文档视界 最新最全的文档下载
当前位置:文档视界 › principles of lasers激光原理第5章

principles of lasers激光原理第5章

激光原理第二章答案

第二章开放式光腔与高斯光束 1.证明如图 2.1所示傍轴光线进入平面介质界面的光线变换矩阵为 1 2 1 0 η η ?? ?? ?? ?? ?? 。 证明:设入射光线坐标参数为 11 ,rθ,出射光线坐标参数为 22 ,rθ,根据几何关系可知211122 ,sin sin r rηθηθ ==傍轴光线sinθθ则 1122 ηθηθ =,写成矩阵形式 21 21 1 2 1 0 r r θθ η η ?? ???? ?? = ???? ?? ???? ?? ?? 得证 2.证明光线通过图2.2所示厚度为d的平行平面介质的光线变换矩阵为 1 2 1 0 1 d η η ?? ?? ?? ?? ?? 。 证明:设入射光线坐标参数为 11 ,rθ,出射光线坐标参数为 22 ,rθ,入射光线首先经界面1折射,然后在介质2中自由传播横向距离d,最后经界面2折射后出射。根据1题的结论和自由传播的光线变换矩阵可得 21 21 21 12 1 0 1 0 1 0 0 0 1 r r d θθ ηη ηη ???? ???? ?? ???? = ???? ?? ???? ?? ???? ???? ???? 化简后21 21 1 2 1 0 1 d r r θθ η η ?? ???? ?? = ???? ?? ???? ?? ?? 得证。 3.试利用往返矩阵证明共焦腔为稳定腔,即任意傍轴光线在其中可以往返无限多次,而且两次往返即自行闭合。 证:设光线在球面镜腔内的往返情况如下图所示:

其往返矩阵为: 由于是共焦腔,则有 12R R L == 将上式代入计算得往返矩阵 () ()()1 2 101 0110101n n n n n n r L r L ??????===-=-???????????? A B C D T T T T T 可以看出,光线在腔内往返两次的变换矩阵为单位阵,所以光线两次往返即自行闭合。 于是光线在腔内往返任意多次均不会溢出腔外,所以共焦腔为稳定腔。 4.试求平凹、双凹、凹凸共轴球面镜腔的稳定性条件。 解:共轴球面腔稳定性条件1201g g <<其中1212 11,1L L g g R R =-- =- 对平凹共轴球面镜腔有12,0R R =∞>。则122 1,1L g g R ==- ,再根据稳定性条件 1201g g <<可得2 2011L R R L <- <>?。 对双凹共轴球面腔有,120,0R R >>则1212 1,1L L g g R R =- =-,根据稳定性条件1201g g << 可得11221 212010 01 1R L R L R L R L R R L L R R L <?? <????<-- ?????? 或。 对凹凸共轴球面镜腔有,120,0R R ><则1212 1,1,0L L g g R R =- =>-根据稳定性条件1201g g << 可得121120111R L R R R L L R L ???? <--

激光原理及技术习题答案

激光原理及技术部分习题解答(陈鹤鸣) 第一章 4. 为使氦氖激光器的相干长度达到1km, 它的单色性0/λλ?应当是多少? 解:相干长度C c L υ = ?,υ?是光源频带宽度 85 3*10/3*101C c m s Hz L km υ?=== 22 510 8 (/) 632.8*3*10 6.328*103*10/c c c c nm Hz c m s λλυυυυλλλυλ-=??=?=???=?== 第二章 4. 设一对激光能级为2121,,E E f f =,相应的频率为υ,波长为λ,能级上的粒子数密度分别为21,n n ,求: (1)当3000,300MHz T K υ= =时,21/?n n = (2)当1,300m T K λμ= =时,21/?n n = (3)当211,/0.1m n n λμ= =时,温度T=? 解: T k E E b e n 121 2 n -- = 其中1 2**E E c h E c h -= ?=λ ν λ h c h == ?*E (1)

(2) 10 * 425 .121 48 300 * 10 * 38 .1 10 10 *3 * 10 * 63 .6 1 223 6 8 34 ≈ = = = =- - - - - - - e e e n n T k c h b λ (3) K n n k c h b 3 6 23 8 34 1 2 10 * 26 .6 )1.0( ln * 10 * 10 * 8 .3 1 10 *3 * 10 * 63 .6 ln * T= - = - = - - - λ 9. 解:(1) 由题意传播1mm,吸收1%,所以吸收系数1 01 .0- =mm α (2) 0 1 01 100 366 0I . e I e I e I I. z= = = =- ? - α 即经过厚度为0.1m时光能通过36.6% 10.解:

激光原理与技术习题

1.3 如果微波激射器和激光器分别在λ=10μm ,=5×10- 1μm 输出1W 连续功率,试问每秒钟从激光上能级向下能级跃迁的粒子数是多少? 解:若输出功率为P ,单位时间内从上能级向下能级跃迁的粒子数为n ,则: 由此可得: 其中346.62610J s h -=??为普朗克常数, 8310m/s c =?为真空中光速。 所以,将已知数据代入可得: =10μm λ时: 19-1=510s n ? =500nm λ时: 18-1=2.510s n ? =3000MHz ν时: 23-1=510s n ? 1.4设一光子的波长=5×10- 1μm ,单色性λ λ ?=10- 7,试求光子位置的不确定量x ?。若光子的波长变为5×10- 4μm (x 射线)和5 ×10 -18 μm (γ射线),则相应的x ?又是多少 m m x m m m x m m m x m h x h x h h μμλμμλμλλμλλ λλλλλλλλ 11171863462122 1051051051051051051055/105////0 /------?=?=???=?=?=???=?==?=???=?=?P ≥?≥?P ??=P?=?P =?P +P?=P 1.7如果工作物质的某一跃迁波长为100nm 的远紫外光,自发跃迁几率A 10等于105S - 1,试问:(1)该跃迁的受激辐射爱因斯坦系数B 10是多少?(2)为使受激跃迁几率比自发跃迁几率大三倍,腔内的单色能量密度ρ应为多少? c P nh nh νλ==P P n h hc λ ν= =

1.8如果受激辐射爱因斯坦系数B10=1019m3s-3w-1,试计算在(1)λ=6 m(红外光);(2)λ=600nm(可见光);(3)λ=60nm(远紫外光);(4)λ=0.60nm(x射线),自发辐射跃迁几率A10和自发辐射寿命。又如果光强I=10W/mm2,试求受激跃迁几率W10。 2.1证明,如习题图2.1所示,当光线从折射率η1的介质,向折射率为η2的介质折射时,在曲率半径为R的球面分界面上,折射光线所经受的变换矩阵为 其中,当球面相对于入射光线凹(凸)面时,R取正(负)值。 习题

激光原理第二章习题解答

《激光原理》习题解答 第二章习题解答 1 试利用往返矩阵证明共焦腔为稳定腔,即任意傍轴光线在其中可以往返无限次,而且两次往返即自行闭合. 证明如下:(共焦腔的定义——两个反射镜的焦点重合的共轴球面腔为共焦腔。共焦腔分为实共焦腔和虚共焦腔。公共焦点在腔内的共焦腔是实共焦腔,反之是虚共焦腔。两个反射镜曲率相等的共焦腔称为对称共焦腔,可以证明,对称共焦腔是实双凹腔。) 根据以上一系列定义,我们取具对称共焦腔为例来证明。 设两个凹镜的曲率半径分别是1R 和2R ,腔长为L ,根据对称共焦腔特点可知: L R R R ===21 因此,一次往返转换矩阵为 ?????? ?????????????????? ??-???? ??---?????????? ??-+-???? ??--=??????=211121222121221221221R L R L R L R L R R R L L R L D C B A T 把条件L R R R ===21带入到转换矩阵T ,得到: ? ? ? ???--=??????=1001D C B A T 共轴球面腔的稳定判别式子()12 1 1<+<-D A 如果 ()121 -=+D A 或者()12 1=+D A ,则谐振腔是临界腔,是否是稳定腔要根据情况来定。本题中 ,因此可以断定是介稳腔(临界腔),下面证明对称共焦腔在近轴光线条件下属于稳定腔。 经过两个往返的转换矩阵式2 T ,?? ? ? ??=10012T 坐标转换公式为:?? ????=??????? ?????=??????=???? ??1111112221001θθθθr r r T r 其中等式左边的坐标和角度为经过两次往返后的坐标,通过上边的式子可以看出,光线经过 两次往返后回到光线的出发点,即形成了封闭,因此得到近轴光线经过两次往返形成闭合,对称共焦腔是稳定腔。 2 试求平凹、双凹、凹凸共轴球面腔的稳定条件。 解答如下:共轴球面腔的()2 12 21222121R R L R L R L D A + --≡+,如果满足()1211<+<-D A ,

激光原理与技术习题一

《激光原理与技术》习题一 班级 序号 姓名 等级 一、选择题 1、波数也常用作能量的单位,波数与能量之间的换算关系为1cm -1 = eV 。 (A )1.24×10-7 (B) 1.24×10-6 (C) 1.24×10-5 (D) 1.24×10-4 2、若掺Er 光纤激光器的中心波长为波长为1.530μm ,则产生该波长的两能级之间的能量间 隔约为 cm -1。 (A )6000 (B) 6500 (C) 7000 (D) 10000 3、波长为λ=632.8nm 的He-Ne 激光器,谱线线宽为Δν=1.7×109Hz 。谐振腔长度为50cm 。假 设该腔被半径为2a=3mm 的圆柱面所封闭。则激光线宽内的模式数为 个。 (A )6 (B) 100 (C) 10000 (D) 1.2×109 4、属于同一状态的光子或同一模式的光波是 . (A) 相干的 (B) 部分相干的 (C) 不相干的 (D) 非简并的 二、填空题 1、光子学是一门关于 、 、 光子的科学。 2、光子具有自旋,并且其自旋量子数为整数,大量光子的集合,服从 统计分布。 3、设掺Er 磷酸盐玻璃中,Er 离子在激光上能级上的寿命为10ms ,则其谱线宽度为 。 三、计算与证明题 1.中心频率为5×108MHz 的某光源,相干长度为1m ,求此光源的单色性参数及线宽。 2.某光源面积为10cm 2,波长为500nm ,求距光源0.5m 处的相干面积。 3.证明每个模式上的平均光子数为 1 )/ex p(1 kT hv 。

《激光原理与技术》习题二 班级 姓名 等级 一、选择题 1、在某个实验中,光功率计测得光信号的功率为-30dBm ,等于 W 。 (A )1×10-6 (B) 1×10-3 (C) 30 (D) -30 2、激光器一般工作在 状态. (A) 阈值附近 (B) 小信号 (C) 大信号 (D) 任何状态 二、填空题 1、如果激光器在=10μm λ输出1W 连续功率,则每秒从激光上能级向下能级跃迁的粒子数 是 。 2、一束光通过长度为1m 的均匀激励的工作物质。如果出射光强是入射光强的两倍,则该物 质的增益系数为 。 三、问答题 1、以激光笔为例,说明激光器的基本组成。 2、简要说明激光的产生过程。 3、简述谐振腔的物理思想。 4、什么是“增益饱和现象”?其产生机理是什么? 四、计算与证明题 1、设一对激光能级为2E 和1E (设g 1=g 2),相应的频率为ν(波长为λ),能级上的粒子数密度分 别为2n 和1n ,求 (a) 当ν=3000MHz ,T=300K 时,21/?n n = (b) 当λ=1μm ,T=300K 时,21/?n n = (c) 当λ=1μm ,21/0.1n n =时,温度T=? 2、设光振动随时间变化的函数关系为 (v 0为光源中心频率), 试求光强随光频变化的函数关系,并绘出相应曲线。 ? ??<<=其它,00),2exp()(00c t t t v i E t E π

激光原理与技术习题一样本

《激光原理与技术》习题一 班级序号姓名等级 一、选择题 1、波数也常见作能量的单位, 波数与能量之间的换算关系为1cm-1 = eV。 ( A) 1.24×10-7 (B) 1.24×10-6 (C) 1.24×10-5 (D) 1.24×10-4 2、若掺Er光纤激光器的中心波长为波长为1.530μm, 则产生该波长的两能级之间的能量 间隔约为 cm-1。 ( A) 6000 (B) 6500 (C) 7000 (D) 10000 3、波长为λ=632.8nm的He-Ne激光器, 谱线线宽为Δν=1.7×109Hz。谐振腔长度为50cm。 假设该腔被半径为2a=3mm的圆柱面所封闭。则激光线宽内的模式数为个。 ( A) 6 (B) 100 (C) 10000 (D) 1.2×109 4、属于同一状态的光子或同一模式的光波是 . (A) 相干的 (B) 部分相干的 (C) 不相干的 (D) 非简并的 二、填空题 1、光子学是一门关于、、光子的科学。 2、光子具有自旋, 而且其自旋量子数为整数, 大量光子的集合, 服从统计分布。 3、设掺Er磷酸盐玻璃中, Er离子在激光上能级上的寿命为10ms, 则其谱线宽度 为。 三、计算与证明题 1.中心频率为5×108MHz的某光源, 相干长度为1m, 求此光源的单色性参数及线宽。

2.某光源面积为10cm 2, 波长为500nm, 求距光源0.5m 处的相干面积。 3.证明每个模式上的平均光子数为 1 )/ex p(1-kT hv 。 《激光原理与技术》习题二 班级 姓名 等级 一、 选择题 1、 在某个实验中, 光功率计测得光信号的功率为-30dBm, 等于 W 。 ( A) 1×10-6 (B) 1×10-3 (C) 30 (D) -30 2、 激光器一般工作在 状态. (A) 阈值附近 (B) 小信号 (C) 大信号 (D) 任何状态 二、 填空题 1、 如果激光器在=10μm λ输出1W 连续功率, 则每秒从激光上能级向下能级跃迁的粒子数 是 。 2、 一束光经过长度为1m 的均匀激励的工作物质。如果出射光强是入射光强的两倍, 则该物 质的增益系数为 。 三、 问答题 1、 以激光笔为例, 说明激光器的基本组成。 2、 简要说明激光的产生过程。 3、 简述谐振腔的物理思想。 4、 什么是”增益饱和现象”? 其产生机理是什么? 四、 计算与证明题 1、 设一对激光能级为2E 和1E (设g 1=g 2), 相应的频率为ν(波长为λ), 能级上的粒子数密度 分别为2n 和1n , 求 (a) 当ν=3000MHz , T=300K 时, 21/?n n =

《激光原理及技术》1-4习题问题详解

激光原理及技术部分习题解答(鹤鸣) 第一章 4. 为使氦氖激光器的相干长度达到1km, 它的单色性0/λλ?应当是多少? 解:相干长度C c L υ = ?,υ?是光源频带宽度 85 3*10/3*101C c m s Hz L km υ?=== 22 510 8 (/) 632.8*3*10 6.328*103*10/c c c c nm Hz c m s λλυυυυλλλυλ-=??=?=???=?== 第二章 4. 设一对激光能级为2121,,E E f f =,相应的频率为υ,波长为λ,能级上的粒子数密度分别为 21,n n ,求: (1)当3000,300MHz T K υ= =时,21/?n n = (2)当1,300m T K λμ= =时,21/?n n = (3)当211,/0.1m n n λμ= =时,温度T=? 解: T k E E b e n 121 2 n --= 其中1 2**E E c h E c h -=?=λ ν λ h c h == ?*E (1) (2)010*425.12148300 *10*38.11010*3* 10 *63.61 2 236 8 34 ≈====--- ----e e e n n T k c h b λ

(3) K n n k c h b 3 6 238341 210*26.6)1.0(ln *10*10*8.3110*3*10*63.6ln *T =-=-=---λ 9. 解:(1) 由题意传播1mm,吸收1%,所以吸收系数101.0-=mm α (2) 010010100003660I .e I e I e I I .z ====-?-α 即经过厚度为0.1m 时光能通过36.6% 10. 解: m /..ln .G e .e I I G .Gz 6550314 013122020===?=?

激光原理例题

第四章思考与练习题 1.光学谐振腔的作用。是什么 2.光学谐振腔的构成要素有哪些,各自有哪些作用 3.CO2激光器的腔长L=1.5m,增益介质折射率n=1,腔镜反射系数分别为r1=,r2=,忽 略其它损耗,求该谐振腔的损耗δ,光子寿命Rτ,Q值和无源腔线宽ν?。 4.证明:下图所示的球面折射的传播矩阵为 ?? ? ? ? ? ? ? - 2 1 2 1 2 1 η η η η η R 。折射率分别为 2 1 ,η η的两介质分界球面半径为R。 5.证明:下图所示的直角全反射棱镜的传播矩阵为 ? ? ? ? ? ? ? ? - - - 1 2 1 η d 。折射率为n的棱镜高d。 6.导出下图中1、2、3光线的传输矩阵。

R 7. 已知两平板的折射系数及厚度分别为n 1,d 1,n 2,d 2。(1)两平板平行放置,相距l ,(2) 两平板紧贴在一起,光线相继垂直通过空气中这两块平行平板的传输矩阵,是什么 8. 光学谐振腔的稳定条件是什么,有没有例外谐振腔稳定条件的推导过程中,只是要求光 线相对于光轴的偏折角小于90度。因此,谐振腔稳定条件是不是一个要求较低的条件,为什么 9. 有两个反射镜,镜面曲率半径,R 1=-50cm ,R 2=100cm ,试问: (1)构成介稳腔的两镜间距多大 (2)构成稳定腔的两镜间距在什么范围 (3)构成非稳腔的两镜间距在什么范围 10. 共焦腔是不是稳定腔,为什么 11. 腔内有其它元件的两镜腔中,除两腔镜外的其余部分所对应传输矩阵元为ABCD ,腔镜 曲率半径为1R 、2R ,证明:稳定性条件为1201g g <<,其中11/g D B R =-;22/g A B R =-。 12. 试求平凹、双凹、凹凸共轴球面镜腔的稳定性条件。 13. 激光器谐振腔由一面曲率半径为1m 的凸面镜和曲率半径为2m 的凹面镜组成,工作物 质长0.5m ,其折射率为,求腔长L 在什么范围内是稳定腔。 14. 如下图所示三镜环形腔,已知l ,试画出其等效透镜序列图,并求球面镜的曲率半径R 在什么范围内该腔是稳定腔。图示环形腔为非共轴球面镜腔,在这种情况下,对于在由光轴组成的平面内传输的子午光线,f = R cos /2,对于在于此垂直的平面内传输的弧矢光线,f = R/(2cos),为光轴与球面镜法线的夹角。

激光原理第四章习题解答..

1 静止氖原子的4223P S →谱线中心波长为632.8纳米,设氖原子分别以0.1C 、O.4C 、O.8C 的速度向着观察者运动,问其表观中心波长分别变为多少? 解答: 根据公式(激光原理P136) c c υυ νν-+=110 υλν= 由以上两个式子联立可得: 0λυ υλ?+-=C C 代入不同速度,分别得到表观中心波长为: nm C 4.5721.0=λ,nm C 26.4144.0=λ,nm C 9.2109.0=λ 解答完毕(验证过) 2 设有一台麦克尔逊干涉仪,其光源波长为λ,试用多普勒原理证明,当可动反射镜移动距离L 时,接收屏上的干涉光强周期性的变化λL 2次。 证明: 对于迈氏干涉仪的两个臂对应两个光路,其中一个光路上的镜是不变的,因此在这个光路中不存在多普勒效应,另一个光路的镜是以速度υ移动,存在多普勒效应。在经过两个光路返回到半透镜后,这两路光分别保持本来频率和多普勒效应后的频率被观察者观察到(从半透境到观察者两个频率都不变),观察者感受的是光强的变化,光强和振幅有关。以上是分析内容,具体解答如下: 无多普勒效应的光场:()t E E ?=πνν2cos 0 产生多普勒效应光场:()t E E ?=''02cos ''πνν 在产生多普勒效应的光路中,光从半透经到动镜产生一次多普勒效应,从动镜回到半透镜又产生一次多普勒效应(是在第一次多普勒效应的基础上) 第一次多普勒效应:?? ? ?? +=c υνν1' 第二次多普勒效应:?? ? ??+≈??? ??+=??? ??+=c c c υνυνυνν21112'''

激光原理与技术09级A卷含答案

题号一二三四总分阅卷人 得分 得分 2011 ─2012学年 第 2 学期 长江大学试卷 院(系、部) 专业 班级 姓名 学号 …………….……………………………. 密………………………………………封………………..…………………..线…………………………………….. 《 激光原理与技术 》课程考试试卷( A卷)专业:应物 年级2009级 考试方式:闭卷 学分4.5 考试时间:110 分钟相关常数:光速:c=3×108m/s, 普朗克常数h =6.63×10-34Js, 101/5=1.585 一、选择题 (每小题 3 分,共 30 分) 1. 掺铒光纤激光器中的发光粒子的激光上能级寿命为10ms ,则其自 发辐射几率为 。 (A )100s -1 (B) 10s -1 (C) 0.1s -1 (D) 10ms 2. 现有一平凹腔R 1→∞,R 2=5m ,L =1m 。它在稳区图中的位置是 。(A) (0, 0.8) (B) (1, 0.8) (C) (0.8, 0) (D) (0.8, 1) 3. 图1为某一激光器的输入/输出特性曲线,从图上可以看出,该激光器的斜效率约为 。

(A) 10% (B) 20% (C) 30% (D) 40% 图1 图2 4.图2为某一激光介质的吸收与辐射截面特征曲线,从图上可以看出,该激光介质可用来产生 的激光。

得 分 (A) 只有1532 nm (B)只能在1532 nm 附近 (C) 只能在1530 nm-1560nm 之间 (D) 1470 nm-1570nm 之间均可 A 卷第 1 页共 6 页 5. 电光晶体具有“波片”的功能,可作为光波偏振态的变换器,当晶体加上V λ/2电场时,晶体相当于 。 (A )全波片 (B) 1/4波片 (C) 3/4波片 (D) 1/2波片 6. 腔长3m 的调Q 激光器所能获得的最小脉宽为 。(设腔内介质折射率为1) (A )6.67ns (B) 10ns (C) 20ns (D) 30ns 7. 掺钕钇铝石榴石(Y 3Al 5O 12)激光器又称掺Nd 3+:YAG 激光器,属四能级系统。其发光波长为 。 (A ) 1.064μm (B )1.30μm (C ) 1.55μm (D )1.65μm 8. 在采用双包层泵浦方式的高功率光纤放大器中,信号光在 中传输。 (A ) 纤芯 (B )包层 (C )纤芯与包层 (D )包层中(以多模) 9. 脉冲透射式调Q 开关器件的特点是谐振腔储能调Q ,该方法俗称 。 (A )漂白 (B )腔倒空 (C )锁模 (D )锁相 10. 惰性气体原子激光器,也就是工作物质为惰性气体如氩、氪、氙、氖等。这些气体除氙以外增益都较低,通常都使用氦气作为辅助气体,借以 。 (A )降低输出功率 (B )提高输出功率 C )增加谱线宽度 (D )减小谱线宽度 二、填空题 (每小题 3 分,共 30 分) 1. 在2cm 3空腔内有一带宽为1×10-4μm ,波长为0.5μm 的跃迁,此跃迁的频率范围是 120 GHz 。 2. 稳定球面腔与共焦腔具有等价性,即任何一个共焦腔与无穷多个稳定

周炳琨激光原理第二章习题解答(完整版)

周炳琨激光原理第二章习题解答(完整版) 1.试利用往返矩阵证明对称共焦腔为稳定腔,即任意傍轴光线在其中可以往返无限多次,而且两次往返即自行闭合。 证明:设从镜M 1→M 2→M 1,初始坐标为??? ? ??θ00r ,往返一次后坐标变为???? ??θ11r =T ???? ??θ00r ,往返两次后坐标变为???? ??θ22r =T ?T ??? ? ??θ00r 而对称共焦腔,R 1=R 2=L 则A=1- 2R L 2=-1 B=2L ??? ? ??-2R L 1=0 C=-?????????? ??-+121R L 21R 2R 2=0 D=-??? ??????? ??-???? ? ?--211R L 21R L 21R L 2=-1 所以,T=??? ? ??--1001 故,???? ??θ22r =???? ??--1001???? ??--1001???? ??θ00r =??? ? ??θ00r 即,两次往返后自行闭合。 2.试求平凹、双凹、凹凸共轴球面镜腔的稳定性条件。 解:共轴球面腔的稳定性条件为01, L R >2或 L R <1L R <2且 L R R >+21 (c)对凹凸腔:R 1=1R ,R 2=-2R ,

01且L R R <-||21 3.激光器的谐振腔由一面曲率半径为1m 的凸面镜和曲率半径为2m 的凹面镜组成,工作物质长0.5m ,其折射率为1.52,求腔长L 在什么范围内是稳定腔。 解: 由图可见有工作物质时光的单程传播有效腔长减小为无工作物质时的 ?? ? ??--=n 11L L L C e ? 由0

激光原理第四章答案1

第四章 电磁场与物质的共振相互作用 1 静止氖原子的4223P S →谱线中心波长为632.8nm ,设氖原子分别以0.1c 、0.4c 、0.8c 的速度向着观察者运动,问其表观中心波长分别变为多少? 解:根据公式νν=c λν= 可得:λλ=代入不同速度,分别得到表观中心波长为: nm C 4.5721.0=λ,0.4414.3C nm λ=,nm C 9.2109.0=λ 2.设有一台迈克尔逊干涉仪,其光源波长为λ。试用多普勒原理证明,当可动反射镜移动距离L 时,接收屏上的干涉光强周期地变化2/L λ次。 证明:如右图所示,光源S 发出频率为ν的光,从M 上反射的光为I ',它被1M 反射并且透过M ,由图中的I 所标记;透过M 的光记为II ',它被2M 反射后又被M 反射,此光记为II 。由于M 和 1M 均为固定镜,所以I 光的频率不变, 仍为ν。将2M 看作光接收器,由于它以速度v 运动,故它感受到的光的频率为: 因为2M 反射II '光,所以它又相当于光发射器,其运动速度为v 时,发出的光的频率为 这样,I 光的频率为ν,II 光的频率为(12/)v c ν+。在屏P 上面,I 光和II 光的广场可以分别表示为: S 2 M (1) v c νν'=+2(1)(1)(12) v v v c c c νννν'''=+=+≈+00cos(2)cos 2(12)I II E E t v E E t πνπν=? ?=+

因而光屏P 上的总光场为 光强正比于电场振幅的平方,所以P 上面的光强为 它是t 的周期函数,单位时间内的变化次数为 由上式可得在dt 时间内屏上光强亮暗变化的次数为 (2/)mdt c dL ν= 因为dt 是镜2M 移动dL 长度所花费的时间,所以mdt 也就是镜2M 移动dL 过程中屏上光强的明暗变化的次数。对上式两边积分,即可以得到镜2M 移动L 距离时,屏上面光强周期性变化的次数S 式中1t 和2t 分别为镜2M 开始移动的时刻和停止移动的时刻;1L 和2L 为与1t 和2t 相对应的 2M 镜的空间坐标,并且有21L L L -=。 得证。 3.在激光出现以前,86 Kr 低气压放电灯是很好的单色光源。如果忽略自然加宽和碰撞加宽,试估算在77K 温度下它的605.7nm 谱线的相干长度是多少,并与一个单色性8 /10λλ-?=的氦氖激光器比较。 解:这里讨论的是气体光源,对于气体光源,其多普勒加宽为 1 12 2 7 002 22ln 27.1610D KT T mc M ννν-?????==? ? ????? 式中,M 为原子(分子)量,27 1.6610 (kg)m M -=?。对86Kr 来说,M =86,相干长度为 02cos(22)cos(2) I II v v E E E E t t t c c πνπνπν=+=+021cos 22v I I t c πν?? ????=+?? ???????? ?22v dL m c c dt νν== 2 2 1 1 212222()t L t L L S mdt dL L L L c c c νννλ== =-==??

激光原理与技术

激光的特性:方向性好、单色好、相干性好、亮度高。由于谐振腔对 光振荡方向的限制,激光只有沿腔轴方向受激辐射才能振荡放大,所以激光具有很高的方向性。半导体激光器的方向性最差。衍射极限θm≈1.22λ D (λ为波长,D为光束直径);激光是由原子受激辐射而产生,因而谱线极窄,所以单色性极好。单模稳频气体激光器的单色性最好,半导体激光器的单色性最差;激光是通过受激辐射过程形成的,其中每个光子的运动状态(频率、相位、偏振态、传播方向)都相同,因而是最好的相干光源。激光是一种相干光这是激光与普通光源最重要的区别;激光的高方向性、单色性等特点,决定了它具有极高的单 色定向亮度。相干性包括时间相干和空间相干,有时用相干长度L C=C ?V 来表示相干时间。自发辐射:处于高能级E2的原子自发地向低能级跃迁,并发射出一个能量为hv=E2?E1的光子,这个过程称为自发跃迁。 自发辐射跃迁概率(自发跃迁爱因斯坦系数)A21=(dn21 dt ) sp 1 n2 = ?1 n2dn2 dt (n2为E2能级总粒子数密度;dn21为dt时间内自发辐射跃迁 粒子数密度);受激辐射:在频率为v=(E2?E1)/h的光照激励下,或在能量为hv=E2?E1的光子诱发下,处于高能级E2上的原子可能跃迁到低能级E1,同时辐射出一个与诱发光子的状态完全相同的光子,这 个过程称为受激辐射跃迁W21=(dn21 dt ) st 1 n2 =?1 n2 dn2 dt 。受激辐射跃 迁与自发辐射跃迁的区别在于,它是在辐射场(光场)的激励下产生的,因此,其月前概率不仅与原子本身的性质有关,还与外来光场的单色能量密度ρv成正比,W21=B21ρv,B21称为爱因斯坦系数;受激吸收:处于低能级E1的原子,在频率为v的光场作用(照射)下,吸收

激光原理第四章习题

思考练习题4 1.腔长30 cm 的氦氖激光器荧光线宽为1500MHz ,可能出现三个纵横。用三反射镜法选取单纵横,问短耦合腔腔长(23L L +)应为若干。 答:L L L c ??=+?2103)(28 32μν=短; m L L L 2.02105.1329<+=?> (L l 紧靠腔的输出镜面),

激光原理第二章习题答案

2.19某共焦腔氦氖激光器,波长λ=0.6328μm ,若镜面上基模光斑尺寸为0.5mm ,试求共焦腔的腔长,若腔长保持不变,而波长λ= 3.39μm ,问:此时镜面上光斑尺寸多大? 解:2 0/ 1.24s L m ωπλ=≈ 01.16mm s ω= = 2.20考虑一台氩离子激光器,其对称稳定球面腔的腔长L=1m ,波长λ= 0.5145μm ,腔镜曲率半径R=4m ,试计算基模光斑尺寸和镜面上的光斑尺寸。 解: 1/4 2021/4 2 2 42()(2)(22)(2) 4.65104L R L R L R L RL L m ωλπ-??--=??-?? ??-==????? 1/4 2121/4 22 2 42 2()()(2)4.9810(2)R R L L R L R L R L m RL L ωωλπ-??-== ??--?? ?? ==??? -?? 2.21腔长L =75cm 的氦氖平凹腔激光器,波长λ=0.6328μm ,腔镜曲率半径R =1m ,试求凹面镜上光斑尺寸,并计算该腔基模远场发散角θ。 解: 1/4 1/4 212211121121/4 1/4 2 2112212212()0.295mm ()()(1)()0.591()()(1)s s R R L g w L R L R R L g g g R R L g w mm L R L R R L g g g ??-= = =??-+--? ? ???-= = =???-+--? ?? 1/4 1/4 22 21212120212121212(2)(2)20.0014rad=0.0782()()()(1)L R R g g g g L R L R L R R L g g g g λθπ??? --+-===? ?? --+--??? o 2.22设稳定球面腔的腔长L =16cm ,两镜面曲率半径为1R =20cm ,2R =-32cm ,波长λ=4 10-cm ,试求:(1)最小光斑尺寸0ω和最小光斑位置;(2)镜面上光斑尺寸1s ω、2s ω;(3)0ω和1s ω、2s ω分别与共焦腔(1R =2R =L )相应值之比。

激光原理与技术试题答案

2006-2007学年 第1学期 《激光原理与技术》B 卷 试题答案 1.填空题(每题4分)[20] 激光的相干时间τc 和表征单色性的频谱宽度Δν之间的关系为___1c υτ?= 一台激光器的单色性 为5x10-10,其无源谐振腔的Q 值是_2x109 如果某工作物质的某一跃迁波长为100nm 的远紫外光,自发跃迁几率A 10等于105 S -1,该跃迁的受激辐射爱因斯坦系数B 10等于_____6x1010 m 3s -2J -1 设圆形镜共焦腔腔长L=1m ,若振荡阈值以上的增益线宽为80 MHz ,判断可能存在_两_个振荡频率。 对称共焦腔的 =+)(2 1 D A _-1_,就稳定性而言,对称共焦腔是___稳定_____腔。 2. 问答题(选做4小题,每小题5分)[20] 何谓有源腔和无源腔?如何理解激光线宽极限和频率牵引效应? 有源腔:腔内有激活工作物质的谐振腔。无源腔:腔内没有激活工作物质的谐振腔。 激光线宽极限:无源腔的线宽极限与腔内光子寿命和损耗有关:122' c R c L δ υπτπ?= = ;有源腔由于受到自发辐射影响,净损耗不等于零,自发辐射的随机相位造成输出激光的线宽极限 220 2()t c s t out n h n P πυυυ?= ?。 频率牵引效应:激光器工作物质的折射率随频率变化造成色散效应,使得振荡模的谐振频率总是偏离无源腔相应的模的频率,并且较后者更靠近激活介质原子跃迁的中心频率。这种现象称为频率牵引效应。 写出三能级和四能级系统的激光上能级阈值粒子数密度,假设总粒子数密度为n ,阈值反转粒子数密度为 n t. 三能级系统的上能级阈值粒子数密度22 t t n n n += ;四能级系统的上能级阈值粒子数密度2t t n n ≈。 产生多普勒加宽的物理机制是什么? 多普勒加宽的物理机制是热运动的原子(分子)对所发出(或吸收)的辐射的多普勒频移。 均匀加宽介质和非均匀加宽介质中的增益饱和有什么不同?分别对形成的激光振荡模式有何影响? 均匀加宽介质:随光强的增加增益曲线会展宽。每个粒子对不同频率处的增益都有贡献,入射的强光不仅使自身的增益系数下降,也使其他频率的弱光增益系数下降。满足阀值条件的纵模

激光原理第二章答案

第二章开放式光腔与高斯光束 1.证明如图所示傍轴光线进入平面介质界面的光线变换矩阵为 1 2 1 0 η η ?? ?? ?? ?? ?? 。 证明:设入射光线坐标参数为 11 ,rθ,出射光线坐标参数为22 ,rθ,根据几何关系可知 211122 ,sin sin r rηθηθ ==傍轴光线sinθθ则1122 ηθηθ =,写成矩阵形式 21 21 1 2 1 0 r r θθ η η ?? ???? ?? = ???? ?? ???? ?? ?? 得证 2.证明光线通过图所示厚度为d的平行平面介质的光线变换矩阵为 1 2 1 0 1 d η η ?? ?? ?? ?? ?? 。 证明:设入射光线坐标参数为 11 ,rθ,出射光线坐标参数为22 ,rθ,入射光线首先经界面1折射,然后在介质2中自由传播横向距离d,最

后经界面2折射后出射。根据1题的结论和自由传播的光线变换矩阵可得 212121121 0 1 01 0 0 0 1r r d θθηηηη??????????????=???????????????????????? 化简后2121121 0 1d r r θθηη? ? ???? ??=????? ???????? ? 得证。 3.试利用往返矩阵证明共焦腔为稳定腔,即任意傍轴光线在其中可以往返无限多次,而且两次往返即自行闭合。 证:设光线在球面镜腔内的往返情况如下图所示: 其往返矩阵为: 由于是共焦腔,则有 12R R L == 将上式代入计算得往返矩阵 1 21122 110101A B L L T C D R R ?????? ????==??????????--?????????????? 1001T -?? =??-??

北交大激光原理第4章高斯光束部分-final

第四章高斯光束理论 一、学习要求与重点难点 学习要求 1.掌握高斯光束的描述参数以及传输特性; 2.理解q参数的引入,掌握q参数的ABCD定律; 3.掌握薄透镜对高斯光束的变换; 4.了解高斯光束的自再现变换,及其对球面腔稳定条件的推导; 5.理解高斯光束的聚焦和准直条件; 6.了解谐振腔的模式匹配方法。 重点 1.高斯光束的传输特性; 2.q参数的引入; 3.q参数的ABCD定律; 4.薄透镜对高斯光束的变换; 5.高斯光束的聚焦和准直条件;

6.谐振腔的模式匹配方法。难点 1.q参数,及其ABCD定律; 2.薄透镜对高斯光束的变换; 3.谐振腔的模式匹配。

二、知识点总结 22 ()220 020()()112()lim 2r w z z e w z w w R R z z z w z e z w πλλθπ-→∞??=?? ???????? =+? ???????? ? ?===??? 振幅分布:按高斯函数从中心向外平滑降落。光斑半径高斯光束基本性质等相位面:以为半径的球面,远场发散角:基模高斯光束强度的点的远场发散角, ()0 1/2 221 22 22 00()()1()()()1()11()()() ()()w f w z w z R z R z z R z w z i q z R z w z W z R Z w q z if z q z i z πλλπλππλ--??????=+?? ????????? →??????=+??? ????????? =-→=+=+=+0(或)及束腰位置w 高斯光束特征参数光斑半径w(z)和等相位面曲率半径R(z), q 参数,将两个参数和统一在一个表达式中,便于研究??????????????? ???? ?? 高斯光束通过光学系统的传输规律

激光原理与技术-北京理工大学--光电学院

《激光技术原理与实验》 课程代码: 课程名称:激光原理与技术实验 学分:3 学时:48 (其中实验学时:16) 先修课程:普通物理、物理光学 一、目的与任务 本课程是测控技术与仪器专业一门理论与实验并重的专业基础课,其教学目的是通过该课程理论部分的学习,使学生系统掌握激光的基本概念和基础理论,掌握各种类型激光器和基本激光技术的工作原理与设计方法,了解激光器件和激光技术领域的发展趋势和技术前沿。通过实验环节的锻炼,进一步加深对激光器和激光技术基本工作原理的理解,认识和熟悉常见激光器的基本构造、工作特性和调试方法,掌握激光器主要特性参数的测试方法,并学会使用激光实验研究常用的测试仪器。以期通过本课程的学习,培养学生理论联系实际、综合运用所学基础知识解决实际工程问题的能力。 二、教学内容及学时分配 理论部分 绪论(1学时) 第一章激光的物理基础(4学时) 1.激光的特性 2.光波模式和光子状态 3.原子的能级、分布和跃迁 4.激光产生的必要条件与充分条件 第二章场与物质的相互作用(4学时) 1.谱线加宽与线型函数 2.激光器的速率方程理论 3.均匀加宽工作物质的增益系数 4.非均匀加宽工作物质的增益系数 第三章光学谐振腔理论(5学时) 1.光学谐振腔的基本知识

2.光学谐振腔的损耗 3.光学谐振腔的稳定性条件 4.谐振腔的衍射积分理论 5.平行平面腔的自再现模 6.对称共焦腔的自再现模 7.一般稳定球面腔的模式特征 8.高斯光束 第四章激光器的工作特性(4学时) 1.连续激光器和脉冲激光器 2.激光振荡的阈值条件 3.激光器的振荡模式 4.激光器的输出特性 5.单模激光器的线宽极限 6.激光器的泵浦技术 第五章典型激光器(4学时) 1.概述 2.气体激光器 3.固体激光器 4.光纤激光器 5.半导体激光器 6.其他类型激光器 第六章激光调制技术(2学时) 1.调制的基本概念 2.电光调制 3.声光调制 4.直接调制 第七章调Q技术与锁模技术(4学时) 1.调Q技术的基本原理 2.常用的调Q技术

相关文档