文档视界 最新最全的文档下载
当前位置:文档视界 › (完整版)乘法公式的灵活运用

(完整版)乘法公式的灵活运用

(完整版)乘法公式的灵活运用
(完整版)乘法公式的灵活运用

1

乘法公式的灵活运用

一、复习:

(a+b)(a-b)=a 2

-b 2

(a+b)2

=a 2

+2ab+b 2

(a-b)2

=a 2

-2ab+b 2

(a+b)(a 2

-ab+b 2

)=a 3

+b 3

(a-b)(a 2

+ab+b 2

)=a 3

-b 3

归纳小结公式的变式,准确灵活运用公式: ① 位置变化,(x +y )(-y +x )=x 2

-y 2

② 符号变化,(-x +y )(-x -y )=(-x )2

-y 2

= x 2

-y 2

③ 指数变化,(x 2

+y 2

)(x 2

-y 2

)=x 4

-y 4 ④ 系数变化,(2a +b )(2a -b )=4a 2

-b 2

⑤ 换式变化,[xy +(z +m )][xy -(z +m )]

=(xy )2

-(z +m )2

=x 2y 2-(z +m )(z +m ) =x 2y 2

-(z 2

+zm +zm +m 2

) =x 2y 2

-z 2

-2zm -m 2

⑥ 增项变化,(x -y +z )(x -y -z )

=(x -y )2

-z 2

=(x -y )(x -y )-z 2

=x 2

-xy -xy +y 2

-z 2 =x 2

-2xy +y 2

-z 2

⑦ 连用公式变化,(x +y )(x -y )(x 2

+y 2

)

=(x 2

-y 2

)(x 2

+y 2) =x 4

-y 4

⑧ 逆用公式变化,(x -y +z )2

-(x +y -z )2

=[(x -y +z )+(x +y -z )][(x -y +z )-(x +y -z )] =2x (-2y +2z ) =-4xy +4xz

例1.已知2=+b a ,1=ab ,求22b a +的值。 解:∵=+2)(b a 222b ab a ++ ∴2

2b a +=ab b a 2)(2-+

∵2=+b a ,1=ab ∴22b a +=21222

=?-

例2.已知8=+b a ,2=ab ,求2)(b a -的值。 解:∵=+2)(b a 222b ab a ++ =-2)(b a 2

22b ab a +-

∴-+2)(b a =-2)(b a ab 4 ∴-+2)(b a ab 4=2

)(b a -

∵8=+b a ,2=ab ∴=-2)(b a 562482

=?-

例3:计算19992

-2000×1998

〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。 解:19992

-2000×1998 =19992

-(1999+1)×(1999-1) =19992

-(19992

-12

)=19992

-19992

+1 =1

例4:已知a+b=2,ab=1,求a 2

+b 2

和(a-b)2

的值。 〖解析〗此题可用完全平方公式的变形得解。 解:a 2

+b 2

=(a+b)2

-2ab=4-2=2 (a-b)2

=(a+b)2

-4ab=4-4=0

2

例5:已知x-y=2,y-z=2,x+z=14。求x 2

-z 2

的值。

〖解析〗此题若想根据现有条件求出x 、y 、z 的值,比较麻烦,考虑到x 2

-z 2

是由x+z 和x-z 的积得来的,所以只要求出x-z 的值即可。

解:因为x-y=2,y-z=2,将两式相加得x-z=4,所以x 2

-z 2

=(x+z )(x-z)=14×4=56。

例6:判断(2+1)(22

+1)(24

+1)……(22048

+1)+1的个位数字是几?

〖解析〗此题直接计算是不可能计算出一个数字的答案,故有一定的规律可循。观察到1=(2-1)和上式可构

成循环平方差。

解:(2+1)(22

+1)(24

+1)……(2

2048

+1)+1 =(2-1)(22

+1)(24

+1)……(22048

+1)+1

=24096

=161024 因为当一个数的个位数字是6的时候,这个数的任意正整数幂的个位数字都是6,所以上式的个位数字必为6。

例7.运用公式简便计算

(1)1032

(2)1982

解:(1)1032=(100+3)2 =1002+2?100?3+32

=10000+600+9 =10609 (2)1982

=(200-2)2

=2002

-2?200?2+22

=40000-800+4 =39204

例8.计算

(1)(a +4b -3c )(a -4b -3c ) (2)(3x +y -2)(3x -y +2)

解:(1)原式=[(a -3c )+4b ][(a -3c )-4b ]=(a -3c )2

-(4b )2

=a 2

-6ac +9c 2

-16b 2

(2)原式=[3x +(y -2)][3x -(y -2)]=9x 2

-( y 2

-4y +4)=9x 2

-y 2

+4y -4

例9.解下列各式

(1)已知a 2

+b 2

=13,ab =6,求(a +b )2

,(a -b )2

的值。 (2)已知(a +b )2

=7,(a -b )2

=4,求a 2

+b 2

,ab 的值。

(3)已知a (a -1)-(a 2

-b )=2,求222

a b ab +-的值。

(4)已知13x x -=,求4

41x x

+的值。

分析:在公式(a +b )2=a 2+b 2+2ab 中,如果把a +b ,a 2+b 2

和ab 分别看作是一个整体,则公式中有三个未知数,知道了两个就可以求出第三个。 解:(1)∵a 2

+b 2

=13,ab =6

∴(a +b )2

=a 2

+b 2

+2ab =13+2?6=25 (a -b )2

=a 2

+b 2

-2ab =13-2?6=1 (2)∵(a +b )2

=7,(a -b )2

=4

∴ a 2

+2ab +b 2

=7 ① a 2

-2ab +b 2

=4 ② ①+②得 2(a 2

+b 2

)=11,即22

11

2

a b +=

①-②得 4ab =3,即34

ab =

(3)由a (a -1)-(a 2

-b )=2 得a -b =-2

()22221222a b ab a b ab +∴-=+-()()22

112222

a b =-=?-=

3

(4)由13x x -=,得19x x 2

?

?-= ??

? 即22129x x +-= 22111x x ∴+=

221121x x 2

??

∴+= ??

? 即4412121x x ++= 441119x x +=

例10.四个连续自然数的乘积加上1,一定是平方数吗?为什么? 分析:由于1?2?3?4+1=25=52

2?3?4?5+1=121=112

3?4?5?6+1=361=192

…… 得猜想:任意四个连续自然数的乘积加上1,都是平方数。 解:设n ,n +1,n +2,n +3是四个连续自然数

则n (n +1)(n +2)(n +3)+1 =[n (n +3)][(n +1)(n +2)]+1 =(n 2

+3n )2

+2(n 2

+3n )+1

=(n 2

+3n )(n 2

+3n +2)+1 =(n 2

+3n +1)2

∵n 是整数,∴ n 2

,3n 都是整数 ∴ n 2

+3n +1一定是整数

∴(n 2

+3n +1)是一个平方数 ∴四个连续整数的积与1的和必是一个完全平方数。

例11.计算 (1)(x 2

-x +1)2

(2)(3m +n -p )2

解:(1)(x 2

-x +1)2

=(x 2)2

+(-x )2

+12

+2? x 2

?(-x )+2?x 2

?1+2?(-x )?1=x 4

+x 2

+1-2x 3

+2x 2

-2x

=x 4

-2x 3

+3x 2

-2x +1

(2)(3m +n -p )2

=(3m )2

+n 2

+(-p )2

+2?3m ?n +2?3m ?(-p )+2?n ?(-p )=9m 2

+n 2

+p 2

+6mn -6mp -2np 分析:两数和的平方的推广

(a +b +c )2

=[(a +b )+c ]2

=(a +b )2

+2(a +b )?c +c 2

=a 2

+2ab +b 2

+2ac +2bc +c 2

=a 2

+b 2

+c 2

+2ab +2bc +2ac 即(a +b +c )2

=a 2

+b 2

+c 2

+2ab +2bc +2ac

几个数的和的平方,等于它们的平方和加上每两个数的积的2倍。

二、乘法公式的用法

(一)、套用:这是最初的公式运用阶段,在这个环节中,应弄清乘法公式的来龙去脉,准确地掌握其特征,为辨认和运用公式打下基础,同时能提高学生的观察能力。

例1. 计算:

()()53532

2

2

2

x

y

x

y

+- 解:原式()()

=-=-5325922

22

44x y x y

(二)、连用:连续使用同一公式或连用两个以上公式解题。 例2. 计算:()()()()111124-+++a a a a

解:原式()()()=

-++1112

2

4

a a a

()()=-+=-1114

4

8

a a a

例3. 计算:()()32513251x y z x y z +-+-+--

解:原式()()[]()()[]=

-++--+25312531y z x y z x

4 ()()

=--+=-+---253149252061

22

2

2

2

y z x y x z yz x

三、逆用:学习公式不能只会正向运用,有时还需要将公式左、右两边交换位置,得出公式的逆向形式,并运用其解决问题。

例4. 计算:()()57857822a b c a b c +---+

解:原式()()[]()()[]=

+-+-++---+578578578578a b c a b c a b c a b c

()=-=-101416140160a b c ab ac

四、变用: 题目变形后运用公式解题。 例5. 计算:()()x y z x y z +-++26

解:原式()[]()[]=

++-+++x y z z x y z z 2424

()()

=++-=+-+++x y z z x y z xy xz yz

24122442

2

2

2

2

五、活用: 把公式本身适当变形后再用于解题。这里以完全平方公式为例,经过变形或重新组合,可得如下几个比较有用的派生公式:

()()()()(

)

()()122232442

222

222

2

2

2

22

....a b ab a b a b ab a b a b a b a b

a b a b ab

+-=+-+=+++-=++--=

灵活运用这些公式,往往可以处理一些特殊的计算问题,培养综合运用知识的能力。 例6. 已知a b ab -==45,,求a b 22+的值。

解:()a b a b ab 2

22

2242526+=-+=+?=

例7. 计算:()()a b c d b c d a ++-+++-22

解:原式()()[]()()[]

=

++-++--b c a d b c a d 2

2

()()

[]

=++-=++++-22222442

2

2222b c a d a b c d bc ad

例8. 已知实数x 、y 、z 满足x

y z xy y +==+-592,,那么x y z ++=23( )

5

解:由两个完全平方公式得:()()[]

ab a b a b =

+--1

4

22

从而 ()[]

z

x y y 2

22

14

59=

--+- ()()

()

=

--+-=-+-=--+=--25414

529696932

222

y y y y y y y ()∴∴,∴∴z y z y x x y z 22

30032

2322308

+-====++=+?+=

三、学习乘法公式应注意的问题

(一)、注意掌握公式的特征,认清公式中的“两数”. 例1 计算(-2x 2

-5)(2x 2

-5)

分析:本题两个因式中“-5”相同,“2x 2

”符号相反,因而“-5”是公式(a +b )(a -b )=a 2

-b 2

中的a ,而“2x 2

”则是公式中的b .

解:原式=(-5-2x 2

)(-5+2x 2

)=(-5)2

-(2x 2)2

=25-4x 4

例2 计算(-a 2

+4b )2

分析:运用公式(a +b )2

=a 2

+2ab +b 2

时,“-a 2

”就是公式中的a ,“4b ”就是公式中的b ;若将题目变形为(4b -a 2)2

时,则“4b ”是公式中的a ,而“a 2

”就是公式中的b .(解略)

(二)、注意为使用公式创造条件 例3 计算(2x +y -z +5)(2x -y +z +5).

分析:粗看不能运用公式计算,但注意观察,两个因式中的“2x ”、“5”两项同号,“y ”、“z ”两项异号,因而,可运用添括号的技巧使原式变形为符合平方差公式的形式. 解:原式=〔(2x +5)+(y -z )〕〔(2x +5)-(y -z )〕 =(2x +5)2

-(y -z )2

=4x 2

+20x +25-y +2yz -z 2

例4 计算(a -1)2

(a 2

+a +1)2

(a 6

+a 3

+1)2

分析:若先用完全平方公式展开,运算十分繁冗,但注意逆用幂的运算法则,则可利用乘法公式,使运算简便. 解:原式=[(a -1)(a 2

+a +1)(a 6

+a 3

+1)]2

=[(a 3

-1)(a 6

+a 3

+1)]2

=(a 9

-1)2

=a 18

-2a 9

+1

例5 计算(2+1)(22

+1)(24

+1)(28

+1).

分析:此题乍看无公式可用,“硬乘”太繁,但若添上一项(2-1),则可运用公式,使问题化繁为简. 解:原式=(2-1)(2+1)(22

+1)(24

+1)(28

+1)

=(22-1)(22+1)(24+1)(28+1)

=(24-1)(24+1)(28+1)

=(28-1)(28+1)

=216-1

(三)、注意公式的推广

计算多项式的平方,由(a+b)2=a2+2ab+b2,可推广得到:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.可叙述为:多项式的平方,等于各项的平方和,加上每两项乘积的2倍.

例6 计算(2x+y-3)2

解:原式=(2x)2+y2+(-3)2+2·2x·y+2·2x(-3)+2·y(-3)

=4x2+y2+9+4xy-12x-6y.

(四)、注意公式的变换,灵活运用变形公式

例7 (1)已知x+y=10,x3+y3=100,求x2+y2的值;

(2)已知:x+2y=7,xy=6,求(x-2y)2的值.

分析:粗看似乎无从下手,但注意到乘法公式的下列变形:x2+y2=(x+y)2-2xy,x3+y3=(x+y)3-3xy(x+y),

(x+y)2-(x-y)2=4xy,问题则十分简单.

解:(1)∵x3+y3=(x+y)3-3xy(x+y),将已知条件代入得100=103-3xy·10,

∴xy=30 故x2+y2=(x+y)2-2xy=102-2×30=40.

(2)(x-2y)2=(x+2y)2-8xy=72-8×6=1.

例8 计算(a+b+c)2+(a+b-c)2+(a-b+c)+(b-a+c)2.

分析:直接展开,运算较繁,但注意到由和及差的完全平方公式可变换出(a+b)2+(a-b)2=2(a2+b2),因而问题容易解决.

解:原式=[(a+b)+c]2+[(a+b)-c]2+[c+(a-b)]2+[c-(a-b)]2

=2[(a+b)2+c2]+2[c2+(a-b)2]

=2[(a+b)2+(a-b)2]+4c2

=4a2+4b2+4c2

(五)、注意乘法公式的逆运用

例9 计算(a-2b+3c)2-(a+2b-3c)2.

分析:若按完全平方公式展开,再相减,运算繁杂,但逆用平方差公式,则能使运算简便得多.

解:原式=[(a-2b+3c)+(a+2b-3c)][(a-2b+3c)-(a+2b-3c)]

=2a(-4b+6c)=-8ab+12ac.

例10 计算(2a+3b)2-2(2a+3b)(5b-4a)+(4a-5b)2

分析:此题可以利用乘法公式和多项式的乘法展开后计算,但逆用完全平方公式,则运算更为简便.

解:原式=(2a+3b)2+2(2a+3b)(4a-5b)+(4a-5b)2

=[(2a+3b)+(4a-5b)]2

=(6a-2b)2=36a2-24ab+4b2.

四、怎样熟练运用公式:

(一)、明确公式的结构特征

这是正确运用公式的前提,如平方差公式的结构特征是:符号左边是两个二项式相乘,且在这四项中有两项完全相同,另两项是互为相反数;等号右边是乘式中两项的平方差,且是相同项的平方减去相反项的平方.明确了公式的结构特征就能在各种情况下正确运用公式.

6

7

(二)、理解字母的广泛含义

乘法公式中的字母a 、b 可以是具体的数,也可以是单项式或多项式.理解了字母含义的广泛性,就能在更广泛的范围内正确运用公式.如计算(x +2y -3z )2

,若视x +2y 为公式中的a ,3z 为b ,则就可用(a -b )2

=a 2

-2ab +b 2

来解了。

(三)、熟悉常见的几种变化

有些题目往往与公式的标准形式不相一致或不能直接用公式计算,此时要根据公式特征,合理调整变化,使其满足公式特点.

常见的几种变化是:

1、位置变化 如(3x +5y )(5y -3x )交换3x 和5y 的位置后即可用平方差公式计算了.

2、符号变化 如(-2m -7n )(2m -7n )变为-(2m +7n )(2m -7n )后就可用平方差公式求解了(思考:不变或不这样变,可以吗?)

3、数字变化 如98×102,992

,912

等分别变为(100-2)(100+2),(100-1)2

,(90+1)2

后就能够用乘法公式加以解答了.

4、系数变化 如(4m +

2n )(2m -4n )变为2(2m +4n )(2m -4

n

)后即可用平方差公式进行计算了. 5、项数变化 如(x +3y +2z )(x -3y +6z )变为(x +3y +4z -2z )(x -3y +4z +2z )后再适当分组就可以用乘法公式来解了.

(四)、注意公式的灵活运用

有些题目往往可用不同的公式来解,此时要选择最恰当的公式以使计算更简便.如计算(a 2

+1)2

·(a 2

-1)2

,若分别展开后再相乘,则比较繁琐,若逆用积的乘方法则后再进一步计算,则非常简便.即原式=[(a 2

+1)(a 2

-1)]2

=(a 4

-1)2

=a 8

-2a 4

+1.

对数学公式只会顺向(从左到右)运用是远远不够的,还要注意逆向(从右到左)运用.如计算(1-2

21

)(1-

2

31)(1-241)…(1-29

1

)(1-2101),若分别算出各因式的值后再行相乘,不仅计算繁难,而且容易出错.若注意到各因式均为平方差的形式而逆用平方差公式,则可巧解本题.

即原式=(1-21)(1+21)(1-31)(1+31)×…×(1-101)(1+101

)=21×23×32×34×…×109×10

11

=21×1011=20

11. 有时有些问题不能直接用乘法公式解决,而要用到乘法公式的变式,乘法公式的变式主要有:a 2

+b 2

=(a +b )2

-2ab ,a 2

+b 2

=(a -b )2

+2ab 等.

用这些变式解有关问题常能收到事半功倍之效. 如已知m +n =7,mn =-18,求m 2

+n 2

,m 2

-mn + n 2

的值. 面对这样的问题就可用上述变式来解,

即m 2

+n 2

=(m +n )2

-2mn =72

-2×(-18)=49+36=85,

m 2-mn + n 2= (m +n )2-3mn =72-3×(-18)=103.

下列各题,难不倒你吧?!

1、若a +a 1=5,求(1)a 2

+21a

,(2)(a -a 1)2的值.

2、求(2+1)(22

+1)(24

+1)(28

+1)(216

+1)(232

+1)(264

+1)+1的末位数字. (答案:1.(1)23;(2)21.2. 6 )

五、乘法公式应用的五个层次

乘法公式:(a+b)(a-b)=a2-b2,(a±b)=a2±2ab+b2,

(a±b)(a2±ab+b2)=a3±b3.

第一层次──正用

即根据所求式的特征,模仿公式进行直接、简单的套用.

例1计算

(2)(-2x-y)(2x-y).

(2)原式=[(-y)-2x][(-y)+2x]=y2-4x2.

第二层次──逆用,即将这些公式反过来进行逆向使用.

例2计算

(1)19982-1998·3994+19972;

=1

解(1)原式=19982-2·1998·1997+19972 =(1998-1997)2

第三层次──活用:根据待求式的结构特征,探寻规律,连续反复使用乘法公式;有时根据需要创造条件,灵活应用公式.

例3化简:(2+1)(22+1)(24+1)(28+1)+1.

分析直接计算繁琐易错,注意到这四个因式很有规律,如果再增添一个因式“2-1”便可连续应用平方差公式,从而问题迎刃而解.

解原式=(2-1)(2+1)(22+1)(24+1)(28+1)+1

=(22-1)(22+1)(24+1)(28+1)+1=216.

例4计算:(2x-3y-1)(-2x-3y+5)

分析仔细观察,易见两个因式的字母部分与平方差公式相近,但常数不符.于是可创造条件─“拆”数:-1=2

-3,5=2+3,使用公式巧解.

8

解原式=(2x-3y-3+2)(-2x-3y+3+2)

=[(2-3y)+(2x-3)][(2-3y)-(2x-3)]

=(2-3y)2-(2x-3)2=9y2-4x2+12x-12y-5.

第四层次──变用:解某些问题时,若能熟练地掌握乘法公式的一些恒等变形式,如a2+b2=(a+b)2-2ab,a3+b3=(a+b)3-3ab(a+b)等,则求解十分简单、明快.

例5已知a+b=9,ab=14,求2a2+2b2和a3+b3的值.

解:∵a+b=9,ab=14,∴2a2+2b2=2[(a+b)2-2ab]=2(92-2·14)=106,

a3+b3=(a+b)3-3ab(a+b)=93-3·14·9=351

第五层次──综合后用:将(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2综合,

可得 (a+b)2+(a-b)2=2(a2+b2);(a+b)2-(a-b)2=4ab;

等,合理地利用这些公式处理某些问题显得新颖、简捷.

例6计算:(2x+y-z+5)(2x-y+z+5).

解:原式=1

4

[(2x+y-z+5)+(2x-y+z+5)]2-

1

4

[(2x+y-z+5)-(2x-y+z+5)]2

=(2x+5)2-(y-z)2=4x2+20x+25-y2+2yz-z2

六、正确认识和使用乘法公式

1、数形结合的数学思想认识乘法公式:

对于学习的两种(三个)乘法公式:平方差公式:(a+b)(a-b)=a2-b2、完全平方公式:(a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2,可以运用数形结合的数学思想方法来区分它们。假设a、b都是正数,那么可以用以下图形所示意的面积来认识乘法公式。

如图1,两个矩形的面积之和(即阴影部分的面积)为(a+b)(a-b),通过左右两图的对照,即可得到平方差公式(a+b)(a-b)=a2-b2;图2中的两个图阴影部分面积分别为(a+b)2与(a-b)2,通过面积的计算方法,即可得到两个完全平方公式:(a+b)2=a2+2ab+b2与(a-b)2=a2-2ab+b2。

9

10

2、乘法公式的使用技巧:

①提出负号:对于含负号较多的因式,通常先提出负号,以避免负号多带来的麻烦。 例1、 运用乘法公式计算:

(1)(-1+3x)(-1-3x); (2)(-2m-1)2

解:(1)(-1+3x)(-1-3x)=[-(1-3x)][-(1+3x)]=(1-3x)(1+3x)=12

-(3x)2

=1-9x 2

. (2) (-2m-1)2

=[-(2m+1)]2

=(2m+1)2

= 4m 2

+4m+1.

②改变顺序:运用交换律、结合律,调整因式或因式中各项的排列顺序,可以使公式的特征更加明显. 例2、 运用乘法公式计算:

(1)(13a-14b )(-14b -a 3 ); (2)(x-1/2)(x 2

+1/4)(x+1/2)

解:(1)(13a-14b )(-14b -a 3 )=(-14b+ 13a )(-14b -1

3

a )

=(14b- 13a )(14b +13a )=(14b)2- (13a)2 = 116b 2- 19

a 2 (2) (x-1/2)(x 2

+1/4)(x+1/2)= (x-1/2) )(x+1/2)(x 2

+1/4)

=(x 2

-1/4) (x 2

+1/4)= x 2

-1/16.

③逆用公式

将幂的公式或者乘法公式加以逆用,比如逆用平方差公式,得a 2

-b 2

= (a+b)(a-b),逆用积的乘方公式,得a n b n

=(ab)n

,等等,在解题时常会收到事半功倍的效果。

例3、 计算:

(1)(x/2+5)2

-(x/2-5)2

; (2)(a-1/2)2

(a 2

+1/4) 2

(a+1/2)

2

解:(1)(x/2+5)2

-(x/2-5)2

=[(x/2+5)+(x/2-5)] [(x/2+5)-(x/2-5)]

=(x/2+5+x/2-5)( x/2+5-x/2+5)=x ·10=10x.

(2)(a-1/2)2

(a 2

+1/4) 2

(a+1/2)2

11

=[(a-1/2)(a 2+1/4) (a+1/2)] 2 =[(a-1/2 ) (a+1/2) (a 2+1/4)] 2

=[(a 2

-1/4

) (a 2

+1/4)] 2

=(a 4

-1/16 )

2

=a 8-a 4

/8+1/256.

④合理分组:对于只有符号不同的两个三项式相乘,一般先将完全相同的项调到各因式的前面,视为一组;符号相反的项放在后面,视为另一组;再依次用平方差公式与完全平方公式进行计算。

计算:(1)(x+y+1)(1-x-y); (2)(2x+y-z+5)(2x-y+z+5).

解:(1) (x+y+1)(1-x-y)=(1+x+y)(1-x-y)= [1+(x+y)][1-(x+y)]=12

-(x+y)

2

=1-(x 2

+2xy+y 2

)= 1-x 2

-2xy-y 2

.

(2)(2x+y-z+5)(2x-y+z+5)=(2x+5+y-z)(2x+5-y+z)

=[ (2x+5)+(y-z)][(2x+5)-(y-z)]

= (2x+5)2

-(y-z)2

=(4x 2

+20x+25)-(y 2

-2yz+z 2

) = 4x 2

+20x+25-y 2

+2yz-z 2

= 4x 2

-y 2

-z 2

+2yz +20x+25 .

七、巧用公式做整式乘法

整式乘法是初中数学的重要内容,是今后学习的基础,应用极为广泛。尤其多项式乘多项式,运算过程复杂,在解答中,要仔细观察,认真分析题目中各多项式的结构特征,将其适当变化,找出规律,用乘法公式将其展开,运算就显得简便易行。

一. 先分组,再用公式 例1. 计算:()()a

b c d a b c d -+-----

简析:本题若以多项式乘多项式的方法展开,则显得非常繁杂。通过观察,将整式()a

b c d -+-运用加法交换律和结合律变形为()()--++b d a c ;将另一个整式()----a b c d 变形为()()---+b d a c ,则

从其中找出了特点,从而利用平方差公式即可将其展开。 解:原式[]()()[]=--++---+()()b d a c b d a c

=---+=++---()()b d a c b bd d a ac c

22

2

2

2

2

22

二. 先提公因式,再用公式 例2. 计算:8244x

y x y +??

???-?? ??

? 简析:通过观察、比较,不难发现,两个多项式中的x 的系数成倍数,y 的系数也成倍数,而且存在相同的倍数关系,若将第一个多项式中各项提公因数2出来,变为244x y +??

?

?

?,则可利用乘法公式。 解:原式=

+?

? ???-?? ??

?24444x y x y

()=-?? ??????????

?=-

244328

222

2x y x y

三. 先分项,再用公式 例3. 计算:

()()232236x y x y ++-+

12 简析:两个多项中似乎没多大联系,但先从相同未知数的系数着手观察,不难发现,x 的系数相同,y 的系数互为相反数,符合乘法公式。进而分析如何将常数进行变化。若将2分解成4与-2的和,将6分解成4与2的和,再分组,则可应用公式展开。 解:原式=

[]()()[]()()24232423x y x y +--++-

()=+--=+++-()24234161212922

22

x y x x y y

四. 先整体展开,再用公式 例4. 计算:()()a b a b +-+221

简析:乍看两个多项式无联系,但把第二个整式分成两部分,即[]()a b -+21,再将第一个整式与之相乘,

利用平方差公式即可展开。 解:原式[]=+-+()()a b a b 221

=+-++=-++()()()

a b a b a b a b a b

222422

2

五. 先补项,再用公式

例5. 计算:3313131318

42+++++()()()()

简析:由观察整式()31+,不难发现,若先补上一项()31-,则可满足平方差公式。多次利用平方差公式逐

步展开,使运算变得简便易行。

解:原式=+++++-331313131312

842()()()()()

=+

+++-=+

++-=++-=+

-=+3313131312

33131312

33131233125232

8422844881616()()()()()()()()()

()

六. 先用公式,再展开

例6. 计算:1121131141110

2222-

??

???-?? ???-?? ???-?? ?

??… 简析:第一个整式1122-?

? ???可表示为11222-?? ?????????

??,由简单的变化,可看出整式符合平方差公式,其它因

式类似变化,进一步变换成分数的积,化简即可。

解:原式=+?? ???-?? ???+?? ???-?? ???+?? ???-?? ???+?? ???-?? ???11211211311311411411101110… =???????=32124323543411109101120

13

七. 乘法公式交替用 例7. 计算:()()()()x

z x xz z x z x xz z +-+-++222222

简析:利用乘法交换律,把第一个整式和第四个整式结合在一起,把第二个整式与第三个整式结合,则可利用乘法公式展开。

解:原式[][]=

+++-+-()()()()

x z x xz z x xz z

x z 2

2

2

2

22

[][]=++--()()()()x z x z x z x z 2

2

[]=+-=+-=-=-+-()()()()()

x z x z x z x z x z x x z x z z 33

3

2

23

642246

33

八、中考与乘法公式 1. 结论开放

例1. (02年济南中考)请你观察图1中的图形,依据图形面积的关系,不需要添加辅助线,便可得到一个你非常熟悉的公式,这个公式是______________。

分析:利用面积公式即可列出()()x y x y x y +-=-22

或()()x

y x y x y 2

2-=+-或()x y x xy y -=-+2

222

在上述公式中任意选一个即可。

例2. (03年陕西中考)

如图2,在长为a 的正方形中挖掉一个边长为b 的小正方形(a

b >)

,把余下的部分剪成一个矩形,如图3,通过计算两个图形的面积,验证了一个等式,则这个等式是______________。

分析:利用面积公式即可列出

()()a b a b a b +-=-22或()()a b a b a b 22-=+-

14 2. 条件开放

例3. (03年四川中考)多项式912

x

+加上一个单项式后,使它能成为一个整式的完全平方,则加上

的单项式可以是____________(填上你认为正确的一个即可,不必考虑所有的可能情况)。

分析:解答时,可能习惯于按课本上的完全平方公式,得出

()

9163122

x x x ++=+ 或()

916312

2

x

x x +-=-只要再动点脑筋,还会得出

()

9181492191132422

22

x x x x x ++=+?? ?

??

+-=

9191222x x +-= 故所加的单项式可以是±6x ,或

814

4

x ,或-1,或-92x 等。 3. 找规律

例4. (01年武汉中考) 观察下列各式:

()()()()()()x x x x x x x x x x x x -+=--++=--+++=-111

111111

223324……

由猜想到的规律可得

()()x x x x x n n n -+++++=--1112…____________。

分析:由已知等式观察可知 ()()x x x x x x n n n n -+++++=---+111121…

4. 推导新公式 例

5. 在公式

()a a a +=++1212

2中,当a 分别取1,2,3,……,n 时,可得下列n 个等式

()()()()111211212221

313231

121

2222222

2+=+?++=+?++=+?++=++…

n n n

将这n 个等式的左右两边分别相加,可推导出求和公式:

123++++=…n __________(用含n 的代数式表示)

分析:观察已知等式可知,后一个等式的右边第一项等于前一个等式的左边,将已知等式左右两边分别相加,得:

()n n n +=+?+?++?+11212222

2… 移项,整理得:

()1231

2

1++++=

+…n n n

乘法公式—— 平方差公式

乘法分式 ——平方差公式 一、内容及内容解析 《平方差公式》是人教版新教材八年级上册第十五章第二节的内容,本节内容只需一课时完成,主要内容是平方差公式的推导及使用。 平方差公式是学生在已经学习了多项式乘法的基础上,再次应用乘法公式对多项式乘法实行简便运算的知识。平方差公式不但是对乘法公式的进一步补充,它还为后面因式分解学习奠定了基础。 所以本节课的教学重点是:平方差公式的推导及应用 二、目标和目标解析: 目标: 1、经历探索平方差公式的全过程 2、能使用公式实行简单的运算 3、在探索平方公式的过程中,培养学生观察、归纳、概括的水平。 目标解析: (1)学生通过对几道特殊的多项式乘法的观察、计算、猜想、验证,归纳出平方差公式。 (2)通过图形让学生找出平方差公式与面积之间的内在联系,进而感受到数与形的统一。 (3)通过剖析平方差公式的结构和分类练习,让学生熟练掌握平方差公式。

三、教学问题诊断分析 学生刚学过多项式乘法已有一定基础,但本节课是特殊形式的多项式相乘,主要体现在结构特殊性上,而这种特殊形式又灵活多样,学生常常在字母表示的广泛含义上不易掌握,在乘法公式的灵活使用时常发生多种错误,常见的错误有:①学生难于跳出原有的定式思维;②符号错误;③混淆公式;④变式应用难以掌握。所以,本节课的难点定为:理解平方差公式的结构特征,并能灵活使用平方差公式。 鉴于此,本节的教学难点是:揭示平方差公式的结构特征和公式的灵活使用。 四教学支持条件: 利用多媒体展示教学的部分环节 五、教学过程分析 教学流程图: 创设情境、导入新课 自主探索、获取新知 应用新知、形成技能 变式训练、巩固提升 总结归纳、上升理性 即时反馈、查漏补缺 教学情景: (一)创设情景,导入新课 王力同学去商店买了单价是9.8元/千克的糖10.2千克,售货员刚拿

8.5.2乘法公式(完全平方公式)

乘法公式(完全平方公式) 问题1:计算下列多项式的积,你能发现什么规律? 2222(1)(p 1)(1)(p 1)________________; (2)(m 2)___________________; (3)(1)(1)(1)_______________; (4)(2)____________________.p p p p m +=++=+=-=--=-= 上面几个运算都是形如2()a b ±的多项式相乘,则可得: 2()()()____________________________;a b a b a b +=++== 2()()()____________________________;a b a b a b -=--== 问题2 你能用式子表示发现的规律吗? 完全平方公式:________________________ ________________________ 问题3 你能用文字语言表述完全平方公式吗? 两个数的和(或差)的________,等于它们的________,加上(或减去) 它们的__________。这两个公式叫做完全平方公式。 【归纳总结】 完全平方公式特点: 左边:两个数的_____(或_____)的______; 右边:①是____次______项式; ②有两项为两数的________; ③中间项是两数积的_____倍,且与左边乘式中间的符号____; ④公式中的字母a ,b 可以表示数,单项式和多项式. 【巩固练习】 练习 下面各式的计算是否正确?如果不正确,应当怎样改正? (1)222();x y x y +=+ (2)222();x y x y -=- (3)222()2;x y x xy y -=++ (4)222();x y x xy y +=++

最新完全平方公式变形公式专题

半期复习(3)—— 完全平方公式变形公式及常见题型 一.公式拓展: 拓展一:ab b a b a 2)(222-+=+ ab b a b a 2)(222+-=+ 2)1(1222-+=+a a a a 2)1(1222+-=+a a a a 拓展二:a b b a b a 4)()(22=--+ ()()22 2222a b a b a b ++-=+ ab b a b a 4)()(22+-=+ ab b a b a 4)()(22-+=- 拓展三:bc ac ab c b a c b a 222)(2222---++=++ 拓展四:杨辉三角形 3223333)(b ab b a a b a +++=+ 4322344464)(b ab b a b a a b a ++++=+ 拓展五: 立方和与立方差 ))((2233b ab a b a b a +-+=+ ))((2233b ab a b a b a ++-=- 二.常见题型: (一)公式倍比 例题:已知b a +=4,求ab b a ++2 2 2。 (1)1=+y x ,则222 121y xy x ++= (2)已知xy 2y x ,y x x x -+-=---2 222)()1(则= (二)公式变形 (1)设(5a +3b )2=(5a -3b )2+A ,则A= (2)若()()x y x y a -=++22,则a 为 (3)如果2 2)()(y x M y x +=+-,那么M 等于 (4)已知(a+b)2=m ,(a —b)2=n ,则ab 等于 (5)若N b a b a ++=-22)32()32(,则N 的代数式是

整式的乘法、平方差公式、完全平方公式、整式的除法

整式的乘法、平方差公式、完全平方公式、整式的除法 一、请准确填空 1、若a 2+b 2-2a+2b+2=0,则a 2004+b 2005=________. 2、一个长方形的长为(2a+3b),宽为(2a -3b),则长方形的面积为________. 3、5-(a -b)2的最大值是____,当5-(a -b)2取最大值时,a 与b 的关系是___. 4.要使式子0.36x 2+41 y 2成为一个完全平方式,则应加上________. 5.(4a m+1-6a m )÷2a m -1=________. 6.29×31×(302+1)=________. 7.已知x 2-5x+1=0,则x 2+21 x =________. 8.已知(2005-a)(2003-a)=1000,请你猜想(2005-a)2+(2003-a)2=________. 二、相信你的选择 9.若x 2-x -m=(x -m)(x+1)且x ≠0,则m 等于A.-1 B.0 C.1 D.2 10.(x+q)与(x+51)的积不含x 的一次项,猜测q 应是A.5 B.51 C.-51 D.-5 11.下列四个算式:①4x 2y 4÷41 xy=xy 3;②16a 6b 4c ÷8a 3b 2=2a 2b 2c;③9x 8y 2÷3x 3y=3x 5y; ④(12m 3+8m 2-4m)÷(-2m)=-6m 2+4m+2,其中正确的有 A.0个 B.1个 C.2个 D.3个 12.设(x m -1y n+2)·(x 5m y -2)=x 5y 3,则m n 的值为A.1 B.-1 C.3 D.-3 13.计算[(a 2-b 2)(a 2+b 2)]2等于 A.a 4-2a 2b 2+b 4 B.a 6+2a 4b 4+b 6 C.a 6-2a 4b 4+b 6 D.a 8-2a 4b 4+b 8 14.已知(a+b)2=11,ab=2,则(a -b)2的值是A.11 B.3 C.5 D.19 15.若x 2-7xy+M 是一完全平方式,那么M 是 A.27y 2 B.249y 2 C.449 y 2 D.49y 2

完全平方公式变形的应用

乘法公式的拓展及常见题型整理 一.公式拓展: 拓展一:ab b a b a 2)(222-+=+ ab b a b a 2)(222+-=+ 2)1(1222-+=+a a a a 2)1(1222+-=+a a a a 拓展二:a b b a b a 4)()(22=--+ ()()222222a b a b a b ++-=+ ab b a b a 4)()(22+-=+ ab b a b a 4)()(22-+=- 拓展三:bc ac ab c b a c b a 222)(2222---++=++ 拓展四:辉三角形 3223333)(b ab b a a b a +++=+ 4322344464)(b ab b a b a a b a ++++=+ 拓展五: 立方和与立方差 ))((2233b ab a b a b a +-+=+ ))((2233b ab a b a b a ++-=- 二.常见题型: (一)公式倍比 例题:已知b a +=4,求ab b a ++2 2 2。 ⑴如果1,3=-=-c a b a ,那么()()()2 22a c c b b a -+-+-的值是 ⑵1=+y x ,则222 121y xy x ++= ⑶已知xy 2y x ,y x x x -+-=---2222)()1(则 = (二)公式组合 例题:已知(a+b)2=7,(a-b)2=3, 求值: (1)a 2+b 2 (2)ab

⑴若()()a b a b -=+=22 713,,则a b 22+=____________,a b =_________ ⑵设(5a +3b )2=(5a -3b )2+A ,则A= ⑶若()()x y x y a -=++22,则a 为 ⑷如果2 2)()(y x M y x +=+-,那么M 等于 ⑸已知(a+b)2=m ,(a —b)2=n ,则ab 等于 ⑹若N b a b a ++=-22)32()32(,则N 的代数式是 ⑺已知,3)(,7)(22=-=+b a b a 求ab b a ++22的值为 。 ⑻已知实数a,b,c,d 满足53=-=+bc ,ad bd ac ,求) )((2222d c b a ++ (三)整体代入 例1:2422=-y x ,6=+y x ,求代数式y x 35+的值。 例2:已知a= 201x +20,b=201x +19,c=20 1x +21,求a 2+b 2+c 2-ab -bc -ac 的值 ⑴若499,7322=-=-y x y x ,则y x 3+= ⑵若2=+b a ,则b b a 422+-= 若65=+b a ,则b ab a 3052++= ⑶已知a 2+b 2=6ab 且a >b >0,求 b a b a -+的值为 ⑷已知20042005+=x a ,20062005+=x b ,20082005+=x c ,则代数式ca bc ab c b a ---++222的值是 .

乘法公式活用专题训练

乘法公式的活用 一、公式 : (a+b)(a-b)=a 2-b 2 (a+b) 2=a 2+2ab+b 2 (a-b) 2=a 2-2ab+b 2 (a+b)(a 2 -ab+b 2)=a 3+b 3 (a-b )(a 2+ab+b 2)=a 3- 归纳小结公式的变式, ① 位置变化, x y ② 符号变化, x y ③ 指数变化, x 2 y 2 ④ 系数变化, 2a b ⑤ 换式变化, xy z yx 2 x 2 y 2 2 2 2 xy xy xy 22 4 4 xy x y 2a b 22 4a 2 b 2 m xy zm 2 2 xy z m 22 x 2y 2 z m z m 22 2 2 xy z zm zm m 22 2 2 x 2y 2 z 2zm m b 3 准确灵活运用公式: ⑥ 增项变化, x y z ⑦ 连用公式变化, x ⑧ 逆用公式变化, x x y z x y z 例 1.已知 a b 2 , xyz 22 x y z 2 x y x y z 2 2 2 x xy xy y z 2 2 2 x 2xy y z 22 y x y x y 2 2 2 2 x y x y 44 xy 22 y z x y z x y z x y z 2x 2y 2z 4xy 4xz ab 1,求 a 2 b 2 的值 例 2.已知 a b 8, ab 2 ,求 (a b )2 的值 例 3:计算 19992-2000 ×1998 2 2 2 例 4:已知 a+b=2, ab=1,求 a+b 和 (a-b ) 的值。 22 例 5:已知 x-y=2 ,y-z=2 ,x+z=14 。求 x -z 的值。 例 6:判断( 2+1)( 22+1)(24+1)??( 22048+1) +1 的个位数字是几? 例 7.运用公式简便计算 (1)1032 (2) 1982 例 8.计算 (1) a 4b 3c a 4b 3c ( 2) 3x y 2 3x y 2

整式的乘法完全平方公式

完全平方公式 一、填空题: () 22)(9 1291=+ -a a (2)1-6a+9a 2 =( )2 22)(4 1 ) 5(=++x x (6)x 2 y 2 -4xy+4=( ) 2 (7)x 2+( )+9y 2=(x+ )2 (8)(a+b)2-( )=(a-b)2 (9)(5x+3)2(3-5x)2=_______________________ (10)若(x-3y)2+K=x 2-5xy+8y 2,则K=_________ 二、选择题: (1)已知4x 2+kx+9是一个完全平方式,那么k 值为 ( ) (A )12 (B )±18 (C )±12 (D )±6 (2)下列多项式中,是完全平方式的为( ) (A )1-4m+2m 2 (B )a 2+2a+4 () ab b a C 34 192 2-+ (D )x 2+2xy+1 二、 1、计算 (1)(3a+2b)2 (2)(5x-y)2 (3)(-4x+3a)2 (4)(-y-6)2 2、计算 (1)99.82 (2)20052 (3)1042 (4)982

3、计算 (1)(2x-3)(3-2x) (2) (5a-4b) (-5a+4b) (3) (2m2+3n) (2m2-3n) (4) (2m2+3n) (-2m2-3n) 四、填空 (1)(x-y)(x+y)=________ (2)(x-y)(x-y)=________ (3)(-x-y)(x+y)=________ (4)(-x-y)(x-y)=________ (5)(a-1)·( )=a2-1 (6) (a-1)·( )=a2-2a+1 (7)(a+b)2-( a-b)2=________ (8)(a+b)2+( a-b)2=________ 五、计算 (1)(a-2b-3c)2(2)(x+y-2)(x-y+2) (3)(a+2b-3c) (a-2b+3c) (4) (a+2b-3c) (a-2b-3c) (5)(2a+b-5c)(2a-b-5c)(6)(2a+b+5c)(-2a-b+5c)

完全平方公式之恒等变形

§1.6 完全平方公式(2) 班级: 姓名: 【学习重点、难点】 重点: 1、弄清完全平方公式的结构特点; 2、会进行完全平方公式恒等变形的推导. 难点:会用完全平方公式的恒等变形进行运算. 【学习过程】 ● 环节一:复习填空 ()2_____________a b += ()2_____________a b -= ● 环节二: 师生共同推导完全平方公式的恒等变形 ①()222_______a b a b +=+- ②()222_______a b a b +=-+ ③()()22_______a b a b ++-= ④()()22_______a b a b +--= ● 典型例题及练习 例1、已知8a b +=,12ab =,求22a b +的值 变式训练1:已知5a b -=,22=13a b +,求ab 的值 变式训练2:已知6ab =-,22=37a b +,求a b +与a b -的值 方法小结:

提高练习1:已知+3a b =,22+30a b ab =-,求22a b +的值 提高练习2:已知210a b -=,5ab =-,求224a b +的值 例2、若()2=40a b +,()2=60a b -,求22a b +与ab 的值 小结: 课堂练习 1、(1)已知4x y +=,2xy =,则2)(y x -= (2)已知2()7a b +=,()23a b -=,求=+22b a ________,=ab ________ (3)()()2222________a b a b +=-+ 2、(1)已知3a b +=,4a b -=,求ab 与22a b +的值 (2)已知5,3a b ab -==求2()a b +与223()a b +的值。 (3)已知224,4a b a b +=+=,求22a b 与2()a b -的值。

最经典的乘法公式综合应用与拓展(学生、教师两用版)

八年级数学上册乘法公式的综合应用与拓展 (学生版) ?、基本公式 1. 平方差公式:(a+b)(a-b)=a 2 -b 2 2 例:计算 1999 -2000 X 1998 2 2 2 2. 完全平方公式(a+b) =a +2ab+b (a-b) 例:运用公式简便计算 3. 完全平方公式 a+b(或a-b)、ab 、a 2 +b 2 这三者任意知道两项就可以求出第三项 (a+b)2 、(a-b) 2 、ab 这三者任意知道两项就可以求出第三项 ① a 2 b 2 = (a b)2 - 2ab a 2 b 2 = (a-b) 2+2ab 2 2 2 2 ② (a-b) =(a+b) -4ab (a+b) =(a-b) +4ab (2) 完全平方公式变用 2:两个完全平方公式之和的整合 2 2 2 2 (a+b) + (a-b) =2 (a+b) 例1 ?已知a b 2 , ab =1,求a 2 b 2的值。 2 例 2.已知 a ? b = 8 , ab = 2,求(a - b)的值。 例3.已知a - b = 4, ab = 5,求a 2 b 2的值。 2 2 例 4 .已知 m +n =7, mn= —18,求 m — mr+ n 的值. 例 5 (3)已知:x+2y=7 , xy=6,求(x-2y)2 的值. 例6.已知a +丄=5,求(1) a 2 +W , (2) (a —丄)2 的值. a a a (1) 完全平方公式变用 1:利用已知的两项求第三项 2 2 2 =a -2ab+b (1) 1032 (2) 1982

1 1 例7.已知x -― =3,求x4■ ~4的值。 x x 2

数学计划总结之《乘法公式——平方差公式》教学反思

数学计划总结之《乘法公式——平方差公式》教学反思 我参与了学校组织的“同课异构”活动,授课内容是《乘法公式——平方差公式(一课时)》。 上学期末我恰好在任县二中参加了一次关于教材研究的会议,当时河南一位从教三十多年且参与教材编写的专家指出:关于概念、公式、法则的教学一般有六个环节:①引入;②形成;③明确表述;④辨析;⑤巩固应用;⑥归纳提升。新课标也要求我们在教学中不只是传授学生基本的知识技能,还要以培养学生的数学能力及合作探究的意识为目标。为此,我在设计本节课的教学环节时充分考虑学生的认知规律,并以培养学生的数学素质,了解运用数学思想方法,增强学生的合作探究意识为宗旨。 我的教学流程是按照“引入——猜想——证明——辨析——应用——归纳——检测”的顺序进行的,非常符合学生的认知规律。我觉得本节课比较好的方面有以下几点:1.在利用图形面积证明平方差公式时,我没有采用教材上直接给出剪接方法再证明的过程,只给出了原图让学生们自己去探究不同的方法。事实证明,学生们不只拼出了书上的方法,还从对角线剪开拼出了梯形,平行四边形和长方形三种方法,思维一下就开阔了。这里我并没有为了证明而证明,也没有怕浪费时间匆匆而过,而是给学生留下了充足的思考和讨论时间,真正激发了学生的

思维。2.通过设置一个“找朋友”的小游戏来辨析公式,调动了学生的积极性,活跃了课堂气氛,因此,游戏过后学生对公式的结构特征也有了更深刻的了解。3.共享收获环节,我采用的是制作微课的方式,形式比较新颖,从认识公式到知道公式的特征,再到感悟数形结合的数学思想,最后是感受到数学运算的一种简捷美,将本节课升华到了一个新的高度。 当然,本节课也有一些遗憾和不足之处。比如,由于紧张,在授课过程中遗漏了两点,通过播放幻灯片才慌忙补充上;在处理学生练习时,为了抓紧时间完 成进度没有把学生的出错点讲透讲细;游戏环节参与学生有些少,应让更多的同学动起来;当堂检测的题目应该设置上分值和检测时间,让学生限时完成,然后可以根据学生得分了解本节课的学习效果,以便下节课再有针对性的进行讲解和练习查漏补缺。 通过这次“同课异构”活动,我感觉自己在教学环节设计、课件制作和使用、导学案的规范书写等各方面都有了提高,通过各位领导和老师的点评,我也有了更多的收获,相信可以为我今后的教学所用。

乘法公式(基础)知识讲解

乘法公式(基础) 【学习目标】 1. 掌握平方差公式、完全平方公式的结构特征,并能从广义上理解公式中字母的含义; 2. 学会运用平方差公式、完全平方公式进行计算.了解公式的几何意义,能利用公式进行乘 法运算; 3. 能灵活地运用运算律与乘法公式简化运算. 【要点梳理】 要点一、平方差公式 平方差公式:22 ()()a b a b a b +-=- 两个数的和与这两个数的差的积,等于这两个数的平方差. 要点诠释:在这里,b a ,既可以是具体数字,也可以是单项式或多项式. 抓住公式的几个变形形式利于理解公式.但是关键仍然是把握平方差公式的典型特征: 既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.常见的变式有以下类型: (1)位置变化:如()()a b b a +-+利用加法交换律可以转化为公式的标准型 (2)系数变化:如(35)(35)x y x y +- (3)指数变化:如3232()()m n m n +- (4)符号变化:如()()a b a b --- (5)增项变化:如()()m n p m n p ++-+ (6)增因式变化:如2244()()()()a b a b a b a b -+++ 要点二、完全平方公式 完全平方公式:()2222a b a ab b +=++ 2222)(b ab a b a +-=- 两数和 (差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍. 要点诠释:公式特点:左边是两数的和(或差)的平方,右边是二次三项式,是这两 数的平方和加(或减)这两数之积的2倍.以下是常见的变形: ()2222a b a b ab +=+-()2 2a b ab =-+ ()()22 4a b a b ab +=-+ 要点三、添括号法则 添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号, 括到括号里的各项都改变符号. 要点诠释:添括号与去括号是互逆的,符号的变化也是一致的,可以用去括号法则检查

2.2.3 运用乘法公式进行计算

2.2.3 运用乘法公式进行计算 1.熟练运用乘法公式进行计算;(重点、难点) 2.通过对不同的式子采取合适的方法运算,培养学生的思维能力和解题能力. 一、情境导入 1.我们学过了哪些乘法公式? (1)平方差公式:(a+b)(a-b)=a2-b2. (2)完全平方公式:(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2. 2.怎样计算:(a+2b-c)(a-2b+c). 二、合作探究 探究点:运用乘法公式进行计算 【类型一】乘法公式的综合运用 计算: (1)(2+1)(22+1)(24+1)…(216+1); (2)(a+b)2-2(a+b)(a-b)+(a-b)2; (3)(x-2y+3z)(x+2y-3z); (4)(2a+b)2(b-2a)2. 解析:(1)可添加(2-1),与首项结合起来用平方差公式,再把结果依次与下一项运用平方差公式; (2)逆用完全平方公式,能简化运算; (3)两个因式都是三项式,且各项的绝对值对应相等,所以可先运用平方差公式; (4)先利用积的乘方把原式变形为[(b+2a)(b-2a)]2,再利用平方差公式把中括号内的多项式的乘法展开,然后再利用完全平方公式展开即可. 解:(1)原式=(2-1)(2+1)(22+1)(24+1)…(216+1)=(22-1)(22+1)(24+1)…(216+1) =(24-1)(24+1)…(216+1)=232-1; (2)原式=[(a+b)-(a-b)]2=(a+b-a+b)2=4b2; (3)原式=[x-(2y-3z)][x+(2y-3z)]=x2-(2y-3z)2=x2-(4y2-12yz+9z2)=x2-4y2 +12yz-9z2; (4)(2a+b)2(b-2a)2=[(b+2a)(b-2a)]2=(b2-4a2)2=b4-8a2b2+16a4. 方法总结:运用乘法公式计算时,先要分析式子的特点,找准合适的方法,能起到事半功倍的作用.同时由于减少了运算量,能提高解题的准确率. 【类型二】运用乘法公式求值 如图,立方体每个面上都写有一个自然数,并且相对两个面所写两数之和相等. 若18的对面写的是质数a,14的对面写的是质数b,35的对面写的是质数c,试求a2+b2+c2-ab-bc-ca的值.

完全平方公式变形公式专题

半期复习(3)——完全平方公式变形公式及常见题型一.公式拓展: 2a2b2(a b)22ab 22 拓展一:a b(a b)2ab 11211 2 2 2 a(a)2a(a)2 22 a a a a 2a b2a b22a22b2 2 拓展二:(a b)(a b)4ab 22(a b)2(a b)24ab (a b)(a b)4ab 2222 拓展三:a b c(a b c)2ab2ac2bc 拓展四:杨辉三角形 33232 33 (a b)a a b ab b

444362243 4 (a b) a a b a b ab b 拓展五:立方和与立方差 3b a b a ab b 3223b3a b a ab b 22 a()()a()() 第1页(共5页)

二.常见题型: (一)公式倍比 。 2 2 a b 例题:已知 a b =4,求ab 2 1 1 (1) x y 1,则 2 2 x xy y = 2 2 2 2 x y 2 ) 2 (2) 已知x x x y ,xy ( 1) ( 则= 2 ( 二)公式变形 (1) 设(5a+3b)2=(5a-3b)2+A,则A= 2 2 (2) 若( x y) ( x y) a ,则a 为 (3) 如果 2 ( ) 2 (x y) M x y ,那么M等于(4) 已知(a+b) 2=m,(a —b) 2=n,则ab 等于 2 (2 3 ) 2 ( ,则N的代数式是(5) 若2a b a b N 3 ) (三)“知二求一” 1.已知x﹣y=1,x 2+y2=25,求xy 的值. 2.若x+y=3 ,且(x+2)(y+2)=12. (1)求xy 的值; 2+3xy+y 2 的值. (2)求x

最新乘法公式(平方差公式,完全平方公式)题

一、选择题 1、计算的结果是() A.B.1000 C.5000 D.500 2、计算(x4+y4)(x2+y2)(x+y)(y-x)的结果是() A.x8-y8B.x6-y6 C.y8-x8D.y6-x6 3、下列计算,结果错误的是() A.x(4x+1)+(2x+y)(y-2x)=x+y2 B.(3a+1)(3a-1)+9=0 C.x2-(5x+3y)(5x-3y)+6(2x-y)(y+2x)=3y2 D.=-54x3y 4、下列算式中不正确的有() ①(3x3-5)(3x3+5)=9x9-25 ②(a+b+c+d)(a+b-c-d)=(a+b)2-(c+d)2

③ ④2(2a-b)2·(4a+2b)2=(4a-2b)2(4a+2b)2=(16a2-4b2)2 A.0个B.1个 C.2个D.3个 5、下列说法中,正确的有() ①如果(x+y-3)2+(x-y+5)2=0,则x2-y2的值是-15; ②解方程(x+1)(x-1)=x2+x的结果是x=-1; ③代数式的值与n无关. A.0个B.1个 C.2个D.3个 B 卷 二、填空题 6、已知,则=___________. 7、如果x2+kx+81是一个完全平方式,则k=___________. 8、如果a2-b2=20,且a+b=-5,则a-b=___________. 9、代数式与代数式的差是___________.

10、已知m2+n2-6m+10n+34=0,则m+n=___________. 隐藏答案 答案: 6、7 7、±18 8、-4 9、xy 10、-2 提示: 6、∵,∴, ∴,∴. 7、∵x2+kx+(±9)2是完全平方式. ∴k=2×(±9)=±18. 8、∵a2-b2=20,∴(a+b)(a-b)=20. 又∵a+b=-5,∴a-b=-4. 10、[m2+2·m·(-3)+(-3)2]+(n2+2·n·5+52)=0, (m-3)2+(n+5)2=0. ∴ ∴ ∴m+n=-2.

乘法公式的综合运用

第三课时(乘法公式的综合运用) 一、学导目标:1.进一步理解乘法公式。 2.能熟练地运用乘法公式解题。 二、学导重点:熟练的利用平方差、完全平方公式进行混合运算。 三、学导难点:灵活运用乘法公式 四、目标导航 1.复习回顾两个公式。 2.自学例题:教材P65例2第(2)小题、P66例 3.(注意书上的解题方法。) 3.注意:难,小本节内容偏组内、小组间要认真交流,有困难的要问老师。 4.教材P66练习第1、2 题: 5.计算: (1)(x+3)2(3-x)2(2)(2a+b+1)(2a+b-1) (3)(a-2b-3)(a+2b+3) (4)(2a+b)2-(b+2a)(2a-b) 五、学导流程: (一)、出示目标:1.进一步理解乘法公式。 2.能熟练地运用乘法公式解题。

(二)、自学质疑:1、学生把课前没学完的可以再围绕“目标”和“目标导航”自学、对学、小组内展开。 2、教师深入其中查进度、问题汇总、导学。 3、检测“目标导航”有关内容。 (三)、汇报展示:1、各小组再小组长带领下共同展示目标内容 2、教师针对展示的结果进行分析、归纳组织学生再学、学会、会学。 五、测评提升: 1.先化简,再求值: (5y+1)(5y-1)-(5y+25y 2),其中y= 52 2.解方程: (1)(x+ 41)2–(x-41)(x+41)=41 (2)(x+1)(x-1)-(x+2)2=7 3.解不等式: 2(x+4)(x-4) (x-2)(2x+5) 4.计算 (1)(2x+3)3 (3)(2a-b-3c)2 5.计算: (1)已知x 2+xy =6 y 2+xy=10 求:1.(.x+y)2 2. x 2-y 2 3..x-y

乘法公式-----完全平方公式

《乘法公式--完全平方公式》教学设计 教学目标: 探索完全平方公式的过程,进一步发展推理能力;在变式中,拓 展提高;通过积极参与数学学习活动,培养学生自主探究能力,勇于 创新的精神和合作学习的习惯; 教学重点与难点: 重点是正确理解完全平方公式2)(b a ±=222b ab a +±,并初步运用。 难点是完全平方公式的运用。 教学过程: 一、创设情境,探求新知 前面学习了平方差公式,同学们对平方差公式的结构特点、运用 以及学习公式的意义有了初步的认识。今天,我们继续学习、研究另 一种“乘法公式”——完全平方公式。 问题1(投影显示图形)一块边长为a 米的正方形实验田,因需 要将其边长增加10米。形成四块实验田。问 :你能用不同的形式表 示实验田的总面积,并进行比较吗? (活动:教师巡视,检查学生的解题情况) 探索:直接求:2)10(+a 间接求:22101010+++a a a (选取一中等学生和一后进生学生把答案写在黑板上) 得出结论: (a +10)2=a 2+2 10a+102 猜一猜: (a +b )2 =? 从而引出课题:完全平方公式。 ?

二. 探索新知 1.推导验证两数和的完全平方公式 (1)乘法公式 (a +b )2 =(a +b ) (a +b ) = a 2+ab +ab +b 2 =a 2+2ab +b 2 (2)图形法 结论:(a +b )2=a 2+2ab +b 2 2.两数差的完全平方公式 (1)乘法公式 ( a -b )2 =(a -b ) (a -b ) = a 2-ab -ab +b 2 =a 2-2ab +b 2 (2)两数和的完全平方公式 (a -b )2 =a 2-2ab +b 2 (3)图形法(学生自己探索) 结论:(a -b )2=a 2-2ab +b 2 (3)归纳总结 完全平方公式: (a +b )2=a 2+2a b +b 2 []2 )(b a -+=2 2)(2b b a a +-??+=

初中数学完全平方公式的变形与应用

完全平方公式的变形与应用 提高培优完全平方公式 222222()2,()2a b a a b b a b a a b b 在使用时常作如下变形: (1) 222222()2,()2a b a b a b a b a b a b (2) 2222()()4,()()4a b a b a b a b a b a b (3) 2222 ()()2()a b a b a b (4) 2222 1 [()()]2a b a b a b (5) 22 1 [()()]2a b a b a b (6) 222222 1 [()()()]2a b c a b b c ca a b b c c a 例1 已知长方形的周长为 40,面积为75,求分别以长方形的长和宽为边长的正方形面积之和是多少? 解设长方形的长为α,宽为b ,则α+b=20,αb=75. 由公式(1),有: α2+b 2=(α+b)2-2αb=202-2×75=250. (答略,下同) 例2 已知长方形两边之差 为4,面积为12,求以长方形的长与宽之和为边长的正方形面积. 解设长方形长为 α,宽为b ,则α-b=4,αb=12.由公式(2),有:(α+b)2=(α-b)2+4αb=42+4×12=64. 例3 若一个整数可以表示为两个整数的平方和, 证明:这个整数的2倍也可以表示为两个整数的平方和 . 证明设整数为x ,则x=α2+b 2(α、b 都是整数).

由公式(3),有2x=2(α2+b 2)=(α+b)2+(α-b)2.得证 例4 将长为64cm 的绳分为两段,各自围成一个小正方形,怎样分法使得两个正方形面积之和最小? 解设绳被分成的两部分为x 、y ,则x+y=64. 设两正方形的面积之和为 S ,则由公式(4),有:S=(x 4)2+(y 4)2=116 (x 2+y 2) =132 [(x+y)2+(x-y)2] =132 [642+(x-y)2]. ∵(x-y)2 ≥0,∴当x=y 即(x-y)2=0时,S 最小,其最小值为 64232=128(cm 2). 例5 已知两数的和为 10,平方和为52,求这两数的积. 解设这两数分别为α、b ,则α+b =10,α2+b 2 =52. 由公式(5),有: αb=12 [(α+b)2-(α2+b 2)] =12 (102-52)=24. 例6 已知α=x+1,b=x+2,c=x+3. 求:α2+b 2+c 2-αb-bc-c α的值. 解由公式(6)有: α2+b 2+c 2-αb-bc-αc =12 [(α-b)2+(b-c )2+(c-α)2] =12 [(-1)2+(-1)2+22] =12×(1+1+4)=3.

辅导讲义:乘法公式的灵活应用

(3)(); (4) -(a z 0, m > n) ; ⑸(b) ■令(旳? 常用的乘法公式: 22 (1)()() 22 2 ⑵()+2 22 2 ⑶()-2 (4) ()(a 22)33 ⑸()(a 22)3- b 3 (6) (严+222. (7) a 2221/2〔 ()2+() 2+() 2〕 222 , 2 (8) a 1/2〔 () + () 2 2「 +()〕 (9) ()33+3a 2323; (10) ()33-3a 2323; 课题 乘法公式的灵活应用 教学内容 正整数指数幂的运算法则: ⑴? ; (2)();

一、归纳小结公式的变式,准确灵活运用公式: ① 位置变化, x y _y ? x i=x 2 _y 2 ② 符号变化,(-x+y y X$_y 2= x 2_y 2 ③ 指数变化,x 2 y 2 x 2-y 2 =x 4-y 4 ④ 系数变化,(2a+b)(2a —bHa 2_b 2 ⑤ 换式变化,,z mU- z m] 2 2 ’ 2;Z m =x y - z m z m 2 2 V 2 山 2 * =X y - z 亠亠亠m 2 2 2 c 2 =x y -z -2-m 二x -一 y -z 2^22 二x -2 y -z 连用公式变化,x y x-y x 2 y 2 2 2 2 2 -x -y x y 4 4 二x -y 逆用公式变化,(X —y+z$_(x*y-z ) i x-y z x y-z x-y z - x y-z ] =2x -2y 2z --4 4 例1已知a ? b =2, ab =1,求a 2 b 2的值 例 2?已知 a ? b = 8, ab = 2,求(a - b)2 的值。 2 例 3 :计算 1999 -2000 X 1998 例4:已知2,1,求a 22和()2的值。 例5:已知2, 2,14。求x 22的值。 例6:判断(2+1) (22+1) (24+1)……(22048+1 ) +1的个位数字是几? x_y z x-y-z 2 2 -x-y -z 2 -x-y x-y -z 2 2 2 增项变化, 【精讲精练】

乘法公式——完全平方公式专题训练试题精选(一)附答案

- -. 完全平方公式专题训练试题精选(一) 一.选择题(共30小题) 1.(2014?六盘水)下列运算正确的是() A. (﹣2mn)2=4m2n2B. y2+y2=2y4 C. (a﹣b)2=a2﹣b2 D. m2+m=m3 2.(2014?)下列计算正确的是() A. 2a3+a2=3a5B. (3a)2=6a2 C. (a+b)2=a2+b2 D. 2a2?a3=2a5 3.(2014?)算式999032+888052+777072之值的十位数字为何?() A.1B.2C.6D.8 4.(2014?)若a+b=2,ab=2,则a2+b2的值为() A.6B.4C.3D.2 5.(2014?南平模拟)下列计算正确的是() A. 5a2﹣3a2=2 B. (﹣2a2)3=﹣6a6 C. a3÷a=a2 D. (a+b)2=a2+b2 6.(2014?拱墅区二模)如果ax2+2x+=(2x+)2+m,则a,m的值分别是() A.2,0 B.4,0 C.2,D.4, 7.(2012?鄂州三月调考)已知,则的值为() A.B.C.D.无法确定8.(2012?西岗区模拟)下列运算正确的是() A. (x﹣y)2=x2﹣y2B. x2+y2=x2y2 C. x2y+xy2=x3y3 D. x2÷x4=x﹣2 9.(2011?天津)若实数x、y、z满足(x﹣z)2﹣4(x﹣y)(y﹣z)=0,则下列式子一定成立的是()A.x+y+z=0 B.x+y﹣2z=0 C.y+z﹣2x=0 D.z+x﹣2y=0 10.(2011?)下列运算正确的是() A. x2+x3=x5B. (x+y)2=x2+y2 C. x2?x3=x6 D. (x2)3=x6 11.(2011?浦东新区二模)下列各式中,正确的是() A. a6+a6=a12B. a4?a4=a16 C. (﹣a2)3=(﹣a3)2 D. (a﹣b)2=(b﹣a)2

完全平方公式变形

完全平方公式变形 1.已知 ,求下列各式的值: (1) ; (2) . (3)4 41x x 2.已知x+y=7,xy=2,求 (1)2x 2+2y 2; (2)(x ﹣y )2.。 (3)x 2+y 2-3xy 3.已知有理数m ,n 满足(m+n )2=9,(m ﹣n )2=1.求下列各式的值. (1)mn ; (2)m 2+n 2

平方差公式的应用 1.(a+b﹣c)(a﹣b+c)=a2﹣()2. 2.()﹣64m2n2=(a+)(﹣8mn) 3.已知x2﹣y2=12,x﹣y=4,则x+y=. 4.(x﹣y)(x+y)(x2+y2)(x4+y4)…(x2n+y2n)=. 5..(﹣3x+2y)()=﹣9x2+4y2. 6.记x=(1+2)(1+22)(1+24)(1+28)…(1+2n),且x+1=2128,则n=. 7.计算:=. 8.已知a﹣b=1,a2﹣b2=﹣1,则a4﹣b4=. 9.一个三角形的底边长为(2a+4)厘米,高为(2a﹣4)厘米,则这个三角形的面积为. 10观察下列等式19×21=202﹣1,28×32=302﹣22,37×43=402﹣32,…,已知m,n 为实数,仿照上述的表示方法可得:mn=. 11.正方形Ⅰ的周长比正方形Ⅱ的周长长96cm,它们的面积相差960cm2,求这两个正方形的边长 12如图,第一个图中两个正方形如图所示放置,将第一个图改变位置后得到第二个图,两图阴影部分的面积相等,则该图可验证的一个初中数学公式 为. 以下为提高题(请班级前20名学生会做) 13.如果一个正整数能表示为两个连续偶数的平方差,那么称这个这个正整数为“神秘数”,如:4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20这三个数都是“神秘数”.若60是一个“神秘数”,则60可以写成两个连续偶数的平方差为:60=. 14.20082﹣20072+20062﹣20052+…+22﹣12=. 15.(32+1)(34+1)(38+1)…(364+1)×8+1=. 16.(3a+3b+1)(3a+3b﹣1)=899,则a+b=. 17.化简式子,其结果是.

完全平方公式变形公式专题

半期复习(3)—— 完全平方公式变形公式及常见题型 一.公式拓展: 拓展一:ab b a b a 2)(222-+=+ ab b a b a 2)(222+-=+ 2)1(1222-+=+ a a a a 2)1(1222+-=+a a a a 拓展二:a b b a b a 4)()(22=--+ ()()222222a b a b a b ++-=+ ab b a b a 4)()(22+-=+ ab b a b a 4)()(22-+=- 拓展三:bc ac ab c b a c b a 222)(2 222---++=++ 拓展四:杨辉三角形 3223333)(b ab b a a b a +++=+ 4322344464)(b ab b a b a a b a ++++=+ 拓展五: 立方和与立方差 ))((2233b ab a b a b a +-+=+ ))((2233b ab a b a b a ++-=- 二.常见题型: (一)公式倍比 例题:已知b a +=4,求ab b a ++2 2 2。 (1)1=+y x ,则222 121y xy x ++= (2)已知xy 2y x ,y x x x -+-=---2 222)()1(则= (二)公式变形 (1)设(5a +3b )2=(5a-3b )2+A ,则A= (2)若()()x y x y a -=++22,则a 为 (3)如果2 2)()(y x M y x +=+-,那么M 等于 (4)已知(a+b)2=m ,(a —b)2=n ,则ab 等于 (5)若N b a b a ++=-22)32()32(,则N 的代数式是 (三)“知二求一” 1.已知x﹣y=1,x 2+y 2=25,求xy 的值. 2.若x +y=3,且(x+2)(y +2)=12. (1)求xy的值; (2)求x 2+3x y+y2的值.

相关文档
相关文档 最新文档