文档视界 最新最全的文档下载
当前位置:文档视界 › 大跨度斜拉桥动力特性分析(精)

大跨度斜拉桥动力特性分析(精)

大跨度斜拉桥动力特性分析(精)
大跨度斜拉桥动力特性分析(精)

大跨度斜拉桥动力特性分析Ξ

陈淮郭向荣曾庆元

(郑州工业大学土建系,郑州,450002(长沙铁道学院土木系,长沙,410075

摘要本文提出一种计算大跨度钢桁梁斜拉桥动力特性的方法。文中分别采用桁段

有限单元、空间梁元、空间杆元计算斜拉桥中桁架、桥塔、

拉索的刚度矩阵与质量矩阵,

采用子空间迭代法求解特征方程,所得结果可供设计参考。

关键词有限元法;斜拉桥;自振频率;振型

分类号U 44112

1引言

桥梁结构的动力特性包括自振频率及主振型等,它是桥梁计算的重要课题之一。桥梁结构的动力特性反映了桥梁的刚度指标,它对于正确地进行桥梁的抗震设计及维护,有着重要的意义。我国设计的某大跨度钢桁梁斜拉桥,这种桥型的自振频率和主振型的计算困扰着设计人员。钢桁梁斜拉桥是一个空间杆系结构,从理论上讲计算这种结构的空间振动自振频率及主振型并不是十分困难。然而,由于桥梁结构复杂,自由度很大,加上实际桥梁受结点及支座的约束等,完全由理论按空间梁元计算钢桁梁斜拉桥自振频率及主振型并不容易。本文探讨这种桥型动力特性的计算方法,对于桁梁、应用桁段有限元法,将桁梁取为桁段单元,每个桁梁节间断面有10个自由度。桥塔取为空间梁单元,每个结点有6个自由度。斜拉桥拉索取为空间桁元,分析了国内设计中的某特大跨度斜拉桥的自振特性。文中在形成结构总体刚度矩阵

及质量矩阵时,使用形成矩阵的“对号入座”法则〔1〕,能很简便地考虑桥门架、横联等局部构件的作用。数值算例表明,这种方法使用方便,结果可靠,结构自由度数可大大降低等优点,是斜拉桥动力分析的有效方法。

2计算模型及其主要假定

211桥梁简介

国内设计的某特大跨度钢桁梁斜拉桥为双塔双索面斜拉桥。主梁采用五跨连续钢桁梁,其中主跨跨长368米,主梁宽20米,主梁高1415米,总长864米;桥塔是一个钢筋混凝土框架,塔高113米,每塔有10对索与主梁相连,构成扇形索面,桥梁简图如图1所示。

212计算模型及主要假定

21211桁梁单元

钢桁梁斜拉桥是一个相当复杂的结构,为了减少自由度,主桁采用桁段有限元计算,在不失对桥梁结构主要因素研究的前提下,本文采用以下主要假定:

第14卷第1期

计算力学学报V o l .14N o.11997年2月CH I N ESE JOU RNAL O F COM PU TA T I ONAL M ECHAN I CS February 1997

Ξ河南省自然科学基金资助。

本文于1995年9月5日收到,1996年7月8日收到修改稿。

图1钢桁梁斜拉桥

图2桁梁截面质量缩聚方式

11除桥门架及横联外,桁梁各杆件相互铰接;

21忽略上、下平纵联横撑杆的弹性轴向变形;

31桥梁每个节间的质量集中在结点横截面上。

质量凝聚方法是:弦杆质量缩聚在四个角点;上、下

平纵联的质量分别缩聚在上、下角点;竖杆和腹杆质量缩聚在主桁中点;桥面系和轨道、枕木质量缩聚在纵横梁的交叉点上,并同时假定横梁上各点的位移呈线性分

布,由主桁下弦位移决定,主桁中点处的位移为上、下角

点位移的平均值。如图2所示。

主桁计算取4个节间梁体为一个桁段单元,共计27

个桁段单元。根据以上假定,桁梁节间断面的空间位移

模式可设如图3所示。

图中,u u 、u l 分别为主桁上、下结点的横向水平位移;v u l 、v ll 、v u r 、v lr 及w u l 、w ll 、w u r 、w lr 顺次为左、

右主桁架上、下结点的竖向位移及纵向位移,顺图中箭头方向的位移为正,反之为负。所以桁段单元的结点位移参数为

{?}B =〔u u u l v u l v u r v ll u lr w u l w u r w ll w lr 〕

T (1

21212桥塔单元根据桥塔特点,塔柱取为空间梁单元,每个塔柱取为8个空间梁单元,每个单元有2个结点,每个结点有6个自由度,所以桥塔空间梁单元的自由度为

85计算力学学报14卷

{?}P =〔u ti v ti w ti Ηtx i Ηty i Ηtz i u tj v tj w tj Ηtx j

Ηty j Ηtz j 〕T (2

(a 桁梁在其截面内的横向、竖向位移(b 桁梁横截面的纵向位移

图3桁梁空间位移模式

21213斜拉索单元

斜拉索采用空间桁架单元,由于自重的作用,斜拉索有垂度,垂度降低了拉索的抗拉能力,这种降低效应可用E rn st 提出的等效弹性模量公式描述

E eq =E

1+(W L 2A E 12T 3(3

式中,E eq 是考虑垂度影响后的等效弹性模量,E 是拉索的有效弹性模量,W 、L 、A 、T 分别为拉索单位长度自重、拉索水平投影长度、拉索横截面积与拉索拉力。

3振动方程的建立

311斜拉桥主桁梁单元

根据虚功原理,对于斜拉桥主桁系统,在任一瞬时t ,应有

?Π1+?Πt =0

(4式中,Π1为桁梁各铰接杆件的轴向变形应变能U s (桥门架及横联的楣杆不包括在内,平纵联横撑不考虑,所有横联剪切变形应变能U ci 和所有桥门架剪切变形应变能U p j 所组成,即

Π1=∑s U

s +∑i U ci +∑j U p j

设桁梁第s 个杆件(结点为i 、j 的轴向位移分别为z i 、z j ,截面积为F ,杆长为L ,如图4所示,则其轴向变形应变能及其一阶变分为

U s =E F 2L (z j -z i 2(5

?U s =E F L (z j -z i (?z j -?z i (6

式中,?z j 为z j 的变分,其余符号类同。

9

51期陈淮等:大跨度斜拉桥动力特性分析

图4桁梁构件轴向变形示意图在利用上面公式计算时,可根据各杆件具体情况,计算出

各端的轴向位移与桁段结点断面位移之间的关系,代入式(5、

(6,即可计算出该杆的轴向变形应变能及其一阶变分。

桁梁第i 个结点横联的剪切变形由该点的横截面位移描

述。其剪切变形应变能U ci 为其竖杆与横梁的弯曲变形应变能、

轴向变形应变能及各楣杆轴向变形应变能的总和。竖杆、横梁

的轴向变形能与其弯曲变形能相比很小,可以忽略,故计算横联剪切变形能时,不计竖杆轴向变形,于是由图3(a ,得横联畸变角

Χ=Χ1-Χ2=u u i -u li h -(v u ri +v lri -(v uli +v lli 2b

(7设横联抗剪刚度为R d ,则产生畸变角Χ的剪切力为R d h Χ。第i 个横联剪切变形能U ci 等于剪切力所作之功,故

U ci =12R d h Χ h Χ={?1}T 12

R d h 2〔N 1〕T 〔N 1〕{?1}(8?U ci ={??1}T R d h 2〔N 1〕T 〔N 1〕

{?1}(9

式中〔N 1〕=〔1h -1h 12b 12b -12b

-12b

〕{?1}=〔u u i u li v u li v lli v u ri v lri 〕T {??1}=〔?u u i ?u li ?v u li ?v lli ?v u ri ?v lri 〕

T 各位移参数及其一阶变分的编号是它们在总刚度矩阵中的编号。

横联抗剪刚度R d 为横联顶边相对于底边产生单位侧向水平位移时作用于顶边的侧向水平力,简化计算时,对于图5所示中间横联,根据文献〔4〕的思想,可得横联抗剪刚度R d 为

R d =24E I

h 21(c +h 1(10

图5中间横联当需要精确计算R d 时,采用有限单元法计算图5所示

平面框架,下端固定,当顶边产生单位侧向水平位移时,

在顶边所作用的侧向水平力即为横联抗剪刚度R d 。

桥门架剪切变形时,式(9中只有其顶点侧移u u j ≠

0,故第j 个桥门架剪切变形能的一阶变分为

?U p j =?u u j R 0u u j (11

上式表示:不论是竖向和斜向桥门架,只需将其抗剪刚

度R 0加到与u u j 对应的总刚度矩阵主元素中,即可很方

便地处理桥门架的剪切变形影响。

桁梁惯性力虚功?Πt 系根据达朗伯原理及桥梁振动位移图3,通过计算每一结点横截面的惯性力虚功?Πm i 最后迭加而成。而?Πm i 又是图2所示每个缩聚质量j 处惯性力虚功?Πm ij 之和。设缩聚质量m ij 的位移为d j ,则该缩聚质量的惯性力虚功为m ij d

βj ?d j ,于是?Πt =∑i ?Πm i =∑i ∑j m ij d βj ?d j

(12由虚功方程(4式,可方便地得到斜拉桥主桁系统的总体刚度矩阵[K ]B 和质量矩阵

06计算力学学报14卷

[M ]B 。

312塔柱单元

本文将塔柱取为空间梁单元,单元质量矩阵采用一致质量矩阵,空间梁元的单元刚度矩阵和质量矩阵显式表达式见文献〔3〕。组集塔柱单元的单元特性,由此可得桥塔结构的总体刚度矩阵[K ]P 和质量矩阵[M ]P 。

313斜拉索单元

斜拉索采用空间桁元计算,求其轴向变形应变能及其一阶变分时,可利用公式(5、

(6进行计算。根据各斜拉索的具体情况,计算出索端的轴向位移与桁段结点断面位移及与桥塔结点

位移之间的关系,代入式(5、(6,即可计算出该索的轴向变形应变能及其一阶变分。同理求出

斜拉索的惯性力虚功。应用虚功原理及形成矩阵的“对号入座”法则〔1〕,可得斜拉索的刚度矩阵

[K ]S 和质量矩阵[M ]S 。

把斜拉桥主桁系统刚度矩阵与质量矩阵、桥塔结构刚度矩阵与质量矩阵、斜拉索的刚度矩阵与质量矩阵分别扩阶迭加,即可得斜拉桥总体刚度矩阵[K ]及总体质量矩阵[M ]。314实例验证

鉴于文献〔5〕已对空间梁元模拟桥塔、空间桁元模拟斜拉索作了论证,所以本文仅就桁段有限元法计算桁梁桥结构自振特性的可行性进行验证。用这种桁段有限元法计算了沪杭线上41号桥(跨度92196米简支下承式非平行弦钢桁梁桥等桥的自振特性,计算结果与实测结果〔6〕接近,限于篇幅,这里给出部分计算结果如表1所示,从表1可以看出,本文建议的桁段有限元法计算桁梁桥结构自振特性结果可靠,方法正确。

表1沪杭线41号桥计算自振频率与实测值对比(H Z

序号

频率计算值实测值振型特征1

111401110侧向弯曲振动为主2

215932171扭转振动为主3216812160竖向弯曲振动为主

4计算结果及其分析

在得到斜拉桥的总体刚度矩阵和质量矩阵后,可以得到斜拉桥结构自由振动微分方程为[M ]{?

β}+[K ]{?}={0}(13由此可得斜拉桥结构的特征方程为

〔[K ]-Ξ2[M ]〕{A }={0}

(14本文使用子空间迭代法〔7〕解此方程,得出斜拉桥结构的前10阶自振频率及其主振型,并指出它们各以何种振动形式为主,计算结果列于表2,图6为用计算机给出的斜拉桥前7阶振型图。需要说明的是由于第3、4阶主振动是以桥塔横向振动形式为主,图中没有附出。

1

61期陈淮等:大跨度斜拉桥动力特性分析

62 计算力学学报表 2斜拉桥的自振频率和周期序号 1 2 3 4 5 6 7 8 9 10 14 卷频率 (H Z 01299 01560 01561 01568 01622 01739 01882 01888 01987 11152 周期 ( S 31349 11783 11782 11762 11609 11354 11134 11126 11013 01868 振型特征 u u 主桁横向振动为主 v l 主桁竖向振动为主 u t 桥塔横向振动为主 u t 桥塔横向振动为主 w l 主桁纵向振动为主 u u 主桁横向振动为主 v l 主桁竖向振动为主 u u 主桁横向振动为主 u u 主桁横向振动为主 v l 主桁竖向振动为主图 6斜拉桥振型图从图 6 可以看出, 该斜拉桥结构第一阶主振型图主桁上、下弦杆横向振型同

向, 且振型图中间无节点, 故该振型图对应于斜拉桥结构以横向弯曲振动为主的第一阶振型。结构第二阶主振型图主桁上、下弦杆竖向振型同向, 且振型图中间无节点, 故该振型图对应于斜拉桥结构以竖向弯曲振动为主的第一阶振型。结构第三、四阶主振型图分别对应于斜拉桥桥塔的第一、二阶横向振型。结构第五阶主振型图主桁左、右弦杆纵向振型同向, 且振型图中间无节点, 故该振型图对应于斜拉桥结构以纵向振动为主的第一阶振型。结构第六阶主振型图主桁上、下弦杆横? 1994-2009 China Academic Journal Electronic Publishing House. All rights reserved. https://www.docsj.com/doc/3118789546.html,

1 期陈淮等: 大跨度斜拉桥动力特性分析

63 向振型同向, 振型图中间有一个节点, 故该振型图对应于斜拉桥结构以横向弯曲振动为主的第二阶振型。同理, 结构第七阶主振型图对应于斜拉桥结构以竖向弯曲振动为主的第二阶振型。从图 6 所示振型图中还可以看出, 本文计算所得主振型图变形平滑匀顺、协调, 满足振型节点规律, 由于双面斜拉索作用, 加强了斜拉桥主桁的抗扭刚度, 与一般桁梁桥不同的是, 在主振型图中没有出现以扭转振动为主的振型, 符合物理概念。 5结语从以上分析论述及实例计算可以看出, 本文提出的大跨度钢桁梁斜拉桥自振特性分析方法, 可以用于斜拉桥的空间动力计算, 能方便地考虑桥门架及横联等局部构件抗剪刚度的影响, 与其它计算斜拉桥动力特性的有限元法等方法相比, 使用本文方法斜拉桥结构总体自由度数可大大降低, 并且计算简便可靠, 易于计算机实施。因此, 它可作为一种进行大跨度斜拉桥动力特性分析的实用方法。参考文献 1曾庆元, 杨平. 形成矩阵的“对号入座” 法则与桁梁空间分析的桁段有限元法. 铁道学报, 1986, 8 ( 2 : 44 ~ 59 2陈淮, 曾庆元. 特大钢桁梁桥振动分析. 长沙铁道学院学报, 1990, 8 ( 4 : 84 91 ~ 3殷学纲, 陈淮, 蹇开林. 结构振动分析的子结构方法. 北京: 中国铁道出版社, 1991 4钱令希. 超静定结构学. 中国科学图书仪器公司出版, 1951: 58 62 ~ 5 ilson J C , et a l M odelling of a cab le 2stayed b ridge fo r dynam ic ana lysis E a rthquake E ng ineering and . . W S tructu ra l D y nam ics, 1991, 20 6杨毅. 车桥系统模态综合法与桁梁有载自振特性分析: [ 硕士学位论文 ]. 长沙: 长沙铁道学院, 1985 m a ss m a t rices a re ca lcu la ted ba sed on m a teria l and geonet ric p rop ert ies of the va riou s b ridge p rovide

reference fo r design. elem en t s. T he sub sp ace itera t ion m ethod is u sed to ca lcu la te the eigenp robem. T he resu lt s Key words: fin ite elem en t m ethod; cab le stayed b ridge; na tu ra l frequency; na tu ra l m odes ? 1994-2009 China Academic Journal Electronic Publishing House. All rights reserved. 7 B a the K J. F in ite elem en t p rocedu res in engineering ana lysis. N ew J ersey: P ren tice 2 a ll, 1982: 672 696 ~ H D ynam ic character istics ana lys is of long span cable- stayed br idges Chen H ua i (D ep artm en t of C ivil Eng ineering, Zhengzhou U n irersity of T echno logy, Zhengzhou, 450002, P. R. Ch ina Guo X iang rong, Zeng Q ingyuan Abstract (D ep artm en t of C ivil Eng ineering, Chang sha R ailw ay In stitu te, Chang sha, 410075, P. R. Ch ina In th is p ap er, a m ethod fo r the ana lysis of dynam ic cha racterist ics of long sp an steel t ru ssed cab le 2stayed b ridges is suggested. T he fin ite elem en t m odel is develop ed u sing fin ite t ru ss elem en t s to m odel the t ru ss b ridge deck, and sp ace beam elem en t s to m odel the b ridge tow er, and sp ace t ru ss elem en t s to m odel the cab lesof cab le stayed b ridge. St iffness and https://www.docsj.com/doc/3118789546.html,

大跨度桥梁

大跨度桥梁 1.大跨度桥梁现状及未来发展趋势 1.1斜拉桥 斜拉桥是现代大跨度桥梁的重要结构形式,特别是在跨越峡谷、海湾、大江、大河等不易修筑桥墩和由于地质的原因不利于修建地锚的地方,往往选择斜拉桥的桥型。它的受力体系包括桥面体系,支承桥面体系的缆索体系,支承缆索体系的桥塔。斜拉桥不仅能充分利用钢材的抗拉性能、混凝土材料的抗压性能,而且具有良好的抗风性能和动力特性。它以其跨越能力大,结构新颖而成为现在桥梁工程中发展最快,最具有竞争力的桥型之一。 斜拉桥作为一种拉索体系,比梁式桥的跨越能力更大,是大跨度桥梁的最主要桥型。 斜拉桥是我国大跨径桥梁最流行的桥型之一。目前为止建成或正在施工的斜拉桥共有30余座,仅次于德国、日本,而居世界第三位。而大跨径混凝土斜拉桥的数量已居世界第一。 中国至今已建成各种类型的斜拉桥100多座,其中有52座跨径大于200米。20世纪80年代末,我国在总结加拿大安那西斯桥的经验基础上,1991年建成了上海南浦大桥(主跨为423米的结合梁斜拉桥),开创了中国修建400米以上大跨度斜拉桥的先河。我国已成为拥有斜拉桥最多的国家。 今后斜拉桥的体系多以漂浮式或半漂浮为主。半漂浮式可用柔性墩或在塔上设水平拉索阻止桥面过分的漂浮,所有这些都是为了抵抗温度变形及地震。 斜拉桥的发展趋势主要表现在如下几个方面: 1)桥面继续轻型化,跨径继续增大,中小跨径也具有竞争力 2)塔架构的多样化 3)多跨多塔斜拉桥 1.2悬索桥 悬索桥是特大跨径桥梁的主要形式之一,除苏通大桥、香港昂船洲大桥这两座斜拉桥以外,其它的跨径超过1000m以上的都是悬索桥。如用自重轻、强度很大的碳纤维作主缆理论上其极限跨径可超过8000m。 迄今为止世界上已出现三个悬索桥大国,即美国、英国与日本。全球各类悬索桥的总数已超过100座。 美国在悬索桥的发展上花了将近100年的时间,技术上日趋成熟,为全球悬索桥的发展奠定了基础,并首先使悬索桥成为跨越千米以上的唯一桥型。美国的悬索桥由于出现较早,在风格上有与其时代相适应的特色,主要有一下各点: (1)主缆采用AS法架设。 (2)加劲梁采用非连续的钢桁梁,适应双层桥面,并在桥塔处设有伸缩缝。 (3)桥塔采用铆接或栓接钢结构。 (4)吊索采用竖直的4股骑跨式。 (5)索夹分为左右两半,在其上下采用水平高强螺栓紧固。 (6)鞍座采用大型铸钢件。 (7)桥面板采用RC构件。 英国的悬索桥由于出现较晚些,顾自成流派。其主要特点如下: (1)采用流线型扁平钢箱梁作为加劲梁。 (2)早期采用铰接斜吊索。 (3)索夹分为上下两半,在其两侧采用垂直于主缆的高强螺栓紧固。 (4)桥塔采用焊接钢结构或钢筋混凝土结构。

斜拉桥设计计算参数分析

斜拉桥设计计算参数分析 1 概述 斜拉桥属高次超静定结构,所采用的施工方法和安装程序与成桥后的主梁线形、结构内力有着密切的联系。并且在施工阶段随着斜拉桥结构体系和荷载状态的断变化,主梁线形和结构内力亦随之不断发生变化。因此,需对斜拉桥的每一施工阶段进行详尽的分析、验算,从而求得斜拉索张拉吨位和主梁挠度、主塔位移等施工控制参数,并依此对施工的顺序做出明确的规定,并在施工中加以有效的管理和控制。 2 设计参数分析 2.1 主梁的中、边跨跨径比 主梁的中、边跨跨径比反映了结构体系的变形特性和锚索的抗疲劳性能: 从图1、图2可见,三跨钢斜拉桥的中边跨跨径比较多地位于2.0~3.5之间,集中在2.5处;三跨混凝土斜拉桥的相应数值则为1.5~3.0,较集中于2.2处。 就一般而言,中、边跨跨径的比值大于2.0,将能控制锚索的应力幅度在一定的范围内,并提高结构体系的总体刚度。在许多斜拉桥中,虽然中、边跨跨径的比值较小,但边跨中往往采用设置辅助墩或将主梁与引桥连接形成组合体系以提高结构刚度,适应结构的变形要求。 2.2 主梁自重分析 选取某斜拉桥桥5号、9号梁段(见图3),各自增重5 %(其它参数取理论值) ,分别计算得到在浇筑完5号、9号梁段后各控制点挠度及主梁控制截面弯矩变化情况,见图3 、图4 。 图3:主梁自重增大5 %的梁段挠度影响图4:主梁自重增大5 %的梁段弯矩影响 从图3 、图4可见,梁段自重对控制点挠度的影响较大,且悬臂越大,影响越明显。梁段自重对控制点弯矩的影响更加不容忽视, 9 号梁段自重增大5 %,导致6 号梁段的弯矩值增加至1 200 kN •m ,达到合理成桥状态下该截面弯矩值的7 %。 2.3 主梁弹性模量分析

大跨极窄人行悬索桥动力特性及风振响应研究

第40卷第9期建 筑 结 构2010年9月 大跨极窄人行悬索桥动力特性及风振响应研究 熊耀清, 何云明, 吴小宾 (中国建筑西南设计研究院有限公司,成都610081) [摘要] 以一个跨度199m 、宽跨比仅1P 132,且地处峡谷的钢结构柔性悬索桥为工程背景,采用ANSYS 有限元软件进行了大跨极窄人行悬索桥动力特性及非线性风振响应研究。结果表明,该类桥的基本周期较通常的大型公路悬索桥明显偏短,采用抗风缆的抗风措施能够改变结构振型的排列顺序和改善结构抗风性能;采用基于线性滤波法的自回归(AR)模型应用MATLAB 模拟了考虑桥址风特性的水平及竖向脉动风时程,结果表明满足分析与设计需求;比较了水平及水平和竖向风工况下有无抗风措施时悬索桥的非线性风振响应,结果表明结构抗风性能满足安全要求。 [关键词] 大跨极窄悬索桥;动力特性;桥址风特性;非线性风振;抗风措施 Research on dynamic characteristics and wind vibration response of a pedestrian large -span and slender suspension bridge Xiong Yaoqing,He Yunming,Wu Xiaobin (Chi na South west Architectural Design and Research Institute Co.,Ltd.,Chengdu 610081,China) Abstract :Based on a steel truss flexible suspension bridge in mountainous area,which has the main span of 199m and the wide -span ratio of 1P 132,the dynamic characteristics and nonlinear wind vibration response of the pedestrian large -span and slender suspension bridge were analyzed by ANSYS.The resul ts indicate that the basic period of the bridge is shorter than that of general large high way suspension bridge obviously,and the wind fortification measures can change dynamic characteristic of the suspension brid ge and can increase its wind resistance performance.Considering the wind characteri stics of the bridge si te,the wind load history was simulated with AR model by MATLAB https://www.docsj.com/doc/3118789546.html,pared the nonlinear wind vibration response with and wi thou t forti fication measures under horizontal and horizontal &vertical wind load,i t shows that the wind resistance performance of the brid ge is qualified when i t comes to safety requirement. Keywords :large -span and slender suspension bridge;dynamic characteristic;wind characteristics of the bridge site;nonlinear wind vibration;wind fortification measures 作者简介:熊耀清,博士,高级工程师,Emai l:xyq729730@https://www.docsj.com/doc/3118789546.html, 。 0 引言 大跨度、窄桥面悬索桥造价低廉、施工方便,在我 国西部山区应用较多。因其上部结构刚度较小,对风敏感,且多建于风场复杂的峡谷、山口等特殊地形山区[1],导致结构所承受的风荷载不同于常规结构,从而对抗风设计提出了更高的要求。而现有的大跨悬索桥的风振响应分析都是基于大型公路桥梁[2,3],现行桥梁设计规范对于大跨极窄的人行悬索桥没有相关规定。为给该类悬索桥的抗风设计及施工提供基本数据,以某景区的人行悬索桥为工程背景,研究了其结构自身的动力特性及桥址处山区风特性,进行了详细的风荷载静力及非线性风振响应分析,并比较了采用加抗 风缆、栏杆、中央扣等抗风措施后悬索桥的抗风性能。1 工程概况 某悬索桥地处低山丘陵地带,山体呈V 形走廊,海拔高度650~700m,桥体横跨东、西两岸,桥面相对谷底的垂直高度约为100m 。该桥主要用于连接两岸,桥型 布置如图1所示。采用单跨钢结构柔性悬索桥形式,跨度199m,主缆间距115m,矢跨比1P 1312,宽跨比达1P 132,吊杆间距310m 。主缆为悬索桥主要承重结构,两端固定于锚碇,两岸桥塔为主缆提供中间支承(在塔顶设置主索鞍)。加劲梁及桥面系通过吊杆悬挂于主缆上,并在主塔处设置支座,提供支承,抗风缆通过抗风拉索与桥面横梁相连,并组成一个与铅垂面呈30b 夹角的平面。主缆采用2根7<38的平行钢丝束索,抗拉强度1770MPa;吊杆采用圆钢<40;抗风缆采用2根<44的钢丝束索,抗拉强度1770MPa 。桥面系包括加劲梁、桥面铺装、栏杆等,加劲梁为梁格体系,由纵、横梁及风联钢构(即桥面水平撑)焊接而成,纵、横梁分别采用工 字钢I14,I20,材质为Q345;桥面铺装为宽300mm 、厚80mm 松木板条,间缝10mm,木板采用锚栓与桥面纵梁连接,栏杆采用<50钢管,间距115m;桥塔为钢筋混凝 148

大跨径混合梁斜拉桥的动力特性分析

大跨径混合梁斜拉桥的动力特性分析 发表时间:2018-12-13T09:25:46.667Z 来源:《建筑模拟》2018年第27期作者:范晓杰 [导读] 本文以一个大跨径的混合梁斜拉桥为例,采用大型有限元分析软件madis civil建立模型,用子空间迭代法对模态进行求解,得出了自振频率、振型,并结合混合梁斜拉桥的结构特点分析其动力特性。 范晓杰 浙江省嘉兴市交通工程质量安全监督站 314000 摘要:本文以一个大跨径的混合梁斜拉桥为例,采用大型有限元分析软件madis civil建立模型,用子空间迭代法对模态进行求解,得出了自振频率、振型,并结合混合梁斜拉桥的结构特点分析其动力特性。在此基础上考虑分别在横向和纵向输入地震波,用反应谱法分析产生的影响。结果表明,前十阶振型中竖向振型较多,频谱较为密集,没有出现扭转振型,纵向、横向的振型耦联效应较小等,为目前其他同类型混合梁斜拉桥的动力特性分析研究提供参考。 一、工程概况 永川长江大桥主桥全长1008m,跨径布置为(64+68+68+608+68+68+64)m的7跨半漂浮体系混合梁斜拉桥,边跨设置1个过渡墩,2个辅助墩。索塔采用宝瓶型钢筋混凝土索塔,塔高分别为196.7m、207.4m。边跨为预应力PK断面混凝土箱梁,中跨也为同外形的PK断面钢箱梁,梁高3.5m,宽37.6m。拉索为双索面扇形构造,边跨11对索间距为10m,7对索间距为8m,主跨索间距为15m。 二、斜拉桥的动力特性分析 结构的动力响应取决于结构本身的动力特性和外部荷载的激励,所以在进行抗风稳定、抗震分析时往往得先进行自振特性分析。 采用子空间迭代法计算自振频率及相应的振型如表3.1所列。 表3.1桥梁的自振特性 一阶振型为纵飘,这是由于斜拉桥的设计主要考虑控制结构的横向和竖向变位,而允许纵向移动,很好的提高了桥梁的抗震能力。 二阶振型为主梁对称竖弯,主梁的竖弯也会引起桥塔的纵向弯曲,从表3.1中可以发现在前十阶振型中出现较多的主梁对称和反对称竖弯,因此在抗震设计中要着重考虑主梁的竖向和桥塔的纵向位移。 三阶振型为主梁对称横弯,这说明了主梁的横向刚度较小,抗风稳定性较差,在抗震设计中也应该注意控制。 结构的一阶对称竖弯、横弯振型出现在2、3阶,根据经验这符合大跨度斜拉桥的动力特性的一般特点。 表3.1中没有出现扭转振型,这符合双索面、箱梁布置的斜拉桥动力特性,抗扭刚度较大。 本桥的前十阶振型自振频率在0.0823~0.8684,说明结构的模态比较密集,在动荷载作用下许多振型容易被引起强烈的振动。 在前十阶振型中出现了很多的主梁竖向弯曲,这是由于混合梁斜拉桥中钢箱梁的刚度小于混凝土梁的刚度而引起的。 为了分析本桥的纵、横向的耦联效应,分别在纵向、横向输入地震波。考虑该桥所在区域抗震设防烈度为7度,场地类别为Ⅰ类,选择主梁的内力值进行分析,结果如表3.2所示,塔顶、跨中的位移如表3.3所示。 表3.2 主梁内力值分析结果 表3.3 塔顶、跨中位移值(单位:mm) 横向地震反应引起的主梁反应主要是y方向的剪力和弯矩,且混凝土梁的反应大于钢箱梁;而x方向、z方向的剪力及弯矩都较小。纵向地震反应时主梁x、z方向剪力及弯矩较大,说明在输入纵向地震反应时结构会产生竖向内力,混凝土梁的反应亦大于钢箱梁。

世界十大跨径拱桥排行榜

世界十大跨径拱桥排行榜 NO.1朝天门大桥 朝天门大桥进入上部结构施工阶段,与两江隧道一起连接解放碑、江北城、弹子石三大中央商务区 朝天门大桥夜景效果图中港二航局朝天门大桥工程项目部提供 船近重庆城,穿过由“解放碑”桥墩和大桥桥面构成的“城市之门”,繁华的渝中半岛近在眼前。朝天门大桥2008年6月28日竣工通车之后,这样的场景会给每一位坐船上水来重庆的客人留下深刻的印象。 记者昨日从中港二航局朝天门大桥工程项目部获悉,这座被称为重庆又一个标志性建筑的大桥,已正式进入上部结构施工阶段。 号称世界第一拱桥 虽然名叫“朝天门大桥”,但大桥的实际位置是在离朝天门还有1.7公里的溉澜溪青草坪。朝天门大桥从设计之初就定位为重庆的江上门户。“方案最终选定了简洁大气的钢桁架拱桥形式”,项目部负责人说,大桥只有两座主墩,主跨达552米,比世界著名拱桥———澳大利亚悉尼大桥的主跨还要长,成为“世界第一拱桥”。 灯饰要花千万元 解放碑和朝天门,这两张重庆的城市名片,也在大桥上实现了巧妙的融合。“大桥的两个主墩,被设计成解放碑的样子,一剖两半,分成四个柱子,托起大桥。”项目部负责人说。 该方案定名为“城市之门”,已获得市政府批准。“解放碑”桥墩上都有观景台,将成为观赏朝天门两江汇流和山城夜景的绝佳位置。 白天,大桥除桥墩外通体红色;入夜,大桥华灯齐放,倒映于江面上。据悉,仅灯饰工程,预算就在千万元左右。 据介绍,建成后的大桥,分为上下两层。上层为双向六车道,行人可经两侧人行道上桥;下层则是双向轻轨轨道,并在两侧预留了2个车行道,可保证今后大桥车流量增大时的需求。 大桥西接江北区五里店立交,东接南岸区渝黔高速公路黄桷湾立交,全长4.158公里,是主城一条东西向快速干道。 朝天门大桥与规划中的两江过江隧道一起,将把解放碑、江北城、弹子石三个中央商务区构成一张立体的交通网

1使用MIDAS Civil做斜拉桥分析时的一些注意事项

使用MIDAS/Civil做斜拉桥分析时的一些注意事项 斜拉桥的设计过程与一般梁式桥的设计过程有所不同。对于梁式桥梁结构,如果结构尺寸、材料、二期恒载都确定之后,结构的恒载内力也随之基本确定,无法进行较大的调整。对于斜拉桥,由于其荷载是由主梁、桥塔和斜拉索分担的,合理地确定各构件分担的比例是十分重要的。因此斜拉桥的设计首先是确定其合理的成桥状态,即合理的线形和内力状态,其中起主要调整作用的就是斜拉索的张拉力。 确定斜拉索张拉力的方法主要有刚性支承连续梁法、零位移法、倒拆和正装法、无应力状态控制法、内力平衡法和影响矩阵法等,各种方法的原理和适用对象请参考刘士林等编著的公路桥梁设计丛书-《斜拉桥》。 MIDAS/Civil程序针对斜拉桥的张拉力确定、施工阶段分析、非线性分析等提供了多种解决方案,下面就一些功能的目的、适用对象和注意事项做一些说明。 1.未闭合力功能 通常,在进行斜拉桥分析时,第一步是进行成桥状态分析,即建立成桥模型,考虑结构自重、二期恒载、斜拉索的初拉力(单位力),进行静力线性分析后,利用“未知荷载系数”的功能,根据影响矩阵求出满足所设定的约束条件(线形和内力状态)的初拉力系数。此时斜拉索需采用桁架单元来模拟,这是因为斜拉桥在成桥状态时拉索的非线性效应可以看作不是很大,而且影响矩阵法的适用前提是荷载效应的线性叠加(荷载组合)成立。 第二步是利用算得的成桥状态的初拉力(不再是单位力),建立成桥模型并定义倒拆施工阶段,以求出在各施工阶段需要张拉的索力。此时斜拉索采用只受拉索单元来模拟,在施工阶段分析控制对话框中选择“体内力”。 第三步是根据倒拆分析得到的各施工阶段拉索的内力,将其按初拉力输入建立正装施工阶段的模型并进行分析。此时斜拉索仍需采用只受拉索单元来模拟,但在施工阶段分析控制对话框中选择“体外力”。 但是设计人员会发现上述过程中,倒拆分析和正装分析的最终阶段(成桥状态)的结果是不闭合的。这是因为合拢段在倒拆分析和正装分析时的结构体系差异,导致正装分析时得到的最终阶段(成桥阶段)的内力与单独做成桥阶段分析(平衡状态分析)的结果有差异。即,初始平衡状态分析(成桥阶段分析)时,同时考虑了全部结构的自重、索拉力以及二期荷载的影响;而在正装分析时,合拢之前所有阶段的加劲梁会因为自重、索拉力产生变形,合拢时合拢段只受自身的自重影响而不受其它结构的自重和索拉力的影响。 MIDAS/Civil能够在小位移分析中考虑假想位移,以无应力长为基础进行正装分析。这种通过无应力长与索长度的关系计算索初拉力的功能叫未闭合配合力功能。未闭合配合力具体包括两部分,一是因为施工过程中产生的结构位移和结构体系的变化而产生的拉索的附加初拉力,二是为使安装合拢段时达到设计的成桥阶段状态合拢段上也会产生附加的内力。利用此功能可不必进行倒拆分析,只要进行正装分析就能得到最终理想的设计桥型和内力结果。 重新说明一下的话,首先倒拆分析和正装分析的结果是不可避免存在差异的,设计人员需要根据倒拆分析得到的施工阶段张力,利用自己的经验进行进一步地调索或者调整施工步骤或施工工法,从而才能得到既满足施工阶段的结构安全要求,又满足成桥状态的线形和内力条件的斜拉索张力。 其次利用MIDAS/Civil的未闭合力功能,设计人员可以不必繁琐地建立倒拆施工阶段的

大跨度拱桥

大跨度拱桥 以承受轴向压力为主的拱圈或拱肋作为主要承重构件的桥梁,拱结构由拱圈(拱肋)及其支座组成。拱桥可用砖、石、混凝土等抗压性能良好的材料建造;大跨度拱桥则用钢筋混凝土或钢材建造,以承受发生的力矩。按拱圈的静力体系分为无铰拱、双铰拱、三铰拱。前二者为超静定结构,后者为静定结构。无铰拱的拱圈两端固结于桥台,结构最为刚劲,变形小,比有铰拱经济,结构简单,施工方便,是普遍采用的形式,但修建无铰拱桥要求有坚实的地基基础。双铰拱是在拱圈两端设置可转动的铰支承,结构虽不如无铰拱刚劲,但可减弱桥台位移等因素的不利影响,在地基条件较差和不宜修建无铰拱的地方,可采用双铰拱桥。三铰拱则是在双铰拱的拱顶再增设一铰,结构的刚度更差些,拱顶铰的构造和维护也较复杂,一般不宜作主拱圈。拱桥按结构形式可分为板拱、肋拱、双曲拱、箱形拱、桁架拱。拱桥为桥梁基本体系之一,一直是大跨径桥梁的主要形式。拱桥建筑历史悠久,20世纪得到迅速发展,50年代以前达到全盛时期。古今中外名桥遍布各地,在桥梁建筑中占有重要地位,适用于大、中、小跨径的公路桥和铁路桥,更因其造型优美,常用于城市及风景区的桥梁建筑。其中按照规范跨度大于四十米的拱桥就称为大跨度拱桥,按照目前技术水平,跨度大于100米的拱桥才称得上大跨度拱桥。在大跨度拱桥中按照拱轴线的型式可分为:圆弧拱桥、抛物线拱桥、悬链线拱桥。 圆弧拱桥:拱圈轴线按部分圆弧线设置的拱桥。优点构造简单,石料规格最少,备料、放样、施工都很简便;缺点是受荷时拱内压力线偏离拱轴线较大,受力不均匀。 如图所示,有一座拱桥圆弧形,它的跨度为60米,拱高为18米,当洪水泛滥到跨度只有30米时,就要采取紧急措施,若拱顶离水面只有4米,即PN=4米时,是否采取紧急措施? 解:不采取紧急措施。其理由如下:设半径OA=∵AB=60 PM=18∴AM=30 OM=18∴在Rt△AOM中,由勾股定理,得:

ansys对斜拉桥的分析实例

用Ansys分析斜拉桥的变形、应力分布与优化

问题背景:第三届结构设计大赛,题目为:承受运动载荷的不对称双跨桥 梁结构模型设计。参赛作品为一个斜拉桥 比赛所用材料:桐木若干,白乳胶一瓶。 比赛要求:保证小车通过的同时,桥应力求重量轻,轻者可进入决赛。 参赛实验台示意图 比赛计算参数: 木杆的抗拉强度表

设计方案数据:根据所给材料,经过计算我们预计需要使用:主梁:4根6*6、4*6,55*1截取18mm宽,55*2截取15mm宽;拉塔:2根6*6,3*4作桁架;梁的固定用1根3*4;桥墩:2根3*4,55*1的木片作桁架结构。下脚料把主梁两端各加长20mm,并把端面做成梯形以使桥梁稳定。 桥梁简支模型:

其中(5)、(7)、(8)为拉索,(6)为拉塔,(1)、(2)、(3)、(4)为主梁,1、2、5为三个支座,塔高为330mm,2、3的距离为250mm,3、4的距离为200mm。 当小车经过2、5之间时,梁最容易发生破坏。 加载条件:预赛——空车(重9.88kg)行驶,桥面板由长度为30mm的若干铝板,用柔绳串接而成,重量为2.8kg。 Ansys分析目的:使用ansys分析软件对桥的应力分布进行分析,对结构进行改进与优化。 Ansys建模数据: 步骤: 定义单元类型:桐木材料选取单元类型:Beam 188 拉索材料选取单元类型为Link 10。 定义单元实常数:Link 10单元的实常数AREA定义为3.14*2.25/4。其中Beam 188不需要定义实常数。 定义材料属性:材料属性如图。 定义梁截面类型:主梁:8*8,侧梁:5*5,桁架:3*3(全部为矩形),拉索:R=1.5(圆形)。 建模:建立节点模型,利用建模工具建立节点,再用lines—straight lines 连接节点形成线模型。 划分网格:利用Meshing—Mesh attributes—picked lines,根据不同单元属性,不同材料属性,不同截面属性选择线,划分网格。再用Meshing命令中的line—set进行线单元数目划分,取为15。 定义load:对底座、边缘施加全部自由度约束,节点受力为98.8/4。 求解:solve命令。 查看结果:利用general postproc后处理查看结构变形云图,应力分布。 模型说明:建模过程中,对实际模型进行简化。其中弹性模量和泊松比进行简化处理,数据从网络中获取。桥面板由长度为30mm的若干铝板,用柔绳串接而成,重量为2.8kg。此约束忽略不计。当小车通过桥梁时,认为在如图位置变形最大,故受力分析时,将载荷加载到如图13、14、16、17节点处。尤其是拉索模型。由于拉索单元为Link,其只能受拉,不具有抗弯性能,故改用杆单元代替原模型。建模时使用mm作单位,而泊松比要除以1000,受力要乘以1000,才能得到正确的结果。

大跨度斜拉桥动力特性分析(精)

大跨度斜拉桥动力特性分析Ξ 陈淮郭向荣曾庆元 (郑州工业大学土建系,郑州,450002(长沙铁道学院土木系,长沙,410075 摘要本文提出一种计算大跨度钢桁梁斜拉桥动力特性的方法。文中分别采用桁段 有限单元、空间梁元、空间杆元计算斜拉桥中桁架、桥塔、 拉索的刚度矩阵与质量矩阵, 采用子空间迭代法求解特征方程,所得结果可供设计参考。 关键词有限元法;斜拉桥;自振频率;振型 分类号U 44112 1引言 桥梁结构的动力特性包括自振频率及主振型等,它是桥梁计算的重要课题之一。桥梁结构的动力特性反映了桥梁的刚度指标,它对于正确地进行桥梁的抗震设计及维护,有着重要的意义。我国设计的某大跨度钢桁梁斜拉桥,这种桥型的自振频率和主振型的计算困扰着设计人员。钢桁梁斜拉桥是一个空间杆系结构,从理论上讲计算这种结构的空间振动自振频率及主振型并不是十分困难。然而,由于桥梁结构复杂,自由度很大,加上实际桥梁受结点及支座的约束等,完全由理论按空间梁元计算钢桁梁斜拉桥自振频率及主振型并不容易。本文探讨这种桥型动力特性的计算方法,对于桁梁、应用桁段有限元法,将桁梁取为桁段单元,每个桁梁节间断面有10个自由度。桥塔取为空间梁单元,每个结点有6个自由度。斜拉桥拉索取为空间桁元,分析了国内设计中的某特大跨度斜拉桥的自振特性。文中在形成结构总体刚度矩阵

及质量矩阵时,使用形成矩阵的“对号入座”法则〔1〕,能很简便地考虑桥门架、横联等局部构件的作用。数值算例表明,这种方法使用方便,结果可靠,结构自由度数可大大降低等优点,是斜拉桥动力分析的有效方法。 2计算模型及其主要假定 211桥梁简介 国内设计的某特大跨度钢桁梁斜拉桥为双塔双索面斜拉桥。主梁采用五跨连续钢桁梁,其中主跨跨长368米,主梁宽20米,主梁高1415米,总长864米;桥塔是一个钢筋混凝土框架,塔高113米,每塔有10对索与主梁相连,构成扇形索面,桥梁简图如图1所示。 212计算模型及主要假定 21211桁梁单元 钢桁梁斜拉桥是一个相当复杂的结构,为了减少自由度,主桁采用桁段有限元计算,在不失对桥梁结构主要因素研究的前提下,本文采用以下主要假定: 第14卷第1期 计算力学学报V o l .14N o.11997年2月CH I N ESE JOU RNAL O F COM PU TA T I ONAL M ECHAN I CS February 1997 Ξ河南省自然科学基金资助。 本文于1995年9月5日收到,1996年7月8日收到修改稿。

桥梁动力分析

模拟环境对塔玛悬索桥动力特性的影响 摘要 为了达到结构健康监测的目的,结构在环境因素的影响下,去理解、模拟和补充环境变化对结构动力特性的影响是极其重要的。本文中,已经研究了从英国塔玛悬索桥中测得的加速度值,这些加速度值是用数据激励随机子空间系统识别方法处理的,并且用温度和风载对结构自振频率的影响进行了环境变量的模拟。本文应用了两种方法:1)基于有效识别环境效应所致的线性变化规律的主因子分析法(PCA) ;2)元模型法,这是一种通过多项式函数的组合变化来确定系统输入输出关系的纯数学方法。研究发现在所有环境因素中温度是影响桥梁自振频率最关键的因素。 引言 环境因素对土木结构自振频率的影响是导致结构健康监测技术只能应用于实验室而不能在实际工程结构中得到应用的主要原因。在实验室发展起来的损伤检测技术往往无法在具有实验室相同条件的现场发挥作用;作为衡量破坏敏感性的特征参数也通常对工作环境引起的结构动力反应变化很敏感,而这种情况在实验室是不会出现的。这一方面的研究在过去的几年中得到了很大的关注,处理这个问题的方法在Sohn的关于工作环境对结构健康监测的影响一文中有很好的阐述。 本文研究了环境因素对塔玛悬索桥自振频率的影响,尤其是温度和风速的影响。以前主要集中在温度变化对桥梁模态频率相关性的研究上,事实上,温度被认为是环境因素中对模态特性影响最主要的因素。进一步的研究已经转移到了风载对大跨度桥梁的影响。尤其是发现了日本的白鸟(Hakucho)悬索桥的自振频率随着风速的增加而降低,在此过程中没有考虑温度的影响。在文献[6]中对大跨悬索桥的重型车辆荷载的影响进行了研究,发现车辆荷载对大跨度桥梁的自振频率影响很小或者没有。 在本项研究中诸如交通荷载和湿度等环境因素被忽略,认为本论文所讨论的桥梁不会受到交通荷载的影响,由于桥址的原因,也认为湿度不作为考虑的因素。这篇文章的目的主要是确定促使所观察到的引起桥面日常自由振动的主要因素。 塔玛悬索桥 塔玛大桥(如图1)是一座跨度为643m的大跨度悬索桥,它跨越塔玛河,将康沃尔郡(Wornwall)的索尔塔什(Saltash)市与德文郡(Devon)的普利茅斯(Plymouth)连接在一起。自1961年建成后它成为两个地区的一个至关重要的交通纽带。这座桥具有对称几何形状的常规设计,主跨为335m,两个边跨为114m。钢筋混凝土主塔高达73m,采用沉井基础并直达岩面。主缆直径为350mm,每根主缆由31根钢丝捻成,并设置间距为9.1m的垂直钢索。加劲桁架为5.5米厚,由焊接的空腹箱梁组成。在2001年,按照欧盟指示对这座桥进行了加强和扩宽。尤其是采用了18根直径为100mm的预应力钢索对原来的悬索体系进行了补强,原来复合型的主桥面板被一个三车道的正交各向异性钢板代替,在桁架的每侧加上了单车道悬臂梁。 现在对塔玛悬索桥布置了几种监测系统。2007年菲尔德大学(the University of Sheffield)的振动工程科开始监测桥面板和缆索的动力响应。这个监测系统包括8个缆索

自锚式与地锚式悬索桥动力特性对比分析

文章编号:1671-2579(2010)04-0156-04 自锚式与地锚式悬索桥动力特性对比分析 王立峰,孙勇,王子强 (东北林业大学土木工程学院,黑龙江哈尔滨 150040) 摘 要:以朝阳市黄河路自锚式悬索桥主桥为研究对象,采用有限元软件M idas/Civ il 建立该桥的有限元动力计算模型。考虑重力刚度的影响,对该桥的动力特性进行计算分析,得到结构的自振频率和振型,同时建立与该桥结构参数完全相同的地锚式悬索桥模型进行对比分析,结合计算结果对自锚式、地锚式悬索桥的动力特性和刚度特点进行讨论。最后,在保证初始刚度不变的情况下,考虑不同结构参数变化对自锚式、地锚式悬索桥固有频率的影响,对结果进行分析。 关键词:自锚式悬索桥;动力特性;结构分析 收稿日期:2010-04-10 作者简介:王立峰,男,博士研究生,副教授.E-mail:co mputerw lf@126.co m 1 工程概况 朝阳市黄河路大桥位于朝阳市黄河路东段,向东跨越大凌河,与凤凰组团开发区相连。大桥全长508.32m,主桥为跨径326m 的预应力混凝土自锚式悬索桥,桥跨布置为73+180+73m ,设计荷载为城市 -A 级,人群荷载4.0kN/m 2,地震动峰值加速度为0.1g ,相当于7度,按8度设防,设计洪水频率1/100, 最高水位164.7m 。 2 有限元模型建立 利用有限元法分析桥梁结构时,有多种离散模型,常用的有空间梁单元法、板壳法、三维实体单元法及梁格法。综合考虑自锚式悬索桥的几何非线性影响,根据各构件的形式和受力特点,结构可离散为两种单元:索单元和梁单元。 3 结论 (1)第一次设计中腹板主拉应力虽然符合有关规范要求,但主拉应力较大,最大达2.44MPa,经过优化设计后,最大主拉应力已降至1.77M Pa,降低了27%。效果明显。成桥试验结果也证明了此点。(2)箱梁截面在中跨支点处顶板截面存在较大的剪力滞效应,剪力滞系数 t =1.61,在设计中应注意。(3)纵向预应力钢束尽量布置在靠近腹板的位置,可减小剪力滞效应带来的应力分布不均匀的影响。参考文献: [1] JT J 023-85 公路钢筋混凝土及预应力混凝土桥涵设 计规范[S]. [2] 长沙市规则设计院.长沙市三汊矶湘江大桥结构施工图设计图纸[Z],2004. [3] 张士铎,邓小华,王文州.箱形薄壁梁剪力滞效应[M ].北 京:人民交通出版社,1998. [4] 张士铎,王文州.桥梁工程结构中的负剪力滞效应[M ]. 北京:人民交通出版社,2004. [5] 贺拴海.桥梁结构理论与计算方法[M ].北京:人民交通 出版社,2003. [6] 王焕定,吴德伦.有限单元法及计算程序[M ].北京:中国 建筑工业出版社,2004. [7] 张德锋,茅振伟,吕志涛.预应力混凝土结构裂缝控制及 其可靠性分析[J].工业建筑,2003(4). [8] 袁承斌,张德锋,刘桂荣,等.裂缝对预应力混凝土结构耐 久性影响的试验研究[J].工业建筑,2003(3). [9] 任明飞,胡迎新,郑机.东海大桥近岛段工程预应力混凝 土顶推连续梁的设计与施工[J].桥梁建设,2005(6).[10] 李承君,周世军.顶推法施工的曲线连续梁桥截面实测 应力分析[J].铁道工程学报,2005(2). 156 中 外 公 路 第30卷 第4期2010年8月

大跨度斜拉桥

大跨度斜拉桥 斜拉桥是将斜拉索梁端分别锚固在塔和梁上,形成主梁、索塔和斜拉索共同承载的结构体系。其中主梁和索塔以受压为主,斜拉索受拉。 斜拉索的结构原理可通过与连续梁桥对比来说明。作用为均布荷载下相同跨度斜拉桥和梁旭梁桥的主梁弯矩图对比,斜拉桥的拉索为主梁提供弹性支承,主梁受力跨度小,与同跨度梁相比弯矩分布均匀且绝对值小。和显然,拉索布置越密集,主梁的弯矩也就越小,因此,斜拉桥是可以使用与大跨度桥梁的结构体系。相反,连续梁桥当跨度达到一定程度以后,由于梁的弯矩过大,需要采用比较大的结构截面来确保安全,设计很不经济。斜拉桥更重要的特征是拉索的初始张力可以按设计者的意图来进行调整,通过索力优化实现主梁弯矩分布较合理的目的。 一、大跨度斜拉桥的主要类型 斜拉桥结构体系有多种划分方法,下面根据不同分法介绍结构体系的力学特征(如图1所示)。 1、塔梁之间的结合方式 塔梁之间的结合方式对斜拉桥的受力特性有重要的影响。根据塔梁之间结合之间结合方式的不同,斜拉桥结构体系分为漂浮体系、支撑体系、塔梁固结体系和刚构体系等多种形式。漂浮体系是指主梁在顺桥向变形不受索塔约束,主梁水平荷载不直接传递到索塔的结构形式。 支撑体系是指塔梁之间有竖向支承、并在顺桥向有一定水平约束的结构形式,其中半漂浮体系在顺桥向无约束。 塔梁固结体系是指塔梁之间固结,但塔与墩之间用支座传递荷载的结构形式。 刚构体系是指塔、梁、墩三者之间固结的结构,这种结构体系的刚度比较大,结构变形小,索塔部位不需要设置支座,结构围护容易,施工过程中结构稳定性比较好。 a)漂浮体系 b)支撑体系

c)塔梁固结体系 d)刚构体系 二、大跨斜拉桥的构造措施及力学特点 1、拉索的锚固方式 根据拉索的锚固方式不同,斜拉桥可分为自锚式、地锚式和部分地锚式三种结构体系。自锚式结构体系是斜拉桥中一种最普通的结构形式,全部拉索都锚固在主梁上,主梁为受压结构,当索塔两侧的拉索张力水平分量相等时或者漂浮和半漂浮结构体系,主梁的轴力自相平衡,索塔不承担主梁的水平力。 地锚式斜拉桥是将边跨拉索锚固在独立锚踮上的结构体系。 部分地锚式斜拉桥的结构受力介于自锚和地锚结构体系之间,跨中一部分主梁受拉,其余均为受压。 2、拉索的布置形式 斜拉桥根据索面数量分为单索面、双索面和多索面三中结构体系,双索面又可分为双平行索面和双斜索面。 3、索塔 在斜拉桥中,索塔是将索力传至基础的关键构件,其内力主要是索力和自重作用下产生的轴压及对应的弯矩(如图2)。 索塔的斜拉桥的一个标志性构件,是桥梁景观设计的重要元素,设计时对索塔的造型应引起足够重视。索塔的基本形式可以按沿桥纵向和沿桥横向分别来讨论。大多数斜拉桥采用单柱式;只有当设计要求桥塔的纵向刚度很大时,或者需要4根塔柱来分散塔架的内力时,索塔可做成倒V形与倒Y形。倒V形索塔也可增设一道中间横梁变为A形。

斜拉桥静风稳定分析

斜拉桥静风稳定分析 摘要:随着斜拉桥跨径的不断增大,空气静力失稳现象已引起了人们的广泛重视。本文笔者通过线性方法和非线性方法对斜拉桥静风稳定性进行阐述分析,以供参考。 关键词:斜拉桥;静风稳定;线性分析;非线性分析 abstract: with increasing span cable-stayed bridges, aerostatic instability phenomenon has aroused wide interest. in this paper, the author by linear method and nonlinear method is analyzed on static wind stability of cable-stayed bridge, for reference. key words: cable-stayed bridge; static wind stability; linear analysis; nonlinear analysis 0 引言 风灾是自然灾害中发生最频繁的一种,近十几年,桥梁建设进入了大跨度时代,随着理论的发展,材料和施工方法的进步,斜拉桥、悬索桥的跨径的跨径越来越长。斜拉桥具有“塔高,跨长,索长、质轻、结构柔和阻尼弱”的特点,从而导致风荷载对桥梁安全、舒适性有着重要影响。风对桥梁主要有静力作用和动力作用,本文主要结合工程实例分析静力风荷载对混凝土主梁的斜拉桥的影响。 静风响应指结构在静力风荷载作用下的内力、变位和静力不稳定现象,主要体现为结构的刚度和静风稳定性。斜拉桥在静风荷载的作用下有可能发生横向屈曲失稳和静力扭转发散失稳。主梁在静风

斜拉桥动力特性报告

《弹塑性力学与有限元》课程作业主跨1500m斜拉桥设计 2015年1月

目录 1.有限元模型建立 ................................................................................................................. - 3 - 1.1单元介绍.................................................................................................................... - 3 - 1,2边界条件设定........................................................................................................... - 4 - 1,3有限元模型图........................................................................................................... - 4 - 2、成桥状态恒载分析结果 ................................................................................................ - 5 - 2.1荷载作用下全桥位移云图分析........................................................................... - 5 - 2.2恒载作用下结构支反力......................................................................................... - 8 - 3、桥梁动力特性计算 ....................................................................................................... - 17 - 3.1成桥状态10阶模态及频率计算....................................................................... - 17 - 3.2成桥状态等效质量计算....................................................................................... - 18 - 3.3振型图 ...................................................................................................................... - 19 -

大跨度斜拉桥(400米以上)-2013

主跨400m以上的大跨度的斜拉桥 序 号 工程名称工程概况(主要桥型)施工单位开、竣工时间备注 1 俄罗斯岛大桥 全桥长度为3.1公里,跨径 (90+1104+90)m的双塔钢箱梁斜 拉桥 2008.9- 2012.7 俄罗斯 2 苏通长江公路大桥跨江大桥工程:路线全长32公里, 主跨为1088m的双塔双索面钢箱 梁斜拉桥。 中交第二公路工 程局有限公司、中 交第二航务工程 局有限公司 2003.6- 2008.6 3 昂船洲大桥主要跨度长1018m双塔双索面钢 箱梁斜拉桥 2003.1- 2008.6 香港 4 武汉青山长江大桥 (武湖大桥) 主跨938m双塔混合梁斜拉桥 中铁大桥局股份 有限公司 在建 5 鄂东长江公路大桥跨江大桥工程:工程全长5762m, 主桥全长1476m。主跨为926m的 双塔混合梁斜拉桥,是3× 67.5+72.5+926+72.5+3×67.5m九 跨连续半飘浮体系混合梁斜拉桥。 中交第二航务工 程局有限公司、中 交第二公路工程 局有限公司 2006.10- 2010.9 6 多多罗大桥跨径(270+890+320)m双塔双索面 钢箱梁斜拉桥 1999年竣工日本 7 诺曼底大桥 (27.75+32.5+9× 43.5+96+856++96+14× 43.5+32.5)m双塔双索面钢箱梁 斜拉桥 1995年竣工法国 8 九江长江公路大桥最大跨径达818m双塔混合梁斜拉 桥 中交第二公路工 程局有限公司、中 交第二航务工程 局有限公司 2010年开工在建 9 荆岳长江公路大桥 跨江大桥工程:桥梁总长4210m, 桥宽33.5m,双向6车道,主跨为 816m的双塔钢箱梁斜拉桥。 四川公路桥梁建 设集团有限公司、 湖南路桥建设集 团有限公司 2006.12- 2010.10 10 仁川大桥(80+260+800+260+80)m双塔双索 面钢箱梁斜拉桥 2005.7- 2009.10 韩国

大跨度混合梁斜拉桥施工控制关键技术

大跨度混合梁斜拉桥施工控制关键技术 崔彬文,北京铁城建设监理有限责任公司100855 北京海 淀区 摘要:随着科学技术的迅速发展,新技术、新材料的不断研发应用,计算机辅助设计在大跨度桥梁的设计中被广泛的应用,再利用遥控技术和GPS控制桥梁的施工,使得大跨度桥梁向着大跨度、新型、轻质和美观方向发展。但是大跨度桥梁比普通桥梁在施工时,投资大,成本高,施工更为复杂。本文主要探讨大跨度桥梁在施工过程中的关键技术。 【关键词】大跨度桥梁施工技术 一、前言 自从改革开放以来,我国大跨度桥梁施工的发展进入了一个高速的发展时期,主要表现在近几年来大幅度增加的桥梁建筑总数量,多样化体系的桥梁结构,桥梁结构的跨度也日益变大,建筑桥梁施工的工程环境也越来越复杂化,因此对大跨度建筑桥梁施工的技术有了更高程度的要求。施工是桥梁建筑工程中很重要的一个环节,合理正确的施工措施能使得施工管理与组织的水平得到有效提升。 二、大跨度桥梁施工施工前期的准备工作 2.1合理选取桥梁结构:一般情况下,普通的桥梁常采用T 型或槽型(U型)的桥梁截面,而大跨度预应力混凝土桥梁在截面形状的选择上与此有很大差别,其截面形状采用的是变截面箱型的结构,与一般形状相比,这种截面形状的承载能力更强,且自重较轻。另外,对桥梁截面形状的选择,受到桥梁自身跨度的弯矩以及分布不均等因素的影响,综合各种因素,变截面箱型的结构形状是桥梁截面形状的最佳选择。 2.2科学合理的运用线性控制技术:对于大跨度预应力混凝土桥梁的建设施工技术而言,线性控制技术在桥梁工程中的运用是较为普遍的,通过分析桥梁整体结构,进行科学设计,并对施工过程进行有效控制。 三、大跨度桥梁基础施工关键技术 3.1桥梁基础施工 (1)大型深水群桩基础施工 钻孔平台搭设:对大型深水桩基础结构进行施工时,近年来发展出了不少具有代表性的新技术和新工艺,如钢护筒平台和钢吊箱平台技术,这两种新工艺较之传统施工工艺在技术上更具有先进性。钢吊箱围堰工程是通过精确定位的钢吊箱加装钢护筒,以形成钻孔平台,当承台地面与河床基层较高时,或承台高程以下土层结构较为松软时,可采用此种方法进行施工。而钢护筒平台结构则是完全以钢护筒作为竖向承重荷载的支撑结构,通过打桩船和打桩机具的精确施工技术,可将钢护筒准确打入足够深度的土层,并在钢护筒顶部安装支撑、布置平台板和安装相应钻孔施工机械进行作业。 大型钢吊箱施工:大型钢吊箱近年来较为先进的是整体吊装和现场整体同步控制下放两种工艺。大型钢吊箱水上浮运、现场整体吊装工艺。岸上基层使用整体钢吊箱技术,通过滑道、预制管道或水上浮运等措施将钢吊箱运至施工现场,并在已完成的桩基础施工现场使用吊装、定位和水下封孔等措施进行施工。采用此种施工技术具有施工进度快、作业精度高、施工安全性好、结构稳定等优点;计算机控制整体同步下方技术。钢吊箱在施工中采用了计算机控制的整体同步下放技术,改善了以往钢吊箱下放施工受到结构质量和规模的制约,此种技术的应用对大跨度桥梁施工的发展具有十分广阔的发展前景。 3.2沉井基础施工 沉井基础大量应用与大跨度桥梁的基础,如主塔基础及悬索桥的锚钉基础等。沉井基础施工主要包括沉井基础处理、钢壳沉井的加工、安装及混凝土浇筑、混凝土沉井的接高及下沉、清基及封底等步骤。其

相关文档