文档视界 最新最全的文档下载
当前位置:文档视界 › VGT增压器

VGT增压器

4、VGT涡轮增压器介绍

随着技术的发展,人们对于汽车发动机的要求也越来越苛刻,不仅要拥有强劲的动力,还必须拥有极高的效率和足够清洁的排放。这就要求发动机在各种工况下都能要达到其最高效的工作状态,因此就必须满足发动机各个工作状态下对于进气量的需求。这就要求发动机的各部件都能够通过“可变”来满足在不同工况下的条件。比如我们所熟悉的可变气门正时/升程技术,可变进气歧管技术都是如此。那么在柴油发动机上常见的VGT可变截面涡轮增压技术,又有些什么作用呢?下面我们就一起来了解一下。

图1 涡轮增压器内部结构

涡轮增压技术是发动机上常见的技术之一,它的原理其实非常简单:涡轮增压器就相当于一个由发动机排出的废气所驱动的空气泵。在发动机的整个燃烧过程中,大约会有1/3的能量进入了冷却系统,1/3的能量用来推动曲轴做工,而最后1/3则随废气排出。拿一台功率200千瓦的发动机举例,按照上面提到的比例,它在排气上的消耗的动力大约会有70千瓦。这部分功率有一大部分随着高温的废气以热能的形式消耗掉,而废气本身的动能可能只有十几千瓦。但是千万别小看这十几千瓦,要知道家用的落地扇功率不过60瓦左右!也就是说,

使十几千瓦也足够驱动两百多台电风扇了!可想而知,用废气涡轮驱动空气所带来的增压效果非常可观。

虽然发动机全负荷状态下时排气能量非常可观,但当发动机转速较低时,排气能量却小的可怜,此时涡轮增压器就会由于驱动力不足而无法达到工作转速,这样造成的结果就是,在低转速时,涡轮增压器并不能发挥作用,这时候涡轮增

压发动机的动力表现甚至会小于一台同排量的自然吸气发动机,这就是我们经常说的“涡轮迟滞(turbolag)”现象。

图2 大众1.4TSI发动机的小尺寸涡轮

拥有较低的启动惯量,在1750rpm时就能够输出220Nm的最大扭矩对于传统的涡轮增压发动机来说,解决涡轮迟滞现象的一个方法就是使用小尺寸的轻质涡轮,首先,小涡轮会拥有较小的转动惯量,因此在发动机低转速时,在发动机较低转速下涡轮就能达到最佳的工作转速,从而有效改善涡轮迟滞的现象。不过,使用小涡轮也有它的缺点:当发动机高转速时,小涡轮由于排气截面较小,会使排气阻力增加(产生排气回压),因此发动机最大功率和最大扭矩会受到一定的影响。而对于产生回压较小的大涡轮来说,虽然高转速下可以拥有出色增压效果,发动机也会拥有更强的动力表现,但是低速下涡轮更难以被

驱动,

因此涡轮迟滞也会更明显。

图3 保时捷已将可变截面涡轮技术应用在汽油发动机上

为解决这个矛盾,让涡轮增压发动机在高低转速下都能保证良好的增压效果,VGT(Variable Geometry Turbocharger)或者叫VNT可变截面涡轮增压技术便应运而生。在柴油发动机领域,VGT可变截面涡轮增压技术早已得到了很广泛的应用。由于汽油发动机的排气温度要远远高于柴油发动机,达到1000°C

左右(柴油发动机为400°C左右),而VGT所使用的硬件材质很难承受如此高温的环境,因此这项技术也迟迟未能在汽油机上应用。近年来,博格华纳与保时捷联手克服了这个难题,使用了耐高温的航空材料技术,从而成功开发出了首款搭载可变截面涡轮增压器的汽油发动机,保时捷则将这项技术称为VTG (Variable Turbine Geometry)可变涡轮叶片技术。

使用了两个VTG可变截面涡轮增压器的保时捷911 Turbo,在仅使用了3.8L的排量的条件下,就压榨出了368kw/6000rpm的最大功率和

650Nm/1950-5000rpm的最大扭矩。还能在超增压模式下,将功率提升到390kw,最大扭矩提升到惊人的700Nm,而此时的升功率也达到了骇人的102.6kw。最难能可贵的是,这台发动机在VTG技术的帮助下,从1950-5000rpm范围内都可以维持650Nm的最大扭矩输出,在低转速下基本察觉不到涡轮迟滞情况。

从原理上看,柴油机的VGT技术和保时捷的VTG并没有本质的区别,基本的原理和结构都是相似的。下面,我们就通过保时捷的VTG技术来了解一下可变截面涡轮增压器的工作原理。

图4 VGT增压器内部导流叶片(红色叶片)

图5 一般的涡轮并没有导流叶片的结构

VGT技术的核心部分就是可调涡流截面的导流叶片,从图上我们可以看到,涡轮的外侧增加了一环可由电子系统控制角度的导流叶片,导流叶片的相对位置是固定的,但是叶片角度可以调整,在系统工作时,废气会顺着导流叶片送至涡轮叶片上,通过调整叶片角度,控制流过涡轮叶片的气体的流量和流速,从而控制涡轮的转速。当发动机低转速排气压力较低的时候,导流叶片打开的角度较小。根据流体力学原理,此时导入涡轮处的空气流速就会加快,增大涡轮处的压强,从而可以更容易推动涡轮转动,从而有效减轻涡轮迟滞的现象,也改善了发动机低转速时的响应时间和加速能力。而在随着转速的提升和排气压力的增加,叶片也逐渐增大打开的角度,在全负荷状态下,叶片则保持全开的状态,减小了排气背压,从而达到一般大涡轮的增压效果。此外,由于改变叶片角度能够对涡轮的转速进行有效控制,这也就实现对涡轮的过载保护,因此使用了VGT 技术的涡轮增压器都不需要设置排气泄压阀。

需要指出的是,VGT可变截面涡轮增压器只能通过改变排气入口的横切面积改变涡轮的特性,但是涡轮的尺寸大小并不会发生变化。如果从涡轮A/R 值去理解的话,可变截面涡轮的原理会更加直观。

图6 沃尔沃和奥迪增压器结构

也有的厂商将这项技术成为VNT,比如沃尔沃和奥迪,它们在本质上

是一样的。

A/R值是涡轮增压器的一项重要指标,用以表达涡轮的特性,在改装市场的涡轮增压器销售册上也常有标明。A表示Aera区域,指的是涡轮排气侧入口处最窄的横切面积(也就是可变截面涡轮技术中的“截面”),R(Radius)则是代表半径意思,指的是入口处最窄的横切面积的中心点到涡轮本体中心点的距离,而两者的比例就是A/R值。相对而言,压气端叶轮受A/R值的影响并不大,不过A/R值却对排气端涡轮有着十分重要的意义。

图7 低速时导流叶片的开度图8 高速时导流叶片的开度

导流叶片的开度能够影响导向涡轮叶片的气流速度,低转速时开度小(左图),提高空气流速,高转速时开度大(右图),减小排气负压。

当A/R值越小时,表示废气通过涡轮的流速较高,这种特性可以有效减轻涡轮迟滞,涡轮也就能在较低的转速区域取得较高的增压,而发动机高转速时则会产生较大的排气背压,使高转速时功率受到限制。反之,当A/R值越大时,

涡轮的响应速度就越慢,低转速时涡轮迟滞明显,不过在高转速时,拥有较小的排气背压,且能够更好的利用排气能量,从而获得更强的动力表现。

而VGT技术所实现的截面可变就是指改变A值。当叶片角度较小时,排气入口的横切面积便会相应减小,因此A值会随之变化,从而拥有小涡轮响应快的特点。而当叶片角度增大时,A值随之增大,这时A/R值增大,从而在高转速下获得更强的动力输出。总而言之,透过变更叶片的角度,VTG系统可随时改变排气涡轮的A/R值,从而兼顾大/小涡轮的优势特性。

小结:

尽管结构和原理都很简单,但VGT可变截面涡轮技术对于增压效果的提升非常显著,在目前主流的涡轮增压柴油发动机上,这项技术已经得到了非常普遍的应用。不过,由于硬件材质的限制,这项技术在排气温度较高的汽油发动机上才刚刚起步,保时捷和博格华纳的合作可以说开创了先河。不过,随着材料科技的进步,这项技术在未来的汽油发动机上必将会得到更广泛的应用。

VGT增压器

4、VGT涡轮增压器介绍 随着技术的发展,人们对于汽车发动机的要求也越来越苛刻,不仅要拥有强劲的动力,还必须拥有极高的效率和足够清洁的排放。这就要求发动机在各种工况下都能要达到其最高效的工作状态,因此就必须满足发动机各个工作状态下对于进气量的需求。这就要求发动机的各部件都能够通过“可变”来满足在不同工况下的条件。比如我们所熟悉的可变气门正时/升程技术,可变进气歧管技术都是如此。那么在柴油发动机上常见的VGT可变截面涡轮增压技术,又有些什么作用呢?下面我们就一起来了解一下。 图1 涡轮增压器内部结构 涡轮增压技术是发动机上常见的技术之一,它的原理其实非常简单:涡轮增压器就相当于一个由发动机排出的废气所驱动的空气泵。在发动机的整个燃烧过程中,大约会有1/3的能量进入了冷却系统,1/3的能量用来推动曲轴做工,而最后1/3则随废气排出。拿一台功率200千瓦的发动机举例,按照上面提到的比例,它在排气上的消耗的动力大约会有70千瓦。这部分功率有一大部分随着高温的废气以热能的形式消耗掉,而废气本身的动能可能只有十几千瓦。但是千万别小看这十几千瓦,要知道家用的落地扇功率不过60瓦左右!也就是说, 即 使十几千瓦也足够驱动两百多台电风扇了!可想而知,用废气涡轮驱动空气所带来的增压效果非常可观。 虽然发动机全负荷状态下时排气能量非常可观,但当发动机转速较低时,排气能量却小的可怜,此时涡轮增压器就会由于驱动力不足而无法达到工作转速,这样造成的结果就是,在低转速时,涡轮增压器并不能发挥作用,这时候涡轮增

压发动机的动力表现甚至会小于一台同排量的自然吸气发动机,这就是我们经常说的“涡轮迟滞(turbolag)”现象。 图2 大众1.4TSI发动机的小尺寸涡轮 拥有较低的启动惯量,在1750rpm时就能够输出220Nm的最大扭矩对于传统的涡轮增压发动机来说,解决涡轮迟滞现象的一个方法就是使用小尺寸的轻质涡轮,首先,小涡轮会拥有较小的转动惯量,因此在发动机低转速时,在发动机较低转速下涡轮就能达到最佳的工作转速,从而有效改善涡轮迟滞的现象。不过,使用小涡轮也有它的缺点:当发动机高转速时,小涡轮由于排气截面较小,会使排气阻力增加(产生排气回压),因此发动机最大功率和最大扭矩会受到一定的影响。而对于产生回压较小的大涡轮来说,虽然高转速下可以拥有出色增压效果,发动机也会拥有更强的动力表现,但是低速下涡轮更难以被 驱动, 因此涡轮迟滞也会更明显。 图3 保时捷已将可变截面涡轮技术应用在汽油发动机上

VGT&VNT

变的是截面详解VGT可变截面涡轮增压器 2010-11-29 11:01 来源:Che168 随着技术的发展,人们对于汽车发动机的要求也越来越苛刻,不仅要拥有强劲的动力,还必须拥有极高的效率和足够清洁的排放。这就要求发动机在各种工况下都能要达到其最高效的工作状态,因此就必须满足发动机各个工作状态下对于进气量的需求。这就要求发动机的各部件都能够通过“可变”来满足在不同工况下的条件。比如我们所熟悉的可变气门正时/升程技术,可变进气歧管技术都是如此。那么在柴油发动机上常见的VGT可变截面涡轮增压技术,又有些什么作用呢?下面我们就一起来了解一下。 『废气带动涡轮,涡轮再带动叶轮对空气进行增压,从而有效增大进气量』 涡轮增压技术是发动机上常见的技术之一,它的原理其实非常简单:涡轮增压器就相当于一个由发动机排出的废气所驱动的空气泵。在发动机的整个燃烧过程中,大约会有1/3的能量进入了冷却系统,1/3的能量用来推动曲轴做工,而最后1/3则随废气排出。拿一台功率200千瓦的发动机举例,按照上面提到的比例,它在排气上的消耗的动力大约会有70千瓦。这部分功率有一大部分随着高温的废气以热能的形式消耗掉,而废气本身的动能可能只有十几千瓦。但是千万别小看这十几千瓦,要知道家用的落地扇功率不过60瓦左右!也就是说,即使十几千瓦也足够驱动两百多台电风扇了!可想而知,用废气涡轮驱动空气所带来的增压效果非常可观。

『BMW的并联双涡轮技术』 虽然发动机全负荷状态下时排气能量非常可观,但当发动机转速较低时,排气能量却小的可怜,此时涡轮增压器就会由于驱动力不足而无法达到工作转速,这样造成的结果就是,在低转速时,涡轮增压器并不能发挥作用,这时候涡轮增压发动机的动力表现甚至会小于一台同排量的自然吸气发动机,这就是我们经常说的“涡轮迟滞(Turbo lag)”现象。

内燃机两级涡轮增压技术的研究

内燃机两级涡轮增压技术的研究 近年来,随着客户要求的提高,对整车动力性、经济性、舒适性提出更高的标准,同时为了兼顾日趋严格的法规要求,两级涡轮增压技术成为增压技术的研究热点和发展趋势。论文针对某型号两级增压柴油机进行试验,结果表明,两级增压有效提高了柴油机全工况性能,尤其是低速工况及部分负荷工况的动力性和燃油经济性。 标签:两级增压;涡轮;发动机性能 0 引言 随着能源与环境问题日益明显,且为适应越来越严格的排放法规要求,对内燃机的动力性与经济性提出了更高的要求。因此,内燃机节能减排是备受关注的重大科学问题,也是国家能源战略的重要环节。通过两级涡轮增压降低内燃机的排量,是内燃机节能和减排的关键技术之一。 1 两级涡轮增压技术的研究现状 两级增压系统(Two-stage System) 两级增压技术将两台涡轮增压器(大小可异同、可有无放气阀、可废气涡轮或机械、电力驱动)联合运行,通过控制系统可以按不同顺序、不同比例的多种调节措施对空气进行一级或两级压缩。某两级涡轮增压是两个WGT增压器进行串联,通过真空调节器对增压器的高、低压技术进行控制,从而满足内燃机各工况下进气量的需求。 因此,近年来两级涡轮增压成为内燃机增压领域受到关注的热点之一。 但两级增压匹配复杂且难度大,是两级增压技术研究的主要难点。两级增压系统有大小、类型不同的两级增压器,两级增压器之间以及它们与发动机的气动联系更为复杂,对匹配提出了更高的要求。 另外,高低压两级增压器在不同发动机工况下的运行特性及变化趋势是不一致的。 2 两级增压器性能试验及验证 2.1 两级增压器性能试验 论文选用某型号两级涡轮增压柴油机为研究对象,发动机主要参数见下表: 2.2 试验结果:(匹配两级增压器与VGT增压器的区别)

优化柴油机印象 长城GW4D20发动机技术详解

优化柴油机印象长城GW4D20发动机技术详解 2010-10-18 14:37:28来源: 网易汽车跟贴191 条手机看新闻 版权声明:本文版权为网易汽车所有,转载请注明出处。 网易汽车10月18日报道 10月15日,长城汽车最新SUV车型——哈弗H5绿静2.0T 柴油新动力车型正式上市,其售价为11.38至16.38万元。作为新车最大亮点,哈弗H5 2.0T 柴油车型搭载了一台编号为GW4D20的柴油发动机,这款发动机宣传达到国际水平的柴油机究竟有何能耐,不妨一起了解一番。 哈弗H5 进入哈弗H5频道>> 参数配置图片口碑 价格: 9.28~17.08 万元上市时间: 2010年最新年款: 2012款

排量: 2.0T/2.4/2.5T四驱类型: 分时四驱 从数据来看,绿静2.0T柴油机的转速在4000rpm时可输出最大功率110kw,转速在1800-2800rpm即可实现峰值扭矩310Nm,升功率可达55Kw,达到了3.0L汽油机的动力标准。发动机百公里综合工况油耗仅为7.0L。其排放达到欧Ⅳ、欧Ⅴ水平,驾驶室内平均噪声仅有45.3分贝。 GW4D20发动机 技术方面,GW4D20采用了DOHC双顶置凸轮轴结构,融汇VGT涡轮增压中冷系统、第三代德尔福电控高压共轨系统、EGR废气再循环及冷却系统等发动机技术。这些技术都能带来哪些方面的改良? 德尔福电控高压共轨系统:传统泵喷嘴柴油发动机,由于高压油管中压力随车速波动,从而产生大量烟雾、碳氢化合物,而且整机油耗高、噪声大。采用的德尔福电控高压共轨系统,可通过对共轨管内油压进行精准控制,发动机转速变化对高压油管内压力微乎其微,而且可保证缸内压力稳定,各缸喷油均匀性好,从而使发动机工作平稳,有效改善了排放、油耗、噪声等性能。 VGT可变截面废气涡轮增压、中冷:该系统保证发动机进气压力高,通过较高的燃油喷射压力使柴油达到很高的雾化,实现油气混合充分燃烧,从而保证降低燃油消耗,大幅提升整机的升功率、升扭矩。

长城绿静2.0VGT柴油机拆解

[汽车之家拆解] 作为第三次发动机拆解的主角,长城2.0VGT柴油机终于粉墨登场了。此前我们已经对发动机生产环节进行了参观,而此时就要对这台2.0排量的新柴油机进行正式拆解了,为了大家阅读的方便,我们首先介绍的是柴油机的高压共轨系统与附件部分,而进排气和缸体部分将随后奉上。 ●燃油高压共轨直喷系统 与汽油机点燃燃料混合气不同,柴油机是通过将进气压缩加温,再与柴油喷雾混合,压燃燃烧的,因此一套行之有效的燃油喷射系统对于柴油机来说非常关键。由于柴油机的压缩比大(与一般汽油10-11的压缩比相比,GW4D20柴油机的压缩比达到了16.7),汽缸内的压力非常大,要形成均匀的油雾,也就需要很高的喷油压力,而现在主流的柴油机则是电控的高压共轨喷射,通过高压油泵加压,ECU采集传感器信号,控制带电磁阀的喷嘴改变喷油时机和喷油量,实现燃油喷射的精确控制。

『高压共轨系统主要组成部件』 GW4D20柴油机目前所用的这套高压共轨燃油喷射系统由德尔福提供,主要由高压油泵、油轨、高压油管、喷油嘴、各种传感器、ECU等组成。这套高压共轨系统可以提供最高1800bar的喷油压力,这个压力在国内乘用车柴油机中也算较高的(如VM 2.5排量柴油机的喷射压力为1350bar)。 ●高压油泵 高压油泵的作用是供给柴油机在正常运转时的足够的高压燃油,同时保证柴油机迅速启动所需要的额外供油量和压力要求。GW4D20柴油机采用的是德尔福提供的高压油泵,该油泵采用将扇叶式输油泵与高压油泵制成一体的形式,双柱塞式设计,整体结构更为紧凑可靠,也能承受更高的工作压力。 油泵采用皮带驱动,最高压力可达1800bar,值得一提的是,这个压力与上下文所提到的喷油系统、油轨、喷油器的最大压力/工作压力并不完全一致,这与喷油系统和发动机的工况有关,多数时刻高压共轨系统并不一定处于满负荷运转,这样能确保对喷油系统进行更精确的控制,实现燃油燃烧的高效率。

VGT技术三大效能:动力平顺、节油、降噪

VGT技术三大效能:动力平顺、节油、降噪 当以大扭矩著称的柴油机遇上以“功率倍增器”著称的T技术会怎样? 那就让我们看一看搭载了涡轮增压技术的新一代柴油机的表现吧! 增压技术成就柴油机巅峰动力 数据显示,一台不加装涡轮增压器的2.0L柴油发动机功率只能达到60~70KW,而搭载了涡轮增压器后功率一般能达到90KW以上,我国最先进的新一代柴油发动机—欧意德发动机,其2.0L排量则可以达到110KW,和许多先进的汽油机已经不相上下,扭矩更达到惊人的310NM,比普通汽油机高出50%。动力突变,不仅改变了传统柴油机功率低的劣势,而且将大扭矩的特点发挥的淋漓尽致,用一句话概括就是将新一代柴油机真正打造成了王牌动力。 其实涡轮增压技术早在一百多年前就已诞生于世。世界上第一台废气驱动的增压器问世于1912年,而涡轮增压器的规模化生产出现在二战时期,由 美国首先将其运用在军用飞机上。后来,瑞典的Saab萨博公司首先把涡轮增压器应用到汽车产品上,1977年问世的Saab萨博99汽车,使汽车发动机在应用涡轮增压技术上,真正开始走向成熟,它的到来同时宣告了汽车产业一个新时代的诞生,改写了排量大小决定功率的传统概念。 VGT解决涡轮迟滞问题法宝 涡轮增压提升功率的原理就在于,通过涡轮增压器进行强制进气,这样可以大大提升进入气缸内的空气密度,从而达到小排量大功率的目的。但是由于涡轮增压发动机的增压器由排气能量驱动,很显然这需要一定的排气能量。当发动机转速较低时,排气能量往往比较小,此时有可能无法驱动增压器。当增压器不工作时,涡轮增压发动机的动力甚至会小于一台同排量的自然吸气发动机,这就是我们常说的涡轮迟滞。这是涡轮增压发动机的一大顽疾,几乎所

VGT可变截面涡轮增压器

随着技术的发展,人们对于汽车发动机的要求也越来越苛刻,不仅要拥有强劲的动力,还必须拥有极高的效率和足够清洁的排放。这就要求发动机在各种工况下都能要达到其最高效的工作状态,因此就必须满足发动机各个工作状态下对于进气量的需求。这就要求发动机的各部件都能够通过“可变”来满足在不同工况下的条件。比如我们所熟悉的可变气门正时/升程技术,可变进气歧管技术都是如此。那么在柴油发动机上常见的VGT可变截面涡轮增压技术,又有些什么作用呢?下面我们就一起来了解一下。

『废气带动涡轮,涡轮再带动叶轮对空气进行增压,从而有效增大进气量』 涡轮增压技术是发动机上常见的技术之一,它的原理其实非常简单:涡轮增压器就相当于一个由发动机排出的废气所驱动的空气泵。在发动机的整个燃烧过程中,大约会有1/3的能量进入了冷却系统,1/3的能量用来推动曲轴做工,而最后1/3则随废气排出。拿一台功率200千瓦的发动机举例,按照上面提到的比例,它在排气上的消耗的动力大约会有70千瓦。这部分功率有一大部分随着高温的废气以热能的形式消耗掉,而废气本身的动能可能只有十几千瓦。但是千万别小看这十几千瓦,要知道家用的落地扇功率不过60瓦左右!也就是说,即使十几千瓦也足够驱动两百多台电风扇了!可想而知,用废气涡轮驱动空气所带来的增压效果非常可观。 『BMW的并联双涡轮技术』 虽然发动机全负荷状态下时排气能量非常可观,但当发动机转速较低时,排气能量却小的可怜,此时涡轮增压器就会由于驱动力不足而无法达到工作转速,这样造成的结果就是,在低转速时,涡轮增压器并不能发挥作用,这时候涡轮增压发动机的动力表现甚至会小于一台同排量的自然吸气发动机,这就是我们经常说的“涡轮迟滞(Turbo lag)”现象。

可变几何涡轮增压器的研究与设计

题目可变几何涡轮增压器的 研究与设计

可变几何涡轮增压器的研究与设计 摘要:普通发动机在低速时不能产生所期望的高增压压力。普通涡轮增压器与车用柴油机的匹配,在实际应用中主要存在问题为:低速转矩不足;低速和部分负荷时经济性差;起动、加速性能差;瞬态响应性迟缓;冒烟严重。 对可变几何涡轮增压器(VGT)展开研究,可以解决常规涡轮增压柴油机存在低速转矩不足、部分负荷经济性差以及瞬态响应迟缓等问题这些问题对发动机都有着十分重大的意义,如果将解决了这些问题,对发动机性能的提升将会是十分巨大的,这也正是可变几何发动机的巨大潜力所在。 增压器的设计内容复杂,一般方法需要梳理和总结。本文系统总结增压器设计的一般方法,利用这些方法和国家标准设计出可变几何涡轮增压器的各个参数。 关键词:增压器;涡轮增压器设计;可调喷嘴环控制;可变几何涡轮增器(VGT);

The variable geometry turbocharger research and design Abstract:Ordinary turbocharged system exist many problems; engine speed cannot produce expected high pressurization pressure. Specific to ordinary turbocharger and automotive diesel engine matching, in actual application the main existing problems is: low torque is insufficient;Low Performance in the partial load moment; Startup, acceleration performance is poor; The transient response large delay;Smoked excessively Research for variable geometry turbochargers (VGT), which can solve the existing conventional turbocharged diesel engine torque insufficiency at low speed, part load performance is poor, and slow transient response etc. These problems in engine are very important sense, if will solve these problems, the ascension of engine performance will be improve largely, and this is why variable geometry engine in the huge potential. The general method of turbocharger design, requires to comb and to summarize. This paper summarizes the general method of turbocharger design. Design the various parameters of the variable geometry turbocharger, by of these methods and national standard. Keywords: supercharger; Turbocharger design; Adjustable nozzle ring; Variable geometry turbochargers(VGT);

汽车涡轮增压器工作原理

汽车涡轮增压器工作原理 汽车涡轮增压器是现代化汽车引擎的重要组成部分,它可以在提高发 动机动力的同时,实现更好的燃油经济性。 一、涡轮增压器的定义 涡轮增压器是通过利用发动机废气的流动能量来压缩进气空气,以提 高发动机进气效率,并改进发动机性能。 二、涡轮增压器的工作原理 涡轮增压器由两个主要部分组成,即压气机和涡轮。压气机通过对空 气进行压缩来提高发动机进气质量。同时,通过将废气引导到涡轮上,涡轮就可以自转并带动压气机使其运作。 具体的工作原理为:发动机的排气管末端连接着涡轮的进气口,发动 机排出的废气流动到涡轮上,从而使得涡轮叶轮转动。涡轮连接着压 气机,压气机内会产生高压气体将压缩进气空气送入发动机中。随着 发动机运转,废气数量增加,涡轮叶轮也随之加速,形成正向反馈循环,最终实现提高发动机的输出功率。 三、涡轮增压器的型号 涡轮增压器的种类非常多,根据不同要求和流量范围,可以分为两种 类型: 1.容积式涡轮增压器(VGT)。容积式涡轮增压器是能够通过变化导流 口的大小和方向来改变排气流量的。通过这种方式,就能够确保涡轮 叶轮在瞬间加速来满足更高的压缩需求。容积式涡轮增压器的主要优

点是提高了发动机的响应性能和流量特性。 2.固定几何涡轮增压器(FHT)。固定几何涡轮增压器是一种非调节的增压系统,其涡轮叶轮和导流口尺寸都是固定的。这种增压器在低转速下表现良好,但高速时效率则逐渐降低。 四、结论 总的来说,涡轮增压器是一种同样适用于汽油和柴油发动机的高效增压系统。涡轮增压器能够让发动机在低转速下表现更好,提高发动机的输出功率,并且通过减少引擎负载来增加燃油经济性。涡轮增压器已经成为现代化汽车中必不可少的部件。

发动机辅助制动系统-三种形式

发动机辅助制动系统大致可分为:排气蝶阀制动,泄气式制动还有压缩式制动三大类型。很多人都是将这几种产品混为一谈,我们就来看看它们到底有什么不同。 ●排气蝶阀制动 国内最常见的就是蝶阀制动了,在国内绝大部分的卡车的排气管上都能看到这样的蝶阀。 蝶阀制动的原理和结构也相对要简单一些,驾驶员使用蝶阀制动后,蝶阀转动将排气管堵死,在发动机气缸内形成可控的背压力,以增加发动机排气行程的功率消耗,迫使发

动机降低转速,从而达到在短时间内降低车速的目的。排气蝶阀结构相对简单,性价比较高,制动效果最低。 ●泄气式制动 泄气式发动机制动的产品市场上也有不少,泄气制动工作时,将排气门打开一个小的间隙,使发动机在压缩冲程中通过泄气释放压缩能量,这样在做功冲程几乎没有能量返回活塞。而在排气过程中,而在排气冲程依靠排气蝶阀或VGT涡轮增压器产生的背压来增加进排气功耗。 按照实现方式的不同可分为主动式和被动式两种。 1.被动式制动器

市场上比较常见的潍柴WEVB和重汽的EVB就属于这种类型,它需要排气蝶阀进行辅助。当排气蝶阀关闭后,柴油机压缩行程形成使得排气通道中的废气压力急剧上升,相邻处于吸气冲程下止点附近气缸的排气门会被压力顶开一个小缝隙,再通过增加一套控制排气门行程的执行机构,实现排气门在发动机制动过程中保持打开一个空隙。 2.主动式制动器 锡柴6DL2的发动机制动器 主动式制动器则是通过电磁阀控制,用液压装置保持排气门微启,不需要依赖排气蝶阀,如锡柴6DL2装配的就是这样的产品。 ●压缩释放式制动

关于压缩式制动的原理我们已经做了详细的讲解,就是改变发动机排气门的配气相位,在压缩冲程即将结束时,开启排气门,这样发动机在压缩缸内空气时所做的功,便被释放到排气系统。在膨胀做功的行程中,排气门关闭,汽缸内接近真空状态,活塞向下运动类似一个抽真空的过程,产生负功。这种形式的制动器功率最大,结构最复杂,当然价格也是最贵的。 康明斯ISM 11发动机制动 以皆可博发动机制动产品为例,目前国内装配这种形式的发动机有西安康明斯ISM11系列,东风dCi 11升系列,玉柴YC6K12、锡柴CA6DN系列等。大家熟悉的CA6DM系列也是这样的结构,不过是解放自主研发的产品,主要的电磁阀由皆可博提供。

江淮帅铃国四排放没力故障案例分析

江淮帅铃国四排放没力故障案例分析 车型:江淮帅铃 博世EDC17C55电脑板 江淮HFC4DA1-2C发动机 EGR废气再循环系统 国四排放 X 故障现象: 没力,提速慢。 故障码: P0504:刹车信号不可信; P0069:大气压力传感器和增压压力传感器可靠性检测不可信; P0045:增压器电路开路; P0234:增压压力调节控制器偏差值(增压压力设定值减去实际值)低于下限(负偏差过大)。

故障分析与维修: 根据故障码结合故障现象首先检查了进气压力和进气压力传感器及其线路,发现进气压力传感器型号是028*******,而正常情况下这种系统配备进气压力传感器型号是028*******,并且进气压力怠速显示147kpa。于是换上原装的进气压力传感器后清码显示系统正常,微信加车通互联深圳然后试车车子仍然没力,并且车速最高只能到60-70码左右并且黑烟大。 于是开始检查油嘴发现四个油嘴回油量都很大,于是更换阀组件,将油量全部调标准后装车,发现黑烟没有了加油最高可以到100码左右,但是油门响应很慢,还是不够力。于是拆下EGR阀检查发现EGR 阀工作正常没有卡滞现象,但为了确定问题还是把它堵住,再试车仍然没有力,并且故障码只有P0504。 于是读取数据流发现主副刹车信号始终为关闭状态,检查刹车开关发现这种开关一共四条线,两条一组,一主一副,一个常开一个常闭。但是该车开关正常,刹车灯不亮,刹车灯继电器也不工作,检查发现保险爆了,更换保险开关信号正常变化清码后显示系统正常,再次试车仍然没力提速 慢。 由于是国四车型除了EGR阀外还有POC即颗粒捕捉器所以怀疑

排气管堵了,将排气管拆下后仍然不行,但是读取数据流一切正常,增压压力加油可达到170-180kpa,该检查的都检查了但仍然没力。于是把增压器真空调节阀的一端拔下不让VGT可变增压工作发现仍然一样,增压压力最大仍然170-180kpa,最后决定拆下增压器检查,看看是不是可变增压不调节或卡住了。微信加车通互联深圳因为着车后无论怠速还是加油调节阀都不工作,拆下增压器后发现增压器叶轮打烂了,而VGT可变增压控制的调节叶片也坏了,里面全部散架无法调节,然后更换增压器管试车一切正常加速有力,故障排除。 由于读取数据流增压压力正常、轨压、水温、包括进气温度都正常,所以没有首先检增压器造成方向错误浪费时间,有时可能数据流正常但是不能完全确定代表没有问题,有时必须做到逐个检查,一一排除才能解决问题。

可变截面涡轮增压系统VGT简介

可变截面涡轮增压系统VGT简介 柴油车技术突围——揭秘VGT技术 VGT是英文Variable geometry turbocharger的缩写,中文说法是“可变截面涡轮增压系统”。这个名称很多人都看到过,但到底这个“可变截面”对于涡轮增压、乃至发动机有何实际意义呢? 涡轮迟滞是涡轮增压发动机最需要解决的问题 在此之前,我们要简单了解一下涡轮增压发动机的原理和特性。增压发动机区别于普通自然吸气发动机,它是通过增压器进行强制进气的,这样可以大大提升进入气缸内的空气密度,从而达到小排量大功率的目的。涡轮增压发动机的增压器由排气能量驱动,很显然这需要一定的排气能量。当发动机转速较低时,排气能量往往比较小,此时有可能无法驱动增压器。当增压器不工作时,涡轮增压发动机的动力甚至会小于一台同排量的自然吸气发动机,这就是我们常说的涡轮迟滞。这是涡轮增压发动机的一大顽疾,几乎所有工程师都在致力于解决这个问题。 涡轮迟滞与增压能量之间的平衡成为一对矛盾体 涡轮迟滞与增压涡轮的尺寸有关。增压涡轮越大,涡轮就越难以被驱动,涡轮迟滞就越明显,反之如果增压涡轮很小,迟滞就会大幅度缓解。然而与此同时,涡轮尺寸又与增压能量相关,小尺寸的涡轮虽然可以缓解涡轮迟滞,但在需要增压器工作时它能提供的增压值不大,不利于提升发动机的动力。因此涡轮尺寸、涡轮迟滞与增压值之间存在着一定的平衡关系。大多数常规发动机都只能采用折中的办法来设计,这样很难做到既彻底避免涡轮迟滞,同时又可以获得较大升功率。 VGT是解决这个矛盾最有效的方案 VGT就是起这个作用的。其奥秘在于它的增压器可以改变截面积,这就相当于改变了增压涡轮的大小。在转速较低时,增压涡轮会采用较小的截面积,即使转速很低的状态下涡轮也可以顺利启动,大大缓解了涡轮迟滞。在高转速状态下,增压涡轮会采用较大的截面积,这样可以大幅度提升增压值,从而提升发动机的最大功率和扭矩。华泰圣达菲2.0L发动机的“升功率”是国内同级别柴油SUV中最高的,它的动力表现已经达到或超过众多2.5升甚至2.8升的柴油SUV,VGT在这里同样功不可没。 VGT所带来的实际效果

混动开局者,DM-i超级混动系统(五)

混动开局者,DM-i超级混动系统(五) 作者: 来源:《汽车与运动》2021年第07期 2021年作为混动的开局之年,总体来看具备三大要素:《节能与新能源汽车技术路线图(2.0版)》的政策推动,多家主机厂的深度混动平台,以及现象级混动产品DM-i。比亚迪DM-i超级混动系统真正让市场开始“跑步”迎接混动车,同时让所有汽车人意识到混动车的潜力以及市场巨大。 从2003年一路走来,比亚迪始终致力于推动全球新能源发展,“用技术创新满足人们对美好生活的向往”。众所周知,DM双模技术是比亚迪插电混动技术的专属名称,DualMode兼顾纯电和混动,插电混动是燃油和纯电技术的综合体,其技术难度一直被誉为汽车技术的珠穆朗玛峰。2008年,比亚迪推出了全球第一款插电式混合动力汽车F3DM,第一代DM技术采用双电机串并联架构,开创了插电式混动汽车的先河;2013年,比亚迪推出DM第二代,系统采用了发动机+DCT耦合P3+P4的三擎四驱架构,实现了百公里加速5秒以内、智能电四驱,树立了比亚迪在混动领域的性能标杆;2018年,第三代DM技术持续创新,在第二代架构的基础上,引入全新PO电机,使双模车的动力性、经济性和平顺性全面提升,给用户带来极致的用车体验。

为了满足更多消费者的需求,2020年6月,比亚迪发布了双模技术双平台战略:DM-p和DM-i。DM-p,“p”即powerful,指动力强劲、极速,满足“追求更好驾驶乐趣”的用户;DM-i:“i”即intellige nt,智慧、节能、高效,以电为主,满足“追求极致行车能耗”的用户。 DM-p是对DM三代强劲动力的延续,DM-i则是对DM 代的传承。从2008年到2021年,十三年的沉淀积累,突破性的技术創新,比亚迪投入了超2000名工程师,精心打磨。截止到2020年,比亚迪DM销量已突破42万辆,中国市场占比超过44.2%;插混销量全球第一;累计获得专利408项,并多次获得中国专利金奖和优秀奖。 何谓“超级混动”?简单来讲就是以电为主的混动技术,准确来讲是围绕大功率电机驱动和大容量动力电池供能为主,发动机为辅的电混架构,颠覆了传统混动技术以油为主的设计架构。 超级混动的出现,实现了超低油耗、静谧平顺、卓越动力这样近乎完美的整车表现。100%的自主研发的专用高效发动机、双电机EHS电混系统、刀片电池、交直流充电器等核心

汽车增压系统

汽车增压系统概述及种类 对于广大汽车爱好者来说,增压,无疑是最让人兴奋的。将小排量引擎加以增压器之后,动力会有非常明显的提升。而增压对发动机有怎样的促进作用?机械增压、涡轮增压,有什么样的异同呢? 我们之前介绍过压缩比的意义,为了让发动机努力工作,必须充分压缩。而为了充分压缩,也必须充分进气。 拿一部2.0升四缸发动机举例,曲轴每转一圈会有两个气缸进气,也就是1升。在每分钟3000转时,就需要进气3立方米,每秒50升,相当于2.7个纯净水大桶的容积。这仅仅是2.0发动机在3000转时的理论进气量,更大排量,更高转速下,流量会更大。但这些气流要通过管径只有杯子口那么大的进气管道,并被一个刻薄的节气门限制,在进入气缸之前还要经过进气门一关,所以真正进入汽缸的空气,就没有那么多了。

图中布加迪威龙的8.0T发动机,在6000转时每分钟进气量高达24m3 例如,一般自然吸气发动机在怠速时,节气门只是微微打开一个角度(3-5°),进气压力在0.5bar左右(为方便解释,我们使用更直观的bar作为本篇压力单位,1bar约等于1个大气压。进气压力值为节气门与进气歧管之间位置测量),即便是急加速时,节气门开至很大位置为气缸送气,也不过0.8bar左右,平稳行驶时,进气压力又回到怠速水平,而高速区域时,进气压力会更低。 这就表示自然吸气发动机始终在低于大气压的“负压”状态下工作,没有充分的空气投入,自然不会有更好的动力产出。所以在不改变进气情况,且保证合理工况的情况下,提高功率,一般做法就是提高压缩比,或是增大排量。 然而压缩比不能无限的提高,排量也与钱有关。因此,一种相对简单且高效的方式——增压技术,广泛运用于发动机上。刚才讲过,自然吸气发动机进气是不太顺畅的,那么用一个增压器,把空气“打”到汽缸里,其结果自然很让人满意。 增压对发动机的影响 在进气压力升高之后,输入气缸的空气自然增加了一些,与空气混合的燃油自然也就增加了。所以相比自然吸气发动机,在基本不改变气缸容积的情况下,增加一个增压器,功率输出就可以升高至1.5倍非增压发动机的水平,这要比增加排量实惠得多,而且因为发动机的重量没有增加太多,操控性也得以保证。

汽车涡轮增压讲解

汽车涡轮增压 简称Turbo,如果在轿车尾部看到Turbo或者T, 即表明该车采用的发动机是涡轮增压发动机。 涡轮增压器实际上是一种空气压缩机,通过压缩空气来增加进气量。它是利用发动机排出的废气惯性冲力来推动涡轮室内的涡轮,涡轮又带动同轴的叶轮,叶轮压送由空气滤清器管道送来的空气,使之增压进入气缸。当发动机转速增快,废气排出速度与祸轮转速也同步增快,叶轮就压缩更多的空气进入气缸,空气的压力和密度增大可以燃烧更多的燃料,相应增加燃料量就可以增加发动机的输出功率。 涡轮增压器的最大优点是能在不加大发动机排量就能较大幅度地提高发动机的功率及扭力,一般而言,加装增压器后的发动机的功率及扭矩要增大20%—30%。涡轮增压器的缺点是滞后,即由于叶轮的惯性作用对油门骤时变化反应迟缓,使发动机延迟增加或减少输出功率,这对于要突然加速或超车的汽车而言,瞬间会有点提不上劲的感觉。 涡轮增压器是一种利用内燃机(Internal Combustion Engine)运作所产生的废气驱动之空气压缩机(Air-compressor)。与超级增压器(机械增压器, Super-Charger)功能相若,两者都可增加进入内燃机或

锅炉的空气流量,从而令机器效率提升。常见用于汽车引擎中,透过利用排出废气的热量及流量,涡轮增压器能提升内燃机的马力输出。 图为以气箔轴承为 基础制造出来的涡轮增 压器剖面图,图片来自 Mohawk Innovative Technology Inc. 一般车用内燃机在加装增压器后重量都会增加,所用作克服惯性(inertia)的能量会上升。因涡轮增压器大部份时间都是利用引擎排出之废气驱动,所以较由引擎曲轴(Crankshaft)驱动之机械增压器占优。但因引擎于低转运作时废气流量较低,涡轮增压器之表现未如理想,出现涡轮迟滞(Turbo-Lag)现象。 [编辑]物理机制 一个冲程下,发动机做功的计算公式为 V代表的是排气量,而P则是压强。增大排气量和增大压强,均可以增加发动机做功。增大压强则通过涡轮实现。[1]

P0299增压压力过小

■ “P0299增压压力过小”故障码发生时故障诊断及措施方法 (◎ 现象发生事例及措施方法

1. 现象 - 行使中检测发动机警告灯闪亮 2. 检测内容及原因 - hi-ds 自诊断结果PO299 增压较低 - 查询维修履历结果改善2次VGT电磁阀,增压传感器,更换发动机ECU - 寒冷及加速时经常发生此问题 - 问题车辆在启动时涡轮增压的旋转度缓慢至75% - 电力检测结果显示正常,关于真空检测时真空管在下往上安装的过程中被弯曲(参照照片) - 在大部分途胜VGT车辆中均发生以上问题 - 在真空管一部分弯曲的情况下,因少量产生真空而导致发生以上现象 3. 调解事项:修整真空管 4. 要求事项:在VGT真空管弯曲问题在改善后,还继续发生相同问题。在耐久方面如还发生弯曲现象 改善根本性的问题

■ 每日5分钟会议质量信息公告(06.6.14)分 中心+※ 因本资料书对外机密事项望口述教育询 吴熙 02-3◇关于间歇性发动机CHECK 警告灯闪亮的现场修复公告 ▶对象:途胜VGT规格(06.5.25之前生产) ▶现象:行驶中间歇性发动机CHECK 警告灯闪亮(故障码PO299增压过小) ▶调节方法:VGT电磁阀(35120-27400)更换新配件(现象N69 /责任单位:서한产业) →因增加增压传感器,涡轮增压,ECU 等原因禁止更换配件

-配件名:VGT电磁 -配件号:35120-27 -生产厂家:서한产 ■ 每日5分钟会议质量信息公告(06.8.18)分 中心+※ 因本资料书对外机密事项望口述教育询 李昌 02-3◇DTC 现场修复重点事项通报 1. 途胜“PO299增压异常”诊断时 - 确认期间(05.12.26 ~ 06.5.25 生产)后 - VGT 电磁阀(35120-27400)交换 - 责任单位:서한产业 2. D发动机空气流动传感器 DTC 未发生时检测注意事项 - DTC未发生时引擎各领域油量测试 IDLE, 2000, 3000, 4000rpm中望测试最少3个领域的油量 ※ 测量油量时必须遵守引擎条件 - 发动机:无负荷(变速档 P.N档 / 空调,电气负荷 OFF - EGR未安装状态(EGR SOL拔掉连接器)

1--电子控制泵喷嘴燃油系统

拓展知识1电子控制泵喷嘴燃油系统(加封面、转PDF)第一节电子控制泵喷嘴燃油系统基础 一、系统组成 电子控制泵喷嘴(如图1所示)就是将泵油柱塞和喷油嘴合成一体,安装在缸盖上(如图2所示)。喷油嘴由于无高压油管,所以可以消除长的高压油管中压力波和燃油压缩的影响,高压容积大大减少,因此喷射压力可很高。它的驱动机构比较特殊,一般采用凸轮轴的凸轮驱动摇臂的一端,摇臂的另一端来驱动泵喷嘴(图3所示),因此泵喷嘴系统最适宜与顶置式凸轮驱动方式匹配。正是由于受到顶置凸轮轴布置的限制,目前国Ⅲ柴油机采用电控泵喷嘴系统很少。 图1 泵喷嘴图2 泵喷嘴用的缸盖总成 图3 泵喷嘴的驱动 1.驱动气门的凸轮; 2.驱动泵喷嘴传动摇臂的凸轮; 3.驱动泵喷嘴的摇臂总成; 4.泵喷嘴 电子控制泵喷嘴系统主要由泵喷嘴、驱动摇臂机构、电子控制单元(ECU)、各种传感器等组成,如图4所示。博世(Bosch)电子控制泵喷嘴燃油喷射系统如图5所示。 电子控制泵喷嘴系统的特点是燃油压力升高仍然是机械式的,喷油始点和终点由电磁阀控制,即喷油量和喷油时间是由电磁阀控制的。 电子控制泵喷嘴系统的结构特点: (1)采用大容量齿轮式供油泵,确保将燃油稳定地供到安装在气缸盖内部

的喷油器 (2)主供油管和气缸盖上的各个喷油器之间由支管连接,溢出燃油通过连接各喷油器的溢油管经调压阀排出到气缸盖外部。 (3)ECU直接安装在发动机机体上,缩短了线束长度;为了减低因发动机引起的振动,采用橡胶固定,同时,采用燃油冷却ECU的背面。 图4 电子控制泵喷嘴燃油系统组成 (4)ECU根据安装在飞轮以及凸轮相关部位的两个转速传感器检测到的发动机转速和曲轴转角、加速踏板位置传感器信号及其他的传感器信号进行最佳燃油喷射控制。 (5)柱塞通过摇臂由凸轮轴驱动,压缩燃油,建立高压。 (6)喷油器的高速电磁阀是常开的,燃油通过气缸盖内部的油路流动;但电磁阀关闭时,柱塞开始向喷油嘴压油,燃油从喷油嘴喷入气缸;当电磁阀打开时,溢油开始,喷油结束。 图5 Bosch电子控制泵喷嘴燃油喷射系统 (7)因为没有喷油管,不仅可以实现高压喷射,而且可以通过适当组合喷油嘴的喷孔流通截面积和驱动凸轮的形状,使喷油率的形状徐徐上升,减少预混

相关文档