文档视界 最新最全的文档下载
当前位置:文档视界 › 独塔双索面斜拉桥动力特性分析

独塔双索面斜拉桥动力特性分析

独塔双索面斜拉桥动力特性分析
独塔双索面斜拉桥动力特性分析

斜拉桥的索力优化

斜拉桥索力优化简介 一、斜拉桥得概况 斜拉桥又称斜张桥,其上部结构由主梁、拉索与索塔三种构件组成。它就是一种桥面系以加劲梁受弯或受压为主,支承体系以斜拉索受拉与主塔受压为主得桥梁。斜拉索作为主梁与索塔得联系构件,将主梁荷载通过拉索得拉力传递到索塔上,同时还可以通过拉索得张拉对主梁施加体外预应力,拉索与主梁得结点可以视为主梁跨度内得若干弹性支承点,从而使主梁弯矩明显减小,主梁尺寸以及主梁重量也相应减小,大大改善了主梁得受力性能,显著提高了桥梁得跨越能力。根据主梁所用建筑材料得不同,可将现代斜拉桥分为钢斜拉桥、混凝土斜拉桥、结合梁斜拉桥以及混合式斜拉桥等。早期斜拉桥得主梁均为钢结构,其形式主要为双箱或单箱配以正交异性板。随着技术进步,19世纪中期出现了第一座现代意义得混凝土斜拉桥,从此,混凝土斜拉桥进入了人们得视野。 混凝土斜拉桥得主梁与索塔一般由混凝土材料构成,为了提高主梁与索塔得适用性能,主梁可以优先采用预应力混凝土主梁,索塔可以釆用钢结构劲性骨架加强或环向预应力结构。在密索体系混凝土斜拉桥中,拉索受拉,主塔与主梁以受压为主,可以充分利用钢丝或钢绞线优异得受拉能力与混凝土良好得受压能力,同时,斜拉索水平分力对主梁形成预压作用,提高了主梁得抗裂能力。从设计方面瞧,既要考虑结构总体布置、结构体系选择得合理性,又要考虑釆用何种方法寻求成桥索力得最优解,还要考虑施工得便捷性、经济效益、社会效益

以及美学功能等多种因素;从施工方面讲,既要确定合理得施工流程,设法寻求合理得施工初拉力,还要做好施工过程中施工参数得动态控制与调整等方面工作。另外,在整个过程中,还要考虑设计参数变化、温度、徐变、几何与材料非线性以及施工方法等因素对设计与施工得影响。 二、斜拉桥索力优化方法 斜拉桥就是高次超静定结构,其主梁、主塔受力对索力大小很敏感,而基于斜拉索索力可以调节得特点,我们可通过对拉索索力得调整来优化斜拉桥成桥恒载状态。针对如何才能确定合理得成桥状态,国内外许多学者都做了大量得研究并提出多种调整方法,可以将这些方法归为三类: (l)指定受力状态得索力优化,包括刚性支承连续梁法、零位移法、内力平衡法、指定应力法、零弯矩法等; (2)无约束得索力优化,包括弯曲能量最小法、弯矩最小法等; (3)有约束得索力优化,包括用索量最小法、应力平衡法等。 而由于斜拉桥得最合理得成桥状态本来也没有一个统一得标准,所以很难说哪一种方法一定优于另外得方法。下面将各种方法得原理介绍如下: ①刚性支承连续梁法 这种方法就是使用最早得方法之一,它将斜拉桥主梁在恒载作用下弯矩呈刚性支承连续梁状态作为优化目标。将主梁、索梁交点处设以刚性支承进行分析,计算出各支点反力。利用斜拉索力得竖向分力

独塔单索面混凝土斜拉桥受力分析

龙源期刊网 https://www.docsj.com/doc/378705621.html, 独塔单索面混凝土斜拉桥受力分析 作者:刘旭勇 来源:《中国房地产业·下半月》2015年第10期 【摘要】本文通过有限元分析软件Midas Civil 2015对一座独塔单索面预应力混凝土斜拉桥进行计算,对其主要受力特点进行分析,为此类斜拉桥的设计提供参考。 【关键词】独塔单索面斜拉桥;调索 引言 斜拉桥按其桥塔的数目一般分为独塔式、双塔式和多塔式。独塔斜拉桥具有跨越性强的优点,可以跨越中小河流,使用最为广泛。 本文通过有限元分析软件Midas Civil 2015对一座独塔单索面预应力混凝土斜拉桥进行计算,对其主要受力特点进行分析,为此类斜拉桥的设计提供参考。 1 工程概况 主桥采用独塔单索面预应力混凝土斜拉桥,总长160m,桥面以上塔高53.0m,塔柱纵向中距3.3m。斜拉索在主梁上标准索距6.5m,主塔上1.8m,桥面宽25.4米。斜拉桥边墩墩顶处支座采用纵向无约束支座形式,梁塔采用固结形式联结。 主梁单箱三室斜腹板截面,箱梁顶宽25.16m,底板宽15.0m,悬臂长4.0m,箱梁对称中心线处梁高2.8m。标准箱梁顶板厚0.28m,底板厚0.25m,外腹板厚0.3m,中腹板为直腹板,厚0.40m。斜拉索为单索面体系,主梁上索距6.5m,主塔上索距1.8m,全桥斜拉索共有9 对,18根。索塔为钢管混凝土结构;索塔总高自桥面起为53m。主塔墩采用圆台形结构,顶 面半径2.75m,底面半径3.5m。转体施工用设备均布在承台上,承台下布置7根φ1.8m的钻孔灌注桩,呈梅花形布置,桩长40m。待转体完成后,将主墩与承台固结,形成塔墩梁固结形式。 2 技术标准 荷载:城—A级;地震烈度:7度;风速: 31.7m/s;桥面路幅宽度:0.6m(护栏)+3.0m (人行道)+8.0m(车行道)+2.2m(索锚区)+ 8.0m(车行道)+ 3.0m(人行道)+ 0.6m(护栏)=25.4m;桥面纵坡:±2.5%;桥面横坡:行车道±1.5%; 3 整体结构分析

某独塔单索面斜拉桥施工方案比选

某独塔单索面斜拉桥施工方案比选 摘要:余姚市中山路主桥是一座部分矮塔斜拉桥,本文对中山路主桥几种切实可行的施工方法进行分析,通过受力性能、经济性能等几种指标的比较,为以后类似的部分斜拉桥的施工方案的比选提供一定的参考。 关键词:矮塔斜拉桥施工方案比选 1 工程概况 本工程位于余姚市城区中部,南至四明东路,北至阳明东路,中山路主桥是连接江南片和江北片交通的一条主要交通通道。主桥为独塔单索面斜拉桥,跨径为76m+76m=152m。桥梁北侧主桥宽度为0.25m(栏杆)+4.0m(人、非混行道)+0.5m(防撞栏杆)+11.0m(机动车道)+3.50m(索区及绿化带)+11.0m(机动车道)+0.5m(防撞栏杆)+4.0m(人、非混行道)+0.25(栏杆)=35.0m ;南侧主桥的人非混行道设置在辅道上,因此桥梁宽度为16.5m。 主桥汽车荷载等级为城市A级,设计行车速度40km/h,桥下净空≥4.5m,通航等级为四级,通航净空为55×7m。 图1 中山路主桥效果图 2 桥梁结构简介 主梁采用预应力混凝土箱梁,单箱五室斜腹板截面(图3)。箱梁宽度为26.3m。标准横隔板每6.0m布置一道,并与斜拉索索距对应。箱梁节段划分如下:0号块节段长12.0m,其余节段长度为3.95m~6.0m,标准节段重量为377.0t。最良江侧人行道板搁置在箱梁外挑悬臂梁上,悬臂梁设置间距同箱梁横隔板,标准厚度为45cm,高度为35cm~100cm,采用预制拼装。 主塔采用钢壁结构,内灌补偿收缩混凝土。桥塔外轮廓采用椭圆形截面,承台以上塔高62.7m,桥面以上塔高51.6m。整个塔柱的外轮廓为椭圆锥形状,在锚固区范围的36.5m内,桥塔中心被挖空,由两个部分椭圆通过钢横撑连接。塔尖为空心钢结构,外形为椭圆锥,高7m,与桥塔主结构最上面的椭圆形钢板焊接。主塔柱钢结构在工厂预制,现场拼装,内部混凝土通过泵送灌注。 斜拉索采用单索面扇形布置,利用中央分隔带作为拉索锚固区,在每个锚固点处横桥向并排布置2根斜拉索,横向间距塔上为0.6m,梁上为1.0m。全桥斜拉索共9对,主梁上标准间距6.0m,最长索约153m,最短索约47.3m。 中墩采用花瓶式门式墩,塔墩基础由12根直径为1.8m钻孔桩组成群桩基础。

独塔宽幅矮塔斜拉桥的设计与分析

文章编号:0451-0712(2006)05-0057-04 中图分类号:U 448.27 文献标识码:B 独塔宽幅矮塔斜拉桥的设计与分析 陈从春1,夏巨华2,肖汝诚1,何 鹏1 (11同济大学桥梁工程系 上海市 200092;21中国市政工程中南设计研究院 武汉市 430010) 摘 要:介绍了江苏昆山吴淞江大桥的设计与分析过程,并对平面应力和空间应力进行了讨论。该桥是一座跨径为10011m +10011m ,宽度为33m 的单索面矮塔斜拉桥,是目前同类结构中跨度较大、桥幅最宽的结构,主梁、桥塔、拉索等构造均比较新颖,可作其他桥梁设计借鉴参考之用。 关键词:矮塔斜拉桥;宽幅;设计;分析 吴淞江大桥位于江苏省昆山市吴淞江河跨处,主桥是一座跨径为10011m +10011m ,宽度为33m 的单索面矮塔斜拉桥。该桥在目前同类结构中跨径居第3位,宽度居第1位。桥上设计行车速度为50km h ;设计荷载,汽车为城市-A 级,人群为214kPa ,地震设防烈度为7度。桥梁采用塔、梁、 墩固结体系,主要构件都有一定的新颖性,效果 较好。1 设计概要111 总体布置 吴淞江大桥全桥共设14对拉索,索间距为 410m ,近塔端设有28m 的无索区段, 边墩附近设有20167m 的无索区段。总体布置如图1所示。 单位:m 图1 主桥立面布置 112 主梁 主梁采用变截面箱梁,塔根处梁高为510m ,跨中梁高310m ;梁高变化段在塔根无索区段,变化线 型为半径为16229m 的圆曲线。箱梁断面为单箱五室,箱底宽2514m ,顶宽33m ,其中悬臂长318m 。箱梁断面如图2所示。斜拉索锚固在中室内。箱形断 收稿日期:2005-11-28  公路 2006年5月 第5期 H IGHW A Y M ay 12006 N o 15

【桥梁方案】预应力混凝土独塔双索面斜拉桥总体施工方案

目录 一、施工方案总体说明 (1) 1.编制依据 (1) 2.总体目标 (2) 二、总体施工方案 (5) 1.主桥工程 (5) 1.1.桩基施工方案 (5) 1.2承台施工方案 (12) 1.3斜拉桥主塔施工方案 (19) 1.4主梁施工方案 (36) 1.5斜拉索施工方案 (47) 2.引桥工程 (64) 2.1桩基施工方案 (64) 2.2系梁施工方案 (69) 2.3墩柱施工方案 (75) 2.4盖梁施工方案 (79) 2.5承台施工方案 (88) 2.6预制箱梁施工方案 (92) 2.7箱梁架设方案 (101) 2.8桥面系施工方案 (103)

xx市xx大桥总体施工方案 一、施工方案总体说明 1.编制依据 1.1亚行贷款xx市城市环境综合治理项目的有关招投标文件。 1.2现场调查、施工能力及类似工程施工工法、科技成果和经验;我单位为完成本合同段工程拟投入的管理人员、专业技术人员、机械设备等资源。 1.3建筑部颁布的《建筑工程施工现场管理规定》、及国家建设工程强制性标准、《建筑施工手册》等。 1.4国家、xx市有关部门颁布的环保、质量、合同、安全等方面的法律法规要求。 1.5国家、交通部现行的有关工程建设施工规范、验收标准、安全规则等。 《城市桥梁工程施工与质量验收规范》(CJJ 2-2008) 《城市桥梁养护技术规范》(CJJ 99-2003) 《公路桥梁抗风设计规范》(JTG/T D60-01-2004) 《公路斜拉桥实施细则》(JTG/T D65-01-2007) 《公路桥涵施工技术规范》(JTG/T F50-2011) 《公路工程技术标准范》(JTG/B01-2003) 建质【2009】87号等。

江肇西江特大桥矮塔斜拉桥主塔施工方案(索鞍式)

2010年11期(总第71期 )作者简介:罗庆湘(1981-),男,重庆人,工程师,主要从事高速公路建设与管理。 1工程概况 江肇西江特大桥主桥共四个主塔,塔号为29#~32#塔,主塔为独柱式刚劲混凝土结构,截面为八边形,并在顺桥上刻有0.1m ,宽0.7m 的景观饰条。主塔高度为30.5m (含索顶以上4m 装饰段),主塔截面等宽段顺桥向宽5m ,横桥向宽2.5m ;塔底5m 范围,顺桥向厚为5m ,横桥向由2.5m 渐变到3.1m 。 图1主塔一般构造图 本桥斜拉索采用扇形布置,梁上间距4m ,塔上间距0.8m ,拉索通过预埋钢导管穿过塔柱,在主梁上张拉。斜拉索采用Φs 15.2mm 环氧涂层钢绞线斜拉索,标准强度为1860MPa ,斜拉索规格分别为43-Φs 15.2mm 和55-Φs 15.2mm ,采用钢绞线拉索群锚体系。斜拉索为单索面双排索,布置在主梁的中央分隔代处,全桥共128 根斜拉索。钢绞线外层采用HDPE 护套。减振装置及锚具采用斜拉索专用材料。 2施工方案简介 主塔分六节施工,其中最大施工节段为5.4m ;主塔内设劲性骨架,用于钢筋和索鞍定位;模板施工采用无支架翻模施工,模板采用定型钢模板,均设有阴阳缝,由模板厂加工,现场拼装。考虑到主塔外观,该主塔模板不采用对拉杆在塔身中间穿过来固定模板,而采用桁架式模板翻模施工,塔吊辅助翻模。 3主塔施工流程 图2主塔施工流程 江肇西江特大桥矮塔斜拉桥主塔施工方案 罗庆湘,闫化堂 (广东省长大公路工程有限公司,广东 广州 510000) 摘 要:江肇西江特大桥主塔为独柱式刚劲混凝土结构,截面为八边形;主塔高度为30.5m ,主塔截面等宽段顺 桥向宽5m ,横桥向宽2.5m ;本桥斜拉索采用扇形布置,梁上间距4m ,塔上间距0.8m ;拉索通过预埋钢导管穿过塔柱;采用C60混凝土。本文介绍了江肇西江特大桥主塔施工方案,重点介绍了劲性骨架设计及施工、索鞍定位以及混凝土防裂等。 关键词:矮塔斜拉;主塔;施工方案中图分类号:U44 文献标识码: B 265

矮塔斜拉桥的设计与施工

文章编号:1671-2579(2004)01-0014-03 矮塔斜拉桥的设计与施工 ———日本新东明高速公路上的京川桥 金增洪 编译 (中交公路规划设计院,北京市 100010) 摘 要:日本新东明高速公路上的京川桥,位于观光和娱乐区,而且处在地震高发区。因此,桥梁既要考虑高抗震特性又要考虑美学特性。该矮塔斜拉桥的悬臂跨度达到96.5m ,已属日本国内此类桥梁中最大者。此悬臂跨径几乎等效于现有PC 斜拉桥的跨径。桥墩由高耸的钢管混凝土结构形成的组合桥墩,高56.5m 。 关键词:预应力混凝土;矮塔斜拉桥;斜拉索;预制;组合桥墩 Ξ 1 引言 矮塔斜拉桥是由法国马秀佛特(Mathivat )教授于1988年建议的,称谓超配量体外索PC 桥(Extradosed prestressing concrete bridge )。这种桥梁是从体外预应力桥发展而来,从应用跨径长度观点来看,矮塔斜拉桥的性态处于PC 箱梁桥和PC 斜拉桥之间。 京川桥跨越日本二级河流,该河为流经日本滨松市和滨北市行政管辖区之间的一条界河。建桥地点是观光和娱乐区域,还是地震高发区。因此,既要考虑桥梁的高抗震特性,也要考虑美学设计。至于矮塔斜拉桥悬臂跨径长度,是日本国内同类桥梁中的最大跨径。这种悬臂跨径相当于现有PC 斜拉桥的跨径(译者注:指日本国内现有斜拉桥的跨径)。京川桥的总体布置见图1所示 。 图1 京川桥总体布置图(单位:cm ) 2 一般概念 京川桥是由三肢桥墩支承的双幅箱梁组成的,而 桥面的长度为268m 。两主跨各长133m ,由44根间距为6m 的斜拉索支承(每一幅桥面在塔的每一侧各 有2×11根=22根斜拉索)。塔的高度为20m ,在顶 上安装索鞍。桥墩总高度为56.5m 。各墩截面:在基底部位尺寸为9.0m ×7.0m ;在与上部结构联结部位的尺寸为5.0m ×7.0m 。桥墩和桥塔都选用钢管混凝土新结构。钢管混凝土组合结构,不仅展示其特有的高延展性和高抗震性能效应,采用螺旋高强钢索箍 14 中  外 公 路 第24卷 第1期 2004年2月 Ξ 收稿日期:2003-03-11

广东独塔双索面斜拉桥施工方案

. 目录 一、概述 (1) 二、总体施工工艺 (2) 三、主要施工方法 (5) 1、施工准备 (5) 2、斜拉索的制作、运输、检查验收及存放 (9) 3、斜拉索提升至桥面 (9) 4、斜拉索的塔端挂设 (10) 5、桥面放索 (11) 6、斜拉索梁端安装 (12) 7、塔端软牵引 (14) 8、塔端张拉 (17) 9、斜索力调整 (18) 10、斜拉索施工注意事项 (19) 四、主要材料、机械、设备计划(全桥) (20) 五、劳动力使用计划 (21) 六、斜拉索施工进度计划 (21) 七、斜拉索相关参数 (22) 八、质量保证措施 (26) 九、安全保证措施 (27)

独塔双索面斜拉桥施工方案 一、概述 广东省***大桥为独塔双索面斜拉桥,桥跨布置为180+101+45m,索塔采用由直塔柱和斜拉柱组成,无上横梁的异型索塔,主梁采用预应力混凝土∏形梁,双向预应力混凝土结构,并采用前支点挂篮悬臂浇筑主梁混凝土。斜拉索两端均采用张拉端锚具,张拉端设在塔上;斜拉索中心线处的梁高为2.3m,斜拉索按扇形布置,塔上竖向间距1.8m,梁上水平间距6.0M,采用平行钢丝斜拉索。 主桥标准横断面布置为:1.5m(人行道)+2.0m(非机动车道)+2.25m(斜拉索布索区)+0.5m(防撞栏杆)+23.0m(机动车道)+0.5m(防撞栏杆)+2.25m(斜拉索布索区)+2.0m(非机动车道)+1.5m(人行道),总宽35.5m。 主桥斜拉索共设4×27=108根,斜拉索为塑包平行钢丝束,钢丝采用φ7镀锌高强钢丝,钢丝排列整齐,同心绞合,外缠包带,在缠包带外挤包高密度聚乙烯护套两层(黑色和彩色)。斜拉索两端均为带螺纹的冷铸锚。斜拉索共分为PES7-127、PES7-151、PES7-7、PES7-199、PES7-223、PES7-253六种规格,最长索A27长190.923m、重12.8682t,斜拉索钢丝总重756.1539t。平行钢丝斜拉索构造见图1。全桥斜拉索布置情况见图2。 图1平行钢丝斜拉索构造示意图

斜拉桥的索力优化

斜拉桥索力优化简介 一、斜拉桥的概况 斜拉桥又称斜张桥,其上部结构由主梁、拉索和索塔三种构件组成。它是一种桥面系以加劲梁受弯或受压为主,支承体系以斜拉索受拉和主塔受压为主的桥梁。斜拉索作为主梁和索塔的联系构件,将主梁荷载通过拉索的拉力传递到索塔上,同时还可以通过拉索的张拉对主梁施加体外预应力,拉索与主梁的结点可以视为主梁跨度内的若干弹性支承点,从而使主梁弯矩明显减小,主梁尺寸以及主梁重量也相应减小,大大改善了主梁的受力性能,显著提高了桥梁的跨越能力。根据主梁所用建筑材料的不同,可将现代斜拉桥分为钢斜拉桥、混凝土斜拉桥、结合梁斜拉桥以及混合式斜拉桥等。早期斜拉桥的主梁均为钢结构,其形式主要为双箱或单箱配以正交异性板。随着技术进步,19世纪中期出现了第一座现代意义的混凝土斜拉桥,从此,混凝土斜拉桥进入了人们的视野。 混凝土斜拉桥的主梁和索塔一般由混凝土材料构成,为了提高主梁和索塔的适用性能,主梁可以优先采用预应力混凝土主梁,索塔可以釆用钢结构劲性骨架加强或环向预应力结构。在密索体系混凝土斜拉桥中,拉索受拉,主塔和主梁以受压为主,可以充分利用钢丝或钢绞线优异的受拉能力和混凝土良好的受压能力,同时,斜拉索水平分力对主梁形成预压作用,提高了主梁的抗裂能力。从设计方面看,既要考虑结构总体布置、结构体系选择的合理性,又要考虑釆用何种方法寻求成桥索力的最优解,还要考虑施工的便捷性、经济效益、社会效益

以及美学功能等多种因素;从施工方面讲,既要确定合理的施工流程,设法寻求合理的施工初拉力,还要做好施工过程中施工参数的动态控制和调整等方面工作。另外,在整个过程中,还要考虑设计参数变化、温度、徐变、几何和材料非线性以及施工方法等因素对设计和施工的影响。 二、斜拉桥索力优化方法 斜拉桥是高次超静定结构,其主梁、主塔受力对索力大小很敏感,而基于斜拉索索力可以调节的特点,我们可通过对拉索索力的调整来优化斜拉桥成桥恒载状态。针对如何才能确定合理的成桥状态,国内外许多学者都做了大量的研究并提出多种调整方法,可以将这些方法归为三类: (l)指定受力状态的索力优化,包括刚性支承连续梁法、零位移法、内力平衡法、指定应力法、零弯矩法等; (2)无约束的索力优化,包括弯曲能量最小法、弯矩最小法等; (3)有约束的索力优化,包括用索量最小法、应力平衡法等。 而由于斜拉桥的最合理的成桥状态本来也没有一个统一的标准,所以很难说哪一种方法一定优于另外的方法。下面将各种方法的原理介绍如下: ①刚性支承连续梁法 这种方法是使用最早的方法之一,它将斜拉桥主梁在恒载作用下弯矩呈刚性支承连续梁状态作为优化目标。将主梁、索梁交点处设以刚性支承进行分析,计算出各支点反力。利用斜拉索力的竖向分力与

独塔双索面混合梁斜拉桥斜拉索安装施工方案[优秀工程方案]

赣州市飞龙岛大桥 斜拉索安装 施 工 方 案 编制: 审核: 审批: 柳州欧维姆工程有限公司

一、工程概况 飞龙岛大桥位于赣州中心市区的西部,连接河套老城区和章江新城区.起点为客家大道,由南向北跨越章江南大道、章江、飞龙岛、章江北大道,连接文明大道与扬公路交叉口,止点为交叉口以北100米,工程总长1449.761米,其中主桥长230米,引桥长565米,接线道路长624.761米,桥下道路长373.35米.主要工程内容:桥梁工程、道路工程、排水工程、交通工程、照明工程.全桥共21个墩台,南岸引桥0号到7号墩,第一联(0号到2号)2x30米整幅桥,单箱双室;第二联(2号到7号)30+2x35+2x30米连续梁,为双幅桥, 单箱双室.北岸引桥10号到21号,第四联(10号到14号)4x30米连续梁,双幅桥,第五联(14号到19号)30+2x35+30米连续梁,为双幅桥,第六联(19号到21号)2x30米整幅桥. 主桥为独塔双索面混合梁斜拉桥,主桥长230米,主跨150米,采用不对称布置,即150+(45+35)=230米,其中长128.5米为钢箱梁,其余101.35米均为混凝土箱.主塔顺桥向为曲线型斜塔、横桥向为“A”型,顺桥向:索塔塔背为圆曲线.塔高承台以上为87米,桥面以上为70.823米. 斜拉索采用空间双索面,每索面共9对斜拉索,全桥共36根斜拉索.斜拉索采用ф7米米镀锌平行钢丝,外挤双层PE,内层为黑色,外层为彩色,钢丝标准强度 =1670米pa.斜拉索规格共8种,即:61ф7,73ф7,91ф7,109ф7,121ф7,127фf pk 7,151ф7,187ф7.斜拉索在主梁处最小倾角28.5°,最大倾角61.7°.斜拉索锚具采用冷铸墩头锚,梁端及塔端锚具均采用张拉端锚具.

独塔单索面斜拉桥主塔稳定性分析

独塔单索面斜拉桥主塔稳定简化分析 郭卓明 李国平 袁万城 上海城建设设计院 同 济 大 学 摘要:由于悬吊桥梁采用索塔支撑,其主塔往往须承受强大的轴向压力,因此其稳定是一个比较突出的问题。尤其独塔单索面斜拉桥在空间受力和稳定性方面都相对比较薄弱,对其进行稳定性分析更显必要。本文在对其主塔受力的适当简化之后,分别对其弹性及弹塑性稳定进行了简化分析,在传统的弹塑性稳定内力分析的基础上提出了一种独塔单索面斜拉桥主塔弹塑性稳定分析的简化方法。并以两座独塔单索面斜拉桥为背景做了算例,分析结果表明本文采用的简化分析方法是可行的。 关键词:独塔单索面 斜拉桥 主塔稳定 简化分析 一、引言 国民经济的飞速发展和国家对基础设施投入的进一步加强为我国大跨桥梁的发展提供了一个良好的条件,近十几年来,斜拉桥在我国迅速发展。由于单索面斜拉桥在美学上的优势,目前采用这种形式的斜拉桥也越来越多。由于悬吊桥梁的主塔均需承受巨大的轴向压力,而且随着桥梁跨度的增大,主塔也越来越高,结构越来越柔,其稳定问题成为一个非常突出的问题。尤其是其侧向稳定在设计时更需特别注意。 结构的稳定是一个较为经典的问题。从1744年欧拉的弹性压杆屈曲理论,到1889年恩格赛的弹塑性稳定理论,到Prandtl, L.和Michell, J. H. 的侧倾稳定理论,再到李国豪教授、项海帆教授等对桁梁桥、拱桥稳定的研究[1]以及近来国内外许多学者对各种具体结构稳定的研究,稳定问题在理论上已经比较成熟。在斜拉桥的稳定方面,1976年Man-chang Tang 提出了弹性地基梁的屈曲临界荷载估算法,葛耀君[5]用能量法分析了斜拉桥的面内稳定,此外樊勇坚、李国豪以及钱莲萍等都提出过各种实用计算方法,但都是仅限于弹性稳定的简化分析,且基本集中于主梁的稳定。对于弹塑性稳定,最近谭也平、景庆新[2]等都用有限元的方法进行了分析。稳定问题在计算方法上经历了经典的平衡微分方程方法、能量法等简化方法和有限元的数值计算方法这三个阶段,目前众多的研究尤其是对弹塑性稳定的研究大都集中在有限元分析上。然而在精确的有限元分析的同时,采用直观明了、概念清晰的力学简化分析,无论在对有限元分析结果的检验还是在初步设计时进行简单的估算都十分必要。本文在对独塔单索面斜拉桥主塔的受力特性进行适当简化之后,对独塔单索面斜拉桥主塔的弹性及弹塑性稳定问题分别进行了简化分析。 二、弹性稳定简化分析 考虑最一般的情况,主塔失稳方向和拉索平面成夹角β,如图(1)所示。失稳线形假定为()()v z V f z H ?=,分解到斜拉索平面内和平面外分别为: 平面内:()()()x z v z V f z H =?=?cos cos ββ 平面外:()()()y z v z V f z H =?=?sin sin ββ 主塔产生变形以后,外力功主要有拉索做功、主塔本身轴压做功和风荷载做功,其中拉索做功需考虑其在平面内的弹性支撑和平面外的非保向力作用,则由能量法可方便的导出主塔势能的总表达式:

双层桥

国内、外双层桥梁介绍 一、上层机动车、下层人非 1、南昌市朝阳大桥 南昌朝阳大桥连接朝阳新城和红角洲地区,西起红角洲地区丰和南大道,东至朝阳新城抚生路,沿线接前湖大道、跨赣江南大道、跨滨江南大道、接九洲大街,为快速路桥梁。该大桥跨越赣江范围全长1560米,其中主桥长720米,桥宽38.5米,为六塔七孔单索面斜拉桥结构,拉索间距为6米。双向八车道,塔高35米。主梁梁高4.5米,采用单箱多室形式,顶板之上通行机动车,边箱内用于行人和非机动车通行。2012年9月开工,2014年底建成。 2、南昌大桥 大桥横跨于朝阳洲和红谷滩之间,是中国在赣江上修建的第一座行人、公路两用桥梁,被称为“千里赣江第一桥”。南昌大桥于1994年9月1日开工建设,于1994年元月10日建成通车,总投资达6.18亿元。主桥为预应力混凝土连续

梁桥,桥面总宽为30.35米,上层为双向六机动车道,下层为非机动车道和人行道。南昌大桥设有观光电梯,游人可乘电梯上桥观光。 3、上虞外环南路曹娥江大桥 上虞市环城南路曹娥江大桥采用双层连续梁桥方案,通过箱梁底板挑出悬臂设置人行道和非机动车道,箱梁顶板仍作为行车道,非机动车和行人与机动车道的完全分离保证了车道的快速无阻,并降低了人行和非机动车道的坡度,从而有效地降低了桥梁标高、减小了桥梁的宽度和长度,大大降低了工程造价。 主桥为双层桥面七跨一联预应力混凝土连续梁桥,跨径组合为 55m+5×72m+55m。上层桥面总宽18m,横向布置为:0.5m(防撞栏)+17m(机动车道)+0.5m(防撞栏);下层桥面单侧宽度5.5m,横向布置为:4m(非机动车道)+1.5m(人行道与护栏)。 4、奥地利首都维也纳的帝国桥

矮塔斜拉桥研究的新进展

矮塔斜拉桥研究的新进展 陈从春1,周海智2,肖汝诚1 (1.同济大学桥梁工程系,上海200092; 2.同济大学建筑设计研究院,上海200092) 摘 要:简要叙述矮塔斜拉桥在国内外的应用及研究状况,讨论该种桥型的中文和英文关键词,提出索梁恒载比、索梁活载比和名义刚度的概念,并对这种桥型进行界定,试图揭示这类桥梁的力学本质,最后对该种桥型的发展作了展望。 关键词:矮塔斜拉桥;应力幅;索梁恒载比;索梁活载比;名义刚度中图分类号:U 448.27 文献标识码:A 文章编号:1671-7767(2006)01-0070-04 收稿日期:2005-11-22 作者简介:陈从春(1970-),男,博士生,1992年毕业于湖南大学公路与城市道路专业,工学学士,1999毕业于武汉理工大学岩土工程专业,工学硕士。 0 引 言 随着桥梁技术的发展,桥梁应用的两大趋势是十分明显的,即传统桥梁的轻型化和组合化。组合体系桥梁极大地丰富了桥梁造型。组合体系桥中比较有代表性的是拱梁组合体系、斜拉-连续梁(刚构)体系等,其中斜拉-连续梁(刚构)体系是一种比较新颖的桥型,近10年来应用较多,受到广泛的关注。普遍认为,由Chr istian M enn 设计的建于1980年的的甘特(Ganter)大桥,是斜拉-连续(刚构)体系桥的先驱,其混凝土箱形梁由预应力混凝土斜拉板/悬挂0在非常矮的塔上,这种板可以看成是一种刚性的斜拉索,该桥的出现形成了斜拉桥的一个分支)))板拉桥,由于其与环境的完美结合,成为一道风景。甘特大桥的出现为其后的矮塔斜拉桥的出现奠定了基础。甘特大桥之后,又有墨西哥的帕帕加约(Papagayo )大桥、美国得克萨斯州的巴顿河(Bar -to n Creek)大桥及葡萄牙的索科雷多斯(Socorr-i dos)大桥等相继建成[1]。 1988年法国工程师Jacg ues M athivat 在设计位于法国西南的阿勒特#达雷(Arr ?t Darr ü)高架桥的比较方案时,首次明确提出了矮塔斜拉桥的方案。该方案是跨度为100m 的预应力混凝土等截面箱梁,塔、梁固结,斜拉索穿过矮塔上的鞍座与主梁锚固。 与此同时,1990年德国的Antonie Naaman 提出了一种组合体外预应力索桥,体外索的一部分伸出主梁之上,锚固在墩顶处主梁的刚柱上[2] 。这一种体系与法国Jacgues M athivat 的方案十分类似。 目前这种桥在各国得到广泛应用,日本已建成此类桥梁20多座,中国大陆地区已建和在建的已达 10多座,中国台湾地区有2座,瑞士、菲律宾、老挝、帕劳群岛、克罗地亚各1座,美国珍珠港在建1座;其中,中国在建的惠青黄河公路桥、江珠高速荷麻溪大桥分别达到220m 和230m (预应力混凝土梁),芜湖长江大桥达到340m(钢桁梁),分别为同类桥梁最大跨径。 尽管这种桥梁发展很快,但仍然有很多问题没有很好地解决,本文将就研究的最新情况作一论述。1 矮塔斜拉桥的称谓 对于这种桥型的称呼尚未统一,法国工程师Jacgues M athivat 在提出他的方案时,命名为/ex -tra -dosed PC bridg e 0,直译为/超剂量预应力混凝土桥梁0;日本工程界一直采用这种名称( ¨é?ー ?橋);在美国,这种桥有称为/extra -dosed PC bridg e 0的,也有称为/extrado sed cable -stay ed bridg e 0的;在我国台湾,最初将这种结构称为/外置预应力桥0,后来根据其外形类似恐龙高耸的脊背,而称为/脊背桥0、/拱背桥0。国内的称呼一直存在争论,学者严国敏将其称为/部分斜拉桥0,理由是这种桥型受力特性介于斜拉桥和连续梁之间,桥的刚度主要由梁体提供,斜拉索主要起体外预应力的作用;王伯惠、顾安邦、徐君兰等学者认为应该称为/矮塔斜拉桥0,而/部分斜拉桥0不够明确,没有道出其外在的形状与内在的结构特征,早期的稀索结构也有/部分0的性质。 目前,这种体系与最初相比又丰富了很多,主梁不仅采用预应力混凝土结构,还可采用钢结构(如中国的芜湖长江大桥),以及钢与混凝土的组合结构(如波形钢腹板梁及结合梁),不仅可以采用刚性梁,

矮塔斜拉桥概述

矮塔斜拉桥概述 1.1矮塔斜拉桥的定义和特点 矮塔斜拉桥为近20年来出现的一种新桥型,瑞士、日本、韩国等一些国家这几年修建了多座这种桥梁。由于它优越的结构性能,良好的经济指标,越来越显示出巨大的发展潜力。我国在这种桥型上起步稍晚,2001年建成的漳州战备大桥,是国内第一座真正意义上的矮塔斜拉桥。 对于这种桥型的称谓尚未统一。日本的屋代南桥与屋代北桥为两座轻载铁路桥,初看起来象斜拉桥,因而日本的桥梁界对其笼统地称为斜拉桥。小田原港桥是一座公路桥,日本桥梁界没有把它称为斜拉桥,而是沿用了法国工程师1988年提出的名称—Extra-dosed Prestressing Concrete Bridge,即超配量体外索PC桥,简称EPC桥。实际上屋代南、北桥与小田原港桥其结构体系非常相似,同样可以称为EPC桥。在美国,这种桥有称为“Extra-dosed Prestressing Concrete Bridge”的,也有称为“Extra-dosed Cable-stayed Bridge”的。国内的称谓也一直存在争论,1995年我国著名桥梁专家严国敏先生首次把它定义为“部分斜拉桥”。其含义是:在结构性能上,斜拉索仅仅分担部分荷载,还有相当部分的荷载由梁的受弯、受剪来承受。“部分斜拉”即源于斜拉索的斜拉程度。后来国内一些文章根据这种桥型塔高较矮的特点,又把这种桥型定义为矮塔斜拉桥。 矮塔斜拉桥的受力是以梁为主,索为辅,所以梁体高度介于梁式桥与斜拉桥之间,大约是同跨径梁式桥的1/2倍或斜拉桥的2倍。截面一般采用变截面形式,特殊情况采用等截面。 矮塔斜拉桥的桥塔一般采用实心截面。塔高为主跨的1/8~1/12,由于桥塔矮,刚度大,一般不考虑失稳问题。梁上无索区较之一般斜拉桥要长,而且除了主孔中部和边孔端部的无索区段之外,还有较明显的塔旁无索区段。边孔与主孔的跨度比值较之斜拉桥要大。一般斜拉桥边孔与主孔的跨度比值一般小于0.5,多数在0.4左右,而矮塔斜拉桥与一般连续梁(刚构)桥相似,为避免端支点出现负反力,边孔与主孔的跨度之比一般会大于0.5,较合理的比值在0.6左右。 为了充分利用部分的高度,拉索多成扇形布置,拉索尽量向塔上部集中通过。塔顶索鞍的作用如同体外预应力索的转向点,斜拉索在转向点一般被固定而无滑动。在建成的矮塔斜拉桥中,索鞍鞍座普遍采用双套管结构,即外钢管埋设于混凝土塔内,内套管套在外钢管中,斜拉索穿过内钢管,在两侧出口处设置抗滑锚头顶紧内管口,阻止内管滑移。斜拉索在梁上宜布置在边跨中及1/3中跨处。此外,矮塔斜拉桥由于塔较矮,塔顶水平位移不会很大,因此没有斜拉桥的特征构

矮塔斜拉桥

浅谈矮塔斜拉桥和多塔斜拉桥 矮塔斜拉桥是介于连续梁与斜拉桥之间的一种斜拉组合体系桥,具有塔矮、梁刚、索集中的特点。 矮塔斜拉桥主梁刚度较大,是主要的承重构件,斜拉索对梁起加劲、调整受力的作用,斜拉索的恒载索力占总索力(恒载索力十活载索力)的比重较斜拉桥大,斜拉索的应力变幅较小,疲劳问题不突出,因而斜拉索的容许应力可取0.6pk f ,从而降低工程造价。矮塔斜拉桥与连续梁相比具有结构新颖跨越能力大、施工简单、经济等优点;与斜拉桥相比具有施工方便、节省材料、主梁刚度大等优点。使得矮塔斜拉桥具有广阔的发展空间。 矮塔斜拉桥结构特点: 1、塔高较矮。拉索倾角较小,拉索为主梁提供较大的轴向力,并且拉索尽可能密集地从塔顶鞍座上通过,锚固于主梁。一般塔高可取主跨的1/8-1/12; 2、以梁为主,索为辅,梁体高度约是同跨径梁式桥的1/2或斜拉桥的2倍,梁高与跨度之比较大,一般为1/40-1/20,并且主梁自身承受大部分荷载作用约70%斜拉索只承受30%起到帮扶作用; 3、主梁无索区段较一般斜拉桥要长,有较明显的塔旁无索区段,不设置端锚索; 4、边孔与主孔的跨度比值在0.5-0.6左右,类似连续梁; 5、为了充分利用矮塔的高度,拉索多成扇形布置且布置较集中,通常布置 在边跨、中跨跨中1/3附近。在己建成的矮塔斜拉桥中,索鞍鞍座普遍采用双套管结构,拉索应力变幅一般只有斜拉桥的1/3左右,施工过程及合拢后,基本不需要进行拉索索力调整; 6、适用跨径宜选择在100m-200m 之间,如果采用组合梁或复合梁,则跨径可达300m. 7、尤其适用于多塔多跨和塔高受限制的情形,从刚度和疲劳考虑,它更适用于铁路桥或双层桥面,但采用多跨时存在较大的挠度问题。 矮塔斜拉桥的受力特点: 索塔将斜拉索索力按一定比例分配给主梁的水平和垂直方向,当主梁刚度较大时,就可以降低塔高,以节约材料,并给主梁提供较大的水平分力,以解决主梁体内预应力的不足。所以矮塔斜拉桥索塔的作用主要是通过分配斜拉索索力,从而实现对结构性能的改善。索塔对索力的分配作用不仅与自身高度有关,同时还与索力大小有关。拉索、预应力钢筋的用量和索塔塔高是相互影响的,索塔高些,拉索用量可少些,则预应力筋也可以相应少些,反之,亦然。在一定的范围内,通过索力优化调整因塔高降低对结构的负面影响,具有十分重要的意义。同

矮塔斜拉桥施工控制要点

矮塔斜拉桥施工控制要点 矮塔斜拉桥施工控制要点 摘要:本文以津沪联络线特大桥矮塔斜拉桥为背景,介绍矮塔斜拉桥索塔和拉索施工控制要点。 关键词:斜拉桥施工控制 中图分类号:TU74 文献标识码:A 文章编号: 一、工程概况 津沪联络线特大桥-跨外环线斜拉桥段为4跨 (64.6m+115m+115m+64.6m) 一联360.6m单箱三室预应力混凝土矮塔斜拉桥,全桥位于直线及缓和曲线上。线路为双线,线间距4.2m,轨道形式为有砟轨道。桥梁结构采用三塔双柱式双索面预应力矮塔斜拉桥。 二、矮塔斜拉桥施工索塔和拉索施工控制要点 斜拉桥属于组合体系桥,它的上部结构由主梁、拉索和索塔三种构件组成。支撑体系以拉索受拉和索塔受压为主。该桥中塔采用塔墩固结体系,边塔采用塔梁固结体系。 (一)索塔施工控制要点 主塔形式为双柱式,距名义梁顶面以上结构高为15m,采用实心截面,中塔与边塔采用相同尺寸,塔底横桥向宽为2m,纵桥向宽为3.7m,墩身斜率为40:1。由于索塔截面不规则,且高度仅为15米,索塔施工采用搭架分节立模浇注法。斜拉桥的平面位置、轴线控制、截面尺寸、预埋件制作、安装精度等要求较高。且索塔施工系高空作业范畴,为此施工应特别注意严格遵守有关高空作业安全技术规定。主塔中未布设预应力钢筋。索塔断面尺寸较小,而且轴向压力非常大,故在施工中对索塔的尺寸和轴线位置的准确性应有一定的要求。对于索塔轴向的允许偏差应考虑下面两个原则,其一,偏差值对结构物受力的影响甚微;其二,施工中达到的精度。沿塔高每米高度允许偏差值为0.5mm,即倾角正切值tgα=1/2000。按照H/2000的垂

直度偏差允许值计算。 1、施工控制要点: 1)支架和操作平台应有足够的强度、刚度和稳定性,并应设置安全护栏,支架还应具有足够的抗风稳定性。支架顶端应有防雷击装置。 2)索塔砼性能良好,具有较高的弹性模量和较小的砼收缩、徐变性能,应采用高集料、低水灰比,低水泥用量,适量掺加粉煤灰和泵送剂,以满足缓凝、早强、高强、阻锈、低水化热、小收缩、可泵性好等要求。 3)建立完善的测量系统,索塔施工应用绝对高程放样,消除累计误差。应对其平面位置、垂直度、倾斜度、锚箱位置、锚箱各孔道的角度以及各部分几何尺寸进行检查,以上各项检查的误差必须在允许范围之内。 4)节段模板的强度、刚度和稳定性应满足要求。模板轴线、标高、垂直度或斜度、模内尺寸、预埋件和预留孔位置、内表面平整度和拼缝高差等检测项目,应满足设计和规范要求。 5)、斜拉索锚索管的定位与固定。安设斜拉索管道时,应设置稳定的钢筋骨架固定管道,防止在浇注混凝土时移位,在管道测量定位时,应考虑斜拉索应重力垂直而导致其端部角位移时的方向、位置、标高的改变。 6)、塔身混凝土浇注时应掌握均匀分层,有塔中向两端的原则。每次浇注的混凝土均应在混凝土的初凝时间内完成,并注意加强养护。 (二)、斜拉索施工施工要点 在斜拉索中恒载引起的内力平衡主要依靠索、塔及主梁的轴力来实现,因此,索力的微小偏差均能在主梁引起较大弯矩,这一点是施工阶段计算的重点。本桥采用的斜拉索为矮塔斜拉桥专用的高强钢绞线,抗拉强度为1860MPa的高强低松弛环氧喷涂钢绞线。采用可调换式250AT-31群锚体系,斜拉索锚头外露部分及预埋钢管均采用80μm 锌加防腐涂料防护。斜拉索为双索面,立面为半扇形布置。每索塔设7对斜拉索,斜拉索规格为31-7φ5,单根钢绞线规格直径为15.2mm,

软土地区跨既有桥梁非对称矮塔铁路斜拉桥施工控制关键技术研究

软土地区跨既有桥梁非对称矮塔铁路斜拉桥施工控制关键技术研究

软土地区跨既有桥梁非对称矮塔铁路斜拉桥施工控制关键 技术研究 中铁六局集团天津铁路建设有限公司 科技研发项目立项报告 申请单位:中铁六局集团天津铁路建设有限公司 项目起止时间:201*年**月至201*年**月 中铁六局集团天津铁路建设有限公司制订 一、立项目的(不少于300字) 天津津保铁路三线矮塔斜拉桥是我国首座三线铁路曲线矮塔斜拉桥,其空间行为明显,受力复杂,主墩结构特殊,施工工艺复杂,技术标准高。且工程位于天津市西青区,跨越外环桥、外环河,主墩承台侵入既有外环河,基坑挖深最大为11m,并紧邻外环桥桥墩,主塔采用搭设支架分阶段浇筑混凝土,施工工艺复杂,技术标准高,施工难度大,施工过程中需要解决如下问题: (1)软土地区临近桥墩深基坑支护研究 本工程所在的天津地区是一个地下水位高、土质差的软弱土地区,并且本桥主基坑位于外环河内。天津地区软土为渤海环境沉积形成,具有触变性、流变性、高压缩性、低强度、低透水性、不均匀性等特性。软土地区开挖基坑的时候容易使支护结构产生过度的位移,从而导致紧临建筑物发生不均匀沉降、地下管道开裂等不良影响和后果。正是由于上述原因本工程在软土中的基坑工程成为重点处理对象,处理措施的优劣很有可能影

响整个工程的成败。 (2)跨既有桥梁支架体系方案研究 本工程桥梁作为全国首座三线铁路矮塔斜拉桥,以最大孔跨84米,净空24米的现浇箱梁横跨天津市外环线公路桥梁,支架搭设工程对保证现浇箱梁施工安全、保证下部外环线公路桥梁的结构和运营安全起到决定性作用。 (3)非对称矮塔铁路斜拉桥塔梁施工控制研究 本工程桥梁为三线曲线铁路非对称矮塔斜拉桥,在我国尚无先例,所以设计和施工可参考的依据较少,因此更加重了不确定因素对工程的影响。当结构在施工过程中出现施工状态偏离理想的设计状态时,分析原因可知,一方面由于设计构件截面尺寸、预应力筋张拉力、材料弹性模量、容重、收缩系数和徐变系数等计算参数往往与施工中实际情况有一定的差距,此外环境温度、临时荷载、施工误差等等也常常影响结构实际变位偏离设计理想状态,另一方面,结构施工立模超高、构件超重和预应力筋张拉力误差等也是导致结构出现偏差的重要因素,如不加以控制调整,就会造成结构偏离设计成桥状态,甚至危及安全。因此大跨度预应力混凝土桥梁的施工控制难度相对较大,对其施工过程进行检测和控制是十分必要的。 二、国内外现状及发展趋势(不少于300字) 1、软土地区临近桥墩深基坑支护研究 基坑工程是基础、地下工程中比较全面和复杂的问题,除了涉及到土力学古典强度理论和稳定理论,还涉及到变形问题和土的支护及相互作用

斜拉桥索力优化方法综述

斜拉桥索力优化方法综述 摘要:本文首先介绍斜拉桥索力优化的概念。然后将斜拉桥索力优化基本方法按有约束和无约束两种范畴进行分类。进而从数学、力学及工程应用角度分阐述斜拉桥索力优化方法的基本原理。最后经过综合分析,找出各种索力优化基本方法之间的联系,为斜拉桥在具体数值分析及建造过程中提供指导和借鉴。 关键词:斜拉桥索力优化影响矩阵 1 引言 斜拉桥成桥状态恒载内力分布的好坏是衡量设计优劣的重要标准之一。理想的成桥状态当属塔、梁在恒、活载作用下弯曲应力小且均匀的受力状态。无论怎样的斜拉桥结构体系,总能找出一组斜拉索力,它能使结构在确定性荷载作用下,某种反映结构受力性能的目标达到最优。求解这组最优索力,就是斜拉桥的索力优化。 2索力优化基本方法及原理 斜拉桥是高次超静定结构,斜拉索索力具有可调性,故斜拉桥的设计中存在一个通过优化成桥索力来优化成桥内力的合理成桥受力状态确定问题,即选择一组最优的索力是斜拉桥设计的关键。在给定目标下,已有的寻求最优索力状态分析方法归结起来可分为两大类:无约束索力优化法和有约束索力优化法。 2.1无约束索力优化法 无约束索力优化法是设定某一目标,寻求一组索力来满足已设定的目标,此法仅关心反映受力性能的目标达到最优,而不关心索力的大小及分布。无约束索力优化法主要包括:简支梁法、刚性支承连续梁法、零位移法、内力(或应力)平衡法、弯曲能量最小法及弯矩最小法。 (1)简支梁法 简支梁法是选择一组合适的斜拉索初始张拉力,使主梁结构的恒载内力与主梁以斜拉索的锚固点为简支支承的简支梁内力一致。这种方法简单易算,但与实际情况相差太远,一般不宜采用。 (2)刚性支承连续梁法 刚性支承连续梁法以斜拉桥主梁在恒载作用下的弯曲内力呈刚性支承连续梁状态为优化目标,将主梁、索梁交点处模拟刚性支承进行结构分析,计算出各刚性支点反力,利用斜拉索索力的竖向分力与刚性支点反力相等的条件来确定最优索力。 (3)零位移法 零位移法是以结构在恒载作用下主梁和斜拉索交点的节点位移为零作为优化目标。 (4)内力(或应力)平衡法 所谓内力(或应力)平衡法不仅是恒载内力计算问题,也是选择斜拉索初张力的一种方法。内力(或应力)平衡法的基本原则是,以控制截面内力(或应力)状态为优化目标,通过设计合适的斜拉索初张力,使斜拉桥结构各控制截面在恒载和活载组合作用下,上翼缘的最大应力与材料容许应力之比等于下翼缘的最大应力与材料容许应力之比。 (5)弯曲能量最小法 弯曲能量最小法是以结构的弯曲余能最小作为目标函数进行索力优化。

相关文档
相关文档 最新文档