级绕组装在转子磁环上。 无刷旋变的右侧是旋转变压器:励磁绕组装在转子铁心上,正/余弦绕组装在定子铁心上。装在转子铁心上的励磁绕组与装在转子磁环上的环形变压器次级绕组连接。 当将励磁电压加在定子的励磁绕组上时,环形变压器次级绕组感应出的电动势加在转子铁心上的励磁绕组上,使旋转变压器获得励磁而工作。

Kollmorgen公司要求的旋变的规格为: 2.R/D转换器 旋变正/余弦绕组的输出信号虽然与转子的位置θ有关,但它们是模拟量信号,无法在数字系统中应用,必须用R/D转换器将它们转换为数字位置信号才能使用。CD2系列驱动器采用的是硬件R/D转换器-R/D转换芯片,CD5系列、S600/S300系列驱动器采用的是软件R/D 转换器,分别介绍如下: (1)硬件R/D转换器的工作原理 硬件R/D转换器的原理框图如图1所示: 图1 硬件R/D转换器的原理框图 硬件R/D转换器是一块芯片,内部由隔离变压器,高速数字正/余弦乘法器,误差放大器相器,频率成形器(积分器),压控振荡器VCO和±1计数器组成。R/D转换器的工作原理如下:假设±1计数器的当前状态字为Φ,由高速Sin / Cos数字乘法器完成下面的计算:V1 CosΦ = KE0 Sinωt Sinθ CosΦ V2 SinΦ = KE0 Sinωt Cosθ SinΦ 在误差放大器中完成减法运算: V1 CosΦ-V2 SinΦ= KE0 Sinωt(SinθCosΦ-CosθSinΦ) = KE0 SinωtSin(θ-Φ)

旋转变压器(resolver)原理

§4—1旋转变压器 旋转变压器是一种常用的转角检测元件,由于它结构简单,工作可靠,且其精度能满足一般的检测要求,因此被广泛应用在数控机床上。 一、旋转变压器的结构 旋转变压器的结构和两相绕线式异步电机的结构相似,可分为定子和转子两大部分。定子和转子的铁心由铁镍软磁合金或硅钢薄板冲成的槽状心片叠成。它们的绕组分别嵌入各自的槽状铁心内。定子绕组通过固定在壳体上的接线柱直接引出。转子绕组有两种不同的引出方式。根据转子绕组两种不同的引出方式,旋转变压器分为有刷式和无刷式两种结构形式。 图4-1是有刷式旋转变压器。它的转子绕组通过滑环和电刷直接引出,其特点是结构简单,体积小,但因电刷与滑环是机械滑动接触的,所以旋转变压器的可靠性差,寿命也较短。 图4-1 有刷式旋转变压器

图4-2 无刷式旋转变压器 图4—2是无刷式旋转变压器。它分为两大部分,即旋转变压器本体和附加变压器。附加变压器的原、副边铁心及其线圈均成环形,分别固定于转子轴和壳体上,径向留有一定的间隙。旋转变压器本体的转子绕组与附加变压器原边线圈连在一起,在附加变压器原边线圈中的电信号,即转子绕组中的电信号,通过电磁耦合,经附加变压器副边线圈间接地送出去。这种结构避免了电刷与滑环之间的不良接触造成的影响,提高了旋转变压器的可靠性及使用寿命,但其体积、质量、成本均有所增加。 常见的旋转变压器一般有两极绕组和四极绕组两种结构形式。两极绕组旋转变压器的定子和转子各有一对磁极,四极绕组则有两对磁极,主要用于高精度的检测系统。除此之外,还有多极式旋转变压器,用于高精度绝对式检测系统。 二、旋转变压器的工作原理 由于旋转变压器在结构上保证了其定子和转子(旋转一周)之间空气间隙内磁通分布符合正弦规律,因此,当激磁电压加到定子绕组时,通过电磁耦合,转子绕组便产生感应电势。图4-3为两极旋转变压器电气工作原理图。图中Z为阻抗。设 加在定子绕组的激磁电压为

三相变压器的工作原理及接线方法

三相变压器 三相变压器原理 三相变压器是3个相同的容量单相变压器的组合.它有三个铁芯柱,每个铁芯柱都绕着同一相的2个线圈,一个是高压线圈,另一个是低压线圈. 三相变压器是电力工业常用的变压器. 变压器接法与联结组 用于国内变压器的高压绕组一般联成Y接法,中压绕组与低压绕组的接法要视系统情况而决定。所谓系统情况就是指高压输电系统的电压相量与中压或低压输电系统的电压相量间关系。如低压系配电系统,则可根据标准规定决定。 1).国内的500、330、220与110kV的输电系统的电压相量都是同相位的,所以,对下列电压比的三相三绕组或三相自耦变压器,高压与中压绕组都要用星形接法。当三相三铁心柱铁心结构时,低压绕组也可采用星形接法或角形接法,它决定于低压输电系统的电压相量是与中压及高压输电系统电压相量为同相位或滞后30°电气角。 500/220/LVkV─YN,yn0,yn0或YN,yn0,d11 220/110/LVkV─YN,yn0,yn0或YN,yn0,d11 330/220/LVkV─YN,yn0,yn0或YN,yn0,d11 330/110/LVkV─YN,yn0,yn0或YN,yn0,d11 2).国内60与35kV的输电系统电压有二种不同相位角。 如220/60kV变压器采用YNd11接法,与220/69/10kV变压器用YN,yn0,d11接法,这二个60kV输电系统相差30°电气角。 当220/110/35kV变压器采用YN,yn0,d11接法,110/35/10kV变压器采用YN,

yn0,d11接法,以上两个35kV输电系统电压相量也差30°电气角。 所以,决定60与35kV级绕组的接法时要慎重,接法必须符合输电系统电压相量的要求。根据电压相量的相对关系决定60与35kV级绕组的接法。否则,即使容量对,电压比也对,变压器也无法使用,接法不对,变压器无法与输电系统并网。 3).国内10、6、3与0.4kV输电与配电系统相量也有两种相位。在上海地区,有一种10kV与110kV输电系统电压相量差60°电气角,此时可采用110/35/10kV电压比与YN,yn0,y10接法的三相三绕组电力变压器,但限用三相三铁心柱式铁心。 4).但要注意:单相变压器在联成三相组接法时,不能采用YNy0接法的三相组。三相壳式变压器也不能采用YNy0接法。 三相五柱式铁心变压器必须采用YN,yn0,yn0接法时,在变压器内要有接成角形接法的第四绕组,它的出头不引出(结构上要做电气试验时引出的出头不在此例)。 5).不同联结组的变压器并联运行时,一般的规定是联结组别标号必须相同。 6).配电变压器用于多雷地区时,可采用Yzn11接法,当采用z接法时,阻抗电压算法与Yyn0接法不同,同时z接法绕组的耗铜量要多些。Yzn11接法配电变压器的防雷性能较好。 7).三相变压器采用四个卷铁心框时也不能采用YNy0接法。 8).以上都是用于国内变压器的接法,如出口时应按要求供应合适的接法与联结组标号。 9).一般在高压绕组内都有分接头与分接开关相联。因此,选择分接开关时(包括有载调压分接开关与无励磁调压分接开关),必须注意变压器接法与分接开关接法相配合(包括接法、试验电压、额定电流、每级电压、调压范围等)。对YN接法的有载调压变压器所用有载调压分接开关而言,还要注意中点必须能引出。

旋转变压器基础知识

旋转变压器是一种输出电压随转子转角变化的信号元件。当励磁绕组以一定频率的交流电压励磁时,输出绕组的电压幅值与转子转角成正弦、余弦函数关系,或保持某一比例关系,或在一定转角范围内与转角成线性关系。它主要用于坐标变换、三角运算和角度数据传输,也可以作为两相移相器用在角度--数字转换装置中。 按输出电压与转子转角间的函数关系,我所目前主要生产以下三大类旋转变压器: 1. 正--余弦旋转变压器(XZ )----其输出电压与转子转角的函数关系成正弦或余弦函数关系。 2. 线性旋转变压器(XX )、(XDX )----其输出电压与转子转角成线性函数关系。 线性旋转变压器按转子结构又分成隐极式和凸极式两种,前者(XX )实际上也是正--余弦旋转变压器,不同的是采用了特定的变比和接线方式。后者(XDX )称单绕组线性旋转变压器。 3. 比例式旋转变压器(XL )----其输出电压与转角成比例关系。 二、 旋转变压器的工作原理 由于旋转变压器在结构上保证了其定子和转子(旋转一周)之间空气间隙内磁通分布符合正弦规律,因此,当激磁电压加到定子绕组时,通过电磁耦合,转子绕组便产生感应电势。图4-3为两极旋转变压器电气工作原理图。图中Z 为阻抗。设加在定子绕组的激磁电压为 sin ω=- S m V V t (4—1) 图 4-3 两极旋转变压器 根据电磁学原理,转子绕组12B B 中的感应电势则为 sin sin sin θθω== (4-2)B s m V KV KV t (4—2) 式中K ——旋转变压器的变化;—的幅值m s V V ; θ——转子的转角,当转子和定子的磁轴垂直时,θ=0。如果转子 安装在机床丝杠上,定子安装在机床底座上,则θ角代表的是丝杠转过 的角度,它间接反映了机床工作台的位移。 由式(4-2)可知,转子绕组中的感应电势 B V 为以角速度ω随时间t 变化的交变电压信号。 其幅值sin θm KV 随转子和定子的相对角位移θ以正弦函数变化。因此,只要测量出转子绕组中的感应电势的幅值,便可间接地得到转子相对于定子的位置,即θ角的大小。 以上是两极绕组式旋转变压器的基本工作原理,在实际应用中,考虑到使用的方便性和检测精度等因素,常采用四极绕组式旋转变压器。这种结构形式的旋转变压器可分为鉴相式和鉴幅式两种工作方式。 1 鉴相式工作方式是一种根据旋转变压器转子绕组中感应电势的相位来确定被测位移大小的检测方式。如图4-4所示,定子绕组和转子绕组均由两个匝数相等互相垂直的绕组组成。图中12S S 为定子主绕组,12 K K 为定子辅助绕组。当12S S 和12K K 中分别通以交变激磁电压时 s m V V cos (43);V V sin (44)ωω--= = t t (4—3) s m (43);V V sin (44)ω-- = t t (4—4) 根据线性叠加原理,可在转子绕组12B B 中得到感应电势B V ,其值为激磁电压s V 和k V 在12B B 中产生 感应电势BS V 和BK V 之和,即

精密旋变数字转换器测量角位置和速度

精密旋变数字转换器测量角位置和速度 作者:Jakub Szymczak、Shane O’Meara、Johnny S. Gealon和Christopher Nelson De La Rama 简介 旋变器和机电传感器可用来精确测量角位置,以可变耦合变压器的方式工作,其初级绕组和两个次级绕组之间的磁耦合量根据旋转部件(转子)位置而改变;转子通常安装在电机轴上。旋变器可部署在工业电机控制、伺服器、机器人、混合动力和全电动汽车中的动力系统单元以及要求提供精确轴旋转的其他许多应用中。旋变器在这些应用中可以长期耐受严苛条件,是恶劣环境下军用系统的完美选择。 标准旋变器的初级绕组位于转子上,两个次级绕组位于定子上。而另一方面,可变磁阻旋变器的转子上无绕组,其初级和次级绕组均在定子上,但转子的凸极(裸露极点)将次级正弦变化耦合至角位置。图1显示经典和可变磁阻旋变器。 图1. 经典旋变器与可变磁阻旋变器 如等式1所示,当正弦信号激励初级绕组R1 – R2时,在次级绕组上会产生一个感应信号。耦合至次级绕组的信号大小与相对于定子的转子位置成函数关系,其衰减系数称为旋变器转换比。由于次级绕组机械错位90°,两路正弦输出信号彼此间的相位相差90°。旋变器输入和输出电压之间的关系如等式2和等式3所示。等式2为正弦信号,等式3为余弦信号。 (1) (2) (3) 其中,θ是轴角,ω是激励信号频率,E0是激励信号幅度,T 是旋变器转换比。 两路输出信号由轴角的正弦和余弦信号调制。激励信号以及正弦和余弦输出信号的图示如图2所示。正弦信号在90°和270°时具有最大幅度,余弦信号在0°和180°时具有最大幅度。 图2. 旋变器电气信号示意图 旋变器传感器有一组独特的参数,在设计时应予以考虑。最重要的电气参数以及相关的典型规格汇总在表1中。 表1. 旋变器关键参数 电气参数典型范围单位说明 输入电压3–7 V rms 建议施加在旋变器初级绕组R1 – R2的激励信号幅度 输入频率50–20,000 Hz 建议施加在旋变器初级绕组R1 – R2的激励信号频率 转换比0.2–1.0 V/V 初级和次级绕组信号幅度比 输入阻抗100–500 ?旋变器输入阻抗 相移±25 度施加在初级绕组(R1 – R2)上的激励信号和次级绕组(S3 – S1, S2 – S4)上的正弦/余弦信号之间的相移 极点对1–3 每次机械旋转的电气旋转数

数字-模拟音频转换器

用户手册 数字-模拟音频转换器 2路光纤+2路同轴音频切换器 使用手册 产品型号:ADSW0006M1 聆听自然的声音! 备注 本公司保留不需要通知本手册读者而对产品实物的包装及其相关文档进行修改的权利。 ? 2012 本公司版权所有

引言 尊敬的客户: 您好! 非常感谢您购买本公司的产品。为了实现产品的最佳效果和保证安全,请您在对产品进行连接、操作、调试前仔细阅读本手册。此手册请予以保留,以备将来查阅。 本公司所生产的HDMI转换器、切换器、网线延长器、矩阵、分配器等系列产品,其设计之目的是为了让您的影音设备使用起来更便捷,更舒适,更高效,更节能。 这款音频转换器可以把四路SPDIF信号(2路光纤+2路同轴)信号自由切换到一路光纤信号输出,同时将LPCM格式的数字音频转换成立体声模拟音频输出。可广泛用于DVD播放机、蓝光机、网络播放器、高清播放器、PS2、PS3、Xbox360、PC等数字音频转换输出。 本公司所生产设备为以下应用提供解决方案:如对噪声、传输距离及安全有限制的场所、数据中心控制、信息分配、会议室演示以及教学环境和公司培训场所。 真诚服务是我们的理念,顾客满意是我们的宗旨。本公司将以最优惠的价格提供给客户最好的产品,并竭诚为客户提供优质服务。 产品简介 产品特点: ●4路SPDIF(2路光纤+2路同轴)数字音频输入,自由切换到一路光纤输出,同时转换成 1路L/R模拟音频输出和1路耳机输出 ●采用192KHz/24bit DAC音频转换芯片 ●光纤输出支持杜比AC3、DTS、THX、 HDCD、LPCM等数字音频格式 ●支持LPCM数字音频格式转换成模拟音频输出 ●自动检测识别输入数字音频信号格式,非LPCM音频输入时模拟输出自动静音 ●音频输入状态指示。当无音频输入或者输入错误数据时,对应通道指示灯开始闪烁 ●一键切换输入源及电源待机,操作方便快捷 ●耳机放大输出,能直接驱动3.5mm插头通用耳机 ●高品质音质,低噪音 ●断电记忆功能,重新开机后自动切换到上次使用信号通道 ●使用DC5V/1A外置电源适配器供电

自动控制元件(第四版)习题答案

部分习题答案,仅供参考! 直流测速发电机 1.为什么直流发电机电枢绕组元件的电势是交变电势而电刷电势是直流电势 答:电枢连续旋转,导体ab和cd轮流交替地切割N极和S极下的磁力线,因而ab和cd中的电势及线圈电势是交变的。 由于通过换向器的作用,无论线圈转到什么位置,电刷通过换向片只与处于一定极性下的导体相连接,如电刷A始终与处在N极下的导体相连接,而处在一定极性下的导体电势方向是不变的,因而电刷两端得到的电势极性不变,为直流电势。 2. 如果图2 - 1 中的电枢反时针方向旋转,试问元件电势的方向和A、B电刷的极性如何 答:在图示瞬时,N极下导体ab中电势的方向由b指向a,S极下导体cd中电势由d指向c。电刷A通过换向片与线圈的a端相接触,电刷B与线圈的d端相接触,故此时A电刷为正,B电刷为负。 当电枢转过180°以后,导体cd处于N极下,导体ab处于S极下,这时它们的电势与前一时刻大小相等方向相反,于是线圈电势的方向也变为由a到d,此时d为正,a为负,仍然是A刷为正,B刷为负。 4. 为什么直流测速机的转速不得超过规定的最高转速负载电阻不能小于给定值

答:转速越高,负载电阻越小,电枢电流越大,电枢反应的去磁作用越强,磁通被削弱得越多,输出特性偏离直线越远,线性误差越大,为了减少电枢反应对输出特性的影响,直流测速发电机的转速不得超过规定的最高转速,负载电阻不能低于最小负载电阻值,以保证线性误差在限度的范围内。而且换向周期与转速成反比,电机转速越高,元件的换向周期越短;eL正比于单位时间内换向元件电流的变化量。基于上述分析,eL必正比转速的平方,即eL∝n2。同样可以证明ea∝n2。因此,换向元件的附加电流及延迟换向去磁磁通与n2成正比,使输出特性呈现非线性。所以,直流测速发电机的转速上限要受到延迟换向去磁效应的限制。为了改善线性度,采用限制转速的措施来削弱延迟换向去磁作用,即规定了最高工作转速。 第三章 1. 直流电动机的电磁转矩和电枢电流由什么决定 答;直流电动机的电枢电流不仅取决于外加电压和本身的内阻,而且还取决于与转速成正比的反电势(当=常数时) 根据转矩平衡方程式,当负载转矩不变时,电磁转矩不变;加上励磁电流If不变,磁通Φ不变,所以电枢电流Ia也不变,直流电动机的电磁转矩和电枢电流由直流电动机的总阻转矩决定。 3. 一台他励直流电动机,如果励磁电流和被拖动的负载转矩都不变,而仅仅提高电枢端电压,试问电枢电流、转速变化怎样答:当直流伺服电动机负载转矩、励磁电流不变时,仅将电枢电压

数字转换器

数字—模拟转换器(DAC )原理研究 一.内容描述: D/A 转换器通常是把加权值与二进制码的各比特相对应的电压或者电流,按二进制码进行相加,从而得到模拟信号的方法。产生加权电压和电流的方法有使用负载电阻的方法和使用梯形电阻网络的方法。 二,原理描述 本次实验主要以三位转换器为主要的研究对象。先对其原理进行分析,如下 图所示为建立的电路图: 建立的仿真电路图: 假设输入的数字为D 2D 1D 0=001,即D 0=1时,此时只有一个开关接至电压源,其他的均接地,T 型电阻网络的等效电路: 2 2122 V 0 k Ω1k Ω 1k Ω 2k Ω 2k Ω2k Ω 2k Ω 2V s V s V s

根据戴维南等效电路,每等效一次电压源的值都缩小为原来的一半。下图为其等效电路图的演化过程: =》 =》 由于输出端开路则V0= 32 3 2s V ,同理当输入数字分别为010,100时即D 1, D 2分别单独

接至参考电压源V s ,根据上述方法,可求得D/A 转换器的输出电压分别为 V 0= 32?22s V , V 0=32?2 Vs ,对于任意输入的数字信号D 2D 1D 0, 根据叠加定理,可求得D/A 转换器的输出电压为:V 0= D 0?32?32s V + D 1?32?2 2s V ,+ D 2?32?2 Vs = 32?32 1 ?V D D D )222(001122++s 三 进行仿真实验: 1. 下图为建立的仿真电路图。 首先手动观察V0的值的变化:Di=1:开关接Vs Di=0:开关接地 进行仿真实验得到的结果建立表格得: 二进制数 000 100 101 010 011 001 110 111 电压值(v ) 0 1.0 5.0 2.0 6.0 4.0 3.0 7.0 输出矩形波时的仿真电路图:

电机及拖动 第七章 习题

第七章驱动和控制微电机 思考题与习题 7.1 单相异步电动机主要分为哪几种类型?简述罩极电动机的工作原理。 7.2 三相异步电动机起动时,如果电源一相断线,这时电动机能否起动?如绕 组一相断线,这时电动机能否起动?Y联结和?联结情况是否一样?如果运行中电源或绕组一相断线,能否继续旋转,有何不良后果? 7.3 试比较单相异步电动机和三相异步电动机的Tem-s 曲线,着重就以下各点 比较:(1)当s=0时的转矩;(2)当s=1时的转矩;(3)最大转矩;(4)在有相同转矩时的转差率;(5)当1

磁阻式多极旋转变压器的工作原理

磁阻式多极旋转变压器的工作原理 普通旋转变压器的精度较低,为角分的数量级,一般应用于精度要求不高或大型机床的粗测和中测系统中。为提高精度,近年来数控系统中广泛采用磁阻式多极旋转变压器。 磁阻式多极旋转变压器(又称细分解算器,或游标解算器),它是一种多极角度传感元件,实际上是一种非接触式磁阻可变的耦合变压器,其结构与传统的多极旋转变压器不同之处在于其励磁绕组和输出绕组均安置在定子铁心的槽中,转子仅由带齿的选片叠制而成,不放任何绕组,实现无接触运行。定子冲片内圆冲制有若干大齿(也称为极靴),每个大齿上又冲制若干等分小齿,绕组安放在大齿槽中。转子外圆表面冲制有若干等分小齿,其数与擞对数相等。输出和输入绕组均为集中绕制,其正余弦绕组的匝数控正弦规律变化。而传统结构的多极旋转变压器是采用分布式绕组。图6-4所示为磁阻式多极旋转变压器的原理示意图,其中画出了5个定子齿,4个转于齿。定子槽内安置了逐槽反向串接的输入绕组1-1和两个间隔绕制反向串接的输出绕组2-2,3-3。当给输入绕组1-1加上交流正弦电压时,两个输出绕组2-2、3-3中分别得到两个电压,其幅值主要取决于定子和转子齿的相对位置间气隙磁导的大小。当转子相对定子转动时,空间的气隙磁导发生变化,转子每转过一个转子齿距,气隙磁导变化一个周期;而当转子转过一周时,气隙磁导变化的周期数等于转子齿数。这样,转子的齿数就相当于磁阻式多极旋转变压器极对数,从而达到多极的效果。气隙磁导的变化,导致输入和输出绕组之间互感的变化,输出绕组感应的电势亦发生变化。实际应用中是通过输出电压幅值的变化而测得转子的转角的。

磁阻式多极旋转变压器没有电刷和滑环接触,工作可靠、抗冲击能力强,并能连续高速运行、寿命长,多用于高精度及各种控制式电气变速双通道系统,提高数控机床定位精度。尽管它的测量精度不如感应同步器和光栅,但高于普通旋转变压器,误差不超过3.5角秒,而且成本低,不需维修,输出信号电平高(0.5—1.5V.最高可达4V),所以在数控机床上的应用很有前途。

旋转变压器的工作原理及应用

旋转变压器的工作原理及应用 旋转变压器的工作原理及应用 旋转变压器又称分解器,是一种控制用的微电机,它将机械转角变换成与该转角呈某一函数关系的电信号的一种间接测量装置。在结构上与二相线绕式异步电动机相似,由定子和转子组成。定子绕组为变压器的原边,转子绕组为变压器的副边。激磁电压接到转子绕组上,感应电动势由定子绕组输出。常用的激磁频率为400Hz,500Hz,1000Hz和5000Hz。 旋转变 压器结构简单,动作灵敏,对环境无特殊要求,维护方便,输出信号幅度大,抗干扰性强,工作可靠。因此,在数控机床上广泛应用。 通常应用的旋转变压器为二极旋转变压器,其定子和转子绕组中各有互相垂直的两个绕组。另外,还有一种多极旋转变压器。也可以把一个极对数少的和一个极对数多的两种旋转变压器做在一个磁路上,装在一个机壳内,构成“粗测”和“精测”电气变速双通道检测装置,用于高精度检测系统和同步系统。 什么是旋转变压器以及应用方式 什么是旋转变压器以及应用方式 旋转变压器又称分解器,是一种控制用的微电机,它将机械转角变换成与该转角呈某一函数关系的电信号的一种间接测量装置。 在结构上与二相线绕式异步电动机相似,由定子和转子组成。定子绕组为变压器的原边,转子绕组为变压器的副边。激磁电压接到转子绕组上,感应电动势由定子绕组输出。常用的激磁频率为400Hz,500Hz,1000Hz和5000Hz。 旋转 变压器结构简单,动作灵敏,对环境无特殊要求,维护方便,输出信号幅度大,抗干扰性强,工作可靠。因此,在数控机床上广泛应用。 通常应用的旋转变压器为二极旋转变压器,其定子和转子绕组中各有互相垂直的两个绕组。另外,还有一种多极旋转变压器。也可以把一个极对数少的和一个极对数多的两种旋转变压器做在一个磁路上,装在一个机壳内,构成“粗测”和“精测”电气变速双通道检测装置,用于高精度检测系统和同步系统。 旋转变压器的应用 旋转变压器作为位置检测装置有两种应用方式:鉴相方式和鉴幅方式。 1.鉴相工作方式 在旋转变压器定子的两相正交绕组(正弦用s和和余弦用c表示),一般称为正弦绕组和余弦绕组上,分别输入幅值相等,频率相同的正弦、余弦激磁电压 Us=Umsinωt Uc=Umcosωt 两相激磁电压在转子绕组中会产生感应电动势。根据线性叠加原理,在转子绕组中感应电压为 U=kUssinθ机+kUccosθ机=kUmcos(ωt-θ机)

变压器基本工作原理

第1章 变压器的基本知识和结构 1.1变压器的基本原理和分类 一、变压器的基本工作原理 变压器是利用电磁感应定律把一种电压等级的交流电能转换成同频率的另一种电压等级的交流电能。 变压器工作原理图 当原边绕组接到交流电源时,绕组中便有交流电流流过,并在铁心中产生与外加电压频率相同的磁通,这个交变磁通同时交链着原边绕组和副边绕组。原、副绕组的感应分别表示为 则 k N N e e u u ==≈2 12121 变比k :表示原、副绕组的匝数比,也等于原边一相绕组的感应电势与副边一相绕组的感应电势之比。 改变变压器的变比,就能改变输出电压。但应注意,变压器不能改变电能的频率。 二、电力变压器的分类 变压器的种类很多,可按其用途、相数、结构、调压方式、冷却方式等不同来进行分类。 按用途分类:升压变压器、降压变压器; 按相数分类:单相变压器和三相变压器; 按线圈数分类:双绕组变压器、三绕组变压器和自耦变压器; 按铁心结构分类:心式变压器和壳式变压器; 按调压方式分类:无载(无励磁)调压变压器、有载调压变压器; 按冷却介质和冷却方式分类:油浸式变压器和干式变压器等; 按容量大小分类:小型变压器、中型变压器、大型变压器和特大型变压器。 三相油浸式电力变压器的外形,见图1,铁心和绕组是变压器的主要部件,称为器身见图2,器身放在油箱内部。

1.2电力变压器的结构 一、铁心 1.铁心的材料 采用高磁导率的铁磁材料—0.35~0.5mm厚的硅钢片叠成。 为了提高磁路的导磁性能,减小铁心中的磁滞、涡流损耗。变压器用的硅钢片其含硅量比较高。硅钢片的两面均涂以绝缘漆,这样可使叠装在一起的硅钢片相互之间绝缘。 2.铁心形式 铁心是变压器的主磁路,电力变压器的铁心主要采用心式结构 。 二、绕组 1.绕组的材料 铜或铝导线包绕绝缘纸以后绕制而成。 2.形式

用于AD2S1210旋变数字参考信号输出的高电流驱动器

用于AD2S1210旋变数字参考信号输出的高电流驱动器 ADI 时间:2011年06月17日 字体: 大中小 关键词:数字转换器驱动器振荡器运算放大器电路 ADI 电路功能与优势 旋变数字转换器(RDC)广泛用于汽车和工业应用中,用来提供电机轴位置/速度反馈信息。 AD2S1210是一款完整的10位至16位分辨率RDC,片内集成可编程正弦波振荡器,为旋变器提供激励。由于工作环境恶劣,AD2S1210(C级和D级)的额定温度范围为?40°C至+125°C的扩展工业温度范围。 图1所示的高电流驱动器放大AD2S1210的参考振荡器输出并进行电平转换,从而优化与旋变器的接口。该驱动器是一个使用双通道、低噪声、精密运算放大器AD8662和分立互补发射极跟随器输出级的复合放大器。一个类似的驱动器级用于互补激励输出,从而提供一个全差分信号来驱动旋变器初级绕组。AD8662提供8引脚窄体SOIC和8引脚MSOP两种封装,额定温度范围均为?40°C至 +125°C的扩展工业温度范围。 图1. 用于AD2S1210 RDC参考信号输出的高电流缓冲器(原理示意图,未显示 去耦和所有连接)

RDC与旋转传感器配合使用,以便检测电机轴的位置和转速。在这种应用中,旋变器利用正弦波参考信号进行激励。初级绕组上的旋变器激励参考信号被转换为两个正弦差分输出信号:正弦和余弦。正弦和余弦信号的幅度取决于实际的旋变器位置、旋变器转换比和激励信号幅度。 RDC同步采样两个输入信号,以便向数字引擎(即所谓Type II跟踪环路)提供数字化数据。Type II跟踪环路负责计算位置和速度。典型应用电路如图2所示。

相关文档